Direct conversion of methane to methanol on boron nitride-supported copper single atoms

Sanmei Wang,^{a,c} Yue Xin,^a Jinyun Yuan,^{*b} Liangbing Wang^{*a} and Wenhua Zhang^{*c}

a. State Key Laboratory for Powder Metallurgy, School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, P. R. China. E-mail: wanglb@csu.edu.cn

b. School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan, 450002, China. E-mail: yuanjinyun0916@iccas.ac.cn

c. Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Centre of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China. E-mail: whhzhang@ustc.edu.cn

Fig. S1 Optimized structures for Cu-embedded into (a) N_3 -BN substrate (Cu₁/N₃-BN), (b) O_1N_2 -BN substrate (Cu₁/O₁N₂-BN), (c) O_2N_1 -BN substrate (Cu₁/O₂N₁-BN), and (d) O_3 -BN substrate (Cu₁/O₃-BN). The light blue, dark blue, bright red, and pink spheres represented Cu, N, O, and B atoms, respectively.

Fig. S2 The relationship between the magnetic moment and the free energy barriers of CH_4 activation was not a volcano curve.

Fig. S3 The calculated ab initio MD to investigate the stability of Cu_1/O_1N_2 -BN. Variations of temperature and energy at (a) 300K and (b) 500K, insert are top and side views of the snapshot of atomic configuration. Each simulation lasts 6 ps, and the time-step was set as 1 fs.

The calculation for the production rate of CH₃OH and CH₂

According to the reaction for generating CH₃OH and CH₂, $CH_3^*+OH^* \rightarrow CH_3OH^*$ $CH_3^*+OH^* \rightarrow CH_2^*+H_2O^*$

the $r_{CH,OH}$ and r_{CH} , were calculated according to Eq. S2 and S3, respectively.

$$\mathbf{r}_{\rm CH_3OH} = k_{\rm CH_3OH} C_{\rm CH_3*} C_{\rm OH*}$$
(S1)

$$\mathbf{r}_{CH_2} = k_{CH_2} C_{CH_3*} C_{OH*}$$
 (S2)

where C_{CH_3*} and $C_{\text{OH}*}$ denoted the concentration of intermediates CH₃* and OH*, respectively. The ratio of CH₃OH production rate to CH₂ production rate was $\frac{r_{\text{CH}_3\text{OH}}}{r_{\text{CH}_2}} = \frac{k_{\text{CH}_3\text{OH}}}{k_{CH_2}}$. The production rate of CH₃OH was determined to be 1.81×10^6 times than

that of CH_2 species at room temperature, indicating the negligible production of CH_2 species relative to CH_3OH .

Stability of Cu₁/O₁N₂-BN catalyst

In addition, we also calculated the formation energy of Cu atoms embedded in O_1N_2 -BN substrate to further determinate the stability of Cu_1/O_1N_2 -BN. The formation energy was calculated by equation (1):

$$E_{\rm f} = E_{\rm Cu1/O1N2-BN} - E_{\rm O1N2-BN} - E_{\rm Cu}$$

Where $E_{Cu1/O1N2-BN}$, $E_{O1N2-BN}$, and E_{Cu} were the energies of Cu₁/O₁N₂-BN, O₁N₂-BN substrate, Cu single atoms in its bulk form, respectively. The formation energy was determined to be -0.74 eV, indicating that the structure for Cu atoms embedded in O₁N₂-BN substrate via two O-Cu and one N-Cu coordination were stable.

Table S1 DFT-calculated activation energies of CH_4 and adsorption free energy of *O atoms. Structures taken from Ref.^{S1} and Ref.^{S2} was indicated by # and *, respectively, and we recalculated the activation energies of CH_4 for these structures. All values wee in eV.

Catalyst	Catalyst Type	$\Delta G_{ads}(*O)$	$\Delta G_{\rm a}$ (CH ₄)
Cu	O ₂ N ₁ -BN	-0.80	0.74
Cu	O ₁ N ₂ -BN	-0.15	0.46
Cu	BN	0.13	0.71
Au*	BN	-0.90	0.98
Ni*	graphene	-2.01	1.87
Tc*	graphene	-2.15	1.55
Rh [#]	metal-111	-2.77	2.42
Cu*	metal-111	-1.61	1.14
Ag [#]	metal-111	-0.56	0.85

Synthesis of Cu₁/O₁N₂-BN catalyst

A feasible synthesis method of Cu_1/O_1N_2 -BN catalyst was proposed by calculation, as illustrated in Fig. S4[†]. Cu_1/O_1N_2 -BN catalyst can be prepared by Cu-modified h-BN where a Cu atom bonded with two unsaturated nitrogen (N) atoms and two boron (B) atoms (named as Cu_1/BN) at the presence of H_2O_2 . A H_2O_2 was adsorbed on Cu_1/BN with G_{ads} of 0.21 eV. And then the H_2O_2 was decomposed on Cu_1/BN through the breakage of O-O bonds or O-H bonds.

The ΔG_a for the breakage of the O-O bond to form two OH species (*H₂O₂ \rightarrow 2*OH) was calculated to be 0.44 eV, obviously lower than that of the O-H bond breakage to form OOH species and H species (1.08 eV, *H₂O₂ \rightarrow *OOH + *H). Thus, the breakage of O-O bonds were more dynamically favorable than the O-H bond breakage on Cu₁/BN. These two *OH species further combined with each other to form a H₂O molecule and a lattice O with ΔG_a of 0.79 eV. After the adsorbed H₂O released from the surface of Cu₁/O₁N₂-BN, Cu₁/O₁N₂-BN catalyst was fabricated.

Fig. S4 Free energy diagrams for the decomposition of H_2O_2 over Cu_1/BN . TS represented the transition states. The gray, white, light blue, dark blue, bright red, and pink spheres represented C, H, Cu, N, O, and B atoms, respectively.

Reference

- S1 A. A. Latimer, A. Kakekhani, A. R. Kulkarni and J. K. Nørskov, ACS Catal., 2018, 8, 6894–6907.
- S2 S. M. Wang, Y. Xin, W. H. Zhang and L.B. Wang, *Catal. Lett.*, DOI:10.1007/s10562-021-03742-1.