Supporting information

Palladium(II)-Assisted Activation of Thioglycosides

Samira Escopy, Yashapal Singh,* and Alexei V. Demchenko*

Department of Chemistry and Biochemistry, University of Missouri – St. Louis One University Boulevard, St. Louis, MO 63121, USA

E-mail: demchenkoa@umsl.edu; satpal04@gmail.com

Contents:

¹ H-NMR Experiments	S2
NMR Spectra for New Compounds	S4 S14
NMR Proton Spectra for Known Compounds	

¹H NMR Experiments

¹H-NMR study of PdBr₂ complexation with thioglycoside 1 in CDCl₃ (A). To a solution of 1 (10 mg, 0.01 mmol) in 0.5 mL CDCl₃, PdBr₂ (4.4 mg, 0.01 mmol) was added and the mixture stirred at rt for 12 h, then the sample was immediately taken for NMR analysis.

¹H-NMR study of PdBr₂ with thioglycoside 1 in presence of C₃H₃Br in CDCl₃ (B). To a solution of 1 (10 mg, 0.01 mmol) in 0.5 mL CDCl₃, C₃H₃Br (1.5 μ L, 0.01 mmol) and PdBr₂ (4.4 mg, 0.01 mmol) were added and the mixture stirred at rt for 12 h, then the sample was immediately taken for NMR analysis (Fig 1).

Figure 1. ¹H NMR studies of PdBr₂ in the presence of C_3H_3Br with donor 1 in CDCl₃ at rt.

The ¹H NMR experiment was conducted in the presence of propargyl bromide (Fig 1) show an entirely new set of proton signals were appeared along with signals of donor 1. The above observation revealed that thiogalactoside 1 partially converted to corresponding α -galactosyl bromide (H-1 at 6.81 ppm) in the presence of propargyl bromide and absence of glycosyl acceptor.

¹H-NMR study of PdBr₂ with thioglycoside 1 in presence of C₃H₅Br (allyl bromide) in CDCl₃ (C) To a solution of 1(10 mg, 0.01 mmol) in 0.5 mL CDCl₃, C₃H₅Br (1.4µL, 0.01 mmol) and PdBr₂ (4.4 mg, 0.01 mmol) were added and the mixture stirred at rt for 12 h, then the sample was immediately taken for NMR analysis (Fig 2).

Figure 2. ¹H NMR studies of PdBr₂ in the presence of C₃H₅Br with donor 1 in CDCl₃ at rt.

The ¹H NMR experiment conducted in the presence of allyl bromide (Fig 2, 3^{rd} spectrum) show the complexation of PdBr₂ with thiogalactoside **1** without an interaction between the additive and PdBr₂; thus, the formation of corresponding α -galactosyl bromide was not observed in absence of glycosyl acceptor.

NMR Spectra for New Compounds

¹³C NMR (CDCl₃ 75 MHz)

S5

Methyl 6-*O*-(4,6-di-*O*-benzyl-2-deoxy-3-*O*-fluorenylmethoxycarbonyl-2-phthalimido-β-D-glucopyranosyl)-2,3,4-tri-*O*-benzyl-α-D-glucopyranoside (17).

¹³C NMR (CDCl₃ 75 MHz)

Methyl 2,3,4,6-tetra-*O*-benzyl- α/β -D-glucopyranosyl- $(1\rightarrow 6)$ -2,3,4-tri-*O*-benzoyl- β -D-glucopyranosyl- $(1\rightarrow 6)$ -2,3,4-tri-*O*-benzoyl- α -D-glucopyranoside (27).

Allyl 2-azido-4-*O*-benzyl-2-deoxy-β-D-glucopyranoside (28).

¹³C NMR (CDCl₃ 75 MHz)

COSY NMR (CDCl₃, 300 MHz)

Allyl 6-*O*-(2-*O*-benzoyl-3,4,6-tri-*O*-benzyl-β-D-galactopyranosyl)-2-azido-4-*O*-benzyl-2-deoxy-β-D-glucopyranoside (29).

COSY NMR (CDCl3, 300 MHz)

NMR Proton Spectra for Known Compounds

Methyl 6-*O*-(2-*O*-benzoyl-3,4,6-tri-*O*-benzyl-β-D-galactopyranosyl)-2,3,4-tri-*O*-benzyl-α-D-glucopyranoside (3).

Methyl 6-*O*-(2-*O*-benzoyl-3,4,6-tri-*O*-benzyl-β-D-galactopyranosyl)-2,3,4-tri-*O*-benzoyl-α-D-glucopyranoside (5).

Methyl 3-*O*-(2-*O*-benzoyl-3,4,6-tri-*O*-benzyl-β-D-galactopyranosyl)-2,4,6-tri-*O*-benzyl-α-D-glucopyranoside (7).

Methyl 6-*O*-(2,3,4,6-tetra-*O*-Benzyl-α/β-D-galactopyranosyl)-2,3,4-tri-*O*-benzyl-α-D-glucopyranoside (11).

Methyl 6-*O*-(2-*O*-benzoyl-3,4,6-tri-*O*-benzyl-α-D-mannopyranosyl)-2,3,4-tri-*O*-benzyl-α-D-glucopyranoside (13).

Methyl 6-*O*-(2-*O*-benzoyl-3,4,6-tri-*O*-benzyl-β-D-glucopyranosyl)-2,3,4-tri-*O*-benzyl-α-D-glucopyranoside (15).

Methyl 6-*O*-(2,3,4,6-tetra-*O*-benzoyl- β -D-glucopyranosyl)-2,3,4-tri-*O*-benzyl- α -D-glucopyranoside (19).

Methyl 6-O-(2,3,4,6-tetra-O-benzyl-α/β-D-glucopyranosyl)-2,3,4-tri-O-benzyl-α-D-glucopyranoside (21).

Ethyl 2,3,4-tri-*O*-benzoyl-β-D-glucopyranoside (23).

Ethyl 6-O-(2,3,4,6-tetra-O-benzyl- α/β -D-glucopyranosyl)-2,3,4-tri-O-benzoyl- β -D-glucopyranoside (24).

Tolyl 2,3,4-tri-*O*-benzoyl-β-D-glucopyranoside (25).

Tolyl 6-*O*-(2,3,4,6-tetra-*O*-benzyl-α/β-D-glucopyranosyl)-2,3,4-tri-*O*-benzoyl-β-D-glucopyranoside (26).

