Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2021

#### Unprecedented Access of Functionalized Pyrrolo[2,1-a]isoquinolines from the Domino Reaction of Isoquinolinium Ylides and Electrophilic Benzannulated Heterocycles

Sheba Ann Babu,<sup>a,b</sup> Rajalekshmi A. R.,<sup>a</sup> Nitha P. R.,<sup>a,b</sup> Vishnu K. Omanakuttan,<sup>a,b</sup> Rahul P.,<sup>a,b</sup> Sunil Varughese<sup>a,b\*</sup> and Jubi John<sup>a,b\*</sup>

<sup>a</sup>Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695019, India. <sup>b</sup>Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.

\* E-mail: s.varughese@niist.res.in, jubijohn@niist.res.in

#### **Table of Contents**

| 1. | Procedure for the synthesis of electrophilic benzannulated heterocycles and isoquinolinium salts | : S1      |
|----|--------------------------------------------------------------------------------------------------|-----------|
| 2. | Procedure for scale up of <b>3a</b>                                                              | : S1      |
| 3. | <sup>1</sup> H NMR & <sup>13</sup> C NMR Spectra                                                 | : S2-S30  |
| 3. | Single crystal X-ray of <b>3a</b> and <b>6a</b>                                                  | : S31-S48 |

# **1.**Procedure for the synthesis of electrophilic benzannulated heterocycles (1 and 5) isoquinolinium salts (2a-2i):

3-Nitroindoles (1a-1n) and 3-nitrobenzothiophenes (5a-5b) were prepared by following a literature report; E. T. Pelkey and G. W. Gribble, *Synthesis*, 1999, 1117



All isoquinolinium salts (2a-2i) were prepared by following a previously reported procedure (S. Mahmoud, T. Aboul-Fadl, M. Sheha, H. Farag and A. M. I. Mouhamed, Arch. Pharm. Pharm. Med. Chem., 2003, 573).

To isoquinoline dissolved in acetone at 0 °C,  $\alpha$ -halocarbonyl compound was added and the mixture was stirred at room temperature for a period of time. After the completion of the reaction, the precipitate formed was filtered and washed with diethyl ether to get the pure product.



#### 2. Procedure for scale up of 3a

A mixture of 3-nitro-*N*-tosyl indole 1a (1.0 g, 3.16 mmol), 2-(cyanomethyl)isoquinolin-2-ium-bromide 2a (1.18 mg, 4.74 mmol) and KOH (708 mg, 12.64 mmol) was weighed into a dry reaction tube. Dry DMF (18.0 mL) was added and allowed to stir at room temperature for 12 h. After completion of the reaction as indicated from the TLC, water was added and the aqueous layer extracted thrice with ethyl acetate. The organic layer was dried over anhydrous  $Na_2SO_4$  and the solvent was removed under vacuum. The residue was then purified by activated neutral alumina column chromatography (20% ethyl acetate in hexane) to afford 3a (994 mg, 72%).

#### 3.<sup>1</sup>H NMR &<sup>13</sup>C NMR Spectra

#### <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) &<sup>13</sup>C{<sup>1</sup>H} (125 MHz, CDCl<sub>3</sub>) Spectra of **3a**



<sup>1</sup>H NMR (500 MHz, (CD<sub>3</sub>)<sub>2</sub>CO)  $\&^{13}C{^{1}H}$  (125 MHz, (CD<sub>3</sub>)<sub>2</sub>CO) Spectra of **3b** 























### $^1\text{H}$ NMR (500 MHz, CDCl\_3) $\&^{13}\text{C}\{^1\text{H}\}$ (125 MHz, CDCl\_3) Spectra of 3i

### 







 $^1\text{H}$  NMR (500 MHz, CDCl\_3)  $\ensuremath{\&^{13}\text{C}^{1}\text{H}}\xspace$  (125 MHz, CDCl\_3) Spectra of 3j





 $^1\text{H}$  NMR (500 MHz, CDCl\_3)  $\ensuremath{\&^{13}\text{C}^{1}\text{H}}\xspace$  (125 MHz, CDCl\_3)Spectra of 3k

### $^1\text{H}$ NMR (500 MHz, CDCl\_3) $\ensuremath{\&^{13}\text{C}^{1}\text{H}}\xspace$ (125 MHz, CDCl\_3) Spectra of 3I

# 



#### <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) $^{13}C^{1}H$ (125 MHz, CDCl<sub>3</sub>) Spectra of **3m**















#### <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) &<sup>13</sup>C{<sup>1</sup>H} (125 MHz, CDCl<sub>3</sub>) Spectra of **3p**



















### $^1\text{H}$ NMR (500 MHz, CDCl\_3) $\&^{13}\text{C}\{^1\text{H}\}$ (125 MHz, CDCl\_3) Spectra of 3u

. 80 f1 (ppm) . 160 . 30



#### <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) &<sup>13</sup>C{<sup>1</sup>H} (125 MHz, CDCl<sub>3</sub>) Spectra of **3w**









#### 9.618 9.616 9.616 9.616 9.616 9.616 9.616 9.616 9.616 9.618 9.618 9.618 9.618 9.618 9.618 9.618 9.618 9.618 9.618 9.618 9.618 9.618 9.618 9.618 9.618 9.618 9.618 9.618 9.618 9.618 9.618 9.618 9.618 9.618 9.618 9.618 9.618 9.618 9.618 9.618 9.618 9.618 9.618 9.618 9.618 9.618 9.618 9.618 9.7177 9.718 9.723 9.7338 9.7338 9.7338 9.7338 9.72338 9.72338 9.72338 9.72338 9.72338 9.7223 9.7223 9.7223 9.7223 9.7223 9.7223 9.7223 9.7223 9.7223 9.7223 9.7223 9.7223 9.7223 9.7223 9.7223 9.7223 9.7223 9.7223 9.7223 9.7223 9.7223 9.7223 9.7223 9.7223 9.7223 9.7223 9.7223 9.7223 9.7223 9.7223 9.7223 9.7223 9.7223 9.7223 9.7223 9.7223 9.7223 9.7223 9.7223 9.7223 9.7223 9.7223 9.7223 9.7223 9.7223 9.7223 9.7223 9.7223 9.7223 9.7223 9.7223 9.7223 9.7223 9.7223 9.7223 9.7223 9.7223 9.7223 9.7223 9.7223 9.7223 9.7223 9.7223 9.7223 9.7223 9.7223 9.7223 9.7223 9.7223 9.7223 9.7223 9.7223 9.7223 9.7223 9.7223 9.7223 9.7223 9.7223 9.7223 9.7223 9.7223 9.7223 9.7223 9.7223 9.7223 9.7223 9.7223 9.7223 9.7223 9.7223 9.7223 9.7223 9.7223 9.7223 9.7223 9.7223 9.7223 9.7223 9.7223 9.7223 9.7223 9.7223 9.7223 9.7223 9.7223 9.7223 9.7223 9.7223 9.7223 9.7223 9.7223 9.7223 9.7223 9.7223 9.7223 9.7223 9.7223 9.7223 9.7233 9.7233 9.7233 9.7233 9.7233 9.7233 9.7233 9.7233 9.7233 9.7233 9.7233 9.7233 9.7233 9.7233 9.7233 9.7233 9.7233 9.7233 9.7233 9.7233 9.7233 9.7233 9.7233 9.7233 9.7233 9.7233 9.7233 9.7233 9.7233 9.7233 9.7233 9.7233 9.7233 9.7233 9.7233 9.7233 9.7233 9.7233 9.7233 9.7233 9.7233 9.7233 9.7233 9.7233 9.7233 9.7233 9.7233 9.7233 9.7233 9.7233 9.7233 9.7233 9.7233 9.7233 9.7233 9.7233 9.7233 9.7233 9.7233 9.7233 9.7233 9.7233 9.7233 9.7233 9.7233 9.7233 9.7233 9.7233 9.7233 9.7233 9.7233 9.7233 9.7233 9.7233 9.7233 9.7233 9.7233 9.7233 9.7233 9.7233 9.7233 9.7233 9.7233 9.7233 9.7233 9.7233 9.7233 9.7233 9.7233 9.7233 9.7233 9.7233 9.7233 9.7233 9.7233 9.7233 9.7233 9.7233 9.7233 9.7233 9.7233 9.7233 9.7233 9.7233 9.7233 9.7233 9.7233 9.7233 9.7233 9.7233 9.7233 9.72334 9.72334 9.72334 9.72334 9.72334 9.72334 9.72344 9.72334 9.72



#### <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) &<sup>13</sup>C (125 MHz, CDCl<sub>3</sub>) Spectra of **6b**

### 



. 150 . 130 110 100 f1 (ppm) . 80 o 

#### <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) &<sup>13</sup>C{<sup>1</sup>H} (125 MHz, CDCl<sub>3</sub>) Spectra of **6c**



#### -185.59 -185.56 -185.56 -185.56 -185.56 -185.56 -185.56 -185.56 -131.47 -132.63 -132.63 -132.63 -132.63 -132.63 -132.63 -132.63 -132.63 -132.63 -132.63 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -122.56 -125.56 -125.56 -125.56 -125.56 -125.56 -125.56 -125.56 -125.56 -125.56 -125.5



#### <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) &<sup>13</sup>C{<sup>1</sup>H} (125 MHz, CDCl<sub>3</sub>)Spectra of **6d**

## 







#### 4. Single crystal X-ray of 3a and 6a

Single crystal X-ray of 3a (CCDC: 2042168, 30% ellipsoid contour probability level)



#### Table 1 Crystal data and structure refinement for DATAM.

| Identification code   | DATAM                   |
|-----------------------|-------------------------|
| Empirical formula     | $C_{26}H_{18}BrN_3O_2S$ |
| Formula weight        | 516.40                  |
| Temperature/K         | 298                     |
| Crystal system        | triclinic               |
| Space group           | P-1                     |
| a/Å                   | 10.479(6)               |
| b/Å                   | 11.171(5)               |
| c/Å                   | 12.250(6)               |
| α/°                   | 64.87(5)                |
| β/°                   | 73.59(6)                |
| γ/°                   | 66.24(5)                |
| Volume/Å <sup>3</sup> | 1177.5(12)              |
| Ζ                     | 2                       |

| $\rho_{calc}g/cm^3$                   | 1.456                                                                 |
|---------------------------------------|-----------------------------------------------------------------------|
| $\mu/\text{mm}^{-1}$                  | 1.863                                                                 |
| F(000)                                | 524.0                                                                 |
| Crystal size/mm <sup>3</sup>          | $0.22\times0.2\times0.18$                                             |
| Radiation                             | MoK $\alpha$ ( $\lambda = 0.71073$ )                                  |
| $2\Theta$ range for data collection/° | 6.032 to 51                                                           |
| Index ranges                          | -12 $\leq$ h $\leq$ 11, -13 $\leq$ k $\leq$ 7, -14 $\leq$ l $\leq$ 14 |
| Reflections collected                 | 9288                                                                  |
| Independent reflections               | 4280 [ $R_{int} = 0.0495$ , $R_{sigma} = 0.0897$ ]                    |
| Data/restraints/parameters            | 4280/0/304                                                            |
| Goodness-of-fit on F <sup>2</sup>     | 1.070                                                                 |
| Final R indexes [I>= $2\sigma$ (I)]   | $R_1 = 0.0729, wR_2 = 0.1374$                                         |
| Final R indexes [all data]            | $R_1 = 0.1614, wR_2 = 0.1722$                                         |
| Largest diff. peak/hole / e Å-3       | 0.38/-0.40                                                            |
|                                       |                                                                       |

Table 2 Fractional Atomic Coordinates (×10<sup>4</sup>) and Equivalent Isotropic Displacement Parameters (Å<sup>2</sup>×10<sup>3</sup>) for DATAM.  $U_{eq}$  is defined as 1/3 of of the trace of the orthogonalised  $U_{IJ}$  tensor.

| Atom | x          | у          | z          | U(eq)    |
|------|------------|------------|------------|----------|
| S23  | 4149.5(15) | 3823.3(13) | 4378.7(11) | 58.0(4)  |
| O24  | 3512(4)    | 2838(3)    | 4516(3)    | 72.4(11) |
| O25  | 5015(4)    | 3500(3)    | 5262(3)    | 66.3(10) |
| N1   | 3108(5)    | 9508(4)    | 3506(5)    | 66.6(12) |
| N15  | 5168(7)    | 11193(6)   | 1015(6)    | 129(2)   |
| N22  | 2883(4)    | 5301(4)    | 4413(3)    | 53.0(11) |
| C2   | 2238(5)    | 8668(4)    | 3947(5)    | 54.9(13) |
| C3   | 1529(6)    | 8443(5)    | 5169(5)    | 56.5(14) |
| C4   | 1840(6)    | 8951(5)    | 5909(5)    | 68.1(15) |
| C5   | 2801(7)    | 9741(6)    | 5390(7)    | 83.4(19) |
| C6   | 3375(6)    | 10019(5)   | 4250(7)    | 77.2(18) |
| C7   | 513(6)     | 7772(5)    | 5649(5)    | 63.2(15) |
| C8   | -130(6)    | 7574(5)    | 6818(5)    | 78.2(18) |
| C9   | 200(9)     | 8024(7)    | 7574(6)    | 98(2)    |
| C10  | 1168(8)    | 8710(7)    | 7109(7)    | 92(2)    |
| C11  | 3643(6)    | 9636(6)    | 2301(6)    | 77.8(17) |
| C12  | 3161(6)    | 8885(5)    | 1985(5)    | 72.9(17) |
| C13  | 2299(6)    | 8269(5)    | 2976(5)    | 56.7(14) |
| C14  | 4495(8)    | 10483(7)   | 1597(7)    | 104(2)   |

Table 2 Fractional Atomic Coordinates (×10<sup>4</sup>) and Equivalent Isotropic Displacement Parameters (Å<sup>2</sup>×10<sup>3</sup>) for DATAM. U<sub>eq</sub> is defined as 1/3 of of the trace of the orthogonalised U<sub>IJ</sub> tensor.

| Atom | x        | У          | Z        | U(eq)     |
|------|----------|------------|----------|-----------|
| C16  | 1510(6)  | 7419(5)    | 2971(4)  | 54.9(13)  |
| C17  | 462(6)   | 8063(6)    | 2233(5)  | 73.1(16)  |
| C18  | -326(6)  | 7340(7)    | 2208(6)  | 82.6(18)  |
| C19  | -78(6)   | 5949(6)    | 2922(5)  | 73.6(16)  |
| C20  | 975(6)   | 5283(5)    | 3645(4)  | 60.9(14)  |
| C21  | 1808(5)  | 5990(5)    | 3656(4)  | 48.2(12)  |
| C26  | 5139(6)  | 4202(5)    | 2933(4)  | 57.4(14)  |
| C27  | 5862(6)  | 5138(6)    | 2564(5)  | 77.6(18)  |
| C28  | 6691(7)  | 5384(7)    | 1456(6)  | 90(2)     |
| C29  | 6833(7)  | 4710(8)    | 695(5)   | 86.6(19)  |
| C30  | 6107(7)  | 3790(7)    | 1064(5)  | 85.6(19)  |
| C31  | 5265(6)  | 3530(5)    | 2167(5)  | 73.2(17)  |
| C32  | 7794(8)  | 4975(8)    | -516(5)  | 135(3)    |
| Br1  | -1703(2) | 8309.4(11) | 1108(3)  | 130.0(10) |
| Br1A | -2194(8) | 8205(8)    | 1873(11) | 104(3)    |

Table 3 Anisotropic Displacement Parameters ( $Å^2 \times 10^3$ ) for DATAM. The Anisotropic displacement factor exponent takes the form:  $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$ .

| Atom | U <sub>11</sub> | $U_{22}$ | U <sub>33</sub> | U <sub>23</sub> | U <sub>13</sub> | U <sub>12</sub> |
|------|-----------------|----------|-----------------|-----------------|-----------------|-----------------|
| S23  | 70.4(11)        | 42.0(7)  | 67.4(8)         | -17.0(7)        | -18.7(7)        | -20.2(7)        |
| O24  | 86(3)           | 46(2)    | 96(2)           | -22.2(19)       | -18(2)          | -31(2)          |
| O25  | 84(3)           | 52(2)    | 67(2)           | -15.4(18)       | -35.8(19)       | -16(2)          |
| N1   | 61(3)           | 42(3)    | 98(3)           | -22(3)          | -23(3)          | -13(2)          |
| N15  | 121(6)          | 107(5)   | 169(6)          | -58(4)          | 26(5)           | -69(4)          |
| N22  | 69(3)           | 40(2)    | 57(2)           | -22(2)          | -18(2)          | -13(2)          |
| C2   | 50(4)           | 33(3)    | 82(4)           | -17(3)          | -20(3)          | -11(3)          |
| C3   | 58(4)           | 37(3)    | 75(4)           | -22(3)          | -22(3)          | -5(3)           |
| C4   | 66(4)           | 48(3)    | 92(4)           | -28(3)          | -32(3)          | -1(3)           |
| C5   | 93(6)           | 66(4)    | 111(5)          | -41(4)          | -48(4)          | -12(4)          |
| C6   | 71(5)           | 52(3)    | 133(5)          | -35(4)          | -40(4)          | -24(3)          |
| C7   | 76(4)           | 56(3)    | 65(3)           | -29(3)          | -6(3)           | -22(3)          |
| C8   | 89(5)           | 57(3)    | 76(4)           | -25(3)          | -2(4)           | -16(3)          |
| C9   | 123(7)          | 70(4)    | 78(4)           | -31(4)          | -25(4)          | 2(4)            |
| C10  | 108(6)          | 72(4)    | 102(5)          | -53(4)          | -40(4)          | 4(4)            |
| C11  | 64(5)           | 55(4)    | 109(5)          | -16(4)          | -10(4)          | -29(3)          |
| C12  | 79(5)           | 56(3)    | 79(4)           | -16(3)          | -8(3)           | -29(3)          |

| -    |                 | 1               | L.              |                 | ,               |                 |
|------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Atom | U <sub>11</sub> | U <sub>22</sub> | U <sub>33</sub> | U <sub>23</sub> | U <sub>13</sub> | U <sub>12</sub> |
| C13  | 58(4)           | 41(3)           | 71(3)           | -21(3)          | -18(3)          | -9(3)           |
| C14  | 97(6)           | 74(4)           | 144(6)          | -43(5)          | 5(5)            | -41(5)          |
| C16  | 62(4)           | 44(3)           | 64(3)           | -19(3)          | -14(3)          | -19(3)          |
| C17  | 84(5)           | 54(3)           | 88(4)           | -26(3)          | -32(3)          | -13(3)          |
| C18  | 63(5)           | 79(4)           | 121(5)          | -53(4)          | -39(4)          | -1(4)           |
| C19  | 63(5)           | 79(4)           | 99(4)           | -42(4)          | -19(3)          | -27(4)          |
| C20  | 69(4)           | 58(3)           | 66(3)           | -25(3)          | -8(3)           | -29(3)          |
| C21  | 52(4)           | 51(3)           | 49(3)           | -21(3)          | -9(2)           | -20(3)          |
| C26  | 58(4)           | 58(3)           | 66(3)           | -31(3)          | -13(3)          | -15(3)          |
| C27  | 92(5)           | 93(4)           | 72(4)           | -35(3)          | -5(3)           | -52(4)          |
| C28  | 89(5)           | 120(5)          | 82(4)           | -38(4)          | 6(4)            | -64(5)          |
| C29  | 70(5)           | 117(6)          | 70(4)           | -39(4)          | -8(3)           | -22(4)          |
| C30  | 94(6)           | 99(5)           | 76(4)           | -47(4)          | -15(4)          | -24(4)          |
| C31  | 86(5)           | 67(4)           | 81(4)           | -29(3)          | -24(4)          | -26(3)          |
| C32  | 112(7)          | 197(8)          | 85(5)           | -53(5)          | 12(4)           | -51(6)          |
| Br1  | 119.2(15)       | 113.9(8)        | 174(2)          | -40.1(8)        | -97.4(15)       | -14.3(7)        |

Table 3 Anisotropic Displacement Parameters (Å<sup>2</sup>×10<sup>3</sup>) for DATAM. The Anisotropic displacement factor exponent takes the form:  $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$ .

## Table 4 Bond Lengths for DATAM.A tors A tor

|      |        | 0        |      |        |           |
|------|--------|----------|------|--------|-----------|
| Aton | n Atom | Length/Å | Aton | 1 Atom | Length/Å  |
| S23  | O24    | 1.435(3) | C11  | C12    | 1.357(7)  |
| S23  | O25    | 1.443(3) | C11  | C14    | 1.410(9)  |
| S23  | N22    | 1.658(4) | C12  | C13    | 1.391(7)  |
| S23  | C26    | 1.752(5) | C13  | C16    | 1.492(6)  |
| N1   | C2     | 1.408(6) | C16  | C17    | 1.383(7)  |
| N1   | C6     | 1.396(6) | C16  | C21    | 1.399(6)  |
| N1   | C11    | 1.390(7) | C17  | C18    | 1.382(7)  |
| N15  | C14    | 1.149(7) | C18  | C19    | 1.377(8)  |
| N22  | C21    | 1.417(6) | C18  | Br1    | 1.916(6)  |
| C2   | C3     | 1.434(6) | C18  | Br1A   | 1.877(10) |
| C2   | C13    | 1.415(6) | C19  | C20    | 1.374(7)  |
| C3   | C4     | 1.416(7) | C20  | C21    | 1.399(6)  |
| C3   | C7     | 1.398(7) | C26  | C27    | 1.384(7)  |
| C4   | C5     | 1.441(8) | C26  | C31    | 1.382(6)  |
| C4   | C10    | 1.400(8) | C27  | C28    | 1.372(7)  |
| C5   | C6     | 1.311(7) | C28  | C29    | 1.374(8)  |
| C7   | C8     | 1.363(6) | C29  | C30    | 1.371(8)  |
| C8   | C9     | 1.395(8) | C29  | C32    | 1.526(8)  |

### Table 4 Bond Lengths for DATAM.

| Ator | n Atom | Length/Å | Atom | Atom | Length/Å |
|------|--------|----------|------|------|----------|
| C9   | C10    | 1.368(9) | C30  | C31  | 1.374(7) |

#### Table 5 Bond Angles for DATAM.

| Atom | 1 Aton | n Atom | Angle/°  | Aton | 1 Aton | n Atom | Angle/°  |
|------|--------|--------|----------|------|--------|--------|----------|
| O24  | S23    | O25    | 119.7(2) | C2   | C13    | C16    | 126.7(5) |
| O24  | S23    | N22    | 108.5(2) | C12  | C13    | C2     | 108.0(5) |
| O24  | S23    | C26    | 108.2(2) | C12  | C13    | C16    | 125.2(5) |
| O25  | S23    | N22    | 104.5(2) | N15  | C14    | C11    | 178.7(9) |
| O25  | S23    | C26    | 108.3(2) | C17  | C16    | C13    | 118.6(5) |
| N22  | S23    | C26    | 106.9(2) | C17  | C16    | C21    | 118.6(5) |
| C6   | N1     | C2     | 121.8(5) | C21  | C16    | C13    | 122.8(5) |
| C11  | N1     | C2     | 108.5(4) | C18  | C17    | C16    | 121.3(5) |
| C11  | N1     | C6     | 129.6(5) | C17  | C18    | Br1    | 118.0(5) |
| C21  | N22    | S23    | 122.5(3) | C17  | C18    | Br1A   | 122.8(5) |
| N1   | C2     | C3     | 117.8(5) | C19  | C18    | C17    | 120.3(6) |
| N1   | C2     | C13    | 105.9(5) | C19  | C18    | Br1    | 121.7(5) |
| C13  | C2     | C3     | 136.3(5) | C19  | C18    | Br1A   | 111.0(6) |
| C4   | C3     | C2     | 118.9(5) | C20  | C19    | C18    | 119.3(5) |
| C7   | C3     | C2     | 122.6(5) | C19  | C20    | C21    | 121.1(5) |
| C7   | C3     | C4     | 118.5(5) | C16  | C21    | N22    | 119.8(4) |
| C3   | C4     | C5     | 118.9(5) | C20  | C21    | N22    | 120.8(4) |
| C10  | C4     | C3     | 119.0(6) | C20  | C21    | C16    | 119.3(5) |
| C10  | C4     | C5     | 122.1(6) | C27  | C26    | S23    | 120.0(4) |
| C6   | C5     | C4     | 121.8(5) | C31  | C26    | S23    | 121.0(4) |
| C5   | C6     | N1     | 120.5(5) | C31  | C26    | C27    | 118.9(5) |
| C8   | C7     | C3     | 120.6(5) | C28  | C27    | C26    | 120.1(5) |
| C7   | C8     | C9     | 121.6(6) | C27  | C28    | C29    | 121.3(6) |
| C10  | C9     | C8     | 118.5(6) | C28  | C29    | C32    | 120.2(7) |
| C9   | C10    | C4     | 121.7(6) | C30  | C29    | C28    | 118.2(6) |
| N1   | C11    | C14    | 121.4(6) | C30  | C29    | C32    | 121.6(6) |
| C12  | C11    | N1     | 108.6(5) | C29  | C30    | C31    | 121.6(5) |
| C12  | C11    | C14    | 129.9(7) | C30  | C31    | C26    | 119.9(5) |
| C11  | C12    | C13    | 109.0(5) |      |        |        |          |

#### Table 6 Torsion Angles for DATAM.

A B C D Angle/° A B C D Angle/°

#### Table 6 Torsion Angles for DATAM.

| A B C D         | Angle/°   | Α    | B C D         | Angle/°   |
|-----------------|-----------|------|---------------|-----------|
| S23 N22 C21 C16 | -129.7(4) | C7   | C3 C4 C10     | 2.9(7)    |
| S23 N22 C21 C20 | 54.6(6)   | C7   | C8 C9 C10     | 1.7(9)    |
| S23 C26 C27 C28 | 176.8(5)  | C8   | C9 C10C4      | -0.9(10)  |
| S23 C26 C31 C30 | -176.6(5) | C10  | C4 C5 C6      | -176.7(6) |
| O24 S23 N22 C21 | -52.2(4)  | C11  | N1 C2 C3      | -177.7(4) |
| O24 S23 C26 C27 | 179.7(5)  | C11  | N1 C2 C13     | 1.5(6)    |
| O24 S23 C26 C31 | -3.3(5)   | C11  | N1 C6 C5      | -177.4(6) |
| O25 S23 N22 C21 | 179.1(3)  | C11  | C12C13C2      | 0.5(6)    |
| O25 S23 C26 C27 | -49.1(5)  | C11  | C12C13C16     | 176.7(5)  |
| O25 S23 C26 C31 | 127.8(4)  | C12  | C13C16C17     | -64.2(7)  |
| N1 C2 C3 C4     | -6.1(7)   | C12  | C13 C16 C21   | 114.1(6)  |
| N1 C2 C3 C7     | 172.1(5)  | C13  | C2 C3 C4      | 175.1(5)  |
| N1 C2 C13 C12   | -1.2(6)   | C13  | C2 C3 C7      | -6.7(9)   |
| N1 C2 C13 C16   | -177.4(5) | C13  | C16C17C18     | -178.6(5) |
| N1 C11 C12 C13  | 0.4(7)    | C13  | C16C21N22     | 1.3(7)    |
| N22 S23 C26 C27 | 63.0(5)   | C13  | C16C21C20     | 177.0(4)  |
| N22 S23 C26 C31 | -120.0(4) | C14  | C11 C12 C13   | -177.1(7) |
| C2 N1 C6 C5     | -0.8(8)   | C16  | C17C18C19     | -0.2(9)   |
| C2 N1 C11C12    | -1.2(6)   | C16  | C17 C18 Br1   | -177.7(4) |
| C2 N1 C11C14    | 176.6(6)  | C16  | C17 C18 Br1A  | 150.3(6)  |
| C2 C3 C4 C5     | 3.2(7)    | C17  | C16C21N22     | 179.5(4)  |
| C2 C3 C4 C10    | -178.9(5) | C17  | C16C21C20     | -4.7(7)   |
| C2 C3 C7 C8     | 179.7(5)  | C17  | C18 C19 C20   | -1.0(9)   |
| C2 C13 C16 C17  | 111.3(6)  | C18  | C19C20C21     | -0.8(8)   |
| C2 C13 C16 C21  | -70.4(7)  | C19  | C20 C21 N22   | 179.4(4)  |
| C3 C2 C13 C12   | 177.7(5)  | C19  | C20C21C16     | 3.7(7)    |
| C3 C2 C13 C16   | 1.5(9)    | C21  | C16C17C18     | 3.1(8)    |
| C3 C4 C5 C6     | 1.2(9)    | C26  | S23 N22 C21   | 64.4(4)   |
| C3 C4 C10C9     | -1.4(9)   | C26  | C27 C28 C29   | -0.4(10)  |
| C3 C7 C8 C9     | -0.2(8)   | C27  | C26C31C30     | 0.5(8)    |
| C4 C3 C7 C8     | -2.1(8)   | C27  | C28 C29 C30   | 0.8(10)   |
| C4 C5 C6 N1     | -2.4(9)   | C27  | C28 C29 C32   | -178.3(6) |
| C5 C4 C10C9     | 176.5(6)  | C28  | C29C30C31     | -0.5(10)  |
| C6 N1 C2 C3     | 5.1(7)    | C29  | C30C31C26     | -0.1(10)  |
| C6 N1 C2 C13    | -175.8(4) | C31  | C26C27C28     | -0.2(9)   |
| C6 N1 C11C12    | 175.8(5)  | C32  | C29C30C31     | 178.5(6)  |
| C6 N1 C11C14    | -6.4(9)   | Br1  | C18C19C20     | 176.4(4)  |
| C7 C3 C4 C5     | -175.1(5) | Br1A | A C18 C19 C20 | -154.6(6) |

| Atom | r                      | 17       | 7        | U(ea) |
|------|------------------------|----------|----------|-------|
| Atom | $\boldsymbol{\lambda}$ | <b>y</b> | <b>4</b> | 0(04) |
| H22  | 2879.15                | 5662.71  | 4910.04  | 64    |
| Н5   | 3020.86                | 10061.74 | 5878.42  | 100   |
| H6   | 3963.74                | 10561.8  | 3933.25  | 93    |
| H7   | 273.97                 | 7458.84  | 5166.81  | 76    |
| H8   | -805.18                | 7128.62  | 7117.85  | 94    |
| H9   | -228.27                | 7860.3   | 8376.23  | 117   |
| H10  | 1385.58                | 9025.19  | 7602.61  | 110   |
| H12  | 3371.67                | 8795.68  | 1226.95  | 87    |
| H17  | 285.03                 | 9001.29  | 1743.62  | 88    |
| H19  | -617.65                | 5465.04  | 2914.26  | 88    |
| H20  | 1137.13                | 4346.95  | 4135.55  | 73    |
| H27  | 5785.1                 | 5601.13  | 3068.45  | 93    |
| H28  | 7167.08                | 6020.22  | 1216.01  | 108   |
| H30  | 6185.61                | 3331.81  | 555.15   | 103   |
| H31  | 4781.28                | 2902.48  | 2397.55  | 88    |
| H32A | 7872.84                | 4335.23  | -882.09  | 203   |
| H32B | 8709.42                | 4838.22  | -379.99  | 203   |
| H32C | 7406.02                | 5917.34  | -1049.33 | 203   |

| Table 7 Hydrogen Atom Coordinates (Å          | ×10 <sup>4</sup> ) and Isotropic Displacement Parameters |
|-----------------------------------------------|----------------------------------------------------------|
| (Å <sup>2</sup> ×10 <sup>3</sup> ) for DATAM. |                                                          |

| Atom | Occupancy | Atom | Occupancy | Atom | Occupancy |
|------|-----------|------|-----------|------|-----------|
| Br1  | 0.865(6)  | Br1A | 0.135(6)  |      |           |

#### Experimental

Single crystals of  $C_{26}H_{18}BrN_3O_2S$  [DATAM] were []. A suitable crystal was selected and [] on a Rigaku Saturn 724+ HG diffractometer. The crystal was kept at 298 K during data collection. Using Olex2 [1], the structure was solved with the olex2.solve [2] structure solution program using Charge Flipping and refined with the SHELXL [3] refinement package using Least Squares minimisation.

- 1. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. & Puschmann, H. (2009), J. Appl. Cryst. 42, 339-341.
- Bourhis, L.J., Dolomanov, O.V., Gildea, R.J., Howard, J.A.K., Puschmann, H. (2015). Acta Cryst. A71, 59-75.
- 3. Sheldrick, G.M. (2015). Acta Cryst. C71, 3-8.

#### Crystal structure determination of [DATAM]

**Crystal Data** for C<sub>26</sub>H<sub>18</sub>BrN<sub>3</sub>O<sub>2</sub>S (M = 516.40 g/mol): triclinic, space group P-1 (no. 2), a = 10.479(6) Å, b = 11.171(5) Å, c = 12.250(6) Å,  $a = 64.87(5)^\circ$ ,  $\beta = 73.59(6)^\circ$ ,  $\gamma = 66.24(5)^\circ$ , V = 1177.5(12) Å<sup>3</sup>, Z = 2, T = 298 K,  $\mu$ (MoK $\alpha$ ) = 1.863 mm<sup>-1</sup>, *Dcalc* = 1.456 g/cm<sup>3</sup>, 9288 reflections measured ( $6.032^\circ \le 2\Theta \le 51^\circ$ ), 4280 unique ( $R_{int} = 0.0495$ ,  $R_{sigma} = 0.0897$ ) which were used in all calculations. The final  $R_1$  was 0.0729 (I > 2 $\sigma$ (I)) and  $wR_2$  was 0.1722 (all data).

Single crystal X-ray of 6a (CCDC: 2042169, 20% ellipsoid contour probability levels)



# Table 1 Crystal data and structure refinement for sab. Identification code

| Identification code   | sab                       |
|-----------------------|---------------------------|
| Empirical formula     | $C_{50}H_{32}N_2O_2S_2\\$ |
| Formula weight        | 756.89                    |
| Temperature/K         | 296.15                    |
| Crystal system        | monoclinic                |
| Space group           | $P2_1/c$                  |
| a/Å                   | 15.230(9)                 |
| b/Å                   | 14.373(8)                 |
| c/Å                   | 18.320(11)                |
| α/°                   | 90                        |
| β/°                   | 106.462(15)               |
| γ/°                   | 90                        |
| Volume/Å <sup>3</sup> | 3846(4)                   |
| Ζ                     | 4                         |
|                       |                           |

| $\rho_{calc}g/cm^3$                   | 1.307                                                                  |
|---------------------------------------|------------------------------------------------------------------------|
| $\mu/\text{mm}^{-1}$                  | 0.183                                                                  |
| F(000)                                | 1576.0                                                                 |
| Crystal size/mm <sup>3</sup>          | $0.182\times0.085\times0.045$                                          |
| Radiation                             | MoK $\alpha$ ( $\lambda = 0.71073$ )                                   |
| $2\Theta$ range for data collection/° | 4.636 to 50                                                            |
| Index ranges                          | -18 $\leq$ h $\leq$ 18, -17 $\leq$ k $\leq$ 17, -21 $\leq$ l $\leq$ 21 |
| Reflections collected                 | 45854                                                                  |
| Independent reflections               | $4764 [R_{int} = 0.2127, R_{sigma} = 0.1817]$                          |
| Data/restraints/parameters            | 4764/0/505                                                             |
| Goodness-of-fit on F <sup>2</sup>     | 0.987                                                                  |
| Final R indexes [I>= $2\sigma$ (I)]   | $R_1 = 0.0669, wR_2 = 0.1278$                                          |
| Final R indexes [all data]            | $R_1 = 0.2278, wR_2 = 0.1889$                                          |
| Largest diff. peak/hole / e Å-3       | 0.26/-0.27                                                             |
|                                       |                                                                        |

Table 2 Fractional Atomic Coordinates (×10<sup>4</sup>) and Equivalent Isotropic Displacement Parameters (Å<sup>2</sup>×10<sup>3</sup>) for sab.  $U_{eq}$  is defined as 1/3 of of the trace of the orthogonalised  $U_{IJ}$  tensor.

| Atom | x       | у       | z       | U(eq)    |
|------|---------|---------|---------|----------|
| C1   | 5188(4) | 5768(3) | 2194(3) | 52.8(14) |
| C2   | 5600(4) | 5710(4) | 1610(3) | 69.8(17) |
| C3   | 5339(5) | 5028(5) | 1065(3) | 78.7(19) |
| C4   | 4658(5) | 4412(4) | 1088(3) | 77.9(19) |
| C5   | 4244(4) | 4477(4) | 1679(3) | 65.2(16) |
| C6   | 4515(4) | 5157(4) | 2234(3) | 51.2(14) |
| C7   | 4056(4) | 5239(3) | 2850(3) | 48.6(14) |
| C8   | 4195(4) | 4724(3) | 3520(3) | 49.1(14) |
| C9   | 4789(4) | 3959(3) | 3848(3) | 50.1(14) |
| C10  | 5425(4) | 3578(4) | 3508(3) | 70.7(17) |
| C11  | 5993(4) | 2856(4) | 3859(4) | 90(2)    |
| C12  | 5934(5) | 2506(4) | 4547(4) | 95(2)    |
| C13  | 5321(5) | 2865(4) | 4888(4) | 86(2)    |
| C14  | 4743(4) | 3595(4) | 4559(3) | 61.8(16) |
| C15  | 4143(4) | 4021(4) | 4930(3) | 69.0(17) |
| C16  | 3614(4) | 4749(4) | 4627(3) | 60.9(16) |
| C17  | 3170(4) | 5860(3) | 3538(3) | 53.0(14) |
| C18  | 2515(4) | 6413(4) | 3788(3) | 56.6(15) |
| C19  | 2224(4) | 7307(4) | 3375(3) | 55.2(15) |

Table 2 Fractional Atomic Coordinates (×10<sup>4</sup>) and Equivalent Isotropic Displacement Parameters (Å<sup>2</sup>×10<sup>3</sup>) for sab.  $U_{eq}$  is defined as 1/3 of of the trace of the orthogonalised  $U_{IJ}$  tensor.

| Atom | x          | У          | z         | U(eq)    |
|------|------------|------------|-----------|----------|
| C20  | 1323(5)    | 7555(5)    | 3165(4)   | 89(2)    |
| C21  | 1025(5)    | 8371(6)    | 2785(4)   | 106(2)   |
| C22  | 1640(6)    | 8952(5)    | 2623(4)   | 96(2)    |
| C23  | 2549(6)    | 8739(4)    | 2833(4)   | 84(2)    |
| C24  | 2851(4)    | 7915(4)    | 3211(3)   | 69.5(17) |
| C25  | 3427(4)    | 5929(3)    | 2878(3)   | 53.4(14) |
| C26  | 7548(4)    | 6477(3)    | 3334(3)   | 47.2(14) |
| C27  | 7415(4)    | 5632(3)    | 3659(3)   | 57.3(15) |
| C28  | 8166(5)    | 5101(4)    | 4032(3)   | 74.2(19) |
| C29  | 9041(5)    | 5413(4)    | 4090(3)   | 76.6(19) |
| C30  | 9173(4)    | 6244(4)    | 3761(3)   | 64.5(16) |
| C31  | 8428(4)    | 6788(3)    | 3380(3)   | 50.4(14) |
| C32  | 8568(3)    | 7690(3)    | 3023(3)   | 51.1(14) |
| C33  | 8799(3)    | 8539(4)    | 3400(3)   | 57.7(15) |
| C34  | 8857(4)    | 9215(4)    | 2888(3)   | 58.2(15) |
| C35  | 9195(4)    | 10179(4)   | 3006(4)   | 67.4(17) |
| C36  | 9035(4)    | 10719(4)   | 3637(4)   | 68.4(17) |
| C37  | 8309(5)    | 10563(4)   | 3928(4)   | 92(2)    |
| C38  | 8147(6)    | 11153(5)   | 4485(5)   | 119(3)   |
| C39  | 8718(7)    | 11902(6)   | 4739(5)   | 130(3)   |
| C40  | 9419(7)    | 12083(6)   | 4446(5)   | 142(3)   |
| C41  | 9581(5)    | 11489(5)   | 3894(4)   | 106(2)   |
| C42  | 8637(4)    | 9180(4)    | 1477(4)   | 64.6(17) |
| C43  | 8408(4)    | 8668(4)    | 854(4)    | 75.5(19) |
| C44  | 8169(4)    | 7703(4)    | 872(3)    | 63.2(16) |
| C45  | 7897(4)    | 7173(5)    | 198(3)    | 83(2)    |
| C46  | 7715(5)    | 6252(5)    | 231(4)    | 93(2)    |
| C47  | 7788(4)    | 5821(4)    | 930(4)    | 86(2)    |
| C48  | 8052(4)    | 6333(4)    | 1595(3)   | 69.2(17) |
| C49  | 8233(3)    | 7280(4)    | 1574(3)   | 55.8(15) |
| C50  | 8481(3)    | 7843(3)    | 2255(3)   | 50.8(14) |
| N1   | 3642(3)    | 5101(3)    | 3926(2)   | 51.4(11) |
| N2   | 8670(3)    | 8781(3)    | 2180(3)   | 54.6(12) |
| 01   | 2182(3)    | 6176(2)    | 4300(2)   | 78.3(13) |
| O2   | 9576(3)    | 10531(3)   | 2570(3)   | 98.1(15) |
| S1   | 5479.9(10) | 6626.6(10) | 2929.8(8) | 64.5(5)  |
| S2   | 6647.1(10) | 7226.4(9)  | 2831.6(8) | 63.0(5)  |

| Atom | U <sub>11</sub> | U <sub>22</sub> | U <sub>33</sub> | U <sub>23</sub> | U <sub>13</sub> | U <sub>12</sub> |
|------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| C1   | 61(4)           | 66(4)           | 32(4)           | 2(3)            | 14(3)           | 4(3)            |
| C2   | 66(4)           | 100(5)          | 48(4)           | -8(4)           | 24(4)           | -12(4)          |
| C3   | 83(5)           | 109(5)          | 50(4)           | -12(4)          | 28(4)           | 2(4)            |
| C4   | 93(6)           | 81(4)           | 57(5)           | -20(3)          | 17(4)           | 2(4)            |
| C5   | 73(5)           | 65(4)           | 56(4)           | 0(3)            | 16(4)           | -7(3)           |
| C6   | 62(4)           | 58(3)           | 33(4)           | 10(3)           | 13(3)           | 6(3)            |
| C7   | 58(4)           | 54(3)           | 35(4)           | 3(3)            | 16(3)           | -4(3)           |
| C8   | 54(4)           | 51(3)           | 41(4)           | -1(3)           | 12(3)           | 1(3)            |
| C9   | 55(4)           | 48(3)           | 42(4)           | -4(3)           | 6(3)            | -4(3)           |
| C10  | 85(5)           | 66(4)           | 56(4)           | -7(3)           | 10(4)           | 6(4)            |
| C11  | 106(6)          | 87(5)           | 68(5)           | 1(4)            | 9(4)            | 38(4)           |
| C12  | 108(7)          | 79(5)           | 76(6)           | 14(4)           | -9(5)           | 25(4)           |
| C13  | 98(6)           | 75(5)           | 70(5)           | 25(4)           | -2(4)           | 6(4)            |
| C14  | 70(5)           | 61(4)           | 48(4)           | 3(3)            | 6(4)            | -7(3)           |
| C15  | 84(5)           | 74(4)           | 48(4)           | 17(3)           | 18(4)           | -10(4)          |
| C16  | 70(4)           | 70(4)           | 50(4)           | 11(3)           | 28(3)           | -10(3)          |
| C17  | 61(4)           | 48(3)           | 54(4)           | 6(3)            | 22(3)           | 3(3)            |
| C18  | 65(4)           | 54(4)           | 53(4)           | -5(3)           | 21(3)           | -16(3)          |
| C19  | 64(4)           | 56(4)           | 52(4)           | -5(3)           | 27(3)           | -2(3)           |
| C20  | 65(5)           | 94(5)           | 121(6)          | 5(4)            | 46(5)           | 10(4)           |
| C21  | 79(6)           | 104(6)          | 138(7)          | 13(5)           | 37(5)           | 38(5)           |
| C22  | 113(7)          | 77(5)           | 96(6)           | 7(4)            | 26(6)           | 25(5)           |
| C23  | 99(6)           | 63(5)           | 88(6)           | 12(4)           | 25(5)           | -4(4)           |
| C24  | 61(4)           | 66(4)           | 78(5)           | 13(3)           | 13(4)           | 3(4)            |
| C25  | 57(4)           | 55(3)           | 50(4)           | 7(3)            | 19(3)           | -4(3)           |
| C26  | 72(4)           | 41(3)           | 31(3)           | -4(2)           | 18(3)           | -3(3)           |
| C27  | 79(5)           | 50(3)           | 49(4)           | -2(3)           | 27(3)           | -7(3)           |
| C28  | 120(6)          | 53(4)           | 56(4)           | 9(3)            | 35(4)           | 7(4)            |
| C29  | 99(6)           | 70(4)           | 55(4)           | 8(3)            | 13(4)           | 10(4)           |
| C30  | 63(4)           | 69(4)           | 59(4)           | 5(3)            | 14(3)           | -5(3)           |
| C31  | 68(4)           | 50(3)           | 37(4)           | 2(3)            | 20(3)           | -1(3)           |
| C32  | 63(4)           | 54(3)           | 39(4)           | -1(3)           | 20(3)           | -8(3)           |
| C33  | 62(4)           | 62(4)           | 50(4)           | 0(3)            | 17(3)           | -6(3)           |
| C34  | 68(4)           | 56(4)           | 55(4)           | -2(3)           | 26(3)           | -5(3)           |
| C35  | 70(5)           | 57(4)           | 80(5)           | 6(4)            | 29(4)           | 0(3)            |
| C36  | 70(5)           | 55(4)           | 87(5)           | -10(3)          | 34(4)           | -7(3)           |
| C37  | 113(6)          | 72(4)           | 106(6)          | -7(4)           | 57(5)           | 5(4)            |

Table 3 Anisotropic Displacement Parameters ( $Å^2 \times 10^3$ ) for sab. The Anisotropic displacement factor exponent takes the form:  $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$ .

| 1    |                 | 1        | L               |                 | ,               |                        |
|------|-----------------|----------|-----------------|-----------------|-----------------|------------------------|
| Atom | U <sub>11</sub> | $U_{22}$ | U <sub>33</sub> | U <sub>23</sub> | U <sub>13</sub> | <b>U</b> <sub>12</sub> |
| C38  | 159(8)          | 91(5)    | 135(8)          | -16(5)          | 89(6)           | 12(6)                  |
| C39  | 174(10)         | 104(7)   | 131(8)          | -52(6)          | 76(7)           | -14(6)                 |
| C40  | 166(10)         | 127(7)   | 147(9)          | -68(6)          | 66(7)           | -40(7)                 |
| C41  | 120(7)          | 94(5)    | 116(7)          | -29(5)          | 56(5)           | -34(5)                 |
| C42  | 78(5)           | 58(4)    | 65(5)           | 24(4)           | 32(4)           | 17(3)                  |
| C43  | 110(6)          | 66(4)    | 60(5)           | 13(4)           | 39(4)           | 10(4)                  |
| C44  | 68(4)           | 84(4)    | 41(4)           | 2(4)            | 19(3)           | 11(3)                  |
| C45  | 108(6)          | 96(5)    | 48(5)           | 15(4)           | 28(4)           | 21(5)                  |
| C46  | 123(6)          | 116(6)   | 44(5)           | -14(4)          | 29(4)           | -4(5)                  |
| C47  | 118(6)          | 83(4)    | 63(5)           | -16(4)          | 35(4)           | -22(4)                 |
| C48  | 95(5)           | 71(4)    | 53(4)           | -11(3)          | 41(4)           | -8(3)                  |
| C49  | 62(4)           | 68(4)    | 42(4)           | 1(3)            | 21(3)           | 5(3)                   |
| C50  | 56(4)           | 50(3)    | 52(4)           | 2(3)            | 24(3)           | 3(3)                   |
| N1   | 64(3)           | 53(3)    | 40(3)           | 5(2)            | 20(3)           | -8(2)                  |
| N2   | 58(3)           | 58(3)    | 52(3)           | 8(3)            | 24(3)           | 5(2)                   |
| 01   | 105(4)          | 64(2)    | 88(3)           | 2(2)            | 64(3)           | -5(2)                  |
| O2   | 135(4)          | 72(3)    | 113(4)          | -4(3)           | 77(3)           | -25(3)                 |
| S1   | 71.0(11)        | 72.8(10) | 55.7(11)        | -9.2(8)         | 27.7(8)         | -6.5(8)                |
| S2   | 68.9(11)        | 55.9(9)  | 67.2(11)        | 7.3(8)          | 24.3(9)         | -0.8(8)                |

Table 3 Anisotropic Displacement Parameters ( $Å^2 \times 10^3$ ) for sab. The Anisotropic displacement factor exponent takes the form:  $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$ .

#### Table 4 Bond Lengths for sab.

| Atom | n Atom | Length/Å | Aton | 1 Atom | Length/Å |
|------|--------|----------|------|--------|----------|
| C1   | C2     | 1.388(7) | C26  | C31    | 1.392(6) |
| C1   | C6     | 1.367(6) | C26  | S2     | 1.781(5) |
| C1   | S1     | 1.789(5) | C27  | C28    | 1.384(7) |
| C2   | C3     | 1.374(7) | C28  | C29    | 1.381(8) |
| C3   | C4     | 1.373(7) | C29  | C30    | 1.378(7) |
| C4   | C5     | 1.401(7) | C30  | C31    | 1.391(6) |
| C5   | C6     | 1.385(7) | C31  | C32    | 1.495(6) |
| C6   | C7     | 1.491(6) | C32  | C33    | 1.397(6) |
| C7   | C8     | 1.397(6) | C32  | C50    | 1.391(6) |
| C7   | C25    | 1.391(6) | C33  | C34    | 1.371(6) |
| C8   | C9     | 1.443(6) | C34  | C35    | 1.472(7) |
| C8   | N1     | 1.381(6) | C34  | N2     | 1.395(6) |
| C9   | C10    | 1.401(7) | C35  | C36    | 1.469(7) |
| C9   | C14    | 1.424(7) | C35  | O2     | 1.221(6) |
| C10  | C11    | 1.387(7) | C36  | C37    | 1.376(7) |

#### Table 4 Bond Lengths for sab.

| Atom | n Atom | Length/Å | Aton       | 1 Atom | Length/Å |
|------|--------|----------|------------|--------|----------|
| C11  | C12    | 1.384(8) | C36        | C41    | 1.384(7) |
| C12  | C13    | 1.364(8) | C37        | C38    | 1.401(8) |
| C13  | C14    | 1.393(7) | C38        | C39    | 1.379(9) |
| C14  | C15    | 1.423(7) | C39        | C40    | 1.350(9) |
| C15  | C16    | 1.340(6) | C40        | C41    | 1.398(9) |
| C16  | N1     | 1.393(6) | C42        | C43    | 1.319(7) |
| C17  | C18    | 1.449(7) | C42        | N2     | 1.397(6) |
| C17  | C25    | 1.375(6) | C43        | C44    | 1.436(7) |
| C17  | N1     | 1.387(6) | C44        | C45    | 1.409(7) |
| C18  | C19    | 1.493(7) | C44        | C49    | 1.401(7) |
| C18  | 01     | 1.235(6) | C45        | C46    | 1.357(7) |
| C19  | C20    | 1.364(7) | C46        | C47    | 1.397(7) |
| C19  | C24    | 1.388(7) | C47        | C48    | 1.383(7) |
| C20  | C21    | 1.374(8) | C48        | C49    | 1.391(6) |
| C21  | C22    | 1.350(8) | C49        | C50    | 1.446(7) |
| C22  | C23    | 1.362(8) | C50        | N2     | 1.393(6) |
| C23  | C24    | 1.383(7) | <b>S</b> 1 | S2     | 2.029(2) |
| C26  | C27    | 1.393(6) |            |        |          |

#### Table 5 Bond Angles for sab.

| Atom | n Aton | n Atom     | Angle/°  | Aton | 1 Aton | 1 Atom | Angle/°  |
|------|--------|------------|----------|------|--------|--------|----------|
| C2   | C1     | <b>S</b> 1 | 123.5(5) | C29  | C28    | C27    | 120.2(6) |
| C6   | C1     | C2         | 120.8(5) | C30  | C29    | C28    | 120.4(6) |
| C6   | C1     | <b>S</b> 1 | 115.7(4) | C29  | C30    | C31    | 120.4(6) |
| C3   | C2     | C1         | 120.0(6) | C26  | C31    | C32    | 120.3(5) |
| C4   | C3     | C2         | 120.3(6) | C30  | C31    | C26    | 119.0(5) |
| C3   | C4     | C5         | 119.2(6) | C30  | C31    | C32    | 120.6(5) |
| C6   | C5     | C4         | 120.6(5) | C33  | C32    | C31    | 126.0(5) |
| C1   | C6     | C5         | 119.0(5) | C50  | C32    | C31    | 126.5(5) |
| C1   | C6     | C7         | 120.6(5) | C50  | C32    | C33    | 107.5(4) |
| C5   | C6     | C7         | 120.4(5) | C34  | C33    | C32    | 109.6(5) |
| C8   | C7     | C6         | 129.6(5) | C33  | C34    | C35    | 130.9(6) |
| C25  | C7     | C6         | 124.0(5) | C33  | C34    | N2     | 106.5(5) |
| C25  | C7     | C8         | 106.3(5) | N2   | C34    | C35    | 121.9(5) |
| C7   | C8     | C9         | 133.6(5) | C36  | C35    | C34    | 118.9(5) |
| N1   | C8     | C7         | 107.6(5) | O2   | C35    | C34    | 120.3(6) |
| N1   | C8     | C9         | 118.8(5) | O2   | C35    | C36    | 120.7(5) |
| C10  | C9     | C8         | 123.0(5) | C37  | C36    | C35    | 123.3(6) |

### Table 5 Bond Angles for sab.

| Atom Atom Atom |     | n Atom | Angle/°  | Atom Atom Atom |            |            | Angle/°  |
|----------------|-----|--------|----------|----------------|------------|------------|----------|
| C10            | C9  | C14    | 118.9(5) | C37            | C36        | C41        | 118.0(6) |
| C14            | C9  | C8     | 118.2(5) | C41            | C36        | C35        | 118.2(6) |
| C11            | C10 | C9     | 120.3(6) | C36            | C37        | C38        | 120.7(7) |
| C12            | C11 | C10    | 120.1(6) | C39            | C38        | C37        | 119.5(7) |
| C13            | C12 | C11    | 120.6(7) | C40            | C39        | C38        | 120.7(8) |
| C12            | C13 | C14    | 121.1(7) | C39            | C40        | C41        | 119.5(8) |
| C13            | C14 | C9     | 118.9(6) | C36            | C41        | C40        | 121.4(7) |
| C13            | C14 | C15    | 122.0(6) | C43            | C42        | N2         | 119.9(5) |
| C15            | C14 | C9     | 119.0(5) | C42            | C43        | C44        | 121.8(6) |
| C16            | C15 | C14    | 122.0(6) | C45            | C44        | C43        | 121.1(6) |
| C15            | C16 | N1     | 119.5(5) | C49            | C44        | C43        | 119.1(6) |
| C25            | C17 | C18    | 129.1(5) | C49            | C44        | C45        | 119.8(6) |
| C25            | C17 | N1     | 105.8(5) | C46            | C45        | C44        | 120.0(6) |
| N1             | C17 | C18    | 125.0(5) | C45            | C46        | C47        | 120.6(6) |
| C17            | C18 | C19    | 116.4(5) | C48            | C47        | C46        | 119.9(6) |
| 01             | C18 | C17    | 123.8(5) | C47            | C48        | C49        | 120.4(6) |
| 01             | C18 | C19    | 119.8(5) | C44            | C49        | C50        | 118.9(5) |
| C20            | C19 | C18    | 119.9(6) | C48            | C49        | C44        | 119.1(5) |
| C20            | C19 | C24    | 118.3(5) | C48            | C49        | C50        | 121.9(5) |
| C24            | C19 | C18    | 121.9(5) | C32            | C50        | C49        | 135.3(5) |
| C19            | C20 | C21    | 121.8(6) | C32            | C50        | N2         | 106.9(5) |
| C22            | C21 | C20    | 119.3(7) | N2             | C50        | C49        | 117.8(5) |
| C21            | C22 | C23    | 120.8(7) | C8             | N1         | C16        | 122.5(5) |
| C22            | C23 | C24    | 120.1(6) | C8             | N1         | C17        | 109.8(4) |
| C23            | C24 | C19    | 119.7(6) | C17            | N1         | C16        | 127.7(5) |
| C17            | C25 | C7     | 110.5(5) | C34            | N2         | C42        | 128.2(5) |
| C27            | C26 | S2     | 124.3(5) | C50            | N2         | C34        | 109.5(4) |
| C31            | C26 | C27    | 120.5(5) | C50            | N2         | C42        | 122.3(5) |
| C31            | C26 | S2     | 115.2(4) | C1             | <b>S</b> 1 | S2         | 105.3(2) |
| C28            | C27 | C26    | 119.5(6) | C26            | S2         | <b>S</b> 1 | 105.3(2) |

### Table 6 Hydrogen Bonds for sab.

| DH    | Α                   | d(D-H)/Å | d(H-A)/Å | d(D-A)/Å | D-H-A/° |
|-------|---------------------|----------|----------|----------|---------|
| C2 H2 | S2                  | 0.93     | 2.71     | 3.206(6) | 114.6   |
| C2 H2 | S2                  | 0.93     | 2.71     | 3.206(6) | 114.6   |
| C15H1 | $5  \mathrm{S} 1^1$ | 0.93     | 3.01     | 3.911(6) | 163.4   |
| C15H1 | $5  \mathrm{S} 1^1$ | 0.93     | 3.01     | 3.911(6) | 163.4   |
| C16H1 | 601                 | 0.93     | 2.35     | 2.929(7) | 120.5   |

### Table 6 Hydrogen Bonds for sab.

| D   | Η   | Α               | d(D-H)/Å | d(H-A)/Å | d(D-A)/Å | D-H-A/° |
|-----|-----|-----------------|----------|----------|----------|---------|
| C16 | H16 | 01              | 0.93     | 2.35     | 2.929(7) | 120.5   |
| C27 | H27 | S1              | 0.93     | 2.71     | 3.207(6) | 114.6   |
| C27 | H27 | S1              | 0.93     | 2.71     | 3.207(6) | 114.6   |
| C42 | H42 | $O1^2$          | 0.93     | 2.60     | 3.287(6) | 131.4   |
| C42 | H42 | O1 <sup>2</sup> | 0.93     | 2.60     | 3.287(6) | 131.4   |
| C42 | H42 | 02              | 0.93     | 2.32     | 2.864(8) | 117.1   |
| C42 | H42 | 02              | 0.93     | 2.32     | 2.864(8) | 117.1   |

<sup>1</sup>1-X,1-Y,1-Z; <sup>2</sup>1-X,1/2+Y,1/2-Z

### Table 7 Torsion Angles for sab.

| Α  | В  | С          | D    | Angle/°   | Α   | В    | С   | D          | Angle/°   |
|----|----|------------|------|-----------|-----|------|-----|------------|-----------|
| C1 | C2 | C3         | C4   | 1.1(9)    | C30 | C31  | C32 | C33        | -80.6(7)  |
| C1 | C6 | C7         | C8   | -101.7(7) | C30 | C31  | C32 | C50        | 100.3(6)  |
| C1 | C6 | C7         | C25  | 73.2(7)   | C31 | C26  | C27 | C28        | 0.3(7)    |
| C2 | C1 | C6         | C5   | -0.4(8)   | C31 | C26  | S2  | <b>S</b> 1 | -176.3(3) |
| C2 | C1 | C6         | C7   | -178.3(5) | C31 | C32  | C33 | C34        | -179.2(5) |
| C2 | C1 | <b>S</b> 1 | S2   | -11.7(5)  | C31 | C32  | C50 | C49        | 1.6(10)   |
| C2 | C3 | C4         | C5   | -1.0(9)   | C31 | C32  | C50 | N2         | 179.9(5)  |
| C3 | C4 | C5         | C6   | 0.2(9)    | C32 | C33  | C34 | C35        | -170.6(5) |
| C4 | C5 | C6         | C1   | 0.5(8)    | C32 | C33  | C34 | N2         | -0.8(6)   |
| C4 | C5 | C6         | C7   | 178.5(5)  | C32 | C50  | N2  | C34        | -1.1(6)   |
| C5 | C6 | C7         | C8   | 80.4(7)   | C32 | C50  | N2  | C42        | -179.3(4) |
| C5 | C6 | C7         | C25  | -104.7(6) | C33 | C32  | C50 | C49        | -177.7(5) |
| C6 | C1 | C2         | C3   | -0.4(9)   | C33 | C32  | C50 | N2         | 0.6(6)    |
| C6 | C1 | <b>S</b> 1 | S2   | 168.6(4)  | C33 | C34  | C35 | C36        | -35.7(9)  |
| C6 | C7 | C8         | C9   | -0.8(10)  | C33 | C34  | C35 | O2         | 146.6(6)  |
| C6 | C7 | C8         | N1   | 176.5(5)  | C33 | C34  | N2  | C42        | 179.2(5)  |
| C6 | C7 | C25        | 5C17 | -176.0(5) | C33 | C34  | N2  | C50        | 1.2(6)    |
| C7 | C8 | C9         | C10  | 2.1(9)    | C34 | C35  | C36 | C37        | -27.5(9)  |
| C7 | C8 | C9         | C14  | -179.7(5) | C34 | C35  | C36 | C41        | 160.0(6)  |
| C7 | C8 | N1         | C16  | -180.0(4) | C35 | C34  | N2  | C42        | -9.8(8)   |
| C7 | C8 | N1         | C17  | -1.5(6)   | C35 | C34  | N2  | C50        | 172.2(5)  |
| C8 | C7 | C25        | 5C17 | -0.1(6)   | C35 | C36  | C37 | C38        | -174.4(6) |
| C8 | C9 | C10        | )C11 | 178.4(5)  | C35 | C36  | C41 | C40        | 174.4(7)  |
| C8 | C9 | C14        | 4C13 | -179.1(5) | C36 | C37  | C38 | C39        | 0.6(11)   |
| C8 | C9 | C14        | 4C15 | -2.4(7)   | C37 | 'C36 | C41 | C40        | 1.5(11)   |
| C9 | C8 | N1         | C16  | -2.2(7)   | C37 | 'C38 | C39 | C40        | 1.2(14)   |

### Table 7 Torsion Angles for sab.

| A B     | С   | D   | Angle/°   | Α          | В       | С   | D   | Angle/°   |
|---------|-----|-----|-----------|------------|---------|-----|-----|-----------|
| C9 C8   | N1  | C17 | 176.3(4)  | C38        | 8 C 3 9 | C40 | C41 | -1.6(15)  |
| C9 C10  | C11 | C12 | 0.2(9)    | C39        | 9C40    | C41 | C36 | 0.2(14)   |
| C9 C14  | C15 | C16 | 0.6(8)    | C41        | C36     | C37 | C38 | -1.9(10)  |
| C10C9   | C14 | C13 | -0.9(8)   | C42        | 2 C 4 3 | C44 | C45 | 177.9(6)  |
| C10C9   | C14 | C15 | 175.8(5)  | C42        | 2 C 4 3 | C44 | C49 | -3.9(9)   |
| C10C11  | C12 | C13 | -0.2(10)  | C43        | 3 C42   | N2  | C34 | -177.0(5) |
| C11C12  | C13 | C14 | -0.4(11)  | C43        | 3 C42   | N2  | C50 | 0.9(8)    |
| C12C13  | C14 | C9  | 0.9(9)    | C43        | 8 C44   | C45 | C46 | 176.9(6)  |
| C12C13  | C14 | C15 | -175.6(6) | C43        | 8 C44   | C49 | C48 | -176.3(5) |
| C13C14  | C15 | C16 | 177.2(5)  | C43        | 8 C44   | C49 | C50 | 3.9(8)    |
| C14C9   | C10 | C11 | 0.3(8)    | C44        | 4C45    | C46 | C47 | 0.4(10)   |
| C14C15  | C16 | N1  | 0.5(8)    | C44        | IC49    | C50 | C32 | 176.4(6)  |
| C15C16  | N1  | C8  | 0.3(7)    | C44        | C49     | C50 | N2  | -1.8(7)   |
| C15C16  | N1  | C17 | -177.9(5) | C45        | 5C44    | C49 | C48 | 1.9(8)    |
| C17C18  | C19 | C20 | 136.3(6)  | C45        | 5C44    | C49 | C50 | -177.8(5) |
| C17C18  | C19 | C24 | -45.3(7)  | C45        | 5 C46   | C47 | C48 | -0.3(10)  |
| C18C17  | C25 | C7  | -178.0(5) | C46        | 6C47    | C48 | C49 | 1.0(9)    |
| C18C17  | N1  | C8  | 178.7(5)  | C47        | 7 C48   | C49 | C44 | -1.8(8)   |
| C18C17  | N1  | C16 | -2.9(8)   | C47        | 7 C48   | C49 | C50 | 177.9(5)  |
| C18C19  | C20 | C21 | 179.9(6)  | C48        | 3 C 4 9 | C50 | C32 | -3.4(10)  |
| C18C19  | C24 | C23 | -179.4(5) | C48        | 3 C 4 9 | C50 | N2  | 178.5(5)  |
| C19C20  | C21 | C22 | -0.9(11)  | C49        | 9C44    | C45 | C46 | -1.2(9)   |
| C20C19  | C24 | C23 | -1.0(8)   | C49        | 9C50    | N2  | C34 | 177.5(4)  |
| C20C21  | C22 | C23 | -0.2(11)  | C49        | 9C50    | N2  | C42 | -0.7(7)   |
| C21 C22 | C23 | C24 | 0.7(11)   | C5(        | )C32    | C33 | C34 | 0.1(6)    |
| C22 C23 | C24 | C19 | -0.1(9)   | N1         | C8      | C9  | C10 | -174.9(5) |
| C24 C19 | C20 | C21 | 1.5(9)    | N1         | C8      | C9  | C14 | 3.2(7)    |
| C25C7   | C8  | C9  | -176.4(5) | N1         | C17     | C18 | C19 | 168.1(5)  |
| C25C7   | C8  | N1  | 0.9(6)    | N1         | C17     | C18 | 01  | -13.4(9)  |
| C25C17  | C18 | C19 | -15.2(8)  | N1         | C17     | C25 | C7  | -0.8(6)   |
| C25C17  | C18 | 01  | 163.3(6)  | N2         | C34     | C35 | C36 | 155.8(5)  |
| C25 C17 | N1  | C8  | 1.4(5)    | N2         | C34     | C35 | 02  | -22.0(9)  |
| C25 C17 | N1  | C16 | 179.8(5)  | N2         | C42     | C43 | C44 | 1.4(9)    |
| C26C27  | C28 | C29 | 0.8(8)    | 01         | C18     | C19 | C20 | -42.2(8)  |
| C26C31  | C32 | C33 | 99.6(6)   | 01         | C18     | C19 | C24 | 136.2(6)  |
| C26C31  | C32 | C50 | -79.5(7)  | 02         | C35     | C36 | C37 | 150.2(7)  |
| C27 C26 | C31 | C30 | -0.5(7)   | 02         | C35     | C36 | C41 | -22.3(9)  |
| C27 C26 | C31 | C32 | 179.3(4)  | S1         | C1      | C2  | C3  | 179.9(4)  |
| C27 C26 | S2  | S1  | 4.4(4)    | S1         | C1      | C6  | C5  | 179.3(4)  |
| C27 C28 | C29 | C30 | -1.5(9)   | <b>S</b> 1 | C1      | C6  | C7  | 1.4(7)    |

### Table 7 Torsion Angles for sab.

| A B   | С    | D   | Angle/°  | Α  | B   | С   | D   | Angle/°   |
|-------|------|-----|----------|----|-----|-----|-----|-----------|
| C28C2 | 9C30 | C31 | 1.3(8)   | S2 | C26 | C27 | C28 | 179.5(4)  |
| C29C3 | 0C31 | C26 | -0.2(8)  | S2 | C26 | C31 | C30 | -179.9(4) |
| C29C3 | 0C31 | C32 | 180.0(5) | S2 | C26 | C31 | C32 | -0.1(6)   |

# Table 8 Hydrogen Atom Coordinates (Å×10<sup>4</sup>) and Isotropic Displacement Parameters (Å<sup>2</sup>×10<sup>3</sup>) for sab.

| Atom | X        | У        | Z       | U(eq) |
|------|----------|----------|---------|-------|
| H2   | 6054.37  | 6132.24  | 1587.29 | 84    |
| H3   | 5623.75  | 4984.25  | 679.98  | 94    |
| H4   | 4473.95  | 3955.9   | 715.76  | 93    |
| H5   | 3784.18  | 4061.01  | 1698.58 | 78    |
| H10  | 5465.23  | 3809.98  | 3044.9  | 85    |
| H11  | 6414.76  | 2607.77  | 3632.12 | 108   |
| H12  | 6316.08  | 2020.68  | 4779.02 | 114   |
| H13  | 5288.34  | 2617.56  | 5349.24 | 103   |
| H15  | 4116.33  | 3787.76  | 5396.45 | 83    |
| H16  | 3231.73  | 5017.99  | 4883.98 | 73    |
| H20  | 897.95   | 7160.77  | 3282.36 | 107   |
| H21  | 405.53   | 8522.31  | 2641.02 | 127   |
| H22  | 1441.8   | 9504.29  | 2363.76 | 115   |
| H23  | 2966.89  | 9148.16  | 2722.92 | 101   |
| H24  | 3471.07  | 7768.36  | 3353.92 | 83    |
| H25  | 3208.94  | 6374.82  | 2502.13 | 64    |
| H27  | 6826.29  | 5425.47  | 3624.64 | 69    |
| H28  | 8081.77  | 4532.59  | 4244.68 | 89    |
| H29  | 9543.19  | 5060.43  | 4351.79 | 92    |
| H30  | 9764.63  | 6442.92  | 3794.14 | 77    |
| H33  | 8899.23  | 8630.78  | 3919.93 | 69    |
| H37  | 7921.37  | 10060.95 | 3753.46 | 110   |
| H38  | 7658.15  | 11039.3  | 4683.16 | 142   |
| H39  | 8617.7   | 12287.47 | 5115.22 | 156   |
| H40  | 9792.5   | 12597.99 | 4610.83 | 171   |
| H41  | 10066.68 | 11614.53 | 3694.29 | 127   |
| H42  | 8775.2   | 9806.92  | 1448.04 | 77    |
| H43  | 8400.88  | 8938.32  | 391.73  | 91    |
| H45  | 7842.45  | 7454.73  | -269.92 | 99    |
| H46  | 7540.03  | 5905.2   | -215.03 | 112   |
| H47  | 7659.67  | 5190.38  | 946.65  | 103   |

# Table 8 Hydrogen Atom Coordinates (Å×10<sup>4</sup>) and Isotropic Displacement Parameters (Å<sup>2</sup>×10<sup>3</sup>) for sab.

| Atom | X       | У       | z       | U(eq) |
|------|---------|---------|---------|-------|
| H48  | 8109.37 | 6042.67 | 2059.75 | 83    |

#### Experimental

Single crystals of  $C_{50}H_{32}N_2O_2S_2$  [sab] were []. A suitable crystal was selected and [] on a diffractometer. The crystal was kept at 296.15 K during data collection. Using Olex2 [1], the structure was solved with the olex2.solve [2] structure solution program using Charge Flipping and refined with the olex2.refine [3] refinement package using Gauss-Newton minimisation.

- 1. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. & Puschmann, H. (2009), J. Appl. Cryst. 42, 339-341.
- Bourhis, L.J., Dolomanov, O.V., Gildea, R.J., Howard, J.A.K., Puschmann, H. (2015). Acta Cryst. A71, 59-75.
- Bourhis, L.J., Dolomanov, O.V., Gildea, R.J., Howard, J.A.K., Puschmann, H. (2015). Acta Cryst. A71, 59-75.

#### Crystal structure determination of [sab]

**Crystal Data** for  $C_{50}H_{32}N_2O_2S_2$  (*M* =756.89 g/mol): monoclinic, space group P2<sub>1</sub>/c (no. 14), *a* = 15.230(9) Å, *b* = 14.373(8) Å, *c* = 18.320(11) Å,  $\beta$  = 106.462(15)°, *V* = 3846(4) Å<sup>3</sup>, *Z* = 4, *T* = 296.15 K,  $\mu$ (MoK $\alpha$ ) = 0.183 mm<sup>-1</sup>, *Dcalc* = 1.307 g/cm<sup>3</sup>, 45854 reflections measured (4.636°  $\leq 2\Theta \leq 50°$ ), 4764 unique ( $R_{int} = 0.2127$ ,  $R_{sigma} = 0.1817$ ) which were used in all calculations. The final  $R_1$  was 0.0669 (I > 2 $\sigma$ (I)) and  $wR_2$  was 0.1889 (all data).