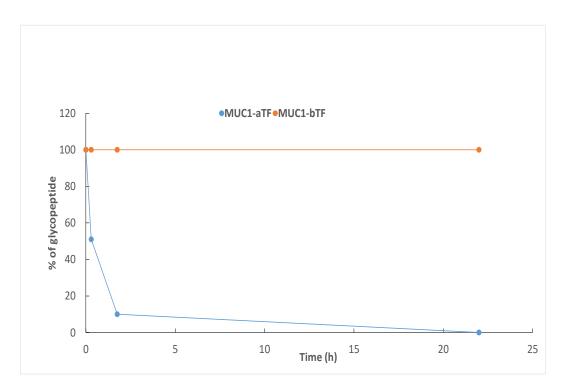
Supporting information

Synthesis and Immunological Evaluation of the Unnatural β -linked Mucin-1 Thomsen-Friedenreich Conjugate

Xuanjun Wu,^{§†} Hunter McFall-Boegeman,^{†,‡} Zahra Rashidijahanabad,^{†,‡} Kunli Liu,^{†,‡} Christian Pett,^{∥,#} Jin Yu,[∥] Manuel Schorlemer,^{∥,#} Sherif Ramadan,^{†,‡¶} Sandra Behren,^{∥,#} Ulrika Westerlind,^{∥,#} and Xuefei Huang^{*,†,‡,}

[§]National Glycoengineering Research Center, Shandong University, Qingdao, Shandong 266237, China

[†]Department of Chemistry, [‡]Institute for Quantitative Health Science and Engineering, and ^vDepartment of Biomedical Engineering, Michigan State University, East Lansing, Michigan 48824, USA


Leibniz-Institut für Analytische Wissenschaften–ISAS–e.V., 44227, Dortmund, Germany

[#]Department of Chemistry, Umeå University, 901 87 Umeå, Sweden

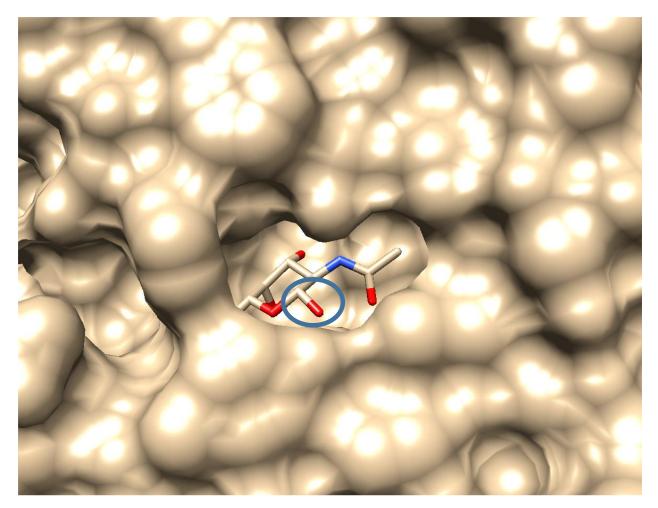
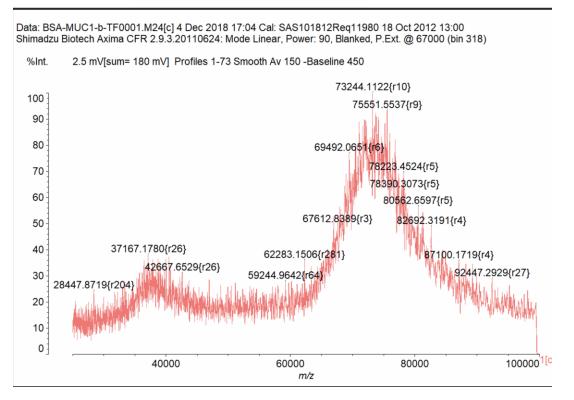

[¶]Chemistry Department, Faculty of Science, Benha University, Benha, Qaliobiya 13518, Egypt

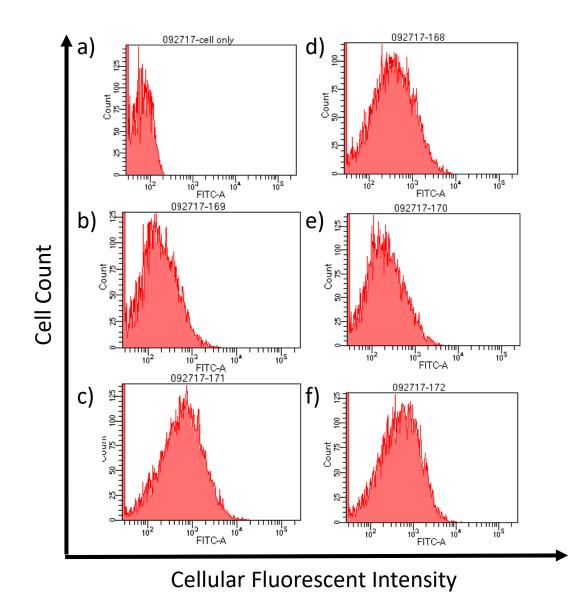
Table of Contents

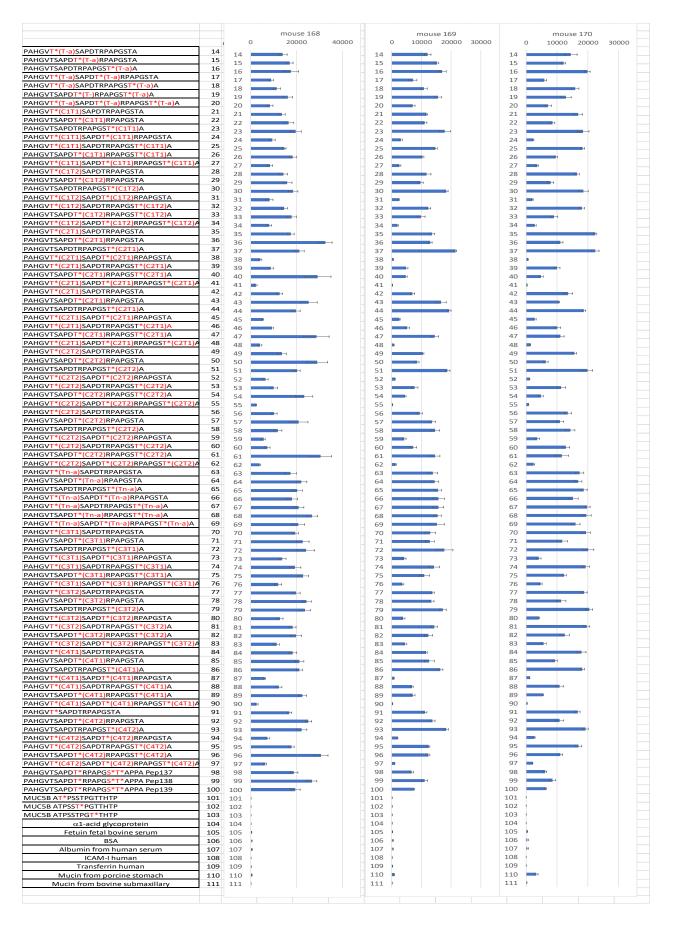
Figure S1. Stability of MUC1 glycopeptides to glycosidase enzymes						
Figure S2. Crystal structure of the <i>Enterococcus faecalis</i> endo- α - <i>N</i> -acetylgalactosar (PDB:6M77) with β -GalNAc						
Figure S3. MALDI-TOF MS spectra obtained for Qβ-MUC1-β-Tf conjugates						
Scheme S1. Synthesis of BSA-MUC1 conjugates for ELISA						
Figure S4. MALDI-TOF MS spectra of BSA-MUC1-β-Tf conjugates for ELISA	S 6					
Figure S5. Flow cytometry analysis of B16-MUC1 melanoma cells by IgG antibodies immune sera	in post- S7					
Figure S6. Glycopeptide microarray screening results of antisera induced by $Q\beta$ -MUC1-	β-Tf S10					
General Experimental Procedures and Methods for Synthesis	S11					
Synthesis of β -Tf Glyco-AA Building Block 11	S12					
Synthesis of MUC1-β-Tf glycopeptide 12	S15					
Endoglycosidase cleavage experiment	S16					
Synthesis of Qβ-MUC1-β-Tf	S16					
Synthesis of BSA-MUC1 conjugates	S16					
Immunization of MUC1.Tg mice	S16					
Evaluation of Antibody Titers by ELISA	S17					
Detection of Antibody Binding to Tumor Cells by FACS	S17					
Complement Dependent Cytotoxicity	S17					
Glycopeptide Microarray Analysis	S18					
Characterization Data and Spectra of Building Blocks and MUC1 Glycopeptides	S20					
References	S49					


Figure S1. MUC1- β -Tf has much enhanced stability toward the *Enterococcus faecalis* endo- α -*N*-acetylgalactosaminidase compared to MUC1- α -Tf over 24h reaction time.


Figure S2. Crystal structure of the *Enterococcus faecalis* endo- α -*N*-acetylgalactosaminidase (PDB:6M77) with β -GalNAc showed that the 1-hydroxyl group (in blue oval) pointing toward the enzyme, presumably hindering the binding of MUC1- β -Tf glycopeptide **12** with the enzyme. This is consistent with the enhanced stability of MUC1- β -Tf glycopeptide **12** toward the enzyme compared to the corresponding MUC1- α -Tf glycopeptide **12a**. The enzyme is shown as spacing filling model in light brown color. β -GalNAc is shown as a stick structure (oxygen atoms are shown in red, nitrogen atom is shown as blue color, and carbon atoms are shown in gold color).

b-Tf-MG0001.L2[c] 22 Jun 2017 10:33 Cal: SAS101812Req11980 18 Oct 2012 13:00 zu Biotech Axima CFR 2.9.3.20110624: Mode Linear, Power: 90, Blanked, P.Ext. @ 120 mV Profile 297 Q	14000 (bin 144) β + 2 glycopep.
Q β + 1 glycopep. 13989.21	15459.86 Qβ + 3 glycopep. 16929.45
56 mV[sum= 16499 mV]. Profiles 1-297 Smooth Av 150 -Baseline 450	


Figure S3. MALDI-TOF MS of Q β -MUC1- β -Tf conjugate. Based on the ratio of peak intensities, the average number of MUC1- β -Tf per capsid was calculated to be 220.


Scheme S1: Synthesis of BSA-MUC1 conjugates for ELISA. BSA-MUC1, BSA-MUC1- α -Tf were reported previously.¹

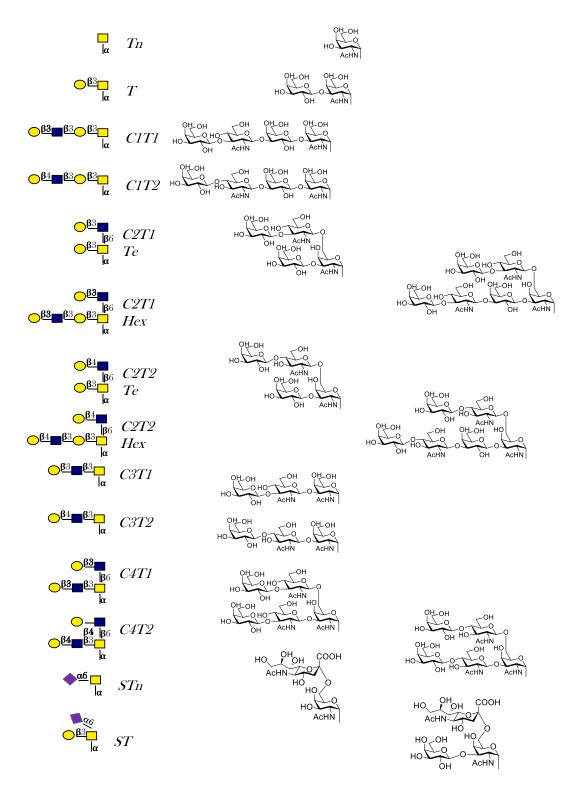
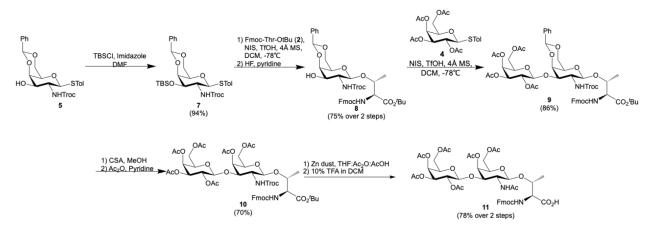

Figure S4. MALDI-TOF MS of BSA-MUC1- β -Tf conjugates. Based on the molecular weight difference between the BSA- MUC1- β -Tf conjugate and unmodified BSA, the number of MUC1- β -Tf per BSA was calculated to be 6.

Figure S5. B16-MUC1 melanoma cells staining by IgG antibodies in post-immune sera elicited by Q β -MUC1- β -Tf as measured by flow cytometry. a) B16-MUC1 unstained control; b-f) Sera staining of B16-MUC1 cells. Each curve represents serum from one mouse immunized with Q β -MUC1- β -Tf. The binding was tested with 1:20 dilution of the sera.

DALGONTATIC TRANSPORT 0 2000 4000 90000 90000 DALGONTATIC TRANSPORT 15 1						
DARGY TI LOSAPPTERANSSIA 44 14 14 14 DARGY TI LOSAPPTERANSSIA 55 15 16 16 DARGY TI LOSAPPTERANSSIA 57 15 16 16 DARGY TI LOSAPPTERANSSIA 77 15 16 16 DARGY TI LOSAPPTERANSSIA 26 16 16 16 DARGY TI LOSAPPTERANSSIA 26 16 16 16 DARGY TI LOSAPPTERANSSIA 26 16 26 16 DARGY TI LOSAPPTERANSIA 26 16 26 16 DARGY TI LOSAPPTERANSIA 26 16 16 16 DARGY TI LOSAPPTERANSIA 26 16 16 16 DARGY TI LOSAPPTERANSIA 26 16 16 16 16 16 16 16						
DALESCY DAPPT T1 SIRANGESTA 15 15 15 16 DALESCY T1 SIRANGEST (1) A 36 16 16 16 DALESCY T1 SIRANGEST (1) A 36 16 16 16 DALESCY T1 SIRANGEST (2) A 36 16 16 16 DALESCY T1 SIRANGEST (2) A 36 16 16 16 DALESCY T1 SIRANGEST (2) A 36 16 16 16 DALESCY T1 SIRANGEST (2) A 36 16 16 16 DALESCY T2 SIRANGEST (2) A 36 16 <	PAHGVT*(T-a)SAPDTRPAPGSTA	14	14			
DAMESON TIL DEADED TIL DIRAPADESTA 17 17 17 DAMESON TIL DIRAPADESTIL DIRAPADE	PAHGVTSAPDT*(T-a)RPAPGSTA	15				
PARLSONT CT 3: BARPETER PROPERTY 1: ALA 18 10 10 PARLSONT CT 3: BARPETER PROPERTY 1: ALA 20 20 20 PARLSONT CT 1: BARPETER PROPERTY 1: ALA 20 20 20 PARLSONT CT 1: BARPETER PROPERTY 1: ALA 20 20 20 PARLSONT CT 1: BARPETER PROPERTY 1: ALA 20 20 20 PARLSONT CT 1: BARPETER CT 1: BARPETER PROPERTY 1: ALA 20 20 20 PARLSONT CT 1: BARPETER CT 1: BARPETER CT 1: ALA 20 20 20 PARLSONT CT 1: BARPETER CT 1: BARPETER CT 1: ALA 20 20 20 PARLSONT CT 1: BARPETER CT 1: BA			16	16		
DARASYLANDICTI INCARESITE ALA 39						
PARESVIT CT 1280001 C1 200 C1 200 C1 200 PARESVIT CT 1280001 C1 200 C1 200 C1 200 PARESVIT ADDITEARDEST (C1 1)A C1 200 C1 200 C1 200 PARESVIT ADDITEARDEST (C1 1)A C1 200 C1 200 C1 200 PARESVIT C1 1280001 C1 218000 C1 200 C1 200 PARESVIT C1 1280001 C1 218000 C1 200 C1 200 PARESVIT C1 1280001 C1 218000 C1 200 C1 200 PARESVIT C1 1280001 C1 218000 C1 200 C1 200 PARESVIT C1 1280001 C1 218000 C1 200 C1 200 PARESVIT C1 1280001 C1 218000 C1 200 C1 200 PARESVIT C1 1280001 C1 218000 C1 200 C1 200 PARESVIT C1 1280001 C1 218000 C1 200 C1 200 PARESVIT C1 1280001 C1 218000 C1 200 C1 200 PARESVIT C1 1280001 C1 218000 C1 200 C1 200 PARESVIT C2 11800000000000000000000000000000000000						
DARSON TARADIT CG113RARDESTA 22 22 23 24 25 <	PAHGVT*(T-a)SAPDT*(T-a)RPAPGST*(T-a)A				-	
DARGYTCANDTERAPECT (C11)A 23 23 23 DARGYTCANDTERAPECT (C11)A 26 25 24 DARGYTCANDTERAPECT (C11)A 26 26 26 DARGYTCANDTERAPECT (C11)A 26 26 26 DARGYTCANDTERAPECT (C11)AA 26 26 26 DARGYTCANDTERAPECT (C11)AA 26 26 26 DARGYTCANDTERAPECT (C11)AAASS1A 26 26 26 DARGYTCANDTERAPET (C11)AAASS1A 26 26 26 DARGYTCANDARDET (C11)AAAASS1A 26 26 26 DARGYTCANDARDET (C11)AAAASS1A 26 26 26 DARGYTCANDARDET (C11)AAAASS1A 26 26 26 DARGYTCANDTARDET (C11)AAAASS1A 26 26 26 DARGYTCANDTARDET (C11)AAAASS1A 26 26 26 DARGYTCANDTARDET (21			
PARSYLICAT IGAT BARAPERA. 24 24 24 24 PARSYLICAT IGAT BARAPERA. 24 27 27 27 PARSYLICAT IGAT BARAPERA (CIT JUA AGAST ICATION AGAST ICATI						
DARASCHICCT LOLADAPOSTICATION 20						
PARLEGY PARTY INCLUING PARTY INCLUING 20						
PARLEYT-COTJEAPORTSA 29 20 20 20 PARLEYT-COTJEAPORTSA 29 20 20 20 PARLEYT-COTJEAPORTSA 20 20 20 20 PARLEYT-COTJEAPORTSA 30 31 31 31 31 PARLEYT-COTJEAPORTSA 30 31 31 31 31 31 PARLEYT-COTJEAPORTSA 30 31						
DALESCYTANDITICLI JAPACESTA 20 20 20 20 DALESCYTANDITICLI JAPACESTA 20 20 20 20 DALESCYTICLI JAPACESTACIA 20 20 20 20 DALESCYTICCI JAPACESTACICIA 20 20 20 20 20 DALESCYTICCI JAPACESTACICIA 20 20 20 20 20 20 DALESCYTICCI JAPACESTACICIA 20 20 20 20 20 20 20 20 20 20 2	PAHGVT*(C1T1)SAPDT*(C1T1)RPAPGST*(C1T) PAHGVT*(C1T2)SAPDTRPAPGSTA					
DALESCYLANDTHEPAROSTICCT2DA 30 30 30 30 DALESCYLANDTHEPAROSTICCT2DA 32 33 30 30 DALESCYLANDTECLIZAPOTENCICT2DA 30 30 30 30 DALESCYLANDTECLIZAPOTENCICT2DA 30 30 30 30 DALESCYLANDTECLIZAPOTENCICT2DA 30 30 30 30 30 DALESCYLANDTECLIZAPOTENCICT2DA 40 40 30 30 30 DALESCYLANDTECLIZAPOTENCICT2DA 40 <t< th=""><th>PAHGVTSAPDT*(C1T2)BPAPGSTA</th><th>-</th><th></th><th></th><th></th><th></th></t<>	PAHGVTSAPDT*(C1T2)BPAPGSTA	-				
PARGOTACUTICATIBRANESSIA 33 31 31 31 PARGOTACUTICATIBRANESSIA 33 31 31 31 PARGOTACUTICATIBRANESSIA 33 33 31 31 PARGOTACUTICATIBRANESSIA 33 33 31 31 PARGOTACUTICATIBRANESSIA 36 31 31 31 PARGOTACUTICATIBRANESSIA 36 31 31 31 PARGOTACUTICATIBRANESSIA 36 31 31 31 PARGOTACUTICATIBRANESSIA 43 43 31 31 PARGOTACUTICATIBRANESIA 43 43 31 31 PARGOTACUTICATIBRANESIA 32		30				
DALGOYTANDTICLINAPARAGESTICATIA 38 38 38 38 DALGOYTANDTICATIBRANGSTICATIA 48 44 44 44 DALGOYTANDTICATIBRANGSTICATIA 48 44 44 44 DALGOYTANDTICATIBRANGSTICATIA 48 46 44 44 DALGOYTANDTICATIBRANGSTICATIA 46 46 44 44 DALGOYTANDTICATIBRANGSTICATIA 46 46 46 46 DALGOYTANDTICATIBRANGSTICATIA 46 46 46 46						
DARAGY (C11)AAPDIPARASIX.C11 34 34 34 DARAGY (C11)AAPDIPARASIX.21 35 35 DARAGY (C11)AAPDIPARASIX.21 36 36 DARAGY (C11)AAPDIPARASIX.21 36 36 DARAGY (C11)AAPDIPARASIX.21 36 36 DARAGY (C11)AAPDIP (C11)RPARGSIX.21 46 46 DARAGY (C11)AAPDIP (C11)RPARGSIX.21 46 46 DARAGY (C11)AAPDIP (C11)RPARGSIX.21 46 46 DARAGY (C11)AAPDIP (C11)RPARGSIX (C11)A 47 47 DARAGY (C11)AAPDIP (C11)RPARGSIX (C11)A 46 46 DARAGY (C11)AAPDIP (C11)RPARGSIX (C11)A 46 46 DARAGY (C11)AAPDIP (C11)RPARGSIX (C11)A 47 46 DARAGY (C11)AAPDIP (C11)RPARGSIX (C11)A 46 46 DARAGY (C11)AAPDIP (C11)RPARGSIX (C11)A 46 46 DARAGY (C11)AAPDIP (C11)RPARGSIX (C11)A 46 46 DARAGY (C11)AAPDIP (C11)RPARGSIX (C11)A 47 46 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>						
PARSOTYLCT1]SARDTRAPSSTA 36 35 35 36 PARSOTRADIC CT1]BRARSSTA 36 35 36 36 PARSOTRADIC CT1]BRARSSTA 36 35 36 36 PARSOTRADIC CT1]BRARSSTA 36 36 36 36 PARSOTRECTISATION CT121A 36 36 36 36 PARSOTRECTISATION CT21A 36 36 36 36 36 PARSOTRECTISATION CT21A 36 36 36 36 36 36 36 36 36 36 36 36 36 36 <					-	
PARLOY TCATLINGANESIA 36 36 36 PARLOY TCATLINGANESIA 38 36 37 PARLOY TCATLINGANESIA 38 38 38 38 PARLOY TCATLINGANESIA 38 38 38 38 PARLOY TCATLINGANESIA 48 48 38 38 PARLOY TCATLINGANESIA 50 50 50 50		35				
PARGYTICCT13BAPDTIFAACSTICCT10 38 38 38 38 PARGYTICCT13BAPDTIFAACSTICCT10 38 38 38 38 PARGYTICCT13BAPDTIFACT3IPAACSTICCT10 48 48 48 38 PARGYTICCT13BAPDTIFACT3IPAACSTICCT10 44 44 44 44 PARGYTICCT13BAPDTIFACT3IPAACSTICCT10 44 44 44 44 PARGYTICCT13BAPDTIFACT3IPAACSTICCT10A 44 44 44 44 PARGYTICCT13BAPDTICCT3IPAACSTICCT10A 44 44 44 44 PARGYTICCT3BAPDTIFACT3IPAACSTICCT3DA 44 44 44 44 PARGYTICCT3BAPDTIFACT3IPAACSTICCT3DA 45 45 44 44 PARGYTICCT3BAPDTIFACT3PIRAACSTICCT3DA 50 50 50 50 50 PARGYTICCT3BAPDTIFACT3PIRAACSTICCT3DA 50						
PARSOTTICCT 10 APPLIFICATOST (CCT 10) 39 30 30 30 PARSOTTICCT 10 SAPPLIFICATOSTA 40 40 40 40 PARSOTTICCT 10 SAPPLIFICATOSTA 44 40 40 40 PARSOTTICCT 10 SAPPLIFICATOSTICCT 10A 44 40 40 40 PARSOTTICCT 10 SAPPLIFICATOSTICCT 10A 44 40 40 40 PARSOTTICCT 10 SAPPLIFICATOSTICCT 10A 40 40 40 40 PARSOTTICCT 10 SAPPLIFICATOSTICCT 10A 50 50 40 40 40 PARSOTTICCT 10 SAPPLIFICATOSTICCT 10A 50<						
DARGYTAPD''(CT) RAPGST*(CT)]A 40 40 40 DARGYTAPD''(CT) RAPGST*(CT)]A 41 41 41 DARGYTAPD''(CT) RAPGSTA 44 45 44 DARGYTAPD''(CT) RAPGSTA 44 45 44 DARGYTAPD''(CT) RAPGSTA 44 45 44 DARGYTAPD''(CT) RAPGSTA 44 45 46 DARGYTAPD''(CT) RAPGSTA 44 45 46 DARGYTAPD''(CT) RAPGSTA 45 53 53 DARGYTAPD''(CT) RAPGSTA 53 54 54 DARGYTAPD''(CT) RAPGSTA 55 54 56 DARGYTAPD''(CT) RAPGSTA 55 54 56 DARGYTAPD''(CT) RAPGSTA 56 56 56 DARGYTAPD''(CT) RAPGSTA 56 56 56 DARGYTAPD''(CT) RAPGSTA 56 56 56						
PAREGYT*(C71)AAPD/T*C71/JRAPAGST*(C71) 44 41 42 43 PAREGYT*(C71)AAPD/T*C71/JRAPAGST*(C71)A 44 44 44 44 PAREGYT*(C71)AAPD/T*C71/JRAPAGST*(C71)A 45 45 46 46 PAREGYT*(C71)AAPD/T*C71/JRAPAGST*(C71)A 55 56 46 46 PAREGYT*(C71)AAPD/T*C71/JRAPAGST*(C71)A 58 58 56 56 56 56 56 56 56 56 56 56 56						
PAHGVT:(C21)BAPOTRPARSIA 42 42 43 PAHGVT:(C21)BAPOTRPARSIA 43 43 PAHGVT:(C21)BAPOTRPARSIA 44 PAHGVT:(C21)BAPOTRPARSIT:(C21)A 54 PAHGVT:(C21)BAPOTRPARSIT:(C21)A 54 PAHGVT:(C21)BAPOTRPARSIT:(C21)A 54 PAHGVT:(C21)BAPOTRPARSIT:(C21)A 54 PAHGVT:(C21)BAPOTRPARSIT:(C21)A 54 PAHGVT:(C21)BAPOTRPARSIT:(C21)A 54 PAHGVT:(C21)BAPOTRPARSIT:(C21)A 55 PAHGVT:(C21)BAPOTRPARSIT:(C21)A 56 PAHGVT:(C21)BAPOTRPARSIT:(C21)A 56 PAHGVT:(C21)BAPOTRPARSIT:(C21)A 56 PAHGVT:(C21)BAPOTRSIT:(C21)A 56 PAHGVT:(C21)BAPOTST:(C21)A 56 PAHGVT:(C21)BAPOTST:(C21)A 56 PAHGVT:(C21)BAPOTST:(C21)A	PAHGVT*(C2T1)SAPDT*(C2T1)RPAPGST*(C2T	41				
DALGOVICAPDTEPAROSIT(CIT)IA 44 44 44 DALGOVICAPDIAGADIC(CIT)IRAPAGSIT(CIT)IA 45 45 DALGOVICAPDIC(CIT)IRAPAGSIT(CIT)IA 46 46 DALGOVICAPDIC(CIT)IRAPAGSIT(CIT)IA 47 46 DALGOVICAPDIC(CIT)IRAPAGSIT(CIT)IA 47 46 DALGOVICAPDICAPDIPAROSIT(CIT)IA 47 46 DALGOVICAPDIPAROSIT(CIT)IRAPAGSIT(CIT)IA 43 46 DALGOVICAPDIPAROSIT(CIT)IA 53 53 DALGOVICAPDIPAROSIT(CIT)IA 53 53 DALGOVICAPDIPAROSIT(CIT)IA 53 53 DALGOVICAPDRAFONICATIIA 53 53 DALGOVICAPDRAFONICATIIA 53 54 DALGOVICAPDRAFONICATIIA 57 57 DALGOVICAPDRAFONICATIIA 57 57 DALGOVICAPDRAFON			42	42		
DAHGOT*(C2T)ISAPDTRAPASTIC 45 45 46 DAHGOT*(C2T)ISAPDTRAPASTIC 46 46 46 DAHGOT*(C2T)ISAPDTRAPASTIC 47 47 47 DAHGOT*(C2T)ISAPDTRAPASTIC 47 47 47 DAHGOT*(C2T)ISAPDTRAPASTIC 48 47 47 DAHGOT*(C2T)ISAPDTRAPASTIC 48 47 47 DAHGOT*(C2T)ISAPDTRAPASTIC 48 47 47 DAHGOT*(C2T)ISAPDT(C2T)IAPARSTIC 48 51 51 DAHGOT*(C2T)ISAPDT(C2T)IAPARSTIC/C2T)IA 54 55 51 DAHGOT*(C2T)ISAPDT(C2T)IAPARSTIC/C2T)IA 55 55 56 56 DAHGOT*(C2T)ISAPDT(C2T)IAPARSTIC/C2T)IA 55 56 56 56 56 DAHGOT*(C2T)ISAPDT(C2T)IAPARSTIC/C2T)IA 56						
DALGOVIT (C27) ISAPDITEAPAGST (C27) A 46 46 47 DALGOVIT (C27) ISAPDITEAPAGST (C37) A 47 47 47 DALGOVIT (C27) ISAPDITEAPAGST (C37) A 47 47 47 DALGOVIT (C27) ISAPDITEAPAGST (C37) A 47 47 47 DALGOVIT (C27) ISAPDITEAPAGST (C37) A 51 51 51 DALGOVIT (C37) IRAPAGST (C37) A 51 51 51 DALGOVIT (C37) IRAPAGST (C37) A 53 55 51 DALGOVIT (C37) IRAPAGST (C37) A 53 55 56 DALGOVIT (C37) IRAPAGST (C37) A 59 55 56 DALGOVIT (C37) IRAPAGST (C37) A 59 56 56 DALGOVIT (C37) IRAPAGST (C37) A 57 57 </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>						
PAHGVTSAPDT*CC11JRAAPGST*CC2T 47 47 47 47 PAHGVTSAPDT*CC11JRAAPGST*CC2T 48 48 44 PAHGVTSAPDT*CC12JRAAPGST*CC1T 40 48 PAHGVTSAPDT*CC12JRAAPGSTA 50 40 PAHGVTSAPDT*CC12JRAAPGSTA 50 50 PAHGVTSAPDT*CC12JRAAPGSTA 52 53 PAHGVTSAPDT*CC12JRAAPGST*CC17 54 53 PAHGVTSAPDT*CC12JRAAPGST*CC17 54 55 PAHGVTSAPDT*CC12JRAPGSTA 59 55 PAHGVTSAPDT*CC12JRAPGSTA 59 55 PAHGVTSAPDT*CC12JRAPGST*CC12JA 60 60 PAHGVTSAPDT*CC12JRAPGST*CC12JA 61 61 PAHGVTSAPDT*CC12JRAPGST*CC12JA 62 6	PAHGVT*(C2T1)SAPDTRPAPGST*(C2T1)A					
DAHGVT*C2T]25APDTRPARGSTA 49 40 PAHGVTSAPDTRAPGST*(C2T)2A 51 51 PAHGVTSAPDTRAPGST*(C2T)2A 53 51 PAHGVTSAPDTRAPGST*(C2T)2A 53 51 PAHGVTSAPDT*(C2T)2PAPGST*(C2T)2A 53 55 PAHGVT*(C2T)2APDTCST*(C2T)2A 54 55 PAHGVT*(C2T)2APDTRAPGST*(C2T)2A 56 55 PAHGVT*(C2T)2APDTRAPGST*(C2T)2A 60 60 PAHGVT*(C2T)2APDTRAPGST*(C1T)2A 60 66 PAHGVT*(C1T)2APDTRAPGST*(C1T)A 66 66 PAHGVT*(C1T)2APDTRAPGST*(C1T)A 66 66 PAHGVT*(C1T)2APDTRAPGST*(C1T)A) 68 66 PAHGVT*(C1T)2APDTRAPGST*(C1T)A) 68 66 PAHGVT*(C1T)2APDT*(C1T)2APDTRAPGST*(C1T)A) 77 77	PAHGVTSAPDT*(C2T1)RPAPGST*(C2T1)A		47			
DAHGUTSAPDT*(C27)RPARGST 50 50 50 DAHGUTSAPDT*(C27)RPARGST*(C27)A 51 52 51 DAHGUTSAPDT*(C27)RPARGST*(C27)A 53 52 51 DAHGUTSAPDT*(C27)RPARGST*(C27)A 53 52 51 DAHGUTSAPDT*(C27)RPARGST*(C27)A 53 55 51 DAHGUTSAPDT*(C27)RPARGST*(C27)A 56 55 51 DAHGUTSAPDT*(C27)RPARGST*(C27)A 59 55 51 DAHGUTSAPDT*(C27)RPARGST*(C37)A 59 55 51 DAHGUTSAPDT*(C27)RPARGST*(C37)A 59 55 51 DAHGUT*(C37)RPARGST*(C37)A 59 56 51 DAHGUT*(C37)RPARGST*(C37)A 60 60 61 DAHGUT*(C37)RPARGST*(C37)A 60 60 61 DAHGUT*(C37)RPARGST*(C37)A 60 60 61 DAHGUT*(C37)RPARGST*(C37)A 61 62 61 DAHGUT*(C37)RPARGST*(C37)A 61 62 61 DAHGUT*(C37)RPARGST*(C37)A 61 62 61 DAHGUT*(C37)RPARG						
PAHGVTSAPDTRPAPGST*(C2T2)A 51 51 51 PAHGVTC2T2]AAPDTRPAPGST*(C2T2)A 52 53 53 PAHGVTCC12]AAPDTRPAPGST*(C2T2)A 53 53 53 PAHGVTCC12]AAPDTGTC2T2]PAPGSTA 56 56 56 PAHGVTCCT2]AAPDTGTC2T2]PAPGSTA 57 57 57 PAHGVTCCT2]AAPDTGTC2T2]PAPGSTA 57 57 57 PAHGVTCCT2]AAPDTGTC2T2]PAPGSTA 57 57 57 PAHGVTCCT2]AAPDTGTC2T2]PAPGSTA 57 57 57 PAHGVTCCT2]AAPDTGTC2T2]PAPGSTCCT2 56 56 56 PAHGVTCT2]SAPDTTGTAPGST 57 57 57 PAHGVTSAPDTCCT2]PAPGSTCCT2]A 60 60 60 PAHGVTSAPDTCTCT3]PAPGSTCCT3 60 60 61 PAHGVTSAPDTCTCT3]PAPGSTCCT3 60 62 62 PAHGVTSAPDTCTA]SAPDTTGAPGSTCA 60 66 66 PAHGVTSAPDTTRPAPGSTCA 60 67 64 PAHGVTSAPDTTRPAPGSTCA 70 70 71 PAHGVTSAPDTCCT3]PAPGSTA 72 72 71 PAHGVTSAPDTCCT3]PAPGSTA						
PAHEQU'T(CIT2)SAPDTRAPGST(CIT2)APAG						
PAHAGYTSAPDT*CCT2]PAPGST*CCT2] A S4 S4 S4 PAHAGYT*CCT2]PAPGST*CCT2] S5 S5 S5 PAHAGYT*CCT2]PAPAGSTA S5 S5 S6 PAHAGYT*CCT2]PAPAGSTA S5 S5 S6 PAHAGYT*CCT2]PAPAGSTA S5 S7 S6 PAHAGYT*CCT2]PAPAGST*CCT2]A G0 G0 S6 PAHAGYT*CCT2]PAPAGST*CCT2]A G1 S6 S6 PAHAGYT*CCT2]PAPAGST*CCT2]A G1 G1 S6 PAHAGYT*CCT2]PAPAGST*CCT2]A G1 G1 G1 PAHAGYT*CATSPAPGST*CCT2]PAPAGST*CCT2]A G2 G2 G2 PAHAGYT*CATSPAPGST*CT0*A]A G6 G6 G4 PAHAGYT*CATSPAPGST*CT0*A]A G6 G6 G4 PAHAGYT*CATSPAPGST*CT0*A]A G6 G6 G6 PAHAGYT*CATSPAPGST*CT0*A]A G6 G6 G6 G6 PAHAGYT*CATSPAPGST*CT0*A]A G6 G6 G6 G6 G6 PAHAGYT*CATSPAPGST*CCT1]A G7	PAHGVT*(C2T2)SAPDT*(C2T2)RPAPGSTA					
PAHAGVT*(C212)SAPDT*RAPGSTA 55 55 PAHAGVT*(C212)APARAPGSTA 55 57 PAHAGVTSAPDT*(C212)APARGSTA 57 57 PAHAGVTSAPDT*(C212)APARGSTA 50 57 PAHAGVTSAPDT*(C212)APARGST*(C212)A 60 59 PAHAGVTSAPDT*(C212)APARGST*(C212)A 60 59 PAHAGVTSAPDT*(C212)APARGST*(C212)A 60 61 PAHAGVTSAPDT*(C12)APARGST*(C212)A 60 61 PAHAGVTSAPDT*(C12)APARGST*(C212)A 60 63 PAHAGVTSAPDT*(C10)SAPCTSTAPAGST*(C212)A 66 64 PAHAGVTSAPDT*(T0)SAPARGSTA 66 65 PAHAGVTSAPDT*(T0)SAPARGSTA 66 66 PAHAGVTSAPDT*(T0)SAPARGST*(T0)A 66 66 PAHAGVTSAPDT*(T0)SAPARGST*(T0)A 66 66 PAHAGVTSAPDT*(T0)SAPARGSTA 70 70 PAHAGVTSAPDT*(T0)SAPARGSTA 72 71 PAHAGVTSAPDT*(T0)SAPARGSTA 72 72 PAHAGVTSAPDT*(T0)SAPARGSTA 72 72 PAHAGVTSAPDT*(C31)SAPARGSTA 72 72 PAHAGVTSAPDT*(C31)SAPARGSTA 72 72 PAHAGVTSAPD				53		
PARAGVT*(C212)SAPDT*(Z212)RAPGSTA 56 57 PARAGVTSAPDT*(Z212)RAPGST*(C212)A 58 58 58 58 PARAGVTSAPDT*(Z212)RAPGST*(C212)A 60 59 57 PARAGVTSAPDT*(Z212)RAPGST*(C212)A 60 59 57 PARAGVTSAPDT*(C212)RAPGST*(C212)A 60 60 60 PARAGVTSAPDT*(C212)RAPGST*(C212)A 60 60 60 PARAGVTSAPDT*(C212)RAPGST*(C212)A 60 60 60 PARAGVTSAPDT*(T0-a)RAPGST*(C212)A 66 66 66 PARAGVT*(T0-a)SAPDT*RAPGST*(T0-a)A 66 66 66 PARAGVT*(T0-a)SAPDT*RAPGST*(T0-a)A 66 66 66 PARAGVT*(T0-a)SAPDT*RAPGST*(T0-a)A 66 66 66 PARAGVT*(C311)SAPDT*(C311)RAPGST*(T0-a)A 66 66 66 PARAGVT*(C311)SAPDT*(C311)RAPGST*(C1-a)A 70 70 70 PARAGVT*(C311)SAPDT*(C311)RAPGST*(C317)A 72 75 76 PARAGVT*(C131)SAPDT*(C311)RAPGST*(C317)A 73 74 75 PARAGVT*(C131)SAPDT*(C311)RAPGST*(C317)A </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>						
PARAGVTSAPDT*(C212) APAGVTSAPDT*(C212) APAGVTSAPDT*(C12) APAGVTSAPDT*(C21) APAGVTSAPDT*						
PAHGVTSAPDTRPARGST(C212)A 58 58 58 PAHGVTS(C212)SAPDTRPARGST(C212)A 60 60 60 PAHGVTS(C212)SAPDTRPARGST(C212)A 60 60 60 PAHGVTS(C212)SAPDTRPARGST(C212)A 60 60 60 PAHGVTSAPDTRPARGSTA 62 60 60 PAHGVTSAPDTRPARGSTA 63 63 64 PAHGVTSAPDTRPARGST(Tn-a)A 66 65 66 PAHGVTSAPDTRPARGST(Tn-a)A 66 66 66 PAHGVTSAPDTRPARGST(Tn-a)A 67 67 66 PAHGVTSAPDTRPARGST(Tn-a)A 67 67 66 PAHGVTSAPDTRPARGST(Tn-a)A 67 67 67 PAHGVTSAPDTRPARGST(TC31)A 70 70 71 PAHGVTSAPDTRPARGST(C31)A 70 72 72 73 PAHGVTSAPDTRPARGST(C31)A 77 72 73 74 74 PAHGVTSAPDTRPARGST(C31)A 77 75 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74						
PAHAGVT:(C212)APDTRAPGST:(C212)A 60 60 PAHGVT:(C212)APAPGST:(C212)A 61 61 PAHGVT:(C212)APAPGST:(C212)A 62 62 PAHGVT:(C12)APAPGSTA 64 63 PAHGVT:(D)SAPDT:(Tn-a)RPAPGSTA 66 66 PAHGVT:(Tn-a)SAPDTRAPGST:(Tn-a)A 66 66 PAHGVT:(Tn-a)RPAPGST:(Tn-a)A 67 68 PAHGVT:(Ta)SAPDT*(C31)A 77 71 71 PAHGVT:(C31)SAPDTRAPGST:(C31)A 77 72 72 PAHGVT:(C31)SAPDTRAPGST:(C31)A 77 75 74 PAHGVT:(C31)SAPDTRAPGST:(C31)A 77 75 76 PAHGVT:(C31)SAPDTRAPGST:(C31)A 77 76 76 PAHGVT:(C31)SAPDTRAPGST:(C31)A 77 76 76 PAHGVT:(C31)SAPDTRAPGST:(C31)A 78 78 78 PAHGVT:(C31)SAPDTRAPGST:(C31)A 78 78 78 <th>PAHGVTSAPDTRPAPGST*(C2T2)A</th> <th></th> <th>58</th> <th></th> <th></th> <th></th>	PAHGVTSAPDTRPAPGST*(C2T2)A		58			
PAHAGVTSAPDT*(212)RAPGST*(C2T2)A 61 61 61 PAHGVT*(C12)SAPDT*(C2T2)RAPGSTA 63 63 63 PAHGVT*(Tr-a)SAPDT*(Tr-a)RAPGSTA 64 64 64 PAHGVTSAPDT*(Tr-a)RAPGSTA 66 65 66 PAHGVTSAPDT*(Tr-a)RAPGST*(Tr-a)A 66 66 66 PAHGVTSAPDT*(Tr-a)RAPGST*(Tr-a)A 66 66 66 PAHGVT*(Tr-a)SAPDT*(Tr-a)RAPGST*(Tr-a)A 66 66 66 PAHGVT*(Tr-a)SAPDT*(Tr-a)RAPGST*(Tr-a)A 66 66 66 PAHGVT*(G13)SAPDT*(Tr-a)RAPGST*(Tr-a)A 70 70 70 PAHGVT*(G13)SAPDT*(G13)ARAPGST*(C3T)A 77 71 71 PAHGVT*(G13)SAPDT*(G13)ARAPGST*(C3T)A 77 72 72 73 PAHGVT*(G13)SAPDT*(G13)ARAPGST*(C3T)A 77 77 77 77 PAHGVT*(G13)SAPDT*(G13)ARAPGST*(C3T)A 77 77 77 77 PAHGVT*(G13)SAPDT*(G13)ARAPGST*(C3T)A 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 <						
PAHSUT*(C212)SAPDT*(C212)PAPGSTA 63 63 PAHSUT*(C112)SAPDT*(Tn-a)SAPDTRAPGSTA 64 64 PAHSUT*(Tn-a)SAPDTRAPGSTA 64 64 PAHSUT*(Tn-a)SAPDT*(Tn-a)A 65 65 PAHSUT*(Tn-a)SAPDT*(Tn-a)A 66 66 PAHSUT*(Tn-a)SAPDT*(Tn-a)A 66 66 PAHSUT*(Tn-a)SAPDT*(Tn-a)A 66 66 PAHSUT*(Tn-a)SAPDT*(Tn-a)A 67 67 PAHSUT*(Tn-a)SAPDT*(Tn-a)A 66 66 PAHSUT*(Tn-a)SAPDT*(Tn-a)A 67 67 PAHSUT*(C21)SAPDT*(C31)APAPGSTA 70 60 67 PAHSUT*(C31)SAPDT*(C31)A 72 72 71 PAHSUT*(C31)SAPDT*(C31)A 72 73 74 74 PAHSUT*(C31)SAPDT*(C31)A 75 75 75 75 PAHSUT*(C31)SAPDT*(C31)APAPGSTA 78 76 77 74 PAHSUT*(C31)SAPDT*(C31)APAPGST*(C31)A 78 76 76 77 PAHSUT*(C31)SAPDT*(C31)APAPGSTA 78 76 77 77 77 PAHSUT*(C31)SAPDT*(C31)AA 78 76 77 7						
PAHGVT*(Tr.a)SAPDT*(Tr.a)RAPGSTA 63 63 63 PAHGVTSAPDT*(Tr.a)RAPGST*(Tr.a)A 65 65 65 PAHGVT*(Tr.a)SAPDT*(Tr.a)RAPGSTA 66 66 PAHGVT*(Tr.a)SAPDT*(Tr.a)A 67 67 PAHGVT*(Tr.a)SAPDT*(Tr.a)A 67 67 PAHGVT*(Tr.a)SAPDT*(Tr.a)A 67 67 PAHGVT*(TT.a)SAPDT*(DS)APDT*(CS)APDT*(DS)APDT*(CS)APDT*(DS)APDT*(CS)APAPGST*(CS)A 73 PAHGVT*(CS)APDT*(DS)APAPGST*(CS)A 73 74 74 PAHGVT*(CS)APDT*(DS)APAPGST*(CS)A 73 74 74 PAHGVT*(CS)APAPGST*(CS)A 75 76 76 PAHGVT*(CS)APAPGST*(CS)A 77 76 77 PAHGVT*(CS)APAPGST*(CS)A 78 78 78 PAHGVT*(CS)A						
PAHGVT:APDTRAPGST*(In-a)A 65 65 66 PAHGVT:(In-a)SAPDTRPAPGST*(In-a)A 67 67 67 PAHGVT:(In-a)SAPDTRPAPGST*(In-a)A 67 67 67 PAHGVT:APDT*(In-a)BRAPGST*(In-a)A 68 68 68 PAHGVT:APDT*(In-a)BRAPGST*(In-a)A 67 69 69 PAHGVT:APDT*(In-a)BRAPGST*(In-a)A 67 70 70 PAHGVT:APDT*(In-a)BRAPGST*(C3T1)A 72 71 70 PAHGVT:CATI)SAPDTRPAGST*(C3T1)A 72 71 71 PAHGVT:CATI)SAPDT*(C3T1)BRAPGST*(C3T1)A 74 73 74 PAHGVT:CATISAPDT*(C3T1)BRAPGST*(C3T1)A 74 74 76 PAHGVT:CATISAPDT*(C3T2)RAPGSTA 77 77 77 77 PAHGVT:CATISAPDT*(C3T2)RAPGSTA 78 78 78 78 PAHGVT:CATISAPDT*(C3T2)RPARGST 77 77 77 77 77 PAHGVT:CATISAPDTRAPGST 77 77 77 77 77 77 77 77 77 77 77 77 77 77 77 77 77 78 78<						
PAHGVT*(In-a)SAPDT*(In-a)RPAPGST*(In-a)A 66 66 67 66 PAHGVT*(In-a)SAPDTAPGST*(In-a)A 68 68 68 68 PAHGVT*(In-a)SAPDTSS*(In-a)A 68 68 69 69 PAHGVT*(In-a)SAPDTSS*(In-a)A 68 68 69 69 PAHGVT*(In-a)SAPDT*(PAHGVTSAPDT*(Tn-a)RPAPGSTA			64 H		
PAHAGVT*(Tn-a)SAPDT*(Tn-a)RPAPGST*(Tn-a)A 67 67 PAHAGVT*APDT*(Tn-a)RPAPGST*(Tn-a) 69 69 67 PAHAGVT*(Tn-a)SAPDT*(Tn-a)RPAPGST*(Tn-a) 69 69 69 PAHAGVT*(Tn-a)SAPDT*(Tn-a)RPAPGST*(Tn-a) 69 69 69 PAHAGVT*(C3T1)SAPDT*(C3T1)RPAPGSTA 70 70 70 PAHAGVT*(C3T1)SAPDT*(C3T1)RPAPGSTA 73 73 74 PAHAGVT*(C3T1)SAPDT*(C3T1)RPAPGST*(C3T1)A 74 74 74 PAHAGVT*(C3T1)SAPDT*(C3T1)RPAPGST*(C3T1)A 74 74 74 PAHAGVT*(C3T1)SAPDT*(C3T1)RPAPGST*(C3T1)A 76 76 76 PAHAGVT*(C3T1)SAPDT*(C3T2)RPAPGST*(C3T2)A 80 76 77 PAHAGVT*(C3T2)SAPDT*(C3T2)RPAPGST*(C3T2)A 80 80 80 PAHAGVT*(C3T2)SAPDT*(C3T2)RPAPGST*(C3T2)A 81 80 81 PAHAGVT*(C3T2)SAPDT*(C3T2)RPAPGST*(C3T2)A 81 80 81 PAHAGVT*(C3T2)SAPDT*(C3T2)RPAPGST*(C3T2)A 81 82 81 PAHAGVT*(C3T2)SAPDT*(C3T2)RPAPGST*(C3T2)A 81 82 81 PAHAGVT*(C3T2)SAPDT*(C3T2)RPAPGST*(C3T2)A 81 82 81 </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>						
PAHGVTSAPD1*(1r-a)SAPDTS1*(1r-a)A 68 68 68 PAHGVT*(C3T1)SAPDTRPAPGST 70 70 70 PAHGVT*(C3T1)SAPDTRPAPGSTA 71 71 71 PAHGVTSAPDT*(C3T1)RPAPGSTA 71 71 71 PAHGVTSAPDTRPAPGST*(C3T1)A 72 72 73 PAHGVTSAPDTRPAPGST*(C3T1)A 72 73 74 PAHGVTSAPDTRPAPGST*(C3T1)A 74 74 74 PAHGVTSAPDTRPAPGST*(C3T1)A 75 75 76 PAHGVTSAPDT*(C3T1)RPAPGST*(C3T1)A 76 76 76 PAHGVTSAPDT*(C3T2)RPAPGST*(C3T2)A 78 78 78 PAHGVTSAPDT*(C3T2)RPAPGST*(C3T2)A 80 80 81 81 PAHGVT*(C3T2)SAPDT*(C3T2)RPAPGST*(C3T2)A 80 80 81 81 81 PAHGVTSAPDT*(C3T2)RPAPGST*(C3T2)A 81 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>						
PAHGVT*(C311)SAPDTRPAPOSTA 70 70 70 70 PAHGVT*APDTRPAPOST*(C311)A 72 72 71 71 PAHGVT*(C311)SAPDTRPAPOST*(C311)A 72 72 73 73 PAHGVT*(C311)SAPDTRPAPOST*(C311)A 74 74 74 74 PAHGVT*(C311)SAPDTRPAPOST*(C311)A 75 75 76 76 76 PAHGVT*(C312)SAPDT*(C312)RPAPOSTA 77 77 77 77 77 77 PAHGVT*(C312)SAPDT*(C312)RPAPOSTA 78 78 77 78 78 78 78 78 78 77 77 77 77 77 77 77 77 77 77 78 78 78 78 78 78 78 78 78 78 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>						
PAHQVTSAPDT*(C3T1)APPCSTA 71 71 71 71 PAHGVTSAPDT*(C3T1)APDT*(C3T1)APPCST 73 73 74 73 PAHGVT*(C3T1)SAPDT*(C3T1)APPCST*(C3T1)A 73 73 74 74 PAHGVT*(C3T1)SAPDT*(C3T1)APPCST*(C3T1)A 75 76 76 76 PAHGVT*(C3T1)SAPDT*(C3T1)APPCST*(C3T1)A 77 77 76 76 PAHGVT*(C3T1)SAPDT*(C3T1)APPCST*(C3T2)A 78 78 76 76 PAHGVT*(C3T2)SAPDTRPAPCST 77 77 76 77 PAHGVT*(C3T2)SAPDTRPAPCST 78 78 78 79 PAHGVT*(C3T2)SAPDTRPAPCST*(C3T2)A 81 81 81 81 81 PAHGVT*(C3T2)SAPDTRPAPCST*(C3T2)A 82 82 82 82 82 82 83 84						
PAHGVTSAPDTRPAPGST*(C3T1)A 72 72 72 PAHGVT*(C3T1)SAPDT*(C3T1)RPAPGSTA 73 74 73 PAHGVT*(C3T1)SAPDTRPAPGST*(C3T1)A 74 73 74 PAHGVT*(C3T1)SAPDT*(C3T1)RPAPGST*(C3T)A 75 75 75 PAHGVT*(C3T2)SAPDT*(C3T2)RPAPGSTA 77 76 76 PAHGVT*(C3T2)SAPDT*(C3T2)RPAPGSTA 77 76 76 PAHGVT*(C3T2)SAPDT*(C3T2)RPAPGSTA 77 77 78 PAHGVT*(C3T2)SAPDT*(C3T2)RPAPGSTA 78 77 78 PAHGVT*(C3T2)SAPDT*(C3T2)RPAPGST*(C3T2)A 80 80 80 PAHGVT*(C3T2)SAPDT*(C3T2)RPAPGST*(C3T2)A 81 81 77 PAHGVT*(C3T2)SAPDT*(C3T2)RPAPGST*(C3T2)A 83 81 81 77 PAHGVT*(C3T2)SAPDT*(C3T2)RPAPGST 83 82 81 81 77 PAHGVT*(C3T2)SAPDT*(C3T2)RPAPGST 83 81 81 77 <t< th=""><th>PAHGVT*(C3T1)SAPDTRPAPGSTA PAHGVTSAPDT*(C3T1)BPAPGSTA</th><th></th><th></th><th></th><th></th><th></th></t<>	PAHGVT*(C3T1)SAPDTRPAPGSTA PAHGVTSAPDT*(C3T1)BPAPGSTA					
PAHGV1*(C311)SAPDT*(C311)A 73 73 74 PAHGV1*(C311)SAPDT*(C311)A 74 74 74 PAHGV1*(C311)SAPDT*(C311)APAPGST*(C311)A 75 75 76 PAHGV1*(C311)SAPDT*(C311)RAPAGST*(C31)A 77 77 76 PAHGV1*(C312)SAPDT*(C312)RAPAGSTA 77 77 77 PAHGV1*(C312)SAPDT*(C312)RAPAGSTA 78 78 78 PAHGV1*(C312)SAPDT*(C312)RAPAGSTA 78 78 78 PAHGV1*(C312)SAPDT*(C312)RAPAGST*(C312)A 81 81 1 PAHGV1*(C312)SAPDT*(C312)RAPAGST*(C312)A 82 81 1 PAHGV1*(C312)SAPDT*(C312)RAPAGST*(C312)A 82 83 81 1 PAHGV1*(C312)SAPDT*(C312)RAPAGST*(C312)A 82 83 83 1 PAHGV1*(C411)SAPDT*(C411)RAPAGSTA 83 84 1 84 1 PAHGV1*(C411)SAPDT*(C411)RAPAGST*(C41)A 88 86 87 1 10 PAHGV1*(C411)SAPDT*(C411)RAPAGST*(C41)A 88 86 1 10 1 1 PAHGV1*SAPDT*(C41)RAPAGST*(C41)A 89 89 1 1 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th></t<>						
PAHGVTSAPDT*(C3T1)RPAPGST*(C3T)A 75 75 76 PAHGVT*(C3T1)SAPDT*(C3T1)RAPGST*(C3T)A 77 76 76 PAHGVT*(C3T2)SAPDT*RPAPGSTA 77 76 76 PAHGVT*(C3T2)SAPDT*(C3T2)RPAPGSTA 78 78 78 PAHGVTSAPDT*(C3T2)RPAPGSTA 80 80 78 78 PAHGVT*(C3T2)SAPDT*(C3T2)A 81 81 81 81 PAHGVT*(C3T2)SAPDT*(C3T2)A 81 81 81 81 PAHGVT*(C3T2)SAPDT*(C3T2)A 81 81 81 81 PAHGVT*(C3T2)SAPDT*(C3T2)A 82 82 83 83 84 PAHGVT*(C4T1)SAPDT*(C4T1)RPAPGST*(C3T 83 83 83 84 84 84 84 84 84 84 84 84 84 85 85 85 85 85 85 85 85 85 85 86 86 86 86 86 86 86 86 86 86 86 86 86 86 86 86 86 86 87 87 87 8	PAHGVT*(C3T1)SAPDT*(C3T1)RPAPGSTA					
PAHGVT*(C3T1)SAPDT*(C3T1)RPAPGST*(C3T 76 76 76 PAHGVT*(C3T2)SAPDT*RPAPGSTA 77 77 77 PAHGVT*(C3T2)SAPDT*(C3T2)A 79 71 78 PAHGVT*(C3T2)SAPDT*(C3T2)A 79 71 78 PAHGVT*(C3T2)SAPDT*(C3T2)A 80 80 79 PAHGVT*(C3T2)SAPDT*(C3T2)A 80 80 81 PAHGVT*(C3T2)SAPDT*(C3T2)A 81 81 81 PAHGVT*(C3T2)SAPDT*(C3T2)A 82 82 82 PAHGVT*(C3T2)SAPDT*(C3T2)ARPAPGST*(C3T2)A 83 83 84 PAHGVT*(C3T2)SAPDT*(C4T1)RPAPGST*(C3T1)A 84 84 84 PAHGVT*(C4T1)SAPDT*(C4T1)RPAPGST*(C4T1)A 86 86 87 PAHGVT*C4C4T1)SAPDT*(C4T1)RPAPGST*(C4T1)A 88 88 87 PAHGVT*SAPDT*(C4T1)SAPDT*(C4T1)RPAPGST*(C4T1)A 88 87 87 PAHGVT*SAPDT*(C4T1)SAPDT*(C4T1)RPAPGST*(C4T1)A 89 91 91 PAHGVT*SAPDT*(C4T1)SAPDT*(C4T1)RPAPGST*(C4T1)A 93 91 91 PAHGVT*SAPDT*(C4T2)SAPDT*(C4T2)SAPDT*(C4T2)A 93 91 91 PAHGVT*SAPDT*(C4T2)SAPDT*(C				74		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
PAHGVTSAPDT*(C3T2)RPAPGSTA 78 78 78 PAHGVT*(C3T2)SAPDT*(C3T2)RPAPGST*(C3T2)A 80 79 79 PAHGVT*(C3T2)SAPDT*(C3T2)RPAPGST*(C3T2)A 81 81 81 81 PAHGVT*(C3T2)SAPDT*PAPGST*(C3T2)A 81 81 81 81 81 PAHGVT*(C3T2)SAPDT*PAPGST*(C3T2)A 81 81 81 81 81 81 PAHGVT*(C3T2)SAPDT*PAPGST*(C3T2)A 82 83 83 81 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th></t<>						
PAHGVTSAPDTRPAPGST*(C3T2)A 79 79 PAHGVT*(C3T2)SAPDT*(C3T2)RPAPGSTA 80 80 PAHGVT*(C3T2)SAPDT*(C3T2)A 81 PAHGVT*(C3T2)SAPDT*(C3T2)RPAPGST*(C3T2)A 82 PAHGVT*(C3T2)SAPDT*(C3T2)RPAPGST*(C3T2)A 82 PAHGVT*(C3T2)SAPDT*(C3T2)RPAPGST*(C3T2)A 84 PAHGVT*(C4T1)SAPDT*(C4T1)RPAPGSTA 84 PAHGVT*(C4T1)SAPDT*(C4T1)RPAPGSTA 85 PAHGVT*(C4T1)SAPDT*(C4T1)RPAPGSTA 86 PAHGVT*(C4T1)SAPDT*(C4T1)RPAPGSTA 87 PAHGVT*(C4T1)SAPDT*(C4T1)RPAPGST*(C4T1)A 88 PAHGVT*(C4T1)SAPDT*(C4T1)RPAPGST*(C4T1)A 89 PAHGVT*SAPDT*(C4T2)RPAPGSTA 91 PAHGVT*SAPDT*(C4T2)RPAPGSTA 92 PAHGVT*SAPDTRPAPGST*(C4T2)A 93 PAHGVT*SAPDT*(C4T2)RPAPGSTA 92 PAHGVT*SAPDT*(C4T2)RPAPGST*(C4T2)A 93 PAHGVT*(C4T2)SAPDT*(C4T2)RPAPGST*(C4T2)A 93 PAHGVT*(C4T2)SAPDT*(C4T2)RPAPGST*(C4T2)A 93 PAHGVT*(C4T2)SAPDT*(C4T2)RPAPGST*(C4T2)A 94 PAHGVT*(C4T2)SAPDT*(C4T2)RPAPGST*(C4T2)A 94 PAHGVT*(C4T2)SAPDT*(C4T2)RPAPGST*(C4T2)A 95 PAHGVT*(C4T2)SAPDT*(PAPGST*(C4T2)A 93<	PAHGVTSAPDT*(C3T2)RPAPGSTA	78				
PAHGVT*(C312)SAPDTRPAPGST*(C312)A 81 81 PAHGVT*(C312)RAPGST*(C312)A 82 82 PAHGVT*(C312)SAPDT*(C312)RPAPGST*(C3T 83 83 PAHGVT*(C311)SAPDTRPAPGSTA 84 84 PAHGVT*(C411)SAPDT*(C411)RPAPGSTA 86 86 PAHGVT*(C411)SAPDT*(C411)RPAPGSTA 86 86 PAHGVT*(C411)SAPDT*(C411)RPAPGSTA 87 87 PAHGVT*(C411)SAPDT*(C411)RPAPGST*(C411)A 88 88 PAHGVT*(C411)SAPDT*(C411)RPAPGST*(C411)A 89 89 PAHGVT*(C411)SAPDT*(C412)RPAPGST*(C411)A 89 89 PAHGVT*(C412)SAPDT*(C412)RPAPGST*(C411)A 89 89 PAHGVT*SAPDTRPAPGST*(C412)A 93 93 PAHGVT*SAPDTRPAPGST*(C412)RPAPGSTA 92 90 PAHGVT*SAPDTRPAPGST*(C412)RPAPGSTA 92 92 PAHGVT*(C412)SAPDT*(C412)RPAPGSTA 93 93 PAHGVT*(C412)SAPDT*(C412)RPAPGST*(C412)A 93 93 PAHGVT*(C412)SAPDT*(C412)RPAPGST*(C412)A 93 94 PAHGVT*(C412)SAPDT*(C412)RPAPGST*(C412)A 93 94 PAHGVT*(C412)SAPDT*(A12)RPAPGST*(C412)A 93 94						
PAHGVTSAPDT*(C3T2)RPAPGST*(C3T2)A 82 82 PAHGVT*(C3T2)SAPDT*(C3T2)RPAPGST*(C3T 83 83 PAHGVT*(C4T1)SAPDT*(C4T1)RPAPGSTA 84 83 PAHGVT*(C4T1)SAPDTRPAPGST*(C4T1)A 86 86 PAHGVT*(C4T1)SAPDT*(C4T1)RPAPGSTA 87 87 PAHGVT*(C4T1)SAPDT*(C4T1)RPAPGST*(C4T1)A 88 86 PAHGVT*(C4T1)SAPDT*(C4T1)RPAPGST*(C4T1)A 89 89 PAHGVT*(C4T1)SAPDT*(C4T1)RPAPGST*(C4T1)A 89 89 PAHGVT*(C4T1)SAPDT*(C4T2)RPAPGST*(C4T1)A 89 89 PAHGVT*SAPDT*(C4T2)RPAPGST*(C4T1)A 90 90 PAHGVT*SAPDT*(C4T2)RPAPGST*(C4T2)A 92 92 PAHGVT*SAPDT*(C4T2)RPAPGST*(C4T2)A 93 93 PAHGVT*SAPDT*(C4T2)RAPGST*(C4T2)A 93 93 PAHGVT*SAPDT*(C4T2)RAPGST*(C4T2)A 94 94 PAHGVT*SAPDT*(C4T2)RAPGST*(C4T2)A 94 94 PAHGVT*C4T2)SAPDT*(PAPGST*(C4T2)A 94 94 PAHGVT*C4T2)SAPDT*(PAPGST*(C4T2)A 95 96 PAHGVT*SAPDT*(C4T2)SAPDT*(PAPGST*(C4T2)A 96 97 PAHGVT*SAPDT*(PAPGST*(PAPAPGST*(C4T2)A 94 94						
PAHGVT*(C312)SAPDT*(C312)RPAPGST*(C31 83 83 83 84 PAHGVT*(C411)SAPDT*(C411)RPAPGSTA 84 84 84 84 PAHGVTSAPDT*(C411)RPAPGSTA 85 85 84 84 PAHGVTSAPDT*(C411)RPAPGSTA 85 87 87 87 PAHGVT*(C411)SAPDT*(C411)RPAPGSTA 87 87 87 87 PAHGVT*(C411)SAPDT*(C411)RPAPGST*(C411)A 88 88 88 87 PAHGVT*(C411)SAPDT*(C411)RPAPGST*(C41 90 90 90 90 PAHGVT*(C412)RPAPGST*(C411)A 88 88 88 88 88 PAHGVT*(C412)SAPDT*PAPGST*(C412)RPAPGST*(C41 90						
PAHGVT*(C4T1)SAPDTRPAPGSTA 84 84 84 PAHGVTSAPDT*(C4T1)RPAPGSTA 85 85 85 PAHGVTSAPDT*(C4T1)SAPDT*(C4T1)RPAPGSTA 87 87 PAHGVTSAPDT*(C4T1)SAPDTRPAPGST*(C4T1)A 86 86 PAHGVT*(C4T1)SAPDT*(C4T1)RPAPGST*(C4T1)A 88 86 PAHGVT*(C4T1)SAPDT*(C4T1)RPAPGST*(C4T1)A 89 89 PAHGVT*(C4T1)SAPDT*(C4T1)RPAPGST*(C4T1)A 89 89 PAHGVT*SAPDT*(C4T2)RPAPGST*(C4T2)A 90 90 PAHGVT*SAPDT*(C4T2)RPAPGSTA 91 91 PAHGVT*SAPDT*(C4T2)RPAPGSTA 92 92 PAHGVT*SAPDT*(C4T2)RPAPGSTA 92 93 PAHGVT*(C4T2)SAPDT*(C4T2)RPAPGSTA 92 PAHGVT*(C4T2)SAPDT*(C4T2)RPAPGST*(C4T2)A 93 PAHGVT*(C4T2)SAPDT*(C4T2)RPAPGST*(C4T2)A 95 PAHGVTSAPDT*(C4T2)RPAPGST*(C4T2)A 95 PAHGVTSAPDT*RPAPGST*(C4T2)A 96 PAHGVT*C4T2)SAPDT*(C4T2)RPAPGST*(C4T2)A 96 PAHGVTSAPDT*RPAPGST*(C4T2)A 96 PAHGVTSAPDT*RPAPGST*(C4T2)A 97 PAHGVTSAPDT*RPAPGST*(C4T2)A 96 PAHGVTSAPDT*RPAPGST*1 90	PAHGVT*(C3T2)SAPDT*(C3T2)RPAPGST*(C3T					
PAHGVTSAPDTRPAPGST*(C4T1)A 86 86 PAHGVT*(C4T1)SAPDT*(C4T1)RPAPGSTA 87 PAHGVT*(C4T1)SAPDT*(C4T1)A 88 PAHGVT*(C4T1)SAPDT*(C4T1)A 88 PAHGVT*(C4T1)SAPDT*(C4T1)A 88 PAHGVT*(C4T1)SAPDT*(C4T1)A 89 PAHGVT*(C4T1)SAPDT*(C4T1)A 89 PAHGVT*(C4T1)SAPDT*(C4T1)RPAPGST*(C4T 90 PAHGVT*SAPDT*(C4T2)RPAPGSTA 91 PAHGVT*SAPDTRPAPGST*(C4T2)RPAPGSTA 92 PAHGVT*(C4T2)SAPDT*(C4T2)RPAPGSTA 93 PAHGVT*(C4T2)SAPDT*(C4T2)RPAPGSTA 94 PAHGVT*(C4T2)SAPDT*(C4T2)RPAPGST*(C4T2)A 95 PAHGVT*(C4T2)SAPDT*(C4T2)RPAPGST*(C4T2)A 96 PAHGVTSAPDT*(C4T2)RPAPGST*(C4T2)A 96 PAHGVTSAPDT*(C4T2)RPAPGST*(C4T2)A 96 PAHGVTSAPDT*RPAPGS**(C4T2)A 96 PAHGVTSAPDT*RPAPGS**(C4T2)A 96 PAHGVTSAPDT*RPAPGS**(C4T2)A 96 PAHGVT*APAPGS** 97 PAHGVT*APD*P 91 PAHGVT*APD*P 91 PAHGVT*APD* 91 PAHGVT*APD**PAPGS***APPA 96 PAHGVTSAPDT*RPAPGS****APPA 96	PAHGVT*(C4T1)SAPDTRPAPGSTA					
PAHGVT*(C4T1)SAPDT*(C4T1)RPAPGST* 87 87 87 PAHGVT*(C4T1)SAPDTRPAPGST*(C4T1)A 88 88 87 PAHGVT*(C4T1)SAPDT*(C4T1)RPAPGST*(C4T1)A 88 88 87 PAHGVT*(C4T1)SAPDT*(C4T1)RPAPGST*(C4T1)A 89 89 89 PAHGVT*(C4T1)SAPDT*(C4T1)RPAPGST*(C4T1)A 90 90 90 PAHGVT*SAPDT*(C4T2)RPAPGSTA 91 91 91 PAHGVT*SAPDT*(C4T2)RPAPGSTA 92 92 92 PAHGVT*(C4T2)SAPDT*(C4T2)RPAPGST*(C4T2)A 93 93 PAHGVT*(C4T2)SAPDT*(C4T2)RPAPGST*(C4T2)A 95 95 PAHGVT*(C4T2)SAPDT*(C4T2)RPAPGST*(C4T2)A 95 95 PAHGVT*C4DPT*(C4T2)SAPDT*(C4T2)RPAPGST*(C4T2)A 95 95 PAHGVT*CAPDT*RPAPGS*T*(C4T2)A 95 95 PAHGVTSAPDT*RPAPGS*T*(C4T2)A 95 96 PAHGVTSAPDT*RPAPGS*T*(C4T2)A 96 97 PAHGVTSAPDT*RPAPGS*T*(C4T2)A 96 97 PAHGVTSAPDT*RPAPGS*T*APPA Pep137 98 98 PAHGVTSAPDT*RPAPGS*T*APPA Pep138 99 99 PAHGVTSAPDT*RPAPGS*T*APPA Pep138 99 PAHGVTSAPOT*RP						
PAHGVT*(C4T1)SAPDTRPAPGST*(C4T1)A 88 88 PAHGVT*CAT1)RAPAPGST*(C4T1)A 89 89 PAHGVT*C4T1)RAPAPGST*(C4T1)A 89 89 PAHGVT*C4T2)RAPDT*(C4T1)RPAPGST*(C4T 90 90 PAHGVT*SAPDTRPAPGSTA 91 91 PAHGVT*SAPDT*(C4T2)RPAPGSTA 93 93 PAHGVT*C4T2)SAPDT*(C4T2)RPAPGSTA 93 93 PAHGVT*(C4T2)SAPDT*(C4T2)RPAPGSTA 94 PAHGVT*(C4T2)SAPDT*(C4T2)RPAPGSTA 94 PAHGVT*(C4T2)SAPDT*(C4T2)RPAPGST 95 PAHGVT*(C4T2)SAPDT*(C4T2)RPAPGST*(C4T2)A 95 PAHGVT*(C4T2)SAPDT*(C4T2)RPAPGST*(C4T7 97 PAHGVTSAPDT*RAPGS*T*APPA Pep137 98 PAHGVTSAPDT*RPAPGS*T*APPA Pep138 99 PAHGVTSAPDT*RPAPGS*T*APPA Pep138 99 PAHGVTSAPDT*RPAPGS*T*APPA Pep139 100 MUC5B ATPSSTPGTTHTP 102 MUC5B ATPSST*PGTTHTP 102 MUC5B ATPSST*PGTTHTP 103 MUC5B ATPSST*CHTTP 103 MUC5B ATPSST*PGT*HTP 103 MUC5B ATPSST*PGT*HTP 103 MUC5B ATPSSTPGT*HTP 103 MUC5B ATPSSTPGT*HT						
PAHGVTSAPDT*(C4T1)RPAPGST*(C4T1)A 89 89 89 PAHGVT*(C4T1)SAPDT*(C4T1)RPAPGST*(C4T 90 90 PAHGVT*SAPDTRPAPGSTA 91 91 PAHGVT*SAPDTRPAPGSTA 91 91 PAHGVT*SAPDTRPAPGSTA 92 92 PAHGVT*C4T2)SAPDTRPAPGSTA 93 PAHGVT*C4T2)SAPDTRPAPGSTA 93 PAHGVT*C4T2)SAPDTRPAPGST*(C4T2)A 93 PAHGVT*C4T2)SAPDT*(C4T2)RPAPGSTA 94 PAHGVT*C4T2)SAPDT*(C4T2)RPAPGST*(C4T2)A 95 PAHGVT*C4T2)SAPDT*(C4T2)RPAPGST*(C4T2)A 96 PAHGVTSAPDT*(C4T2)RPAPGST*(C4T2)A 96 PAHGVTSAPDT*(C4T2)RPAPGST*(C4T2)A 97 PAHGVTSAPDT*(C4T2)SAPDT*(PAPAPST*(C4T2)A 96 PAHGVTSAPDT*(APAPAPST*0PA Pep137 98 PAHGVTSAPDT*RPAPGS*T*APPA Pep138 99 PAHGVTSAPDT*RPAPGS*T*APPA Pep138 99 PAHGVTSAPDT*RPAPGST*THP 100 MUC5B ATPSSTPGTTHTP 102 MUC5B ATPSSTPGTTHTP 103 MUC5B ATPSSTPGTTHTP 106 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th></t<>						
PAHGVT*(C4T1)SAPDT*(C4T1)RPAPGST*(C4T 90 90 90 PAHGVT*SAPDT*RAPGSTA 91 91 91 PAHGVT*SAPDT*(C4T2)RPAPGSTA 92 92 91 PAHGVT*(C4T2)SAPDT*(C4T2)RAPGSTA 92 92 91 PAHGVT*(C4T2)SAPDT*(C4T2)RAPGSTA 94 93 93 PAHGVT*(C4T2)SAPDT*(C4T2)RPAPGST*(C4T2)A 95 95 95 PAHGVT*(C4T2)SAPDT*(C4T2)RPAPGST*(C4T2)A 95 95 95 PAHGVT*CAT2)SAPDT*(C4T2)RPAPGST*(C4T2)A 96 96 97 PAHGVT*SAPDT*RPAPGS**(C4T2)A 96 96 97 PAHGVTSAPDT*RPAPGS** 91 97 97 PAHGVTSAPDT*RPAPGS** 91 99 99 PAHGVTSAPDT*RPAPGS** 91 90 90 PAHGVTSAPDT*RPAPGS** 91 101 101 MUCSB AT*PSSTPGTH*TP 102	PAHGVTSAPDT*(C4T1)RPAPGST*(C4T1)A					
PAHGVTSAPDT*(C4T2)RPAPGSTA 92 92 PAHGVTSAPDT*(C4T2)RAPGST*(C4T2)A 93 93 PAHGVT*(C4T2)SAPDT*(C4T2)RPAPGSTA 94 93 PAHGVT*(C4T2)SAPDT*(C4T2)RPAPGST*(C4T2)A 95 95 PAHGVT*(C4T2)SAPDT*(C4T2)RPAPGST*(C4T2)A 96 96 PAHGVT*CAT2)SAPDT*(C4T2)RPAPGST*(C4T2)A 95 95 PAHGVT*CAT2)SAPDT*(C4T2)RPAPGST*(C4T2)A 96 96 PAHGVTSAPDT*RAPGS*T*(C4T2)RPAPGST*(C4T1 97 97 PAHGVTSAPDT*RPAPGS*T*APPA Pep137 98 98 PAHGVTSAPDT*RPAPGS*T*APPA Pep138 99 99 PAHGVTSAPDT*RPAPGS*T*APPA Pep139 100 101 MUC58 ATPSSTPGTTHTP 102 102 MUC58 ATPSST*PGTTHTP 103 103 MUC58 ATPSST*PGTT*TP 103 103 MUC58 ATPSST*PGTT*TP 103 103 MUC58 ATPSST*PGT*T*TP 103 103 MUC58 ATPSST*PGT*T*TP 103 103 MUC58 ATPSST*PGT*T*TP 103 103 MUC58 ATPSST*QAT*********************************	PAHGVT*(C4T1)SAPDT*(C4T1)RPAPGST*(C4T		90			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
PAHGVT*(C4T2)SAPDT*(C4T2)RPAPGSTA 94 94 94 PAHGVT*(C4T2)SAPDTRPAPGST*(C4T2)A 95 95 PAHGVT*(C4T2)SAPDT*(C4T2)RPAPGST*(C4T2)A 96 96 PAHGVT*(C4T2)SAPDT*(C4T2)RPAPGST*(C4T2)A 96 96 PAHGVTSAPDT*(C4T2)RPAPGST*(C4T2)A 96 97 PAHGVTSAPDT*RPAPGS*T*APPA Pep137 98 98 PAHGVTSAPDT*RPAPGS*T*APPA Pep138 99 99 PAHGVTSAPDT*RPAPGS*T*APPA Pep138 99 99 PAHGVTSAPDT*RPAPGS*T*APPA Pep138 99 99 PAHGVTSAPDT*RPAPGS*T*APPA Pep138 99 99 PAHGVTSAPDT*RPAPGS*T*APPA Pep138 90 100 MUCSB AT*PSSTPGTTHTP 101 101 MUCSB AT*PSSTFGTTHTP 102 102 MUCSB ATPSST*GTTHTP 103 103 MUCSB ATPSST*PGTTHTP 103 103 MUCSB ATPSST*PGTTHTP 103 103 MUCSB ATPSST*PGTTHTP 103 104 Fetuin fetal bovine serum 105 105 BSA 106 106 106 Albumin from human serum 107 107 107 ICAM+human 108 108 108						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	PAHGVT*(C4T2)SAPDT*(C4T2)RPAPGSTA	94				
PAHGVTSAPDT*(C4T2)RPAPGST*(C4T2)A 96 96 PAHGVTSAPDT*(C4T2)SRPAPGST*(C4T2)A 97 96 PAHGVTSAPDT*(PAPGST*(AT2)RPAPGST*(C4T2)A 98 98 PAHGVTSAPDT*(PAPACS*T*APPA Pep137 98 98 PAHGVTSAPDT*RPAPGS*T*APPA Pep138 99 99 PAHGVTSAPDT*RPAPGS*T*APPA Pep138 100 100 MUC58 ATPSSTPGTTHTP 101 101 MUC58 ATPSSTPGTTHTP 102 102 MUC58 ATPSSTPGTTHTP 102 102 MUC58 ATPSSTPGTTHTP 103 103 Galacid glycoptein 104 104 Fetuin fetal bovine serum 105 105 BSA 106 106 106 Albumin from human serum 107 107 107	PAHGVT*(C4T2)SAPDTRPAPGST*(C4T2)A					
PAHGVTSAPDT*RPAPGS*T*APPA Pep137 98 98 98 PAHGVTSAPDT*RPAPGS*T*APPA Pep138 99 99 PAHGVTSAPDT*RPAPGS*T*APPA Pep138 99 PAHGVTSAPDT*RPAPGS*T*APPA Pep139 100 MUC58 AT*PSSTPGTHTP 101 MUC58 ATPSSTPGTTHTP 102 MUC58 ATPSSTPGTTHTP 103 MUC58 ATPSSTPGTTHTP 103 MUC58 ATPSSTPGT*THTP 104 MUC58 ATPSSTPGT*THTP 104 MUC58 ATPSSTPGT*THTP 105 MUC58 ATPSSTPGT*THTP 104 MUC58 ATPSSTPGT*THTP 105 MUC58 ATPSSTPGT*THTP 107 MUC58 ATPSSTPGT*THTP 107 MUC58 ATPSSTPGT*THTP 106 MUC58 ATPSSTPGT*THTP 107 MUC58 ATPSSTPGT*THTP 106 MUC58 ATPSSTPGT*THTP 106 MUC58 ATPSSTPGT*THTP 107 MUC58 ATPSSTPGT*THTP 106 MUC58 ATPSSTPGT*THTP 107 MUC58 ATPSSTPGT*THTP 107 MUC58 ATPSSTPGT*THTP						
PAHGVTSAPDT*RPAPGS*T*APPA Pep138 99 99 99 PAHGVTSAPDT*RPAPGS*T*APPA Pep139 100 100 MUCSB AT*PSSTPGTTHTP 101 101 MUCSB AT*PSSTPGTTHTP 102 102 MUCSB ATPSSTPGTTHTP 103 103 MUCSB ATPSSTPGTTHTP 103 104 Fetuin fetal bovine serum 105 105 BSA 106 106 106 Albumin from human serum 107 107 ICAM+human 108 108						
PAHGVTSAPD1*RPAPGS*1*APPA Pep139 100 100 100 100 100 100 100 100 100 100 100 100 100 100 101 102 103 103 103 103 103 103 103 103 103 103 104 104 104 104 104 104 104 105 105 105 105 107 107 107 107 107 <t< td=""><td>PAHGVTSAPDT*RPAPGS*T*APPA Pep138</td><th>99</th><td></td><td></td><td></td><td></td></t<>	PAHGVTSAPDT*RPAPGS*T*APPA Pep138	99				
MUCSB AT*PSSTPGTTHTP 101 101 101 MUCSB ATPSSTPGTTHTP 102 102 102 MUCSB ATPSSTPGT*THTP 103 103 103						
MUC5B ATPSSTPGT*THTP 103 103 103 α1-acid glycoprotein 104 104 104 Fetuin fetal bovine serum 105 105 105 BSA 106 106 106 Albumin from human serum 107 107 107 ICAM+human 108 108 108			101	101		
α1-acid glycoprotein 104 104 Fetuin fetal bovine serum 105 105 105 BSA 106 106 105 105 Albumin from human serum 107 107 107 107 ICAM-I human 108 108 108 108 108						
Fetuin fetal bovine serum 105 105 105 BSA 106 106 106 106 106 106 106 106 106 106 106 106 106 106 106 107 107 107 107 107 107 107 107 107 108						
BSA 106 H 106 H Albumin from human serum 107 107 107 107 107 107 107 107 107 107 107 107 107 107 107 108	Fetuin fetal bovine serum	105				
ICAM-I human 108 108 108			106	H 106 H		
Transferrin human 109 109 109						
Mucin from porcine stomach 110 110 110 110 110	Mucin from porcine stomach	110				
Mucin from bovine submaxillary 111 111 111 111	Mucin from bovine submaxillary	111	111			


Figure S6. Glycopeptide microarray screening results of anti-sera induced by $Q\beta$ -MUC1- β -Tf . The results from five anti-sera (1/100 dilution) were shown.

General Experimental Procedures and Methods for Synthesis:

All chemicals were reagent grade and were used as received from the manufacturer, unless otherwise noted. Solvents were dried using a solvent purification system. Glycosylation reactions were performed with 4Å molecular sieves that were flame dried under high vacuum. Reactions were visualized by UV light (254 nm) and by staining with either Ce(NH₄)₂(NO₃)₆ (0.5 g) and (NH₄)₆MO₇O₂₄*4H₂O (24.0 g) in 6% H₂SO₄ (500 mL) or 5% H₂SO₄ in EtOH. Flash chromatography was performed on silica gel 601 (230-400 Mesh).

Centrifugal filter units of 10,000 and 100,000 molecular weight cut-off (MWCO) were purchased from EMD Millipore. Fast protein liquid chromatography (FPLC) was performed on a GE ÄKTA Explorer (Amersham Pharmacia0 instrument equipped with a Superose-6 column. For characterization of QB-MUC1 conjugates, liquid chromatography-mass spectrometry (LCMS) analysis was performed. The samples for LCMS were prepared as follows: 1:1 v/v of 40 μ g mL⁻¹ of Qβ-MUC1 stock solution and 100 mM DTT was mixed and incubated in a water bath at 37 °C for 30 min. One drop of 50% formic acid was added to the mixture. LCMS was performed on Waters Xevo G2-XS quadrupole/time-of-flight UPLC/MS/MS. The liquid chromatography was done on ACUITY UPLC® Peptide BEH C18 column, 130Å, 1.7 µm, 2.1 mm x 150 mm, using gradient eluent from 95% 0.1% formic acid in CH₃CN (0.3 mL min⁻¹ flowrate) at a column temperature of 40 °C. The spectra were deconvoluted using MaxEnd148a. The average numbers of MUC1/subunit were analyzed by signal intensity in the mass spectra. For characterization of BSA-MUC1 conjugates, MALDI-TOF MS analysis was performed. The samples for MALDI-TOF were prepared as follows: 1:1 v/v of 2 mg ml⁻¹ of BSA-MUC1 conjugates and 100 mM DTT was mixed and incubated in a water bath at 37 °C for 30 min. After desalting using Cleanup C18 Pipette Tips (Agilent Technologies), the sample (2 μ L) and matrix solution (2 μ L, 10 mg mL⁻¹ sinapic acid in 50/50/0.1 CH₃CN/H₂O/TFA) was mixed and spotted on a MALDI plate, air-dried (3 rounds) and then analyzed by MALDI-TOF mass spectrometry (Applied Biosystems Voyager DE STR). Protein concentration was measured using the Coomassie Plus Protein Reafent (Bradford Assay, Pierce) with BSA as the standard. *O*-Glycosidase, endo-α-Nacetylgalactosaminidase from E. faecalis, was purchased from New England Biolabs (p0733s).

Mouse melanoma B16 line expressing human MUC1 (B16-MUC1) was kindly provided by Prof. Sandra J. Gendler (Mayo Clinic). B16-MUC1 cells were grown in Dulbecco's Modified Eagle's Medium (DMEM) supplemented with 10% FBS, 100 U mL⁻¹ penicillin and 100 μ g mL⁻¹ streptomycin, 2 mM L-glutamine, 1 mM sodium pyruvate and 0.3 mg mL⁻¹ G418 disulfate salt. Synthesis of Fmoc protected β-Tf glyco-AA building block 11:

p-Tolyl-4,6-*O*-benzylidene-3-*O*-(*tert*-butyl-dimethylsilyl)-2-deoxy-1-thio-2-*N*-((2,2,2-trichloroethoxy)carbonyl)-β-D-galactopyranoside (7).

5 (0.450g, 0.820mmol, 1 equiv.),² imidazole (0.112g, 1.64mmol, 2 equiv.) and tertbutyldimethylsilyl chloride (0.161g, 1.07mmol, 1.3 equiv.) were dissolved in DMF (4mL). The reaction was stirred, under N₂, overnight. Upon completion of the reaction, the solution was poured into EtOAc and washed 3 times each with 1M HCl, sat. NaHCO₃, and sat. NaCl solutions. The organic layers were collected and dried over anhydr. Na₂SO₄ and the excess solvent was removed. The crude product was purified by silica gel flash column chromatography using EtOAc:hexanes:DCM as the eluent. 7 (0.513g) was obtained as a white solid in a 94% yield. ¹H NMR (500MHz, CDCl₃) δ 7.53 (d, *J* = 7.8Hz, 2H, Ar-H), 7.50-7.45 (m, 2H, Ar-H), 7.40-7.35 (m, 3H, Ar-H), 7.02 (d, J = 7.8Hz, 2H, Ar-H), 5.50 (s, 1H, benzylidene CH), 5.10-5.20 (m, 2H, N-H) H-1), 4.75 (d, J = 12.0Hz, 1H, Troc CH₂), 4.66 (d, J = 12.0Hz, 1H, Troc CH₂), 4.38 (dd, J = 1.7Hz, 12.4Hz, 1H, H-6a), 4.32 (dd, J = 3.3Hz, 10.2Hz, 1H, H-5), 4.07 (d, J = 3.3Hz, 1H, H-4), 4.01 (dd, J = 1.7Hz, 12.4Hz, 1H, H-6b), 3.58-3.48 (m, 2H, H-2, H-3), 2.31 (s, 3H, STol CH₃), 0.85 (s, 9H, tBu CH₃), 0.06 (s, 3H, silyl CH₃), 0.05 (s, 3H, silyl CH₃). ¹³C NMR (125MHz, CDCl₃) δ 153.5, 138.0, 137.9, 133.5, 129.7, 128.8, 128.2, 128.0, 126.3, 100.7, 95.3, 84.6, 77.3, 76.3, 74.6, 74.5, 70.9, 69.9, 69.5, 68.8, 53.3, 25.7, 21.2, 18.1, -4.5, -4.7. ESI-TOF (C₂₉H₃₈Cl₃NNaO₆SSi): calculated ([M+Na⁺]): 684.1152, found 684.1151.

O-(4,6-*O*-Benzylidene-2-2-deoxy-*N*-((2,2,2-trichloroethoxy)carbonyl)-β-D-galactopyranosyl)-*N*-(fluoren-9-ylmethoxycarbonyl)-threonine *tert*-butyl ester (8).

7 (0.759g, 1.14 mmol, 1 equiv.) and *N*-(fluoren-9-ylmethoxycarbonyl)-L-threonine *tert*-butyl ester **2** (Fmoc-Thr-O*t*Bu) (0.455g, 1.14mmol, 1 equiv.) were dissolved in dry DCM (5mL). Freshly activated 4Å molecular sieves (MS) were added and the reaction was stirred for 30 min under N₂. The reaction was cooled to -78°C. Sequentially *N*-iodosuccinimide (NIS) (0.515g, 2.29mmol, 2 equiv.) and trifluoromethanesulfonic acid (TfOH) (12.1µL, 0.137mmol, 0.12 equiv.) were added to the reaction. The reaction was allowed to slowly warm to room temperature. Upon reaching room temperature, the reaction was neutralized by addition of *N*,*N*-diisopropylethylamine

(DIPEA). The reaction was filtered through celite and excess solvent was removed. The mixture was run through a silica gel column, using EtOAc:hexanes:DCM as eluent, to obtain a mixture of the glycosylated amino acid and Fmoc-Thr-OtBu. The recovered mixture was dissolved in pyridine (2mL) and cooled to 0°C before HF•Pyridine (1mL) was added. The solution was stirred and allowed to warm to room temperature. After 2h, the reaction was neutralized using a sat. NaHCO₃ solution and dissolved in EtOAc. The solution was washed 3 times each with sat. copper sulfate, 1M HCl, sat. NaHCO₃, and sat. NaCl solutions. The organic layers were collected, dried over anhydr. Na₂SO₄ and excess solvent was removed. The crude product was purified by silica gel flash column chromatography using EtOAc:hexanes:DCM as the eluent. 8 (0.704g) was obtained as a white solid in a 75% yield over 2 steps. ¹H NMR (500MHz, CDCl₃) δ 7.75 (d, J = 7.6Hz, 2H, Ar-H), 7.66 (t, J = 7.3Hz, 2H, Ar-H), 7.48-7.45 (m, 2H, Ar-H), 7.41-7.34 (m, 5H, Ar-H), 7.32-7.27 (m, 2H, Ar-H), 5.86 (d, J = 9.4Hz, 1H, N-H), 5.55 (s, 1H, benzylidene CH), 5.32 (d, J =7.8Hz, 1H, N-H), 4.72 (s, 2H, Troc CH₂), 4.68 (d, J = 7.7Hz, 1H, H-1), 4.55 (m, 1H, Thr CH), 4.42 (m, 1H, Fmoc CH₂), 4.35-4.22 (m, 4H, Fmoc CH, Fmoc CH₂, Thr C_αH, H-6a), 4.20 (bs, 1H, H-5), 4.10-4.00 (m, 2H, H-3, H-6b), 3.52 (bs, 1H, H-2), 3.46 (s, 1H, H-5), 2.71 (d, J = 10.5Hz, 1H, OH), 1.49 (s, 9H, tBu CH₃), 1.23 (d, J = 6.3Hz, 3H, Thr CH₃). ¹³C NMR (125MHz, CDCl₃) δ 181.9, 157.0, 154.5, 144.0, 143.9, 141.2, 141.1, 137.4, 129.3, 128.2, 127.7, 127.1, 127.1, 126.5, 125.4, 125.4, 119.9, 119.8, 101.4, 96.9, 95.4, 82.4, 74.9, 74.5, 72.7, 69.4 69.0, 67.4, 66.5, 59.0, 55.9, 47.1, 28.0, 15.9. ESI-TOF ($C_{39}H_{43}Cl_3N_2NaO_{11}$): calculated ([M+Na⁺]): 843.1830, found 843.1798.

O-(4,6-*O*-Benzylidene-2-deoxy-*O*-(2,3,4,6-tetra-*O*-acetyl-**B**-D-galactopyranosyl)-2-*N*-((2,2,2-trichloroethoxy)carbonyl)-**B**-D-galactopyranosyl)-*N*-(Fluoren-9-ylmethoxycarbonyl)-L-threonine *tert*-butyl ester (9).

8 (0.283g, 0.344mmol, 1 equiv.) and 4 (0.313g, 0.688mmol, 2 equiv.) were dissolved in dry DCM (3mL). Freshly activated 4Å MS were added and the reaction stirred for 30min under N₂. The reaction was cooled to -78°C. Sequentially, NIS (0.310g, 1.38mmol, 4 equiv.) and TfOH (6.20µL, 0.0413mmol, 0.12 equiv.) were added to the reaction. The reaction was allowed to slowly warm to room temperature. Upon reaching room temperature, the reaction was neutralized by addition of DIPEA, filtered through celite and excess solvent was removed The crude product was purified by silica gel flash column chromatography using EtOAc:hexanes:DCM as eluent. 9 (0.340g) was obtained as a white solid in an 86% yield. ¹H NMR (500MHz, CDCl₃) δ 7.75 (d, J = 7.6Hz, 2H), 7.65 (t, J = 8.8Hz, 2H, Ar-H), 7.47 (m, 2H, Ar-H), 7.38 (t, J = 7.5Hz, 2H, Ar-H), 7.35-7.25 (m, 5H, Ar-H), 5.98 (d, J = 6.1Hz, 1H, N-H), 5.92 (d, J = 9.4Hz, 1H, N-H), 5.55 (s, 1H, benzylidene CH), 5.36 (d, *J* = 2.8Hz, 1H, H-4'), 5.14 (dd, *J* = 8.1Hz, 10.1Hz, 1H, H-2'), 5.00 (d, *J* = 7.8Hz, 1H, H-1), 4.95 (dd, J = 3.3Hz, 10.3Hz, 1H, H-3'), 4.83 (d, J = 12.1Hz, 1H, Troc CH₂), 4.72 (d, J == 8.0Hz, 1H, H-1'), 4.60 (d, J = 12.1Hz, 1H, Troc CH₂), 4.58-4.50 (m, 2H, H-4, Thr CH), 4.41-4.26 (m, 5H, Fmoc CH₂, Thr C_{α}H, H-2, H-6a/b), 4.23 (t, J = 7.6Hz, 1H, Fmoc CH), 4.18 (dd, J =6.5Hz, 11.2Hz, 1H, H-6a'), 4.13 (dd, J = 6.5Hz, 11.2Hz, 1H, H-6b'), 4.05 (d, J = 12.1Hz, 1H, Fmoc CH₂), 3.89 (t, J = 6.3Hz, 1H, H-5'), 3.47 (m, 2H, H-3, H-5), 2.16 (s, 3H, Ac CH₃), 2.06 (s, 3H, Ac CH₃), 2.04 (s, 3H, Ac CH₃), 1.96 (s, 3H, Ac CH₃), 1.43 (s, 9H, tBu CH₃), 1.20 (d, J =

6.3Hz, 3H, Thr CH₃). ¹³C NMR (125MHz, CDCl₃) δ 182.0 170.4, 170.2, 169.5, 169.5, 157.0, 154.1, 143.9, 143.9, 141.2, 141.2, 137.7, 129.0, 128.0, 127.6, 127.1, 126.5, 125.4, 125.3, 119.9, 119.9, 102.0, 100.9, 95.4, 95.2, 82.6, 75.9, 75.9, 74.3, 72.4, 70.8, 70.8, 69.0, 68.7, 67.3, 66.9, 66.3, 61.5, 59.0, 53.6, 47.1, 27.9, 20.8, 20.7, 20.6, 20.5, 15.8. ESI-TOF (C₅₃H₆₁Cl₃N₂NaO₂₀): calculated ([M+Na⁺]): 1173.2781, found 1173.2784.

O-(4,6-Di-*O*-acetyl-2-deoxy-*O*-(2,3,4,6-*O*-tetra-*O*-acetyl-B-D-galactopyranosyl)-2-*N*-((2,2,2-trichloroethoxy)carbonyl)-B-D-galactopyranosyl)-*N*-(Fluoren-9-ylmethoxycarbonyl)-L-threonine *tert*-butyl ester (10).

9 (229mg, 0.199mmol, 1 equiv.) and p-toluenesulfonic acid (3.4mg, 0.0199mmol, 0.1 equiv.) were dissolved in MeOH (10mL). The reaction was stirred until complete as determined by TLC. The solvent removed by co-evaporation with toluene. The crude intermediate was then dissolved 3ml of pyridine. Excess Ac₂O was added and the reaction was stirred under N₂. The reaction was dissolved in EtOAc and washed 3 times each with sat. copper sulfate, 1M HCl, sat. NaHCO₃, and sat. NaCl solutions. The organic layers were collected, dried over anhydr. Na₂SO₄ and excess solvent was removed. The crude product was purified by silica gel flash column chromatography using EtOAc:hexanes:DCM as eluent. 10 (0.160g) was obtained as a white solid in a 70% yield. ¹H NMR (500MHz, CDCl₃) δ 7.71 (d, *J* = 7.6Hz, 2H, Ar-H), 7.61 (dd, *J* = 3.5Hz, 7.3Hz, 2H, Ar-H), 7.35 (t, J = 7.3Hz, 2H, Ar-H), 7.30-7.23 (m, 2H, Ar-H), 5.73-5.65 (m, 2H, N-H), 5.35 (d, J = 3.2Hz, 1H, H-4), 5.30 (d, J = 3.2Hz, 1H, H-4') 5.08 (dd, J = 8.2Hz, 10.3Hz, 1H, H-2'), 4.91 (dd, J = 3.3Hz, 10.3Hz, 1H, H-3'), 4.77-4.67 (m, 2H, H-1, Troc CH₂), 4.64 (d, J = 12.1Hz, 1H, Troc CH₂), 4.58 (d, J = 8.1Hz, 1H, H-1'), 4.45-4.35 (m, 2H, Thr CH, Fmoc CH₂), 4.30-4.17 (m, 4H, Fmoc CH, Fmoc CH₂, Thr C_{α}H, H-3), 4.15-4.03 (m, 3H, H-6a/b', H-6a), 3.91 (dd, J = 7.1Hz, 11.6Hz, 1H, H-6b), 3.84 (t, J = 6.5Hz, 1H, H-5'), 3.77 (t, J = 5.6Hz, 1H, H-5), 3.42-3.33 (m, 1H, H-2), 1.04-1.98 (m, 15H, Ac CH₃), 1.92 (s, 3H, Ac CH₃), 1.43 (s, 9H, tBu CH₃), 1.14 (d, J = 6.3Hz, 3H, Thr CH₃). ESI-TOF (C₅₀H₆₁Cl₃N₂NaO₂₂): calculated ([M+Na⁺]): 1169.2679, found 1169.2675.

O-(2-Acetamido-4,6-di-*O*-acetyl-2-deoxy-*O*-(2,3,4,6-tetra-*O*-acetyl-B-D-galactopyranosyl)-B-D-galactopyranosyl)-*N*-(Fluoren-9-ylmethoxycarbonyl)-L-threonine (11):

10 (160mg, 0.139mmol, 1 equiv.) and zinc dust (18.2mg, 0.755mmol, 2 equiv.) was dissolved in a 3:2:1 mixture of tetrahydrofuran (THF):Ac₂O:acetic acid (AcOH) (2mL). The reaction was stirred under N₂, until complete as measured by TLC After filtering through celite, the solvent was removed and the crude product was purified by silica gel flash column chromatography, using MeOH:DCM as eluent. The resulting solid was dissolved in a 10% solution of trifluoroacetic acid (TFA) in DCM. The reaction was stirred for an hour. The solvent was removed and the crude product was purified by silica gel flash column chromatography, using MeOH:DCM as by silica gel flash column chromatography, using MeOH:DCM as the eluent. 11 (124mg) was obtained as a yellow glassy solid in 78% yield. ¹H NMR (500 MHz, Methanol-*d*₄) δ 7.79 (d, *J* = 7.5 Hz, 2H, Ar-H), 7.67 (dd, *J* = 7.6, 5.1 Hz, 2H, Ar-H), 7.39 (t, *J* = 7.4 Hz, 2H, Ar-H), 7.32 (tt, *J* = 7.5, 1.4 Hz, 2H, Ar-H), 5.38 (d, J = 3.1 Hz, 1H, H-4), 5.36 (d, *J* = 3.2 Hz, 1H,

H-4'), 5.09 (dd, J = 10.5, 3.5 Hz, 1H, H-3'), 5.01 (dd, J = 10.5, 7.7 Hz, 1H, H-2'), 4.90 (s, 2H, N-H), 4.76 (d, J = 7.8 Hz, 1H, H-1'), 4.52 (d, J = 8.2 Hz, 1H, H-1), 4.47 – 4.39 (m, 1H, Fmoc CH₂), 4.38 – 4.31 (m, 2H, Fmoc CH₂, Thr CH), 4.22 (t, J = 6.7 Hz, 1H, Fmoc CH), 4.16 – 3.94 (m, 8H, Thr C_aH, H-2, H-5, H-5', H-6a/b, H-6a/b'), 3.94 – 3.87 (m, 1H, H-3), 2.13 (s, 3H, Ac CH₃), 2.05 (s, 3H, Ac CH₃), 2.03 (s, 3H, Ac CH₃), 2.03 (s, 3H, Ac CH₃), 2.05 (s, 3H, Ac CH₃), 1.96 (s, 3H, Ac CH₃), 1.94 (s, 3H, Ac CH₃), 1.18 (d, J = 6.3Hz, 3H, Thr CH₃). ¹³C NMR (126 MHz, Methanol-*d*₄) δ 172.4, 171.1, 170.6, 170.6, 170.4, 170.0, 169.7, 157.3, 144.0, 143.7, 141.2, 141.1, 127.4, 126.8, 126.8, 124.8, 119.57, 101.1, 99.0, 76.2, 74.8, 70.9, 70.8, 70.4, 69.0, 68.8, 67.2 66.5, 62.0, 60.9, 54.2, 51.9, 47.0, 22.0 19.5, 19.5 19.4, 19.2, 19.1, 19.1, 15.9. ESI-Quadrupole (C₄₅H₅₃N₂O₂₁): calculated ([M-H⁺]): 957.3141, found 957.3128.

Synthesis of MUC1-B-Tf (12):

The MUC1- β -Tf glycopeptide 12 was synthesized using *p*-nitrophenyl carbonate Wang resin. The N-Fmoc-1,4-diaminobutane linker was installed by dissolving N-Fmoc-1,4diaminobutane*HCl (5 equiv.) and DIPEA (10 equiv.) in DMF before swelling the resin in the solution. The N-terminal Fmoc was deprotected using 20% piperidine in DMF. The amino acid coupling was carried out with Fmoc-amino acids (5 equiv.) using (2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate (HBTU)/hydroxybenzotriazole (HOBt) (4.9 equiv.) and DIPEA (10 equiv.). Coupling of 11 (2 equiv.) was performed using 1-[bis(dimethylamino)methylene-1H-1,2,3-triazolo[4,5-b]pyridinium-3-oxide hexafluorophosphate (HATU)/1-hydroxy-7-azabenzotriazole (HOAt) (1.9 equiv.) and DIPEA (4 equiv.). After assembly of the MUC1-BTf glycopeptide, the N-terminal Fmoc group was removed and the resulting free amine was capped with a 1:1:8 solution of Ac₂O:DIPEA:DMF. The amino acid side chains were deprotected and the glycopeptide was cleaved from the resin using a solution of 18:1:1 TFA:triisopropylsilane (TIPS):H₂O. After 4hrs, the glycopeptide was precipitated by diethyl ether (EtO₂) and pelleted by centrifugation. The crude glycopeptide was purified by HPLC using a Shimadzu HPLC (LC-8A Liquid Chromatograph Pump, DGU-14A Degasser, and SPD-10A UV-Vis Detector), using a reverse phase SUPERCOSIL LC18, 25 cm \times 10 mm 5 μ m with an acetonitrile (ACN):H₂O (0.1% TFA) gradient. The gradient was 5% ACN for 5 min, 5-60% ACN in 5-45 min, 60-100% ACN in 45-50 min, 100% ACN for 50-55min, and 100-5% ACN in 55-60min. The flow rate was 5 ml/min. To remove the O-acetyl groups, the purified glycopeptide was treated with 5% (v/v) hydrazine in water overnight before being purified using the same HPLC gradient as above. For conjugation of MUC1-B-Tf glycopeptide onto QB, the purified glycopeptide was treated with adipate bis(4-nitrophenyl) ester (5 equiv.) in the presence of DIPEA (10 equiv.) in DMF and 1% H₂O for 1.5 hrs before being purified by HPLC to give a yield of 30-40%. The MUC1- β -Tf glycopeptide 12 was characterized by ESI-TOF MS and ¹H NMR before pnitrophenyl ester functionalization. ¹H NMR (500MHz, deuterium oxide) δ 4.47 (t, J = 6.9Hz, 1H), 4.45-4.38 (m, 2H), 4.36 (d, J = 6.9Hz, 1H), 4.31 (d, J = 8.6Hz, 1H, anomeric proton 1), 4.28 (d, J = 3.3Hz, 1H), 4.24 (d, J = 8.1Hz, 1H, anomeric proton 2), 4.22-4.18 (m, 2H), 3.78 (t, J = 9.4Hz, 1H), 3.70 (d, J = 3.4Hz, 1H), 3.66-3.49 (m, 9H), 3.48-3.34 (m, 6H), 3.30 (dd, J = 7.8Hz, 9.7Hz, 1H), 3.06-2.96 (m, 4H), 2.79 (t, J = 7.4Hz, 2H), 2.65 (dd, J = 7.1Hz, 16.5Hz, 1H), 2.54 (dd, J =

7.1Hz, 16.5Hz, 1H), 2.12-2.01 (m, 3H), 1.85 (s, 3H, NHAc CH₃), 1.83 (s, 3H, NHAc CH₃), 1.82-1.75 (m, 4H), 1.75-1.60 (m, 5H), 1.60-1.33 (m, 9H), 1.16 (d, J = 2.3Hz, 3H, Ala CH₃), 1.15 (d, J = 2.3Hz, 3H, Ala CH₃), 1.09 (d, J = 10.4Hz, 2H), 0.93 (d, J = 6.4Hz, 3H, Thr CH₃); ESI-TOF (C₅₈H₉₇N₁₅O₂₄): calculated ([M+2H⁺]/2): 694.8494, found 694.8515

Glycosidase cleavage experiments:

100 µg of glycopeptide, MUC1- α -Tf **12\alpha** or MUC1- β -Tf **12**, 5 µl of 10X glycoBuffer, 10 µl endo- α -*N*-acetylgalactosaminidase from *Enterococcus faecalis* (400,000 units, New England Biolabs, P0733S) and H₂O was added to make a 50 µl total reaction volume. The reaction mixture was gently mixed and incubated at 37 °C. At indicated time points, the reaction was quenched by adding 50 ul MeOH. The reaction mixture was centrifuged to remove large proteins and reaction sample was analyzed by Xevo QTOF LC-MS/MS. The intensity of glycopeptide at each time point was compared to reaction sample at the beginning of the reaction. After only 20 minutes, a significant amount of the cleavage peptide product for the α -isomer **12\alpha** was observed with nearly complete cleavage after 1.75 hours (**Figure S1**). In contrast, the β -anomer **12** showed no detectable cleavage even after 24 hours.

To further test the glycopeptide stability, MUC1- β -Tf glycopeptide **12** and MUC1- α -Tf glycopeptide **12** α with a β -*N*-acetylhexosaminidase (New England Biolabs, P0721S). 50 µg of glycopeptide, MUC1- α -Tf **12** α or MUC1- β -Tf **12**, 2.5 µl of 10X glycoBuffer, 10 µl β -*N*-acetylhexosaminidase (50 units) and H₂O were added to make a 25 µl total reaction volume. The reaction mixture was incubated at 37 °C for 24h and the reaction progress was determined by LC-MS/MS. Both glycopeptides were found stable at 37 °C for 24 hours. The unnatural β -Tf linkage to the peptide may have contributed to its resistance to hydrolysis by the enzyme. As a positive control for the enzyme activity, 50 µg of 4-nitrophenyl *N*-acetyl- β -D-glucosaminide was completely cleaved in 24 hours under the same reaction condition.

Synthesis of $Q\beta$ -MUC1 Conjugates.

For Q β -MUC1- α -Tf: The conjugation was performed as previously reported.¹ For Q β -MUC1- β -Tf: A solution of Q β (1 mg, 0.07 µmol subunit, 0.49 µmol reactive amine) in 0.1 M KPB pH 7.0 (0.2 mL) was cooled in an ice bath. The solution was added to a frozen solution of dinitrophenyl linker functionalized **12** (28 µL from a 50 mM stock solution in DMSO, 1.4 µmol). The mixture was allowed to warm to room temperature while gently inverting to ensure mixing. Once the compounds had completely dissolved, the reaction was incubated at 37 °C for 16 h. The reaction mixture was purified by PD-10 size exclusion chromatography eluting with 0.1 M KPB pH 7.0. The isolated fractions were subjected to centrifugal filtration (MWCO 100kDa) to concentrate the sample to 2-3 mg mL⁻¹ (concentration should not be <5 mg mL⁻¹ to prevent aggregation). Protein concentration was determined by MALDI-TOF MS and by electrophoretic

analysis. Percent protein recovery was ~65-75% with the particle integrity determined by FPLC and DLS analysis.

Synthesis of BSA-MUC1 conjugates.

For synthesis of BSA-MUC1 conjugates, nitrophenyl linker functionalized MUC1 **12** (4 mg) or nitrophenyl linker functionalized **12a** was dissolved in 30 μ L of DMSO, then added to a solution of BSA (10 mg mL⁻¹) in 0.1M KPB pH 7.0 (200 μ L). The reaction was gently inverted several times and incubated at 37 °C for 16 h. The product was purified by centrifugal filtration (10kDa MWCO). Protein concentration was determined by the Bradford assay against BSA standards. The extent of modification was determined by MALDI-TOF MS.

Immunization of MUC1.Tg mice.

All animal experiments were approved by and performed in accordance with the guidelines of the Institutional Animal Care and Use Committee (IACUC) of Michigan State University. The animal usage protocol number is PROTO201900423. MUC1.Tg mice were generated by breeding C57BL/6 wild-type female mice and MUC1.Tg male mice with a 10.6 kb genomic Sac II fragment of the human MUC1 gene and maintained in the University Laboratory Animal Resources facility of Michigan State University. MUC1.Tg female mice aged 6–10 weeks were used for studies.

In all studies, MUC1.Tg mice were subcutaneously injected under the scruff on day 0 with 0.2 mL of various Q β -MUC1 vaccines in PBS containing MPLA (20 μ L, 1 mg mL⁻¹ in DMSO) for each mouse. Boosters were given subcutaneously at the same amounts of vaccines with MPLA under the scruff on days 14 and 28. All Q β -MUC1 conjugates administered have the same amounts of MUC1 (8.6nmol). Serum samples were collected on days 0 (before immunization) and 35. The final bleeding was performed through cardiac bleed.

Evaluation of antibody titers by ELISA.

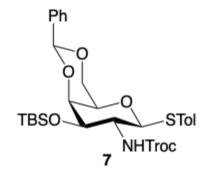
The Nunc MaxiSorp® flat-bottom 96-well microtiter plates were coated with 10 μ g mL⁻¹ of the corresponding BSA-MUC1 conjugates (100 μ L/well) in NaHCO₃/Na₂CO₃ buffer (0.05 M, pH 9.6) containing 0.02 % NaN₃ by incubation at 4°C overnight. The coated plates were washed with PBS/0.5% Tween-20 (PBST) (4 × 200 μ L) and blocked with 1 % BSA in PBS (100 μ L/well) at rt for 1 h. The plates were washed again with PBST (4 × 200 μ L) and incubated with serial dilutions of mice sera in 0.1 % BSA/PBS (100 μ L/well, 2 wells for each dilution). The plates were incubated for 2 h at 37 °C and then washed with PBST (4 × 200 μ L). A 1:2000 dilution of HRP-conjugated goat anti-mouse IgG, IgG1, IgG2b, IgG2c, IgG3 or IgM (Jackson ImmunoResearch Laboratory) in 0.1% BSA/PBS (100 μ L) was added to the wells respectively to determine the titers of antibodies generated. The plates were incubated for 1 h at 37 °C and then washed with PBST (4 × 200 μ L). A solution of enzymatic substrate 3,3',5,5'-tetramethylbenzidine(TMB, 200 μ L) was added to the plates (for one plate: 5 mg of TMB was dissolved in 2 mL of DMSO plus 18 mL of

citric acid buffer containing 20 μ L of H₂O₂). Color was allowed to develop for 15 min and then quenched by adding 50 μ L of 0.5 M H₂SO₄. The readout was measured at 450 nm using a microplate reader. The titer was determined by regression analysis with log10 dilution plotted with optical density and reported as the highest fold of dilution giving the optical absorbance value of 0.1 over those of the pre-immune control sera.

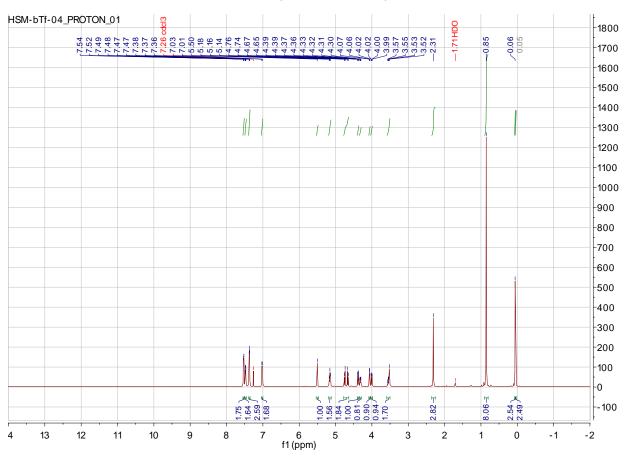
Detection of antibody binding to tumor cells by FACS.

B16-MUC1 cells were cultured at 37 °C under 5% CO₂ in cell growth medium. The number of cells was determined using a hemocytometer. Suspensions of 3.0×10^5 cells were added to each of the 1.5 mL microcentrifuge tubes, then centrifuged at 1,600 rpm for 5 min to remove the supernatant. The cell pellets were washed with FACS buffer (1% FBS in PBS with 0.1 % NaN₃) and incubated with 1:20 dilution of mouse sera in FACS buffer (100 µL) for 30 min on ice. The incubated cells were washed twice with FACS buffer, followed by incubation with FITC conjugated goat anti-mouse IgG (minimal x-reactivity) antibody (BioLegend, 2 µL, 0.5 mg mL⁻¹) for 30 min on ice. The cells were washed twice, resuspended in FACS buffer and analyzed by LSR II (BD Biosciences). Data was processed by FlowJo software.

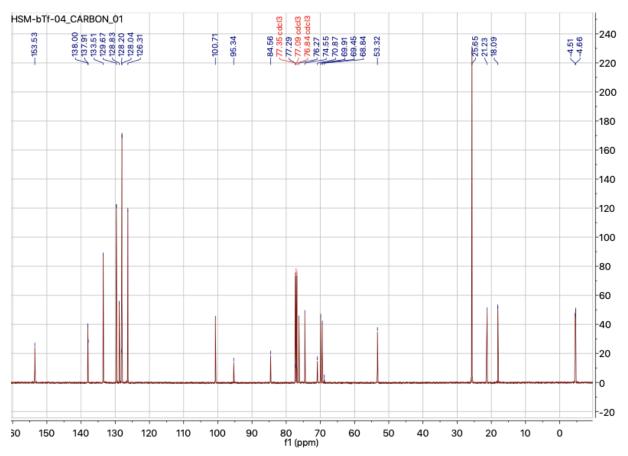
Complement dependent cytotoxicity:


Complement dependent cytotoxicity of B16-MUC1 cells was determined by MTS assay. B16-MUC1 (7000 cells/well) were cultured in 96 well plate with DMEM (10% FBS, G-418 and 1% P.S.) for 12 h. The culture medium was carefully removed. A dilution of mouse sera (1/40) from different groups of immunized MUC1.Tg mice in 50 μ L of DMEM (1% FBS, G-418 and 1% P.S.) were respectively added to the plate and incubated for 1 h at 37°C. Then baby rabbit complement (CL3441, Cedarlane) at a dilution (1/5) in 50 μ L of DMEM (10% FBS, G-418 and 1% P.S.) were added and incubated at 37°C for 3 h. MTS (CellTiter 96® AQueous One Solution Cell Proliferation Assay; Promega, 20 μ L) was added into each well and further incubated at 37°C for 3 h. The optical absorption of the MTS assay was measured at 490 nm. Complement alone treated cells were used as a positive control (maximum OD), and 5% Triton X-100 treated cells were used as a negative control (minimum OD). All data were performed in three replicates. Cytotoxicity was calculated as follows: Cytotoxicity (%) = (OD positive control – OD experimental) / (OD positive control – OD negative control) × 100.

Glycopeptide microarray analysis:

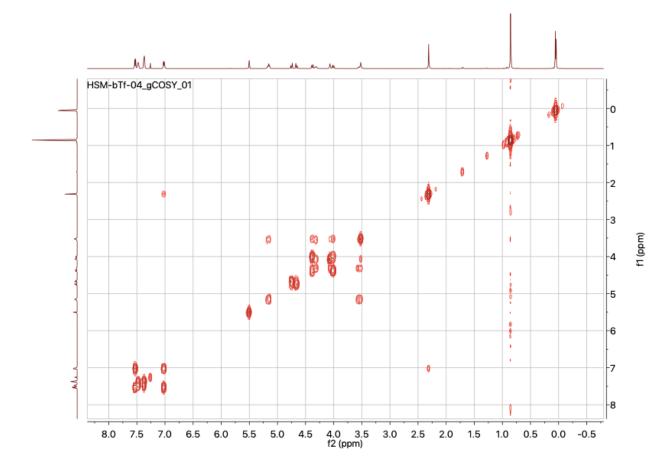

Glycopeptides and glycoproteins were dissolved in sodium phosphate buffer (150 mM, pH 8.5) at a final concentration of 50 mM and transferred into a 384-well microtiter plate. All arrays were printed on NHS-activated hydrogel microarray glass slides (Schott, Nexterion, slide H). The spotter settings were adjusted to generate substrate peptide spots of 100 pL \pm 3 pL using a piezo non-contact microarray spotter (M2-Automation). Each glycopeptide was printed in 8 spot

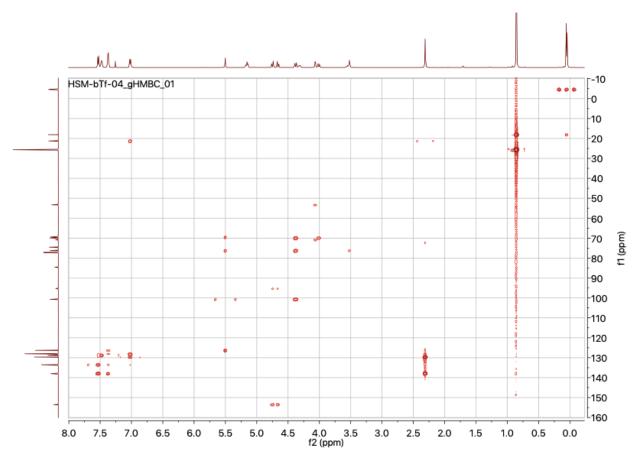
replicates with 450 µm pitch (spot to spot distance) in an array format containing 8 wells with 2 blocks of each 10×13 spots. During the spotting process the humidity was kept between 50–60%. The glycopeptides were immobilized on the microarray slides in a humidity chamber (85–95% humidity) by incubation overnight. The unreacted NHS groups were capped by treatment with 25 mM ethanolamine in sodium borate buffer (100 mM, pH 8.5). The antisera were diluted at different concentrations in PBS/0.05% Tween-20 and incubated for 1 h. After washing with PBS/0.05% Tween-20, the slides were incubated with an Alexa Fluor 488-conjugated goat anti-mouse IgG antibody (dilution 1:2000 in PBS/0.05% Tween-20). Then the slides were washed and dried by centrifugation. For readout, the slides were scanned at 10 µm resolution by a fluorescence scanner (Typhoon Trio+, Amersham) using a 520 nm emission filter (520 BP 40), a blue (488) excited mode laser and a photomultiplier tube (PMT) at 600 according to standard settings. The obtained image was analyzed by ImageQuant TL array image analysis software. An array grid of 26×20 was fitted around the spot area. Background was automatically removed according to the ImageQuant "Spot Edge Average" method, which provides a good localized background intensity and is relative tolerant of noise in the image. The obtained data was then imported into excel and the mean and standard deviation were calculated from 8 replicate spots per glycopeptide.


Characterization Data and Spectra of All Building Blocks and Glycopeptides:

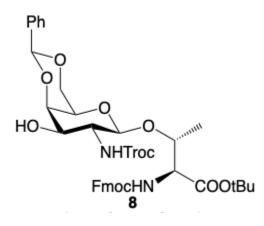
¹H NMR (500 MHz, CDCl₃) of **7**

^{13}C NMR (126 MHz, CDCl_3) of 7

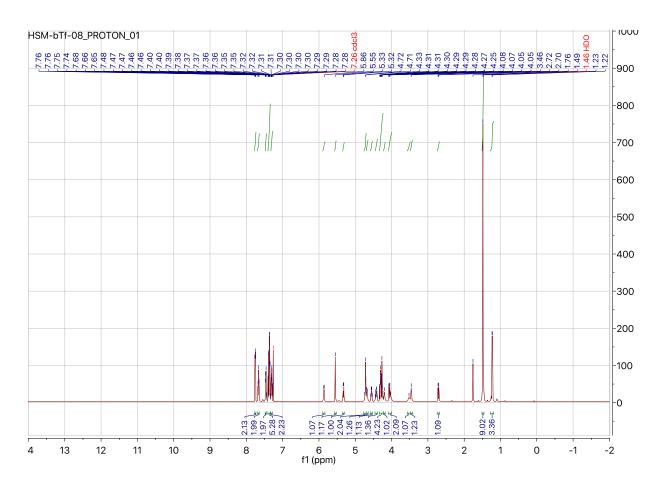

¹H-¹³C HSQC (500 MHz, CDCl₃) of **7**

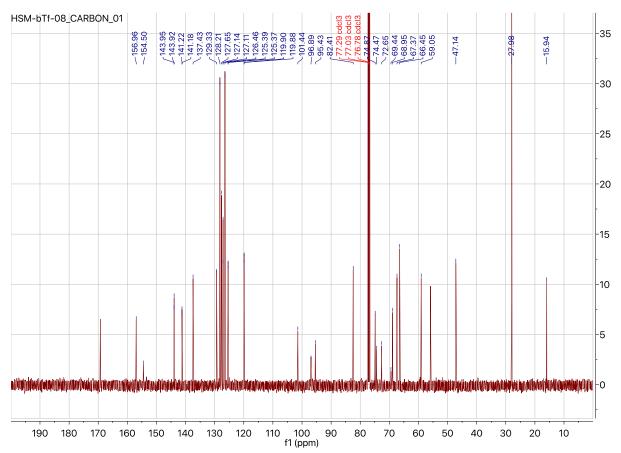


MI d h the la HSM-bTf-04_gHSQCAD_01 -780 0 ŀo -10 = -20 8 8 -30 -40 -50 ٠ . -60 f1 (ppm) -70 6 8 9 0 0 0 40 00 . -80 0 -90 -100 0 -110 120 • • • 8 -130 0 -140 -150 4.0 3.5 f2 (ppm) 7.5 8.0 7.0 6.0 5.5 4.5 3.0 2.5 2.0 1.0 0.5 0.0 6.5 5.0 1.5


$^{1}\text{H-}^{13}\text{C}$ HSQCAD (500 MHz, CDCl₃) of **7**

 $^{1}\text{H}\text{-}^{1}\text{H}$ COSY (500 MHz, CDCl₃) of **7**

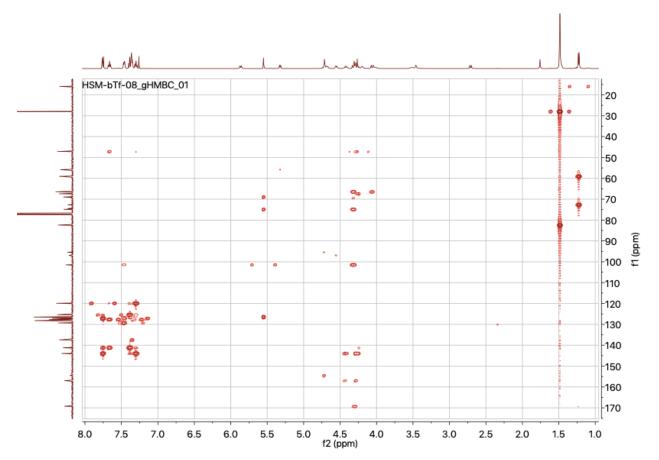



$^1\text{H-}^{13}\text{C}$ HMBC (500 MHz, CDCl₃) of 7

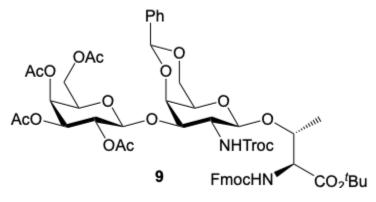
¹H NMR (500 MHz, CDCl₃) of $\bf{8}$

^{13}C NMR (126 MHz, CDCl_3) of 8

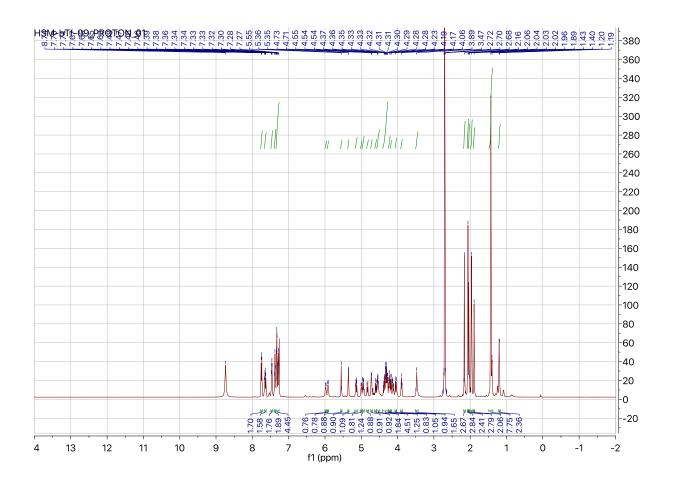
_linh HSM-bTf-08_gHSQC_01 0 -20 -30 -40 0 -50 -60 0 ° ° -70 ò 0 ۰ -80 f1 (ppm) -90 8 -100 -110 120 • ° 🌼 -130 -140 -150 7.5 4.5 f2 (ppm) 8.0 7.0 6.5 6.0 5.5 5.0 4.0 2.5 2.0 1.5 3.5 3.0

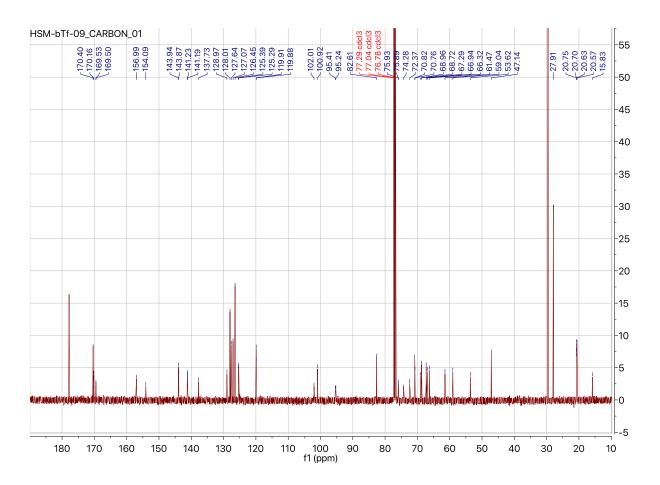

¹H-¹³C HSQC (500 MHz, CDCl₃) of 8

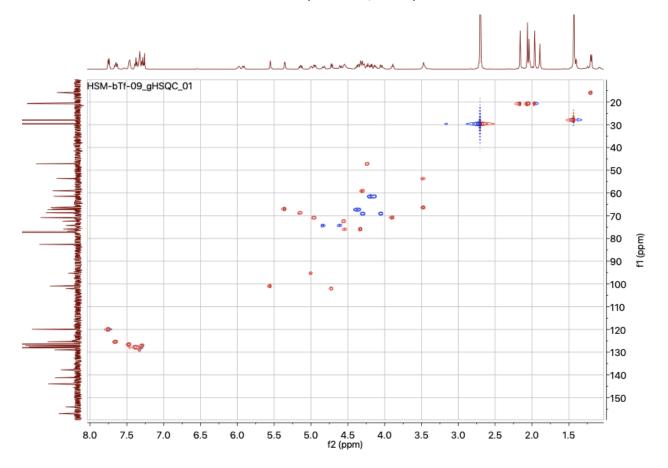
Inth HSM_bTf_TBS-Removal_gH\$QCAD_01 . 0 -20 --30 -40 n e -50 . 4 0 0 -60 • السيدار ∘*₽ •∂* n -70 0 0 0 -80 90 (mdg) 100 F 0 0 . -110 -120 0 0 •. • & • ~ -130 H -140 150 -160 -170 4.5 f2 (ppm) 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.0 3.5 3.0 2.5 2.0 1.5 1.0

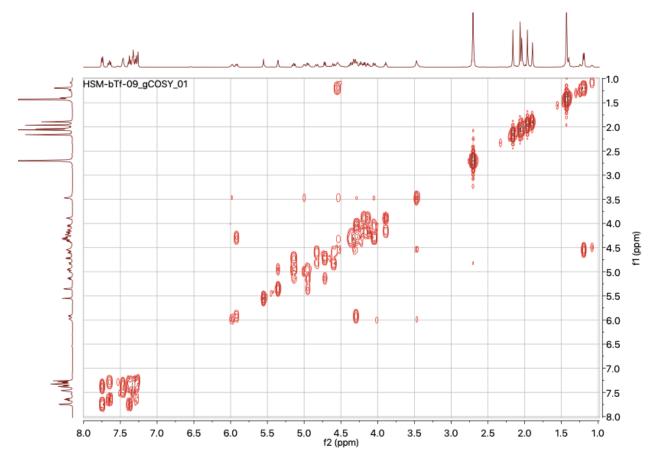

¹H-¹³C HSQCAD (500 MHz, CDCl₃) of **8**

_linh HSM-bTf-08_gCOSY_01 0 -1.5 -2.0 0 -2.5 0 -3.0 -3.5 • • • • • • • -4.0 0 June Û 4.5 (mdd) 0 -5.0 5 ۵ -5.5 0 0 6.0 6.5 -7.0 00.000 -7.5 00 7.5 7.0 4.5 f2 (ppm) 8.0 6.5 6.0 5.5 5.0 4.0 3.5 3.0 2.5 2.0 1.5

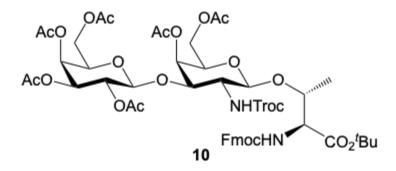

¹H-¹H COSY (500 MHz, CDCl₃) of **8**


$^1\text{H-}^{13}\text{C}$ HMBC (500 MHz, CDCl₃) of $\boldsymbol{8}$

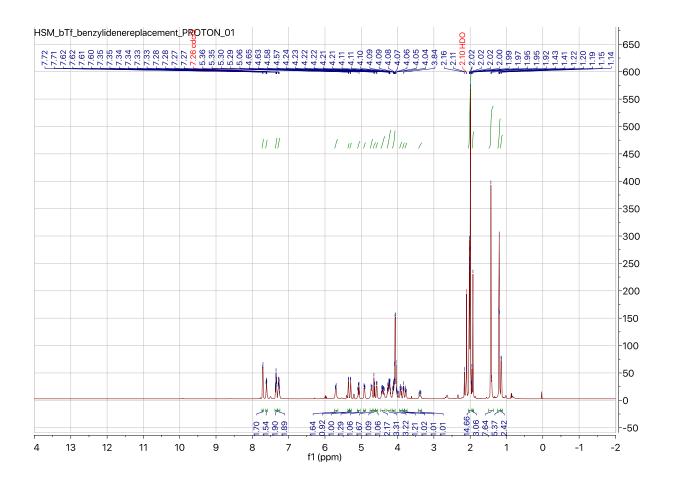

¹H NMR (500 MHz, CDCl₃) of $\mathbf{9}$


13 C NMR (126 MHz, CDCl₃) of **9**

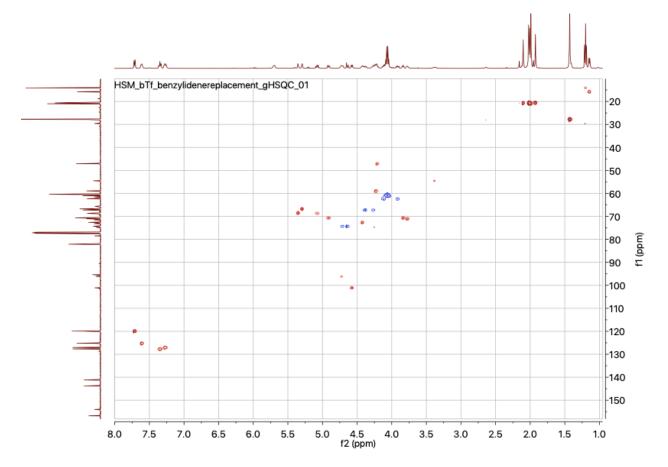
¹H-¹³C HSQC (500 MHz, CDCl₃) of **9**

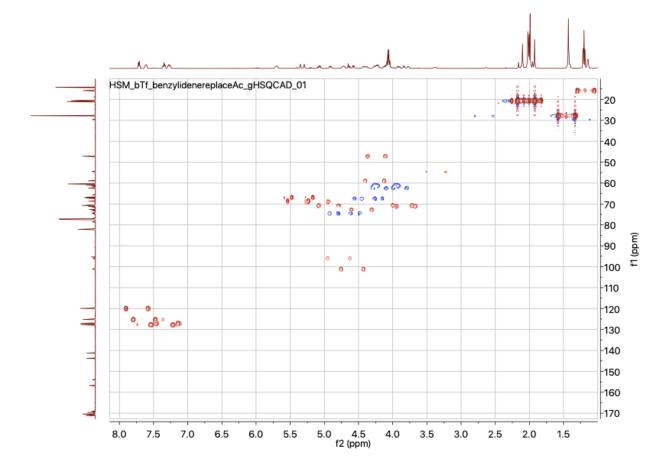


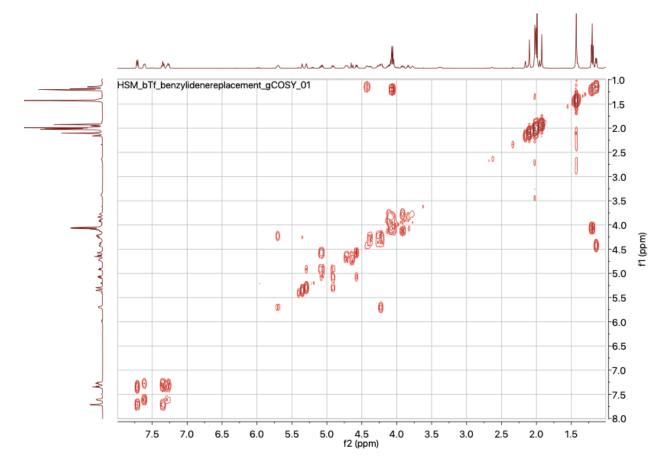
¹H-¹H COSY (500 MHz, CDCl₃) of **9**

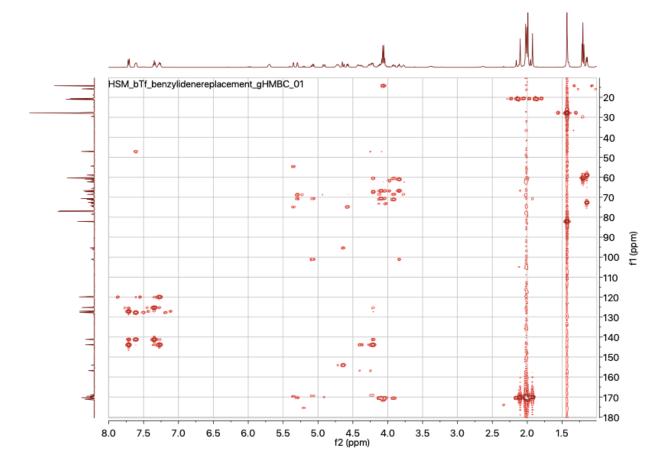


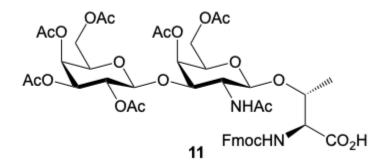
_mM HSM-bTf-09_gHMBC_01 . . . o -20 00000 o 🍓 o -30 -40 68 . **6**00 ** . -50 -60 φ • 3 -70 **•** ° 0 ø •0 -80 -90 -90 100 g -110 ^g 0 • -110 -120 : ింద చిళ్లింం -130 -140 **ക**് -150 e a --160 ÷0 -170 ģ -180 ^L190 7.5 4.5 f2 (ppm) 8.0 7.0 6.5 6.0 5.5 5.0 3.0 2.5 2.0 1.5 4.0 3.5


¹H-¹³C HMBC (500 MHz, CDCl₃) of **9**

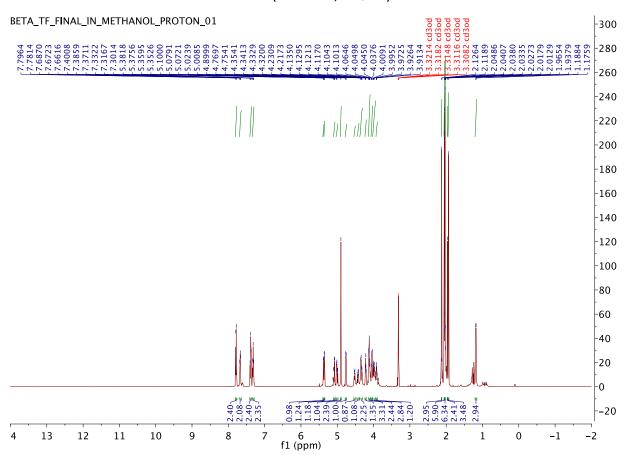

¹H NMR (500 MHz, CDCl₃) of $\mathbf{10}$


 $^{1}\text{H}\text{-}^{13}\text{C}$ HSQC (500 MHZ, CDCl₃) of **10**

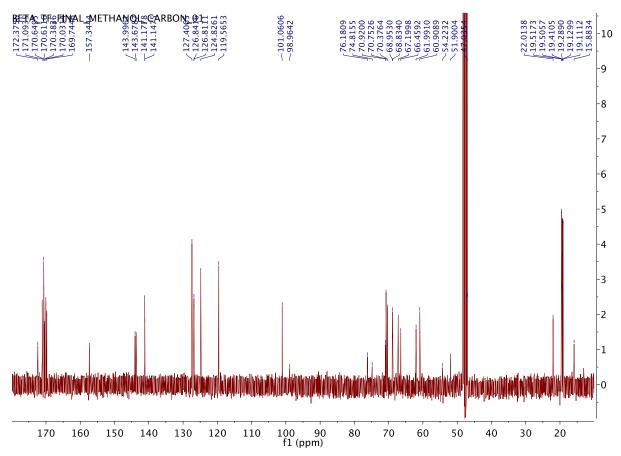

$^{1}\text{H}\text{-}^{13}\text{C}$ HSQCAD (500 MHz, CDCl₃) of **10**

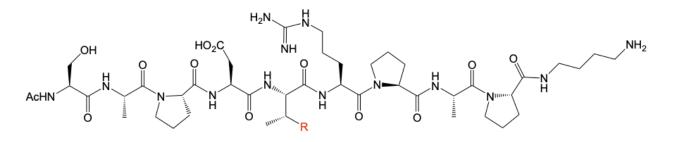


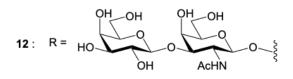
¹H-¹H COSY (500 MHz, CDCl₃) of **10**

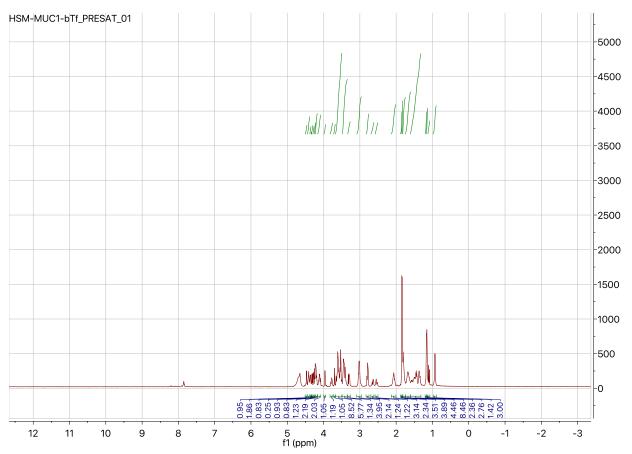


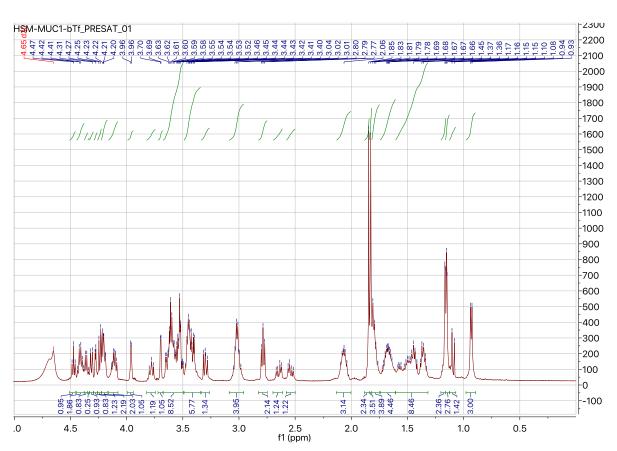
¹H-¹³C HMBC (500 MHz, CDCl₃) of **10**

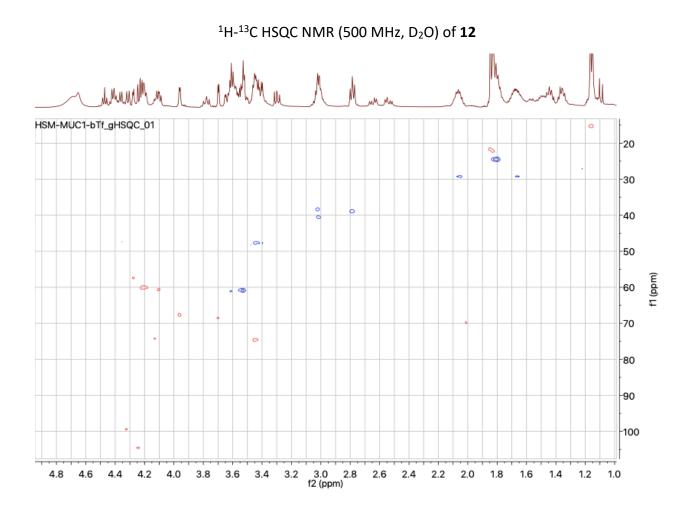




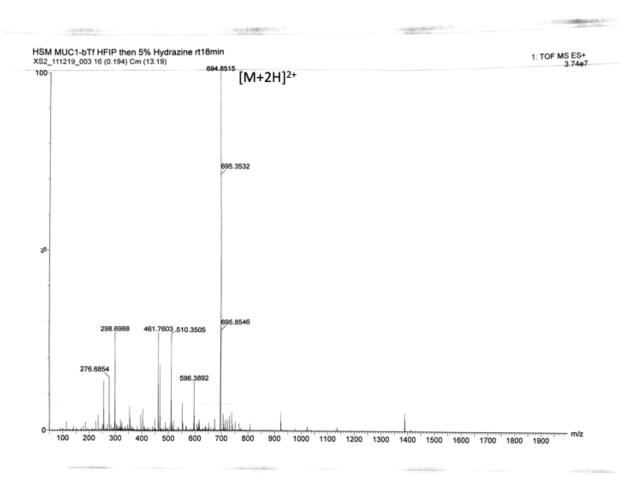

 ^1H NMR (500 MHz, CD₃OD) of 11



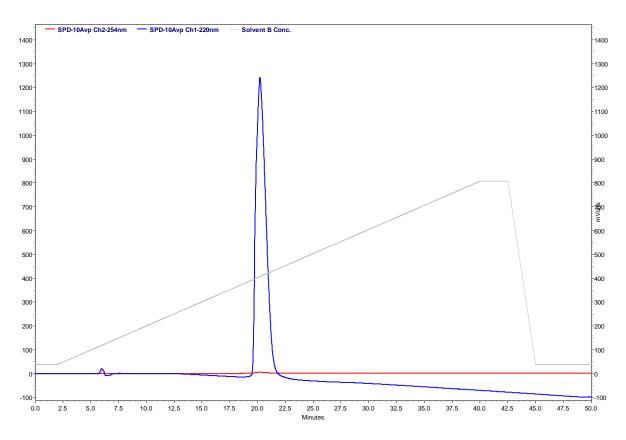




¹H NMR (500 MHz, D₂O) of **12**



Zoomed in ¹H NMR (500 MHz, D_2O) of **12**


¹H-¹H COSY (500 MHz, D₂O) of **12**

ESI-TOF MS of **12**

HPLC of purified 12

References:

- Wu, X.; McKay, C.; Pett, C.; Yu, J.; Schorlemer, M.; Ramadan, S.; Lang, S.; Behren, S.; Westerlind, U.; Finn, M. G.; Huang, X. Synthesis and Immunological Evaluation of Disaccharide Bearing MUC-1 Glycopeptide Conjugates with Virus-like Particles. ACS Chem. Biol. 2019, 14, 2176-2184.
- (2) Wang, Z.; Zhou, L.; El-boubbou, K.; Ye, X.-S.; Huang, X. Multi-Component One-Pot Synthesis of the Tumor-Associated Carbohydrate Antigen Globo-H Based on Preactivation of Thioglycosyl Donors. *J. Org. Chem.* **2007**, *72*, 6409-6420.