Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2021

Electronic Supplementary Infomation

Organocatalytic asymmetric allylic alkylation of 2-methyl-3-nitroindoles: a route to direct enantioselective functionalization of indole C(sp³)-H Bonds

Jing-Xiang Xu,^a Kai-Ti Chu^b, Ming-Hsi Chiang^b and JengL-Liang Han,^{*a}

^aDepartment of Chemistry, National Chung Hsing University, Taichung City, 40227, Taiwan R.O.C. ^bInstitute of Chemistry, Academia Sinica, Taipei City, 11529, Taiwan R.O.C.

jlhan@nchu.edu.tw

Table of Contents:

1. General Experimental Details	S2
2. General Procedure for the Synthesis of 3 and 5	82
3. Characterization Data	S3
4. Computational methods	S13
5. References	S17
6. Copies of HPLC Spectra of Products	S18

1. General Experimental Details.

All commercially available reagents were used without further purification unless otherwise stated. All reaction solvents were purified before use. Proton nuclear magnetic resonance (¹H NMR) spectra were recorded on a commercial instrument at 400 MHz. Carbon-13 nuclear magnetic resonance (¹³C NMR) spectra were recorded at 100 MHz. The proton signal for residual non-deuterated solvent (δ 7.26 for CHCl₃) was used as an internal reference for ¹H NMR spectra. For ¹³C NMR spectra, chemical shifts are reported relative to the δ 77.0 resonance of CHCl₃. Coupling constants are reported in Hz. Optical rotations were recorded on an RUDOLPH/Autopol IV polarimeter. Melting points were determined on a BUCHI B-545 melting point apparatus and are uncorrected. High resolution mass spectra were recorded on a commercial high resolution mass spectrometer Analytical thin layer chromatography (TLC) was performed on Kieselgel 60 F254 glass plates precoated with a 0.25 mm thickness of silica gel. The TLC plates were visualized with UV light and/or by staining with Hanessian solution (ceric sulfate and ammonium molybdate in aqueous sulfuric acid). Column chromatography was generally performed using Kieselgel 60 (230-400 mesh) silica gel, typically using a 50-100:1 weight ratio of silica gel to crude product. The ee values determination was carried out using chiral high-performance liquid chromatography (HPLC) with Daicel chiral columns on JASCO with a UV-4075 detector. The HPLC spectra of racemic mixtures were synthesized using DABCO as a catalyst. Catalyst 4a was purchased from Biosynth Carbosynth. Catalysts 4b-g were purchased from Shanghai Chiral bio-compound Co., Ltd. 3-Nitro-2-methylindoles 1^1 and MBH carbonates 2^2 were prepared according to literature procedures.

2. General Procedure for the Synthesis of 3 and 5

To a solution of MBH carbonates 2 (0.1 mmol) and catalyst 4f (0.015 mmol) in anhydrous CH₂Cl₂ was added 3-Nitro-2-methylindoles 1 (0.15 mmol) at room temperature. The reaction mixture was stirred at room temperature for 48 h. After completion of the reaction, the reaction solution was concentrated in vacuum and the crude was purified by silica gel flash chromatography (Hexanes/EA 10:1 to 5:1) to afford the pure products. The enantiomeric ratio was determined by HPLC on a chiral stationary phase.

3. Characterization Data

tert-Butyl (*R*)-2-(3-(methoxycarbonyl)-2-phenylbut-3-en-1-yl)-3-nitro-1*H*-indole-1-carboxylate (3a).

Yellow oil; Yield : 72%; [α]_D³⁰: -83.7 (c = 1.00, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 8.17 – 8.14 (m, 1H), 8.04 – 8.00 (m, 1H), 7.38 – 7.35 (m, 2H), 7.17 – (m, 3H), 7.09 – 7.06 (m, 2H), 6.39 (s, 1H), 5.86 (s, 1H), 4.41 – 4.22 (m, 3H), 3.51 (s, 3H), 1.68 (s, 9H); ¹³C NMR (101 MHz, CDCl₃): δ 166.7, 149.1, 142.7, 142.1, 140.4, 133.9, 128.4, 127.6, 127.0, 125.9, 125.2, 125.0, 121.3, 120.6, 114.9, 86.9, 51.9, 45.9, 30.9, 28.0; HRMS (ESI): cacld for C₂₅H₂₆N₂O₆Na [M+Na]⁺: 473.1683; found: 473.1682; HPLC analysis: *er* = 92:8 on an AD-H column: hexane/*i*-PrOH = 80:20, flow rate = 0.8 mL/min, λ = 220 nm; t_{minor} = 5.23 min, t_{major} = 5.72 min.

tert-Butyl (S)-2-(2-(2-bromophenyl)-3-(methoxycarbonyl)but-3-en-1-yl)-3-nitro-1*H*-indole-1-carboxylate (3b).

Yellow solid; Yield : 88%; $[\alpha]_D{}^{30}$: -67.7 (c = 1.55, CH₂Cl₂); mp: 115-116°C; ¹H NMR (400 MHz, CDCl₃): 8.12 (d, J = 7.9 Hz, 1H), 8.07 (d, J = 7.7 Hz, 1H), 7.40 – 7.20 (m, 5H), 6.98 (t, J = 7.6 Hz, 1H), 6.43 (s, 1H), 5.80 (s, 1H), 4.96 – 4.88 (m, 1H), 4.40 – 4.29 (m, 1H), 4.21 (dd, J = 12.9, 5.9 Hz, 1H), 3.47 (s, 3H), 1.67 (s, 9H); ¹³C NMR (101 MHz, CDCl₃): δ 166.3, 149.2, 142.1, 141.2, 139.5, 134.2, 132.6, 132.2, 129.0, 128.4, 127.5, 126.0, 125.6, 125.0, 124.9, 121.4, 120.4, 115.4, 86.8, 51.8, 43.9, 30.5, 28.0 ; HRMS (ESI): cacld for C₂₅H₂₅N₂O₆NaBr [M+Na]⁺: 551.0788; found: 551.0788; HPLC analysis: er = 95:5 on an IF column: hexane/*i*-PrOH = 80:20, flow rate = 0.8 mL/min, $\lambda = 220$ nm; t_{major} = 12.38 min, t_{minor} = 13.03 min.

tert-Butyl (*R*)-2-(2-(3-bromophenyl)-3-(methoxycarbonyl)but-3-en-1-yl)-3-nitro-1*H*-indole-1-carboxylate (3c).

Yellow solid; Yield : 79%; $[\alpha]_D^{30}$: -97.3 (c = 2.09, CH₂Cl₂); mp: 122-123°C; ¹H NMR (400 MHz, CDCl₃): δ 8.16 (dd, J = 6.0, 3.1 Hz, 1H), 7.99 (dd, J = 6.0, 3.3 Hz, 1H), 7.37 (dd, J = 6.1, 3.1 Hz, 2H), 7.27 – 7.23 (m, 2H), 7.07 – 6.91 (m, 2H), 6.40 (s, 1H), 5.84 (s, 1H), 4.39 – 4.16 (m, 3H), 3.51 (s, 3H), 1.67 (s, 9H); ¹³C NMR (101 MHz, CDCl₃): δ 166.0, 148.7, 142.7, 142.0, 141.1, 133.5, 131.7, 130.3, 129.8, 129.5, 126.1, 125.7, 125.5, 124.8, 122.1, 120.9, 120.3, 114.7, 86.8, 51.6, 45.3, 30.4, 27.6; HRMS (ESI): cacld for C₂₅H₂₅N₂O₆NaBr [M+Na]⁺: 551.0788; found: 551.0783; HPLC analysis: er = 92:8 on an AS-H column: hexane/*i*-PrOH = 80:20, flow rate = 0.5 mL/min, $\lambda = 220$ nm; t_{minor} = 11.35 min, t_{major} = 14.70 min.

tert-Butyl (*R*)-2-(2-(4-bromophenyl)-3-(methoxycarbonyl)but-3-en-1-yl)-3-nitro-1*H*-indole-1-carboxylate (3d).

Yellow solid; Yield : 78%; [α]_D³⁰: -132.6 (c = 1.72, CH₂Cl₂); mp: 116-117°C; ¹H NMR (400 MHz, CDCl₃): δ 8.17 (dd, J = 6.4, 2.8 Hz, 1H), 7.97 (dd, J = 6.6, 2.8 Hz, 1H), 7.36 (dd, J = 6.2, 3.2 Hz, 2H), 7.27 (d, J = 8.4 Hz, 2H), 6.93 (d, J = 8.4 Hz, 2H), 6.39 (s, 1H), 5.84 (s, 1H), 4.39 – 4.25 (m, 2H), 4.20 – 4.19 (m, 1H), 3.51 (s, 3H), 1.65 (s, 9H); ¹³C NMR (101 MHz, CDCl₃): δ 166.4, 149.0, 142.5, 141.7, 139.6, 133.8, 131.9, 131.4, 129.4, 126.1, 125.4, 125.1, 121.2, 120.8, 120.6, 115.0, 87.0, 51.9, 45.5, 30.6, 27.9; HRMS (ESI): cacld for C₂₅H₂₅N₂O₆NaBr [M+Na]⁺: 551.0788; found: 551.0780; HPLC analysis: er = 95.5:4.5 on an AD-H column: hexane/*i*-PrOH = 80:20, flow rate = 0.5 mL/min, λ = 220 nm; t_{major} = 9.96 min, t_{minor} = 10.95 min.

tert-Butyl (*R*)-2-(2-(4-fluorophenyl)-3-(methoxycarbonyl)but-3-en-1-yl)- 3nitro-1*H*-indole-1-carboxylate (3e).

Yellow oil; Yield : 72%; [α]_D³⁰: -31.1 (c = 1.00, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ 8.15 (dd, J = 6.2, 3.0 Hz, 1H), 7.99 (dd, J = 6.1, 3.3 Hz, 1H), 7.42 – 7.28 (m, 2H), 7.03 –7.00 (m, 2H), 6.82 (t, J = 8.7 Hz, 2H), 6.38 (s, 1H), 5.85 (s, 1H), 4.41 – 4.24 (m, 2H), 4.21–4.14 (m, 1H), 3.51 (s, 3H), 1.66 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 166.6, 161.7 (d, J = 246 Hz), 149.1, 142.6, 142.1, 136.1, 133.9, 132.0,129.6 (d, J = 8.3 Hz), 129.2 (d, J = 8.0 Hz), 126.0, 125.6, 125.1, 125.1, 121.3, 120.7, 115.5, 115.3, 115.1, 115.0, 87.0, 51.9, 45.3, 30.9, 28.0; HRMS (ESI): cacld for C₂₅H₂₅N₂O₆NaF [M+Na]⁺: 491.1589; found: 491.1584; HPLC analysis: er = 94:6 on an AD-H column: hexane/*i*-PrOH = 80:20, flow rate = 0.5 mL/min, λ = 220 nm; t_{major} = 8.97 min, t_{minor} = 10.23 min.

tert-Butyl (*R*)-2-(2-(4-chlorophenyl)-3-(methoxycarbonyl)but-3-en-1-yl)- 3nitro-1*H*-indole-1-carboxylate (3f).

Yellow oil; Yield : 75%; [α]_D³⁰: -65.6 (c = 1.00, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ 8.23 – 8.11 (m, 1H), 8.04 – 7.90 (m, 1H), 7.43 – 7.32 (m, 2H), 7.12 (d, J = 8.4 Hz, 2H), 6.99 (d, J = 8.4 Hz, 2H), 6.39 (s, 1H), 5.85 (s, 1H), 4.42 – 4.26 (m, 2H), 4.25 – 4.12 (m, 1H), 3.51 (s, 3H), 1.66 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 166.5, 149.0, 142.5, 141.8, 139.1, 133.9, 132.7, 131.9, 129.0, 128.7, 128.5, 126.1, 125.3, 125.1, 121.3, 120.7, 115.0, 87.0, 51.9, 45.5, 30.7, 28.0; HRMS (ESI): cacld for C₂₅H₂₅N₂O₆Na³⁵Cl [M+Na]⁺: 507.1293; found:507.1296; HPLC analysis: er = 96:4 on an AD-H column: hexane/*i*-PrOH = 80:20, flow rate = 0.5 mL/min, $\lambda = 220$ nm; t_{major} = 9.61 min, t_{minor} = 10.72 min.

tert-Butyl (*R*)-2-(3-(methoxycarbonyl)-2-(4-(trifluoromethyl)phenyl)- but-3-en-1-yl)-3-nitro-*1H*-indole-1-carboxylate (3g).

Yellow solid; Yield : 75%; [α]_D³⁰: -99.8 (c = 1.30, CH₂Cl₂); mp: 128-129°C; ¹H NMR (400 MHz, CDCl₃): δ 8.20 – 8.19 (m, 1H), 7.99 – 7.97 (m, 1H), 7.50 – 7.33 (m, 4H), 7.21 (d, J = 7.8 Hz, 2H), 6.45 (s, 1H), 5.91 (s, 1H), 4.48 – 4.44 (m, 1H), 4.39 – 4.26 (m, 2H), 3.54 (s, 3H), 1.67 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 166.3, 149.1, 144.82, 142.4, 141.4, 133.8, 132.0, 128.8 (q, J = 32.0 Hz), 128.1, 126.1, 125.8, 125.3 (d, J = 4.0 Hz), 125.2, 121.2, 120.7, 115.0, 87.1, 52.0, 45.9, 30.6, 27.9; HRMS (ESI): cacld for C₂₆H₂₅N₂O₆NaF₃ [M+Na]⁺: 541.1557; found: 541.1548; HPLC analysis: *er* = 98:2 on an IC column: hexane/*i*-PrOH = 80:20, flow rate = 0.5 mL/min, λ = 220 nm; t_{major} = 13.44 min, t_{minor} = 13.99 min.

tert-Butyl (*R*)-2-(3-(methoxycarbonyl)-2-(p-tolyl)but-3-en-1-yl)-3-nitro- 1*H*-indole-1-carboxylate (3h).

Yellow oil; Yield : 71%; $[\alpha]_D^{30}$: -89.3 (c = 1.00, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ 8.18 – 8.16 (m, 1H), 8.03 – 8.01 (m, 1H), 7.40 – 7.35 (m, 2H), 6.97 (s, 4H), 6.36 (s, 1H), 5.84 (s, 1H), 4.38 – 4.22 (m, 3H), 3.50 (s, 3H), 2.25 (s, 3H), 1.68 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 166.7, 149.1, 142.9, 142.3, 137.4, 136.4, 133.9, 131.9, 129.1, 127.5, 125.9, 125.0, 121.3, 120.6, 114.9, 86.8, 51.8, 45.5, 30.9, 27.9, 21.0; HRMS (ESI): cacld for C₂₆H₂₈N₂ONa [M+Na]⁺: 487.1839; found: 487.1833; HPLC analysis: er = 96:4 on an AD-H column: hexane/*i*-PrOH = 80:20, flow rate = 0.5 mL/min, $\lambda = 254$ nm; t_{major} = 8.42 min, t_{minor} = 9.60 min.

tert-Butyl (*R*)-2-(3-(methoxycarbonyl)-2-(4-methoxyphenyl)but-3-en-1-yl)-3nitro-1*H*-indole-1-carboxylate (3i).

Yellow oil; Yield : 60%; [α]_D³⁰: -87.1 (c = 1.00, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ 8.18 – 8.15 (m, 1H), 8.03 – 8.00 (m, 1H), 7.39 – 7.35 (m, 2H), 6.99 (d, J = 8.7 Hz, 2H), 6.70 (d, J = 8.7 Hz, 2H), 6.35 (s, 1H), 5.83 (s, 1H), 4.36 – 4.20 (m, 3H), 3.72 (s, 3H), 3.51 (s, 3H), 1.68 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 166.7, 158.4, 149.1, 142.9, 142.4, 133.9, 132.4, 131.9, 128.6, 125.9, 125.0, 124.7, 121.3, 120.6, 114.9, 113.7, 86.8, 55.1, 51.8, 45.2, 30.9, 27.9; HRMS (ESI): cacld for C₂₆H₂₈N₂O₇Na [M+Na]⁺: 503.1789; found: 503.1789; HPLC analysis: er = 93:7 on an AD-H column: hexane/*i*-PrOH = 80:20, flow rate = 0.5 mL/min, λ = 254 nm; t_{major} = 9.99 min, t_{minor} = 11.50 min.

tert-Butyl (*R*)-2-(3-(methoxycarbonyl)-2-(naphthalen-2-yl)but-3-en-1-yl)- 3nitro-1*H*-indole-1-carboxylate (3j).

Yellow soild; Yield : 88%; [α]_D³⁰: -136.4 (c = 1.00, CH₂Cl₂); mp: 126-127°C; ¹H NMR (400 MHz, CDCl₃): δ 8.19 – 8.17 (m, 1H), 7.99 – 7.98 (m, 1H), 7.74 – 7.66 (m, 3H), 7.59 (s, 1H), 7.42 – 7.37 (m, 3H), 7.21 (d, J = 8.4 Hz, 1H), 6.43 (s, 1H), 5.90 (s, 1H), 4.61 (t, J = 7.7 Hz, 1H), 4.43 – 4.41 (m, 2H), 3.48 (s, 3H), 1.59 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 166.7, 149.0, 142.9, 142.1, 138.2, 133.9, 133.3, 132.4, 128.0, 127.8, 127.5, 126.2, 126.1, 125.9, 125.6 125.0, 121.3, 120.6, 114.9, 86.9, 51.9, 45.9, 30.9, 27.8; HRMS (ESI): cacld for C₂₉H₂₈N₂O₆Na [M+Na]⁺: 523.1840; found: 523.1844; HPLC analysis: er = 92:8 on an AS-H column: hexane/*i*-PrOH = 80:20, flow rate = 0.5 mL/min, λ = 220 nm; t_{minor} = 11.96 min, t_{major} = 13.38 min.

tert-Butyl (S)-2-(3-(methoxycarbonyl)-2-(thiophen-2-yl)but-3-en-1-yl)- 3-nitro-1*H*-indole-1-carboxylate (3k).

Yellow solid; Yield : 99%; $[\alpha]_D^{30}$: -53.8 (c = 1.00, CH₂Cl₂); mp: 128-129°C; ¹H NMR (400 MHz, CDCl₃): δ 8.22 – 8.20 (m, 1H), 8.06 – 8.04 (m, 1H), 7.40 – 7.38 (m, 2H), 7.10 (dd, J = 5.1, 1.1 Hz, 1H), 6.86 (dd, J = 5.1, 3.5 Hz, 1H), 6.78 (d, J = 3.5 Hz, 1H), 6.35 (s, 1H), 5.87 (s, 1H), 4.73 (t, J = 7.9 Hz, 1H), 4.36 (d, J = 7.9 Hz, 2H), 3.50 (s, 3H), 1.70 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 166.4, 149.1, 144.4, 142.0, 141.8, 134.0, 132.1, 126.8, 126.2, 126.1, 125.1, 124.8, 124.2, 121.3, 120.6, 115.1, 87.0, 51.9, 40.9, 32.0, 28.0; HRMS (ESI): cacld for C₂₃H₂₄N₂O₆NaS [M+Na]⁺: 479.1247; found: 479.1238; HPLC analysis: er = 89:11 on an AD-H column: hexane/*i*-PrOH = 80:20, flow rate = 0.5 mL/min, $\lambda = 220$ nm; t_{major} = 8.94 min, t_{minor} = 9.84 min.

tert-Butyl (*R*)-2-(3-(ethoxycarbonyl)-2-phenylbut-3-en-1-yl)-3-nitro-1*H*-indole-1-carboxylate (31).

Yellow oil; Yield : 45%; [α]_D³⁰: -65.2 (c = 1.00, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ 8.16 – 8.10 (m, 1H), 8.02 –8.00 (m, 1H), 7.39 – 7.31 (m, 2H), 7.16 – 7.11(m, 3H), 7.06 –7.04 (m, 2H), 6.37 (s, 1H), 5.81 (s, 1H), 4.40 – 4.19 (m, 3H), 3.98 – 3.85 (m, 2H), 1.66 (s, 9H), 1.04 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 166.2, 149.1, 142.7, 142.5, 140.6, 134.0, 132.0, 128.3, 127.7, 126.9, 125.9, 125.0, 124.9, 121.3, 120.6, 115.0, 86.9, 60.8, 45.9, 30.9, 28.0, 13.8; HRMS (ESI): cacld for C₂₆H₂₈N₂O₆Na [M+Na]⁺: 487.1840; found: 487.1847; HPLC analysis: er = 88:12% on an AD-H column: hexane/*i*-PrOH = 80:20, flow rate = 0.8 mL/min, λ = 220 nm; t_{major} = 4.94 min, t_{minor} = 5.41 min.

tert-Butyl (*R*)-2-(3-((benzyloxy)carbonyl)-2-phenylbut-3-en-1-yl)-3-nitro-1*H*-indole-1-carboxylate (3m).

Yellow oil; Yield : 64%; [α]_D³⁰: -56.5 (c = 1.67, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ 8.18 – 8.11 (m, 1H), 8.04 – 7.99 (m, 1H), 7.41 – 7.34 (m, 2H), 7.28 – 7.23 (m, 3H), 7.17 – 7.12 (m, 3H), 7.12 – 7.07 (m, 2H), 7.06 – 7.01 (m, 2H), 6.46 (s, 1H), 5.90 (s, 1H), 4.97 (d, J = 12.5 Hz, 1H), 4.91 (d, J = 12.5 Hz, 1H), 4.44 – 4.33 (m, 2H), 4.26–4.21 (m, 1H), 1.65 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 166.1, 149.1, 142.6, 142.1, 140.3, 135.6, 133.9, 132.0, 128.5, 128.0, 127.9, 127.7, 126.9, 125.9, 125.4, 125.0, 121.3, 120.6, 115.0, 86.9, 66.5, 46.0, 30.8, 27.9; HRMS (ESI): cacld for C₃₁H₃₀N₂O₆Na [M+Na]⁺: 549.1996; found: 549.1987; HPLC analysis: er = 82.5:17.5 on an AD-H column: hexane/*i*-PrOH = 80:20, flow rate = 0.8 mL/min, λ = 220 nm; t_{major} = 6.26 min, t_{minor} = 8.24 min.

tert-Butyl (*R*)-2-(3-cyano-2-phenylbut-3-en-1-yl)-3-nitro-1*H*-indole- 1carboxylate (3n).

Yellow solid; Yield : 70%; [α]_D³⁰: 0.60 (c = 1.00, CH₂Cl₂); mp: 122-123°C; ¹H NMR (400 MHz, CDCl₃): δ 8.24 – 8.15 (m, 1H), 8.01 – 7.91 (m, 1H), 7.44 – 7.33 (m, 2H), 7.29 – 7.21 (m, 3H), 7.17 (dd, J = 7.5, 1.9 Hz, 2H), 5.95 (s, 1H), 5.81 (d, J = 1.2 Hz, 1H), 4.44 – 4.28 (m, 2H), 4.04 (t, J = 7.7 Hz, 1H), 1.71 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 149.0, 141.6, 138.1, 133.8, 132.1, 130.8, 128.9, 128.0, 127.6, 126.2, 125.6, 125.2, 121.2, 120.7, 117.7, 115.1, 87.4, 49.8, 30.5, 28.0; HRMS (ESI): cacld for C₂₄H₂₃N₃O₄Na [M]⁺: 440.1581; found: 440.1581; HPLC analysis: er = 64:36 on an IG column: hexane/*i*-PrOH = 80:20, flow rate = 0.8 mL/min, λ = 220 nm; t_{minor} = 11.50 min, t_{major} = 13.23 min.

tert-Butyl (*R*)-5-fluoro-2-(3-(methoxycarbonyl)-2-phenylbut-3-en-1-yl)-3-nitro-1*H*-indole-1-carboxylate (5a).

Yellow solid; Yield : 57%; [α]_D³⁰: -84.9 (c = 1.00, CH₂Cl₂); mp: 129-130°C; ¹H NMR (400 MHz, CDCl₃): δ 8.00 (dd, J = 9.3, 4.5 Hz, 1H), 7.83 (dd, J = 9.1, 2.6 Hz, 1H), 7.17 – 7.05 (m, 6H), 6.39 (s, 1H), 5.85 (s, 1H), 4.40 – 4.32 (m, 2H), 4.24 – 4.21 (m, 1H), 3.51 (s, 3H), 1.68 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 166.7, 160.4 (d, J = 243 Hz), 148.81 (s), 144.1, 142.0, 140.2, 130.2, 128.4, 127.6, 127.0, 125.2, 122.3 (d, J = 11.4 Hz), 116.4 (d, J = 9.1 Hz), 114.0 (d, J = 25.3 Hz), 106.47 (d, J = 26.9 Hz), 87.3, 51.9, 45.9, 31.0, 27.9; HRMS (ESI): cacld for C₂₅H₂₅N₂O₆NaF [M+Na]⁺: 491.1589; found: 491.1579; HPLC analysis: er = 94:6 on an AD-H column: hexane/*i*-PrOH = 80:20, flow rate = 0.5 mL/min, λ = 220 nm; t_{major} = 8.49 min, t_{minor} = 9.16 min.

tert-Butyl (*R*)-5-chloro-2-(3-(methoxycarbonyl)-2-phenylbut-3-en-1-yl)-3-nitro-1*H*-indole-1-carboxylate (5b).

Yellow oil; Yield : 44%; [α]_D³⁰: -71.6 (c = 1.00, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ 8.15 (d, J = 2.1 Hz, 1H), 7.96 (d, J = 9.0 Hz, 1H), 7.33 (dd, J = 9.0, 2.2 Hz, 2H), 7.17 – 7.14 (m, 3H), 7.06 – 7.04 (m, 2H), 6.39 (s, 1H), 5.85 (s, 1H), 4.39 – 4.31 (m, 2H), 4.23 – 4.19 (m, 1H), 3.52 (s, 3H), 1.67 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 166.6, 148.7, 143.8, 142.1, 140.2, 132.3, 131.2, 131.1, 128.4, 127.6, 127.1, 126.3, 125.2, 122.4, 120.2, 116.2, 87.5, 51.9, 45.9, 30.9, 27.9; HRMS (ESI): cacld for C₂₅H₂₅N₂O₆NaCl [M+Na]⁺: 507.1293; found: 507.1286; HPLC analysis: er = 97.5:2.5 on an AD-H column: hexane/*i*-PrOH = 80:20, flow rate = 0.5 mL/min, λ = 220 nm; t_{major} = 8.85 min, t_{minor} = 9.31 min.

tert-Butyl (*R*)-5-bromo-2-(3-(methoxycarbonyl)-2-phenylbut-3-en-1-yl)-3-nitro-1*H*-indole-1-carboxylate (5c).

Yellow oil; Yield : 56%; [α]_D³⁰: -71.7 (c = 1.00, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ 8.30 (d, J = 2.0 Hz, 1H), 7.90 (d, J = 9.0 Hz, 1H), 7.46 (dd, J = 9.0, 2.1 Hz, 1H), 7.18 – 7.14 (m, 3H), 7.05 – 7.03 (m, 2H), 6.39 (s, 1H), 5.85 (s, 1H), 4.38 – 4.30 (m, 2H), 4.22 – 4.16 (m, 1H), 3.52 (s, 3H), 1.67 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 166.6, 148.7, 143.7, 142.0, 140.1, 132.6, 131.0, 129.0, 128.4, 127.6, 127.0, 125.2, 123.1, 122.8, 118.7, 116.5, 87.5, 51.9, 45.9, 30.9, 27.9; HRMS (ESI): cacld for C₂₅H₂₅N₂O₆Na⁷⁹Br [M+Na]⁺: 551.0788; found: 551.0778; HPLC analysis: er = 96:4 on an AS-H column: hexane/*i*-PrOH = 80:20, flow rate = 0.5 mL/min, λ = 220 nm; t_{minor} = 9.93 min, t_{major} = 10.96 min.

tert-Butyl (*R*)-2-(3-(methoxycarbonyl)-2-phenylbut-3-en-1-yl)-5-methyl-3-nitro-1*H*-indole-1-carboxylate (5d).

White solid; Yield : 47%; [α]_D³⁰: -75.7 (c = 1.00, CH₂Cl₂); mp: 53-54°C; ¹H NMR (400 MHz, CDCl₃): δ 8.77 (s, 1H), 8.09 (s, 1H), 7.17 – 7.14 (m, 3H), 7.05 – 7.03 (m, 2H), 6.41 (s, 1H), 5.87 (s, 1H), 4.44 – 4.37 (m, 2H), 4.27 – 4.23 (m, 1H), 3.54 (s, 3H), 2.70 (s, 3H), 1.71 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 166.6, 148.2, 147.3, 147.0, 141.9, 140.0, 131.3, 131.0, 130.5, 128.5, 127.6, 127.2, 125.3, 124.4, 123.5, 112.9, 88.4, 52.0, 45.9, 31.1, 27.9, 20.9; HRMS (FAB): cacld for C₂₆H₂₈N₂O₆ [M]⁺: 464.1947; found: 464.1947; HPLC analysis: er = 94:6 on an AS-H column: hexane/*i*-PrOH = 80:20, flow rate = 0.5 mL/min, λ = 220 nm; t_{minor} = 14.48 min, t_{major} = 15.70 min.

Methyl (*R*)-3-(4-bromophenyl)-2-methylene-4-(3-nitro-1*H*-indol-2-yl)butanoate (6)

To a solution of **3d** (53 mg, 0.1 mmol) in anhydrous CH_2Cl_2 (1.5 mL) was added TFA (0.10 mL) at room temperature overnight. After completion of the reaction, the reaction solution was neutralized with saturated NaHCO_{3(aq)} and extracted with CH_2Cl_2 . The organic layer was dried over Na₂SO₄ and concentrated. The crude was purified by silica gel flash chromatography (Hexanes/EA 5:1 to 2:1) to afford the pure product **6** (36 mg).

Yellow solid; Yield : 84%; [α]_D³⁰: -116.4 (c = 1.20, CH₂Cl₂); mp: 53-54°C; ¹H NMR (400 MHz, CDCl₃): δ 9.51 (s, 1H), 8.26 (d, J = 7.9 Hz, 1H), 7.42 – 7.21 (m, 5H), 7.11 (d, J = 8.4 Hz, 2H), 6.31 (s, 1H), 5.80 (s, 1H), 4.52 (t, J = 7.9 Hz, 1H), 3.97 (dd, J = 14.3, 7.7 Hz, 1H), 3.73 (dd, J = 14.3, 8.1 Hz, 1H), 3.66 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 167.4, 142.7, 141.3, 139.8, 132.8, 131.8, 129.3, 126.8, 126.4, 124.6, 124.0, 121.4, 121.1, 120.7, 111.7, 52.3, 45.1, 32.9; HRMS (ESI): cacld for C₂₀H₁₇N₂O₄⁷⁹BrNa[M+Na]⁺: 451.0263; found: 451.0266; HPLC analysis: er = 96:4 on an AD-H column: hexane/*i*-PrOH = 80:20, flow rate = 0.5 mL/min, λ = 220 nm; t_{major} = 15.91 min, t_{minor} = 16.85 min.

4. Computational methods

All Kohn-Sham DFT calculations were performed by Gaussian09 suite of ab initio

program³. All geometries were fully optimized by using a hybrid functional B3LYP⁴⁻⁵ and 6-31g(d) basis set and applied for harmonic vibrational frequency calculations to confirm the minima under 298 K. In the conformation analysis, the species in *R* and *S* form with lowest energy were selected for further study. TD-DFT calculations were carried out to obtain the electronic circular dichroism (ECD) spectra. Two functional/basis sets CAM-B3LYP⁴/TZVP^{7,8} and wB97XD⁹/6-311+g(d,p) were applied in the calculations for comparison. Computational solvent effect has been carried out with the polarizable conductor calculation model (CPCM)¹⁰⁻¹¹ for MeCN ($\varepsilon = 37.5$). The ECD data were analyzed by the program SpecDis.¹² The σ -value of 0.4 eV was applied for spectrometric correction.

3a		3d	
Conformation	$\Delta\Delta G$ (kcal mol ^{\Box1})	Conformation	$\Delta\Delta G$ (kcal mol ^{\Box1})
<i>R</i> 1	0	<i>R</i> 1	0
<i>R</i> 2	2.43	R2	2.23
<i>R</i> 3	3.02	<i>R</i> 3	2.89
<i>R</i> 4	1.96	<i>R</i> 4	0.89
<i>R</i> 5	0.54	<i>R</i> 5	0.15
<i>R</i> 6	1.79	<i>R</i> 6	1.31
<i>R</i> 7	3.60	<i>R</i> 7	3.56
<i>R</i> 8	4.05	<i>R</i> 8	4.36
-			
Conformation	$\Delta\Delta G$ (kcal mol ^{\Box1})	Conformation	$\Delta\Delta G$ (kcal mol ^{\Box1})
Conformation S1	$\frac{\Delta\Delta G \text{ (kcal mol}^{\Box 1})}{0}$	Conformation S1	$\frac{\Delta\Delta G \text{ (kcal mol}^{\Box 1)}}{0}$
ConformationS1S2	ΔΔG (kcal mol ^{□1}) 0 3.70	Conformation S1 S2	ΔΔG (kcal mol ^{□1}) 0 3.38
ConformationS1S2S3	ΔΔG (kcal mol ^{□1}) 0 3.70 1.78	ConformationS1S2S3	ΔΔG (kcal mol ^{□1}) 0 3.38 1.96
ConformationS1S2S3S4	ΔΔG (kcal mol ^{□1}) 0 3.70 1.78 4.27	ConformationS1S2S3S4	ΔΔ <i>G</i> (kcal mol ^{□1}) 0 3.38 1.96 3.89
ConformationS1S2S3S4S5	ΔΔG (kcal mol ^{□1}) 0 3.70 1.78 4.27 1.79	ConformationS1S2S3S4S5	ΔΔ <i>G</i> (kcal mol ^{□1}) 0 3.38 1.96 3.89 1.81
Conformation S1 S2 S3 S4 S5 S6	ΔΔ <i>G</i> (kcal mol ^{□1}) 0 3.70 1.78 4.27 1.79 3.88	Conformation S1 S2 S3 S4 S5 S6	ΔΔ <i>G</i> (kcal mol ^{□1}) 0 3.38 1.96 3.89 1.81 4.05
Conformation S1 S2 S3 S4 S5 S6 S7	ΔΔG (kcal mol ^{□1}) 0 3.70 1.78 4.27 1.79 3.88 2.79	Conformation S1 S2 S3 S4 S5 S6 S7	ΔΔ <i>G</i> (kcal mol ^{□1}) 0 3.38 1.96 3.89 1.81 4.05 3.46

Table S1. Relative energies for compound 3a and 3d.

Figure S1. Two views of DFT-optimized geometries of (A) **3a**-*R*1 and (B) **3a**-*S*1. Some hydrogen atoms are omitted for clarity.

Figure S2. Two views of DFT-optimized geometries of (A) **3d**-*R*1 and (B) **3d**-*S*1. Some hydrogen atoms are omitted for clarity.

Figure S3. Experimental and calculated ECD spectra of (A) **3a**-*R*1 and (B) **3a**-*S*1 at CAM-B3LYP/TZVP level.

Figure S4. Experimental and calculated ECD spectra of (A) **3d**-*R*1 and (B) **3d**-*S*1 at CAM-B3LYP/TZVP level.

Figure S5. Experimental and calculated ECD spectra of (A) **3a**-*R*1 and (B) **3a**-*S*1 at wB97XD/6-311+g(d,p) level.

Figure S6. Experimental and calculated ECD spectra of (A) **3d**-*R*1 and (B) **3d**-*S*1 at wB97XD/6-311+g(d,p) level.

5. References

- X.-F. Ding, W.-L. Yang, J. Mao, C.-X. Cao and W.-P. Deng, *Org. Lett.*, 2019, 21, 5514–5518.
- 2. S. Kayal and S. Mukherjee, Org. Lett., 2017, 19, 4944-4947.
- Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian, Inc. Wallingford, CT, 2009.
- 4. C.-T. Lee, W.-T. Yang and R. G. Parr, *Phys. Rev. B*, **1988**, *37*, 785-789.
- 5. A. D. Becke, J. Chem. Phys., 1993, 98, 5648-5652.
- 6. T. Yanai, D. Tew and N. Handy, Chem. Phys. Lett., 2004, 393, 51-57.
- 7. A. Schaefer, H. Horn and R. Ahlrichs, J. Chem. Phys., 1992, 97, 2571-2577.
- 8. A. Schaefer, C. Huber and R. Ahlrichs, J. Chem. Phys., 1994, 100, 5829-5835.
- 9. J.-D. Chai and M. Head-Gordon, *Phys. Chem. Chem. Phys.*, 2008, 10, 6615-6620.
- 10. V. Barone and M. Cossi, J. Phys. Chem. A, 1998, 102, 1995-2001.

11. M. Cossi, N. Rega, G. Scalmani and V. Barone, J. Comput. Chem., 2003, 24, 669-681.

12. T. Bruhn, A. Schaumlöffel, Y. Hemberger, SpecDis version 1.63, University of Wuerzburg, Germany, **2015**.

6. Copies of HPLC Spectra of Racemic and Chiral Products

3a

Rac-3b

3b

Rac-3c

3c

Rac-3d

3d

Rac-3e

3e

Rac-3f

3f

Rac-3g

3g

Rac-3h

3h

Rac-3i

3i

Rac-3j

3j

Rac-3k

3k

Rac-31

31

Rac-3m

3m

3n

5a

5b

5c

5d

6

