Synthesis of methanesulfones-containing tetrasubstituted carbon stereocenters

Wei Zhou, a You-Ping Tian, Hao-Jie Zhou, Hui-Juan Wang, A Yan Ren a and Xiong-Li Liu*a

- ^a National & Local Joint Engineering Research Center for the Exploition of Homology Resources of Southwest Medicine and Food, Guizhou University, Guiyang, Guizhou 550025, P. R. China.
- ^b College of Pharmaceutical Sciences, Guizhou University of Chinese Medicine, Guiyang, Guizhou 550025, P. R. China.

E-mail: xlliu1@gzu.edu.cn_and xuchwhj@163.com

Table of Contents

Table of contents	S1
1. General experimental information	S2
2. Procedure for the synthesis of compounds 1	S2
3. Typical experimental procedures for synthesis of compounds 3	S2
4. Procedure for the synthesis of compounds IB	S2
5. Gram scale synthesis of the product 3q	S3
6. Scheme S1: control experiments	S3
7. Scheme S2: control experiments	S4
8. Scheme S3: other substrates in this transformation	S4
9. X-Ray Crystal Data for Compound 3a	S5
10. The copies of ¹ H NMR, ¹³ C NMR and ¹⁹ F NMR spectra for compounds 1 and 3	S6

1. General experimental information

Reactions were monitored by thin layer chromatography using UV light to visualize the course of reaction. Purification of reaction products was carried out by flash chromatography on silica gel. Chemical yields refered to pure isolated substances. ¹H and ¹³CNMR spectra were obtained using a Bruker DPX-400 spectrometer. ¹H NMR chemical shifts are reported in ppm (δ) relative to tetramethylsilane (TMS) with the solvent resonance employed as the internal standard. Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet), coupling constants (Hz) and integration. ¹³C NMR chemical shifts are reported in ppm (δ) from tetramethylsilane (TMS) with the solvent resonance as the internal standard.

2. Procedure for the synthesis of compounds 1

A solution of ninhydrin (0.60 mmol), dihydrochromone (0.80 mmol) and Et_2NH (0.15 mmol) in MeOH (3.0 mL) was stirred at 25 °C for 24 h. After completion of the reaction, as indicated by TLC, the removal of solvent and purification by flash column chromatography (hexane/EtOAc = $6:1\sim4:1$) was carried out to furnish the indanedione-chromanone synthon **1** as a white solid.

3. Typical experimental procedures for synthesis of compounds 3

Compound 1 (0.20 mmoL) and Et_3N (0.60 mmoL) were dissolved in DCM (1.5 mL). MsCl (0.50 mmoL) was added to this solution at room temperature, and the mixture was stirred for 8 h. After the removal of solvent, purification by flash column chromatography (hexane/ethyl acetate = $8:1\sim5:1$) was carried out to give product **3** as a light yellow solid.

4. Procedure for the synthesis of compounds IB

A solution of substrate 1 (0.20 mmol) in Ac_2O (2.0 mL) was added HCl (6 N, 0.1 mL), and then stirred at 65 °C for 8 h. After completion of the reaction, as indicated by TLC, the removal of solvent and purification by flash column chromatography (hexane/EtOAc = 5:1~3:1) was carried out to furnish the indanedione-chromanone synthon **1B** as a red solid.

5. Gram scale synthesis of the product 3q

Compound 1 (2.0 mmoL) and Et_3N (6.0 mmoL) were dissolved in DCM (15 mL). MsCl (5.0 mmoL) was added to this solution at room temperature, and the mixture was stirred for 8 h. After the removal of solvent, purification by flash column chromatography (hexane/ethyl acetate = 8:1~5:1) was carried out to give product **3q** as a light yellow solid (0.78 g, 88% yield).

6. Scheme S1: control experiments

Compound **1B-1h** (0.20 mmoL) and Et_3N (0.44 mmoL) was dissolved in DCM (1.5 mL). compound **2** (0.40 mmoL) was added to this solution at room temperature, and the mixture was stirred for 10 h, however, the expected corresponding sulfone **3** was not observed with intractable product mixtures (0% yield).

Compound **1B-1h** (0.20 mmoL) and NaOH (0.44 mmoL) was dissolved in DCM (1.5 mL). compound **2** (0.40 mmoL) was added to this solution at room temperature, and the mixture was

stirred for 5 h. After the removal of solvent, purification by flash column chromatography (hexane/ethyl acetate = $8:1\sim5:1$) was carried out to give product **3h** as a light yellow solid (27% yield).

7. Scheme S2: control experiments

Compound 1 (0.20 mmoL) was dissolved in Ac₂O (2 mL). HCl (6 N, 0.1 mL) was added to this solution at 65 °C, and the mixture was stirred for 8 h. After the removal of solvent, purification by flash column chromatography (hexane/ethyl acetate = $8:1\sim5:1$) was carried out to give intermediate **IB** as a red solid.

Intermediate **IB** (0.2 mmoL) and Et₃N (4.4 mmoL) were dissolved in DCM (1.5 mL). MsCl (0.40 mmoL) was added to this solution at room temperature, and the mixture was stirred for 3 h. After the removal of solvent, purification by flash column chromatography (hexane/ethyl acetate = $6:1\sim4:1$) was carried out to give product **3** as a light yellow solid.

8. Scheme S3: other substrates in this transformation

Compound 4 or 6 (0.20 mmoL) and Et_3N (0.44 mmoL) was dissolved in DCM (1.5 mL). compound 2 (0.40 mmoL) was added to this solution at room temperature, and the mixture was stirred for 10 h, however, the expected corresponding sulfone 5 or 7 was not observed with recovery of starting material 4 or 6 (0% yield).

9. X-Ray Crystal Data for Compound 3a

Table S1 Crystal data and structure refinement for 3a

Identification code	3a
Empirical formula	$C_{19}H_{12}O_6S$
Formula weight	368.35
Temperature/K	100.00(10)
Crystal system	triclinic
Space group	P-1
a/Å, b/Å, c/Å	7.6249(5), 9.1227(5), 12.8047(9)
$\alpha/^{\circ}, \beta/^{\circ}, \gamma/^{\circ},$	85.841(5), 88.200(5), 81.018(5).
Volume/Å ³	877.27(10)
Ζ	2
$\rho_{calc}g/cm^3$	1.394
µ/mm ⁻¹	0.217
F(000)	380.0
Radiation	Mo K α ($\lambda = 0.71073$)
Crystal size/mm ³	$0.14 \times 0.13 \times 0.12$
2Θ range for data collection/°	4.532 to 49.994

Index ranges	$\textbf{-9} \le h \le 9, \textbf{-10} \le k \le 10, \textbf{-12} \le l \le 15$
Reflections collected	5655
Independent reflections	$3074 [R_{int} = 0.0247, R_{sigma} = 0.0446]$
Data/restraints/parameters	3074/0/236
Goodness-of-fit on F ²	1.097
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0470, wR_2 = 0.1165$
Final R indexes [all data]	$R_1 = 0.0532, wR_2 = 0.1205$
Largest diff. peak/hole / e Å ⁻³	0.41/-0.49

Crystal data for **3a**: (M = 368.35 g/mol): triclinic, space group P-1 (no. 2), a = 7.6249(5) Å, b =9.1227(5) Å, c = 12.8047(9) Å, $a = 85.841(5)^{\circ}$, $\beta = 88.200(5)^{\circ}$, $\gamma = 81.018(5)^{\circ}$, V = 12.8047(9) Å, $a = 85.841(5)^{\circ}$, $\beta = 88.200(5)^{\circ}$, $\gamma = 81.018(5)^{\circ}$, V = 12.8047(9) Å, $\gamma = 81.018(5)^{\circ}$, $\gamma = 81.018(5)^{\circ}$, V = 12.8047(9) Å, $\gamma = 81.018(5)^{\circ}$, V = 12.8047(9) Å, $\gamma = 81.018(5)^{\circ}$, V = 12.8047(9) Å, $\gamma = 81.018(5)^{\circ}$, $\gamma = 8$ 877.27(10) Å³, Z = 2, T = 100.00(10) K, μ (Mo K α) = 0.217 mm⁻¹, Dcalc = 1.394 g/cm³, 5655 reflections measured ($4.532^\circ \le 2\Theta \le 49.994^\circ$), 3074 unique ($R_{int} = 0.0247$, $R_{sigma} = 0.0446$) which were used in all calculations. The final R_1 was 0.0470 (I > 2 σ (I)) and wR_2 was 0.1205 (all data).

7,7,290 (1,7,1,287) (1,2,27) (-3.812 -3.792 -3.786 -3.786 -3.741 2.00-1.24J 0.974 0.994 1.084 1.084 1.464 0.174 0.174 0.314 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 fl (ppm) 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.

10. The Copies of ¹H NMR, ¹³C NMR and ¹⁹F NMR Spectra for Compounds 1 and 3 ¹H and ¹³C NMR of 1a

¹H and ¹³C NMR of 1b

¹⁹F NMR of 1b

S9

S10

¹H and ¹³C NMR of 1B-1g

¹H and ¹³C NMR of 1B-1h

¹H and ¹³C NMR of 3a

¹H and ¹³C NMR of 3b

¹H and ¹³C NMR of 3c

¹H and ¹³C NMR of 3d

S18

¹H and ¹³C NMR of 3f

¹⁹F NMR of 3f

¹H and ¹³C NMR of 3h

¹⁹F NMR of 3i

¹H and ¹³C NMR of 3j

S25

S27

¹⁹F NMR of 3k

¹⁹F NMR of 3l

¹H and ¹³C NMR of 3n

¹⁹F NMR of 3n

¹H and ¹³C NMR of 30

¹H and ¹³C NMR of 3q

¹H and ¹³C NMR of 3r

¹H and ¹³C NMR of 3s

¹H and ¹³C NMR of 3u

