Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2021

Electronic Supplementary Information

Synthesis of α-(aminoethyl)-α,β-enones via alkyne aza-Prins cyclization and their synthetic application to pyrrolidines

Sho Amemiya, Shingo Okemoto, Akira Tsubouchi and Akio Saito*,^a

Division of Applied Chemistry, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan.

e-mail: akio-sai@cc.tuat.ac.jp

Table of contents

Examination for Synthesis of α -(Aminoethyl)- α , β -Enones (Table S1)......S2

General Information......S3

Synthesis and Characterization of N-(4-Arylhomopropargyl)-N-methyl Tosylamides 5a and 5c......S3

Control Experiments using Aza-Prins Cyclized Product 4......S4

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR Spectra of New Compounds......S5

Examination for Synthesis of α-(Aminoethyl)-α,β-Enones

Ph

PhCHO (2a, 2 eq.) acid, aditive Ph solvent, rt Ts NΗ ŇΗ Ph Ρh Ts H Τ́s 4 (X = OTf) 1a 3aa 4-X (X = F, CI, I, OTs) Additive (eq.) Entry Acid (eq.) Solvent t (h) **3aa**^a (%) 4 or 4-X^a (%) (E:Z) $1a^{a}(\%)$ 1 HOTf(2)DCM 24 65 4 14 100:0 0 2 HOTf(3) $(Me_2AlO)_2SO_2(0.5)$ DCM 24 75 4 5 100:0 0 3 $HBF_4 \cdot OEt_2(2)$ 4-F 0 0 DCM 16 81 -4 **4-**F 0 25 $BF_3 \cdot OEt_2(2)$ DCM 16 47 -5 79 0 0 $BF_3 \cdot MeCN(2)$ DCM 16 **4-F** ND^b 6 24 29 4-Cl ND^b 0 $FeCl_3(2)$ DCM 7 $FeCl_3(1)$ DCE 6^c 36 **4-Cl** 8 100:0 0 8 $I_2(2)$ CuI (0.4) DCM 16 0 **4-I** 0 0 -9 Fe(OTf)₃ (0.1) DCE 24^{d} 0 41 1 4 - 24^{d} 10 $Cu(OTf)_2(0.1)$ DCE 0 4 0 11 _ 24 11 $TsOH \cdot H_2O(1)$ $MgBr_2 \cdot OEt_2(1)$ DCM 0 4-OTs ND^b 44 _ 4-OTs 12 $TsOH \cdot H_2O(2)$ $MgBr_2 \cdot OEt_2(2)$ DCM 24 0 ND^b 6 13 TMSOTf(2) 16 60 100:0 0 DCM 11 4 14 24 84 TMSOTf(2)MeOH 0 4 0 15 TMSOTf(2) MeOH (2) DCM 16 51 4 20 80:20 0 21 16 TMSOTf(2) AcOH (2) DCM 16 55 4 81:19 0 17 TMSOTf(2) AcOEt 16 49 4 21 81:19 0 18 TMSOTf(2)Et₂O 16 43 4 29 72:28 0 19 TMSOTf(2) Et₃N (2) Et_2O 24 36 4 21 62:38 16 20 TMSOTf(2) 16 47 4 21 8 CPME 62:38 4 21 TMSOTf(2)DME 16 67 10 60:40 0 22 16 81 4 0 TMSOTf(2) MeCN 1 23 22 81 4 0 0 TMSOTf(2) MeCN _ 24 24 75 4 0 0 HOTf(2)MeCN _ 25 24 4 0 69 CF₃COOH (2) MeCN 0 _ 79 24 4 0 26 TMSOTf(0.2)MeCN 0 _ 15 27 TMSOTf(0.2)MeCN 24^{d} 0 4 0 _ 28 TMSOTf(0.2)MeCN (62) DCE 24^{d} 0 4 0 0 29 BF₃·MeCN (0.2) DCE 24^d 0 **4-F** 0 5 30 MeCN 24^{e} 15 TMSOTf(5)46 4 0

Table S1. Screening of acids, additives and solvents for synthesis of enones 3aa from 1a and 2a.

DCM: dichloromethane. DCE: 1,2-dichloroethane. CPME: cyclopentyl methyl ether. DME: 1,2-dimethoxyethane.

^{*a*} Isolated yields or recovery. ^{*b*} Not determined. ^{*c*} Conditions: rt for 2 h and then 80 °C for 4 h. ^{*d*} Temp.: 80 °C. ^{*e*} Temp.: -40 °C.

General Information

All reactions were carried out under an argon atmosphere. *N*-(4-Arylhomopropargyl) tosylamides **1a**-**c**¹ and aza-Prins cyclized product **4**² were prepared by the method reported in the literatures. Triflic acid (HOTf), trimethylsilyl trifluoromethanesulfonate (TMSOTf), BF₃·MeCN, 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) and aldehydes **2a-m** are commercially available. Dichloromethane (DCM) and MeCN were purchased as the "anhydrous" and used without further purification. For the TLC analysis, Merck precoated TLC plates (silica gel 60 F254) were used. Column chromatography was performed on silica gel 60N (63-200 µm, neutral, Kanto Kagaku Co., Ltd.). Medium-pressure liquid chromatography (MPLC) was carried out on YAMAZEN W-Prep 2XY. ¹H and ¹³C NMR spectra were measured at 500 (or 300) and 125 (or 75) MHz in CDCl₃, and the chemical shifts are given in ppm using CHCl₃ (7.26 ppm) in CDCl₃ for 1H NMR and CDCl₃ (77.0 ppm) for ¹³C NMR as an internal standard, respectively. Splitting patterns of an apparent multiplet associated with an averaged coupling constant were designed as s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), and br (broadened). IR spectra were obtained on a JASCO FT/IR-6200. Mass spectra and HRMS were recorded on a JEOL MStation MS700 (double-focusing magnetic sector) by FAB methods.

Synthesis and Characterization of N-(4-Arylhomopropargyl)-N-methyl Tosylamides 5a and 5c

To a solution of **1a** (898.2 mg, 3.0 mmol) and NaH (60 w/w% in oil, 288.0 mg, 7.2 mmol) in DMF (15 mL) was added methyl iodide (0.56 mL, 9.0 mmol) at 0 °C. After being stirred at room tempreture for 3 h, the reaction mixture was quenched with NH₄Cl aq. and extracted with AcOEt. The organic layer was dried over MgSO₄ and concentrated in vacuo to dryness. The residue was purified by silica gel column chromatography (hexane:AcOEt = 5:1) to give **5a** (754.0 mg, 80%). In the similar manner, **5c** (584.1 mg, 72%) were prepared from **1c** (799.5 mg, 2.3 mmol) using NaH (60 w/w% in oil, 104.0 mg, 2.6 mmol) and methyl iodide (0.20 mL, 3.2 mmol) in DMF (10 mL).

N,4-Dimethyl-*N*-(4-phenylbut-3-yn-1-yl)benzenesulfonamide (5a): R_f = 0.43 (hexane:AcOEt = 3:1). Brown solid. MP: 58-60 °C. IR (KBr) v cm⁻¹; 2248, 1338, 1161. ¹H NMR (500 MHz) δ ppm; 7.70 (d, *J* = 8.0 Hz, 2H), 7.39-7.35 (m, 2H) 7.31 (d, *J* = 8.0 Hz, 2H), 7.30-7.27 (m, 3H), 3.29 (t, *J* = 7.2 Hz, 2H), 2.86 (s, 3H), 2.69 (t, *J* = 7.2 Hz, 3H), 2.42 (s, 3H). ¹³C NMR (125 MHz) δ ppm; 143.4, 134.8, 131.5, 129.7, 128.2, 127.9, 127.3, 123.2, 86.3, 82.3, 49.2, 35.5, 21.5, 19.8. HRMS (ESI) Calcd for C₁₈H₁₉NNaO₂S [M+Na]⁺: 336.1029; found: 336.1029.

N,4-Dimethyl-*N*-(4-(4-nitrophenyl)but-3-yn-1-yl)benzenesulfonamide (5c): $R_f = 0.29$ (hexane:AcOEt = 3:1). Yellow solid. MP: 119-120 °C. IR (KBr) v cm⁻¹; 2220, 1513, 1377, 1343, 1160. ¹H NMR (500 MHz) δ ppm; 8.16 (d, J = 8.0 Hz, 2H), 7.70 (d, J = 8.0 Hz, 2H), 7.52 (d, J = 8.0 Hz, 1H), 7.33 (d, J = 8.0 Hz, 2H), 3.31 (t, J = 7.2 Hz, 2H), 2.85 (s, 3H), 2.74 (t, J = 7.2 Hz, 2H), 2.43 (s, 3H). ¹³C NMR (125 MHz) δ ppm; 146.8, 143.6, 134.7, 132.3, 130.3, 129.8, 127.3, 123.5, 92.3, 80.9, 48.9, 35.5, 21.5, 20.0. HRMS (ESI) Calcd for C₁₈H₁₈N₂NaO₄S [M+Na]⁺ :381.0879; found: 381.0866

¹ X. Yu, Z. Guo, H. Song, Y. Liu and Q. Wang, Adv. Synth. Catal., 2018, 360, 1077.

² N. Kobayashi, K. Kaneko, S. Amemiya, K. Noguchi, M. Yamanaka and A. Saito, Chem. Commun., 2019, 55, 8619.

Control Experiments using Aza-Prins Cyclized Product 4

[Method i] To a solution of **4** (107.4 mg, 0.2 mmol) in MeCN (1.25 mL) was added TMSOTf (72.2 μ L, 0.4 mmol) at 0 °C. After being stirred at room temperature for 24 h, the reaction mixture was quenched with NaHCO₃ aq. and extracted with AcOEt. The organic layer was dried over MgSO₄ and concentrated in vacuo to dryness. The residue was purified by silica gel column chromatography (Hexane:AcOEt = 3:1) to give **3aa** (77.8 mg, 96%). In the similar manner, **4** (107.4 mg, 0.2 mmol) was treated with TfOH (35.2 μ L, 0.4 mmol) in MeCN (1.25 mL) to give **3aa** (72.7 mg, 90%).

[Method ii] To a solution of **4** (107.4 mg, 0.2 mmol) in MeCN (1.25 mL) was added TMSOTf (36.1 μ L, 0.2 mmol) and H₂O (3.6 μ L, 0.2 mmol) at 0 °C. After being stirred at room temperature for 24 h, the reaction mixture was quenched with NaHCO₃ aq. and extracted with AcOEt. The organic layer was dried over MgSO₄ and concentrated in vacuo to dryness. The residue was purified by Column Chromatography (Hexane:AcOEt = 10:1 to 3:1) to give **3aa** (35.1 mg, 43%) along with the recovery of **4** (31.2 mg, 29%). In the similar manner, **4** (107.4 mg, 0.2 mmol) was treated with TfOH (17.6 μ L, 0.2 mmol) and H₂O (3.6 μ L, 0.2 mmol) in MeCN (1.25 mL) to give **3aa** (31.7 mg, 39%) along with the recovery of **4** (24.0 mg, 22%).

[Method iii] To a solution of 4 (215.0 mg, 0.4 mmol) in MeCN (2.5 mL) was added TMSOTf (72.2 μ L, 0.4 mmol) at 0 °C. After being stirred at room temperature for 24 h, the reaction mixture was quenched with NaHCO₃ aq. and extracted with AcOEt. The organic layer was dried over MgSO₄ and concentrated in vacuo to dryness. By ¹H NMR analysis of the residue using 1,2-dicholoroethen as an internal standard, the yield of **3aa** (9%) and recovery rate of **4** (39%) were determined because some unidentified products were converted into **3aa** in silica gel. In the similar manner, **4** (215.0 mg, 0.4 mmol) was treated with TfOH (35.1 μ L, 0.4 mmol) in MeCN (1.25 mL) to give **3aa** (10% by NMR analysis) along with the recovery of **4** (23% by NMR analysis).

¹H and ¹³C NMR Spectra of New Compounds

¹H NMR (500 MHz, CDCl₃) of 5a

¹³C NMR (125 MHz, CDCl₃) of 5a

¹H NMR (500 MHz, CDCl₃) of 5c

¹³C NMR (125 MHz, CDCl₃) of 5c

¹H NMR (500 MHz, CDCl₃) of 3aa

¹³C NMR (125 MHz, CDCl₃) of 3aa

¹H NMR (500 MHz, CDCl₃) of **3ab**

¹³C NMR (125 MHz, CDCl₃) of 3ab

¹H NMR (500 MHz, CDCl₃) of 3ac

¹³C NMR (125 MHz, CDCl₃) of 3ac

¹H NMR (500 MHz, CDCl₃) of 3ad

¹³C NMR (125 MHz, CDCl₃) of 3ad

¹H NMR (500 MHz, CDCl₃) of 3ae

¹³C NMR (125 MHz, CDCl₃) of 3ae

¹H NMR (500 MHz, CDCl₃) of **3af**

¹³C NMR (125 MHz, CDCl₃) of 3af

¹H NMR (500 MHz, CDCl₃) of 3ag

¹³C NMR (125 MHz, CDCl₃) of 3ag

¹H NMR (500 MHz, CDCl₃) of **3ah**

¹H NMR (500 MHz, CDCl₃) of 3ai

13C NMR (125 MHz, CDCl3) of 3ai

208 200 192 184 176 168 160 152 144 136 128 120 112 104 96 88 80 72 64 56 48 40 32 24 16 8 0 Chemical Shift(ppm)

¹H NMR (500 MHz, CDCl₃) of 3aj

¹³C NMR (125 MHz, CDCl₃) of 3aj

¹H NMR (500 MHz, CDCl₃) of **3ba**

¹³C NMR (125 MHz, CDCl₃) of **3ba**

¹H NMR (500 MHz, CDCl₃) of **3bb**

¹³C NMR (125 MHz, CDCl₃) of **3bb**

¹H NMR (500 MHz, CDCl₃) of **3bi**

¹³C NMR (125 MHz, CDCl₃) of **3bi**

¹H NMR (500 MHz, CDCl₃) of 3ca

¹³C NMR (125 MHz, CDCl₃) of 3ca

¹H NMR (500 MHz, CDCl₃) of **3cb**

¹³C NMR (125 MHz, CDCl₃) of **3cb**

¹H NMR (500 MHz, CDCl₃) of 7aa

¹³C NMR (125 MHz, CDCl₃) of 7aa

¹H NMR (500 MHz, CDCl₃) of 7ab

¹³C NMR (125 MHz, CDCl₃) of 7ab

¹H NMR (500 MHz, CDCl₃) of 7ai

¹³C NMR (125 MHz, CDCl₃) of 7ai

¹H NMR (500 MHz, CDCl₃) of 7ba

¹³C NMR (75 MHz, CDCl₃) of 7ba

¹H NMR (500 MHz, CDCl₃) of 7ca

¹³C NMR (125 MHz, CDCl₃) of 7ca

