Electronic Supplementary Information

Synthesis of α-(aminoethyl)- α, β-enones via alkyne aza-Prins cyclization and their synthetic application to pyrrolidines

Sho Amemiya, Shingo Okemoto, Akira Tsubouchi and Akio Saito*,a
Division of Applied Chemistry, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan.
e-mail: akio-sai@cc.tuat.ac.jp

Table of contents

Examination for Synthesis of α-(Aminoethyl)- α, β-Enones (Table S1)......S2
General Information......S3
Synthesis and Characterization of N-(4-Arylhomopropargyl)-N-methyl Tosylamides 5a and 5c......S3
Control Experiments using Aza-Prins Cyclized Product 4......S4
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of New Compounds......S5

Examination for Synthesis of α-(Aminoethyl)- α, β-Enones

Table S1. Screening of acids, additives and solvents for synthesis of enones 3aa from 1a and 2a.

[^0]
General Information

All reactions were carried out under an argon atmosphere. N-(4-Arylhomopropargyl) tosylamides $\mathbf{1 a - c}{ }^{1}$ and aza-Prins cyclized product 4^{2} were prepared by the method reported in the literatures. Triflic acid (HOTf), trimethylsilyl trifluoromethanesulfonate (TMSOTf), $\mathrm{BF}_{3} \cdot \mathrm{MeCN}$, 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) and aldehydes $\mathbf{2 a - m}$ are commercially available. Dichloromethane (DCM) and MeCN were purchased as the "anhydrous" and used without further purification. For the TLC analysis, Merck precoated TLC plates (silica gel 60 F254) were used. Column chromatography was performed on silica gel 60 N (63-200 $\mu \mathrm{m}$, neutral, Kanto Kagaku Co., Ltd.). Medium-pressure liquid chromatography (MPLC) was carried out on YAMAZEN W-Prep $2 \mathrm{XY} .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were measured at 500 (or 300) and 125 (or 75) MHz in CDCl_{3}, and the chemical shifts are given in ppm using $\mathrm{CHCl}_{3}(7.26 \mathrm{ppm})$ in CDCl_{3} for 1 H NMR and $\mathrm{CDCl}_{3}(77.0 \mathrm{ppm})$ for ${ }^{13} \mathrm{C}$ NMR as an internal standard, respectively. Splitting patterns of an apparent multiplet associated with an averaged coupling constant were designed as s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), and br (broadened). IR spectra were obtained on a JASCO FT/IR-6200. Mass spectra and HRMS were recorded on a JEOL MStation MS700 (double-focusing magnetic sector) by FAB methods.

Synthesis and Characterization of N-(4-Arylhomopropargyl)-N-methyl Tosylamides 5a and 5c

To a solution of $\mathbf{1 a}(898.2 \mathrm{mg}, 3.0 \mathrm{mmol})$ and $\mathrm{NaH}(60 \mathrm{w} / \mathrm{w} \%$ in oil, $288.0 \mathrm{mg}, 7.2 \mathrm{mmol})$ in DMF (15 mL) was added methyl iodide ($0.56 \mathrm{~mL}, 9.0 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. After being stirred at room tempreture for 3 h , the reaction mixture was quenched with $\mathrm{NH}_{4} \mathrm{Cl}$ aq. and extracted with AcOEt. The organic layer was dried over MgSO_{4} and concentrated in vacuo to dryness. The residue was purified by silica gel column chromatography (hexane: $\mathrm{AcOEt}=5: 1$) to give $\mathbf{5 a}(754.0 \mathrm{mg}, 80 \%)$. In the similar manner, $\mathbf{5 c}$ ($584.1 \mathrm{mg}, 72 \%$) were prepared from $\mathbf{1 c}(799.5 \mathrm{mg}, 2.3 \mathrm{mmol})$ using $\mathrm{NaH}(60 \mathrm{w} / \mathrm{w} \%$ in oil, $104.0 \mathrm{mg}, 2.6 \mathrm{mmol}$) and methyl iodide ($0.20 \mathrm{~mL}, 3.2 \mathrm{mmol}$) in DMF (10 mL).

$N, 4-$ Dimethyl- N-(4-phenylbut-3-yn-1-yl)benzenesulfonamide (5a): $R_{\mathrm{f}}=0.43$ (hexane:AcOEt $=3: 1$). Brown solid. MP: 58-60 ${ }^{\circ} \mathrm{C}$. IR (KBr) $v \mathrm{~cm}^{-1} ; 2248,1338,1161 .{ }^{1} \mathrm{H}$ NMR (500 MHz) δ ppm; $7.70(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.39-7.35(\mathrm{~m}, 2 \mathrm{H}) 7.31(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.30-7.27(\mathrm{~m}, 3 \mathrm{H})$, $3.29(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.86(\mathrm{~s}, 3 \mathrm{H}), 2.69(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz) $\delta \mathrm{ppm} ; 143.4,134.8,131.5,129.7,128.2,127.9,127.3,123.2,86.3,82.3,49.2,35.5,21.5,19.8$. HRMS (ESI) Calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NNaO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}: 336.1029$; found: 336.1029.
$\boldsymbol{N , 4 - D i m e t h y l - ~} \boldsymbol{N}$-(4-(4-nitrophenyl)but-3-yn-1-yl)benzenesulfonamide (5c): $R_{\mathrm{f}}=0.29$ (hexane: $\mathrm{AcOEt}=3: 1$). Yellow solid. MP: $119-120^{\circ} \mathrm{C} . \operatorname{IR}(\mathrm{KBr}) v \mathrm{~cm}^{-1} ; 2220,1513,1377,1343$, $1160 .{ }^{1} \mathrm{H}$ NMR (500 MHz) $\delta \mathrm{ppm} ; 8.16(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.70(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.31(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.85(\mathrm{~s}, 3 \mathrm{H}), 2.74(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 2 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz) $\delta \mathrm{ppm}$; 146.8, 143.6, 134.7, 132.3, 130.3, 129.8, 127.3, 123.5, 92.3, 80.9, 48.9, 35.5, 21.5, 20.0. HRMS (ESI) Calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{NaO}_{4} \mathrm{~S}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 381.0879$; found: 381.0866

[^1]
Control Experiments using Aza-Prins Cyclized Product 4

[Method i] To a solution of $4(107.4 \mathrm{mg}, 0.2 \mathrm{mmol})$ in $\mathrm{MeCN}(1.25 \mathrm{~mL})$ was added TMSOTf ($72.2 \mu \mathrm{~L}, 0.4 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. After being stirred at room temperature for 24 h , the reaction mixture was quenched with $\mathrm{NaHCO}_{3} \mathrm{aq}$. and extracted with AcOEt. The organic layer was dried over MgSO_{4} and concentrated in vacuo to dryness. The residue was purified by silica gel column chromatography (Hexane: $\mathrm{AcOEt}=3: 1$) to give $\mathbf{3 a a}(77.8 \mathrm{mg}, 96 \%)$. In the similar manner, $\mathbf{4}(107.4 \mathrm{mg}, 0.2 \mathrm{mmol})$ was treated with $\mathrm{TfOH}(35.2 \mu \mathrm{~L}, 0.4 \mathrm{mmol})$ in $\mathrm{MeCN}(1.25 \mathrm{~mL})$ to give $3 \mathrm{aa}(72.7 \mathrm{mg}, 90 \%)$.
[Method ii] To a solution of $\mathbf{4}(107.4 \mathrm{mg}, 0.2 \mathrm{mmol})$ in $\mathrm{MeCN}(1.25 \mathrm{~mL})$ was added TMSOTf ($36.1 \mu \mathrm{~L}, 0.2 \mathrm{mmol}$) and $\mathrm{H}_{2} \mathrm{O}$ $(3.6 \mu \mathrm{~L}, 0.2 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. After being stirred at room temperature for 24 h , the reaction mixture was quenched with NaHCO_{3} aq. and extracted with AcOEt. The organic layer was dried over MgSO_{4} and concentrated in vacuo to dryness. The residue was purified by Column Chromatography (Hexane: $\mathrm{AcOEt}=10: 1$ to $3: 1$) to give 3aa ($35.1 \mathrm{mg}, 43 \%$) along with the recovery of 4 ($31.2 \mathrm{mg}, 29 \%$). In the similar manner, $4(107.4 \mathrm{mg}, 0.2 \mathrm{mmol})$ was treated with $\mathrm{TfOH}(17.6 \mu \mathrm{~L}, 0.2 \mathrm{mmol})$ and $\mathrm{H}_{2} \mathrm{O}(3.6 \mu \mathrm{~L}$, $0.2 \mathrm{mmol})$ in $\mathrm{MeCN}(1.25 \mathrm{~mL})$ to give $\mathbf{3 a a}(33.6 \mathrm{mg}, 41 \%)$ along with the recovery of $4(23.6 \mathrm{mg}, 22 \%)$. Also, $4(107.4 \mathrm{mg}$, $0.2 \mathrm{mmol})$ was treated with $\mathrm{H}_{2} \mathrm{O}(3.6 \mu \mathrm{~L}, 0.2 \mathrm{mmol})$ in $\mathrm{MeCN}(1.25 \mathrm{~mL})$ to give 3aa ($31.7 \mathrm{mg}, 39 \%$) along with the recovery of $4(24.0 \mathrm{mg}, 22 \%)$.
[Method iii] To a solution of $4(215.0 \mathrm{mg}, 0.4 \mathrm{mmol})$ in $\mathrm{MeCN}(2.5 \mathrm{~mL})$ was added $\operatorname{TMSOTf}(72.2 \mu \mathrm{~L}, 0.4 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. After being stirred at room temperature for 24 h , the reaction mixture was quenched with NaHCO_{3} aq. and extracted with AcOEt. The organic layer was dried over MgSO_{4} and concentrated in vacuo to dryness. By ${ }^{1} \mathrm{H}$ NMR analysis of the residue using 1,2dicholoroethen as an internal standard, the yield of $\mathbf{3 a a}(9 \%)$ and recovery rate of $\mathbf{4}(39 \%)$ were determined because some unidentified products were converted into 3aa in silica gel. In the similar manner, $\mathbf{4}(215.0 \mathrm{mg}, 0.4 \mathrm{mmol})$ was treated with TfOH ($35.1 \mu \mathrm{~L}, 0.4 \mathrm{mmol}$) in $\mathrm{MeCN}(1.25 \mathrm{~mL})$ to give 3aa (10% by NMR analysis) along with the recovery of $\mathbf{4}(23 \%$ by NMR analysis).

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of New Compounds

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{5 a}$

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{5 a}$

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{5 c}$

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{5 c}$

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{3 a a}$

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 3aa

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{3 a b}$

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{3} \mathbf{a b}$

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{3 a c}$

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 3ac

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{3 a d}$

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{3 a d}$

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{3 a e}$

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 3ae

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 3af

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 3af

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{3 a g}$

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{3 a g}$

208

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{3 a h}$

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{3 a h}$

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 3ai

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 3ai

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{3 a j}$

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 3aj

$$
\begin{gathered}
\text { Z } \\
\text { ín } \\
i \\
i
\end{gathered}
$$

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{3} \mathbf{b a}$

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{3} \mathbf{b a}$

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{3 b b}$

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{3} \mathbf{b b}$

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{3 b i}$

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 3bi

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{3 c a}$

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{3 c b}$

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{3} \mathbf{c b}$

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 7aa

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 7aa

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{7 a b}$

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 7ab

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 7ai

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 7ai

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 7ba

${ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $7 \mathbf{b a}$

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 7ca

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 7ca

[^0]: DCM: dichloromethane. DCE: 1,2-dichloroethane. CPME: cyclopentyl methyl ether. DME: 1,2-dimethoxyethane.
 ${ }^{a}$ Isolated yields or recovery. ${ }^{b}$ Not determined. ${ }^{c}$ Conditions: rt for 2 h and then $80^{\circ} \mathrm{C}$ for $4 \mathrm{~h} .{ }^{d} \mathrm{Temp} .: ~ 80^{\circ} \mathrm{C}$.
 ${ }^{e}$ Temp.: $-40{ }^{\circ} \mathrm{C}$.

[^1]: ${ }^{1}$ X. Yu, Z. Guo, H. Song, Y. Liu and Q. Wang, Adv. Synth. Catal., 2018, 360, 1077.
 ${ }^{2}$ N. Kobayashi, K. Kaneko, S. Amemiya, K. Noguchi, M. Yamanaka and A. Saito, Chem. Commun., 2019, 55, 8619.

