Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Electrochemical synthesis of sulfonated benzothiophenes using 2-alkynylthioanisoles and sodium sulfinates

Ming-Ming Zhang,^a Yu Sun,^a Wan-Wan Wang,^c Kang-Kang Chen,^a Wen-Chao Yang,^{*a} and Lei Wang^b*

^a Institute of Pesticide, School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, P. R. China; Email: wccyang@126.com
^b Advanced Research Institute and Department of Chemistry, Taizhou University, Taizhou, Zhejiang, 318000, P. R. China; Email: leiwang@chnu.edu.cn
^c College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou, Jiangsu 225300, P. R. China

Table of Contents for Supporting Information

1. General considerations	2
2. Preparation of the starting materials	2
3. General procedure for the synthesis of 3a	3
4. Failed substrates	4
5. Cyclic voltammetry study	4
6. Characterization data of products	6
7. ¹ H, ¹³ C-NMR and HRMS spectra of the products	22

1. General considerations

All reactions were carried out under air. ¹H NMR and ¹³C NMR spectra were measured on a Bruker Avance NMR spectrometer (400 MHz/100 MHz; 600 MHz/151 MHz respectively) in CDCl₃ as solvent and recorded in ppm relative to internal tetramethylsilane standard. 1H NMR data are reported as follows: δ, chemical shift; coupling constants (*J* are given in Hertz, Hz) and integration. Abbreviations to denote the multiplicity of a particular signal were s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), and br (broad singlet). High resolution mass spectroscopic data of the products were collected on an Agilent Technologies 6540 UHD Accurate-Mass Q-TOF LC/MS using ESI.

2. Preparation of the starting materials

Sodium sulfinates and 2-alkynylthioanisoles derivatives were prepared according to reported methods (W. Kim, H. Y. Kim and K. Oh, *Org. Lett.*, 2020, **22**, 6319-6323; W.-C. Yang, P. Dai, K. Luo, Y.-G. Ji and L. Wu, *Adv. Synth. Catal.*, 2017, **359**, 2390-2395; W. Liu, Y.-Q. Hu, X.-Y. Hong, G.-X. Li, X.-B. Huang, W.-X. Gao, M.-C. Liu, Y. Xia, Y.-B. Zhou and H.-Y. Wu, *Chem. Commun.*, 2018, **54**, 14148-14151). The chemicals and solvents were purchased from commercial supplierseither Aldrich (USA), Energy-Chemical (Shanghai) or Shanghai Chemical Company (P. R. China). All solvents were dried and freshly distilled in N₂ prior to use. Products were purified by flash chromatographyon 200–300 mesh silica gel.

3. General procedure for the synthesis of 3a

A 50 mL vial was charged with 2-alkynylthioanisole (**1a**, 0.20 mmol), sodium sulfinate (**2a**, 0.40 mmol), TBAB (2.0 equiv, 0.40 mmol), CH₃CN:H₂O (1:1, 2.0 mL) and a magnetic stir bar. The vial was equipped with platinum electrode (1.5 cm×1.5 cm×0.3 mm) as cathode, RVC (1.2 cm×1.0 cm×1.0 mm) as the anode at constant current = 2.0 mA, at room temperature for 10 h. After completion of the reaction, the mixture was concentrated to yield the crude product, which was further purified by flash chromatography (silica gel, petroleum ether/ethyl acetate = 30 : 1) to give the desired product **3a**.

4. Failed substrates:

5. Cyclic voltammetry study

The cyclic voltammetries were determined in an electrolyte of TBAB (0.20 M) in MeCN/H₂O (1:1, 10 mL) under air using a glassy carbon disk working electrode, a Pt wire and Ag/AgCl as counter and reference electrode. The scan rate is 100 mV/s.

Figure S1. Cyclic voltammograms of **1a**, **2a** in 0.20 M TBAB in a mixed solvent of H_2O/CH_3CN (v:v = 1:1, 10 mL) using glassy carbon electrode, Pt wire and Ag/AgCl as counter and reference electrode at 100 mV/s scan rate.

- (a) TBAB (0.20 M) (black line)
- (b) TBAB (0.20 M) + 1a (0.10 M) (red line)
- (c) TBAB (0.20 M) + 2a (0.20 M) (blue line)
- (d) TBAB (0.20 M) + 1a (0.10 M) + 2a (0.20 M) (green line)

As shown in Figure S1, the mixture of **1a** and TBAB had no obvious oxidation peak (red curve b) in the range of 0.0–2.0 V vs Ag/AgCl, which revealed that compound **1a** could not be oxidized within the examined potential window. Meanwhile, TsNa readily underwent the anodic oxidation, and its oxidative peak appears at 0.95 V vs Ag/AgCl (blue curve c). The same oxidative peak at 0.98 V vs Ag/AgCl was observed (green curve d) when the mixture of **1a**, **2a** and TBAB was employed. These results implied that radical intermediates are possibly involved in this electrochemical oxidation system, and TsNa was likely to be first oxidized at the anode.

6. Characterization data of products

2-Phenyl-3-tosylbenzo[b]thiophene (3a)¹

The sulfonylation product was purified by flash column chromatography on silica gel (PE/ AcOEt = 30:1) to afford the **3a** as a white solid (56.06 mg, 77% yield). ¹H NMR (600 MHz, CDCl₃) δ 8.54 (d, J = 8.3 Hz, 1H), 7.71 (d, J = 8.1 Hz, 1H), 7.47–7.43(m, 3H), 7.41–7.37 (m, 1H), 7.37–7.31 (m, 5H), 7.05 (d, J = 8.2 Hz, 2H), 2.25 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 152.5, 143.8, 139.4, 138.1, 136.1, 131.7, 130.5, 130.3, 129.4, 129.4, 127.6, 127.0, 125.9, 125.5, 124.6, 121.7, 21.5. The characterization data matched the literature.¹

2-Phenyl-3-(phenylsulfonyl)benzo[b]thiophene (3b)²

The sulfonylation product was purified by flash column chromatography on silica gel (PE/ AcOEt = 30:1) to afford the **3b** as a yellow solid (55.3 mg, 79% yield). ¹H NMR (600 MHz, CDCl₃) δ 8.56 (d, J = 8.4 Hz, 1H), 7.70 (d, J = 8.1 Hz, 1H), 7.55 (d, J = 7.7 Hz, 2H), 7.43 (t, J = 7.7 Hz, 1H), 7.37 – 7.28 (m, 7H), 7.23 (t, J = 7.8 Hz, 2H).¹³C NMR (151 MHz, CDCl₃) δ 152.9, 142.3, 138.1, 136.2, 132.9, 131.6, 130.5, 130.0,

129.54, 128.8, 127.7, 126.9, 126.0, 125.6, 124.6, 121.8. The characterization data matched the literature.²

3-((4-(tert-butyl)Phenyl)sulfonyl)-2-phenylbenzo[b]thiophene (3c)¹

The sulfonylation product was purified by flash column chromatography on silica gel (PE/ AcOEt = 30:1) to afford the **3c** as a yellow solid (52.53 mg, 77% yield). ¹H NMR (600 MHz, CDCl₃) δ 8.58 (d, *J* = 8.3 Hz, 1H), 7.73 (d, *J* = 8.0 Hz, 1H), 7.50 (d, *J* = 8.6 Hz, 2H), 7.47–7.44 (m, 1H), 7.39–7.29 (m, 6H), 7.26 (d, *J* = 8.6 Hz, 2H), 1.19 (s, 9H). ¹³C NMR (151 MHz, CDCl₃) δ 156.7, 152.4, 139.2, 138.1, 136.2, 131.7, 130.5, 130.4, 129.40, 127.6, 126.9, 125.9, 125.7, 125.5, 124.7, 121.7, 35.1, 31.0. The characterization data matched the literature.¹

3-((4-Fluorophenyl)sulfonyl)-2-phenylbenzo[b]thiophene (3d)¹

The sulfonylation product was purified by flash column chromatography on silica gel (PE/ AcOEt = 30:1) to afford the **3d** as a yellow solid (41.22 mg, 56% yield). ¹H NMR (600 MHz, CDCl₃) δ 8.57 (d, *J* = 8.4 Hz, 1H), 7.74 (d, *J* = 8.1 Hz, 1H), 7.56–7.51 (m, 2H), 7.46 (t, *J* = 7.7 Hz, 1H), 7.40–7.36 (m, 2H), 7.35–7.30 (m, 4H), 6.93–6.86 (m, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 165.2 (d, *J* = 255.3 Hz), 152.8, 138.3, 138.1,

136.0, 131.4, 130.5, 130.0, 129.8 (d, J = 9.7 Hz), 129.6, 127.7, 126.1, 125.7, 124.5,
121.8, 115.9 (d, J = 22.6 Hz). The characterization data matched the literature.¹

3-((4-Chlorophenyl)sulfonyl)-2-phenylbenzo[b]thiophene (3e)¹

The sulfonylation product was purified by flash column chromatography on silica gel (PE/ AcOEt = 30:1) to afford the **3e** as a yellow solid (26.11 mg, 34% yield). ¹H NMR (600 MHz, CDCl₃) δ 8.55 (d, *J* = 8.4 Hz, 1H), 7.72 (d, *J* = 8.1 Hz, 1H), 7.48–7.43 (m, 3H), 7.41–7.34 (m, 2H), 7.34–7.30 (m, 4H), 7.20–7.17 (m, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 153.1, 140.7, 139.5, 138.1, 136.0, 131.4, 130.5, 129.7, 129.6, 129.0, 128.4, 127.7, 126.1, 125.7, 124.5, 121.8. The characterization data matched the literature.¹

3-((4-Iodophenyl)sulfonyl)-2-phenylbenzo[b]thiophene (3f)

The sulfonylation product was purified by flash column chromatography on silica gel (PE/ AcOEt = 30:1) to afford the **3f** as a yellow solid (64.74 mg, 68% yield). ¹H **NMR (600 MHz, CDCl₃)** δ 8.54 (d, *J* = 8.3 Hz, 1H), 7.74 (d, *J* = 8.1 Hz, 1H), 7.60–7.57 (dt, 2H), 7.48–7.45 (m, 1H), 7.42–7.31 (m, 6H), 7.25–7.22 (dt, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 153.1, 141.9, 138.1, 138.0, 136.0, 131.4, 130.5, 129.6, 129.6, 128.3, 127.7, 126.1, 125.7, 124.5, 121.8, 100.7.

3-((4-Nitrophenyl)sulfonyl)-2-phenylbenzo[b]thiophene (3g)¹

The sulfonylation product was purified by flash column chromatography on silica gel (PE/ AcOEt = 30:1) to afford the **3g** as a yellow solid (39.5 mg, 50% yield). ¹H NMR (600 MHz, CDCl₃) δ 8.56 (d, J = 8.4 Hz, 1H), 8.06–8.04 (m, 2H), 7.75 (d, J = 8.1 Hz, 1H), 7.68–7.66 (m, 2H), 7.51–7.47 (m, 1H), 7.43–7.38(m, 2H), 7.35–7.29 (m, 4H). ¹³C NMR (151 MHz, CDCl₃) δ 154.3, 150.1, 147.7, 138.1, 135.9, 131.0, 130.5, 130.3, 129.9, 128.6, 128.2, 128.0, 127.9, 126.4, 126.0, 124.3, 123.9, 122.0. The characterization data matched the literature.¹

2-Phenyl-3-((4-(trifluoromethyl)phenyl)sulfonyl)benzo[b]thiophene (3h)¹

The sulfonylation product was purified by flash column chromatography on silica gel (PE) to afford the **3h** as a yellow solid (51 mg, 61% yield). ¹H NMR (600 MHz, CDCl₃) δ 8.58 (d, J = 8.3 Hz, 1H), 7.75 (d, J = 8.1 Hz, 1H), 7.64 (d, J = 8.2 Hz, 2H), 7.50–7.47(m, 3H), 7.42–7.37 (m, 2H), 7.34–7.29 (m, 4H). ¹³C NMR (151 MHz, CDCl₃) δ 153.71, 145.66, 138.17, 136.04, 134.53 (dd, J = 66.3, 33.0 Hz), 131.2, 130.5, 129.7, 129.1, 127.8, 127.5, 126.2, 125.8 (d, J = 6.5 Hz), 124.4, 123.3 (d, J = 271.8 Hz), 121.9. The characterization data matched the literature.¹

2,6-Dimethyl-4-((*m*-tolylsulfonyl)methyl)phenol (3i)²

The sulfonylation product was purified by flash column chromatography on silica gel (PE/AcOEt = 30:1) to afford the **3i** as a yellow solid (40.7mg, 53% yield). ¹H NMR (600 MHz, CDCl₃) δ 8.63 (d, J = 8.3 Hz, 1H), 7.84 (d, J = 8.0 Hz, 1H), 7.66–7.64(m, 1H), 7.53–7.50 (m, 1H), 7.47–7.42 (m, 1H), 7.32–7.24 (m, 5H), 7.23–7.19 (m, 2H), 7.06–7.03(m, 1H).¹³C NMR (151 MHz, CDCl₃) δ 152.1, 139.2, 137.8, 136.9, 133.7, 132.9, 131.1, 131.0, 130.4, 130.4, 129.3, 127.6, 126.3, 125.9, 125.5, 124.9, 121.7. The characterization data matched the literature.²

2-Phenyl-3-(phenylsulfonyl)benzo[b]thiophene (3j)¹

The sulfonylation product was purified by flash column chromatography on silica gel (PE/AcOEt = 30:1) to afford the **3j** as a yellow solid (68.8 mg, 86% yield). ¹H NMR (600 MHz, CDCl₃) δ 8.66 (d, J = 8.4 Hz, 1H), 8.05 (d, J = 1.5 Hz, 1H), 7.73–7.66 (m, 4H), 7.53–7.43 (m, 4H), 7.37–7.32 (m, 2H), 7.31–7.30 (m, 2H), 7.27–7.25 (m, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 152.9, 138.9, 138.1, 136.2, 134.9, 131.8, 131.5, 130.5, 130.1, 129.5, 129.4, 129.1, 128.9, 128.5, 127.8, 127.6, 127.3, 126.0, 125.6, 124.7, 122.1, 121.7. The characterization data matched the literature.¹

3-((4-Methoxyphenyl)sulfonyl)-2-phenylbenzo[b]thiophene (3k)¹

The sulfonylation product was purified by flash column chromatography on silica gel (PE/AcOEt = 15:1) to afford the **3k** as a yellow liquid (40.1 mg, 53% yield). ¹H NMR (600 MHz, CDCl₃) δ 8.55 (d, J = 8.4 Hz, 1H), 7.71 (d, J = 8.1 Hz, 1H), 7.52–7.47 (m, 2H), 7.46–7.42 (m, 1H), 7.40 – 7.30 (m, 6H), 6.74–6.66 (m, 2H), 3.69 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 162.1, 151.01, 137.1, 135.1, 133.0, 130.7, 129.7, 129.4, 128.3, 128.1, 126.6, 124.8, 124.5, 123.6, 120.7, 112.9, 54.5. The characterization data matched the literature.¹

2-phenyl-3-(thiophen-2-ylsulfonyl)benzo[b]thiophene (3m)

The sulfonylation product was purified by flash column chromatography on silica gel (PE/AcOEt = 30:1) to afford the **3m** as a yellow solid (25.2 mg, 35% yield).¹H NMR (600 MHz, CDCl₃) δ 8.52 (d, *J* = 8.3 Hz, 1H), 7.74 (d, *J* = 8.0 Hz, 1H), 7.50–7.34 (m, 9H), 6.86 (t, *J* = 4.3 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 151.8, 142.8, 137.0, 134.6, 132.1, 131.7, 130.5, 129.2, 129.0, 128.5, 126.7, 126.2, 124.9, 124.6, 123.50, 120.80. The characterization data matched the literature.³

2-(p-Tolyl)-3-tosylbenzo[b]thiophene (3n)¹

The sulfonylation product was purified by flash column chromatography on silica gel (PE/AcOEt = 30:1) to afford the **3n** as a yellow solid (54.4 mg, 72% yield). ¹H NMR (600 MHz, CDCl₃) δ 8.50 (d, J = 8.3 Hz, 1H), 7.68 (d, J = 8.0 Hz, 1H), 7.48 (d, J = 8.3 Hz, 2H), 7.41 (t, J = 7.8 Hz, 1H), 7.31 (t, J = 7.6 Hz, 1H), 7.25 (d, J = 8.0 Hz, 2H), 7.13 (d, J = 8.0 Hz, 2H), 7.04 (d, J = 8.3 Hz, 2H), 2.34 (s, 3H), 2.23 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 153.0, 143.8, 139.6, 138.1, 136.2, 130.4, 129.9, 129.4, 128.7, 128.4, 127.0, 125.8, 125.4, 124.5, 121.7, 21.5, 21.4. The characterization data matched the literature.¹

2,6-Di-tert-butyl-4-(1-(phenylsulfonyl)ethyl)phenol (30)²

The sulfonylation product was purified by flash column chromatography on silica gel (PE/AcOEt = 30:1) to afford the **30** as a yellow solid (56.3 mg, 67% yield). ¹H NMR (600 MHz, CDCl₃) δ 8.55 (d, J = 8.3 Hz, 1H), 7.71 (d, J = 8.0 Hz, 1H), 7.43 (t, J = 6.9 Hz, 3H), 7.35–7.31(m, 3H), 7.27 (d, J = 7.6 Hz, 2H), 7.01 (d, J = 7.7 Hz, 2H), 2.24 (s, 3H), 1.30 (s, 9H). ¹³C NMR (151 MHz, CDCl₃) δ 152.8, 152.6, 143.6, 139.3, 138.1, 136.3, 130.2, 130.0, 129.2, 128.6, 127.1, 125.8, 125.4, 124.6, 121.7, 34.8, 31.3, 21.5. The characterization data matched the literature.²

2-(4-Fluorophenyl)-3-tosylbenzo[b]thiophene (3p)¹

The sulfonylation product was purified by flash column chromatography on silica gel (PE/AcOEt = 30:1) to afford the **3p** as a yellow solid (52.72 mg, 69% yield). ¹H NMR (600 MHz, CDCl₃) δ 8.53 (d, J = 8.4 Hz, 1H), 7.71 (d, J = 8.1 Hz, 1H), 7.48–7.42 (m, 3H), 7.37–7.31 (m, 3H), 7.06 (d, J = 8.2 Hz, 2H), 7.02 (t, J = 8.6 Hz, 2H), 2.25 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 162.4 (d, J = 250.0 Hz), 150.1, 143.0, 138.3, 137.0, 135.0, 131.4 (d, J = 8.3 Hz), 129.6, 128.4, 126.5 (d, J = 3.5 Hz), 125.9, 125.0, 124.6, 123.6, 120.7, 113.8 (d, J = 21.8 Hz), 20.4. The characterization data matched the literature.¹

2-(4-Chlorophenyl)-3-tosylbenzo[b]thiophene (3q)²

The sulfonylation product was purified by flash column chromatography on silica gel (PE/AcOEt = 30:1) to afford the **3q** as a yellow solid (50.1 mg, 63% yield). ¹H NMR (600 MHz, CDCl₃) δ 8.52 (d, J = 8.4 Hz, 1H), 7.71 (d, J = 8.1 Hz, 1H), 7.47 (d, J = 8.3 Hz, 2H), 7.44 (t, J = 7.8 Hz, 1H), 7.35 (t, J = 7.6 Hz, 1H), 7.31–7.27 (m, 4H), 7.07 (d, J = 8.3 Hz, 2H), 2.25 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 150.8, 144.1, 139.3, 138.1, 136.0, 135.8, 131.8, 130.7, 130.1, 129.5, 127.9, 127.0, 126.0, 125.8, 124.6, 121.8, 21.5. The characterization data matched the literature.²

2-(4-Methoxyphenyl)-3-tosylbenzo[b]thiophene (3r)¹

The sulfonylation product was purified by flash column chromatography on silica gel (PE/AcOEt = 15:1) to afford the **3r** as a yellow solid (60.68 mg, 77% yield). ¹H NMR (600 MHz, CDCl₃) δ 8.60 (d, J = 8.3 Hz, 1H), 7.76 (d, J = 8.0 Hz, 1H), 7.54 (d, J = 8.3 Hz, 2H), 7.49 (t, J = 7.7 Hz, 1H), 7.41–7.37(m, 3H), 7.12 (d, J = 8.3 Hz, 2H), 6.93 (d, J = 8.6 Hz, 2H), 3.87 (s, 3H), 2.32 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 160.6, 152.8, 143.8, 139.6, 138.0, 136.3, 131.9, 129.8, 129.4, 126.9, 125.8, 125.4, 124.5, 123.7, 121.7, 113.2, 55.4, 21.5. The characterization data matched the literature.¹

2-(4-Ethoxyphenyl)-3-tosylbenzo[b]thiophene (3s)

The sulfonylation product was purified by flash column chromatography on silica gel (PE/AcOEt = 30:1) to afford the **3s** as a yellow solid (60.38 mg, 74% yield). ¹H NMR (600 MHz, CDCl₃) δ 8.60 (d, *J* = 8.3 Hz, 1H), 7.76 (d, *J* = 8.1 Hz, 1H), 7.54 (d, *J* = 8.3 Hz, 2H), 7.50–7.48(m, 1H), 7.41–7.38(m, 1H), 7.37–7.33 (m, 2H), 7.11 (d, *J* = 8.3 Hz, 2H), 6.94–6.89 (m, 2H), 4.11–4.08(m, 2H), 2.31 (s, 3H), 1.46 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 160.0, 153.0, 143.7, 139.6, 138.0, 136.3, 131.9, 129.7, 129.3, 126.9, 125.8, 125.4, 124.5, 123.5, 121.6, 113.6, 63.6, 21.5, 14.8.

2-(o-Tolyl)-3-tosylbenzo[b]thiophene (3t)

The sulfonylation product was purified by flash column chromatography on silica gel (PE/AcOEt = 30:1) to afford the **3t** as a yellow solid (36.29 mg, 48% yield). ¹H NMR (600 MHz, CDCl₃) δ 8.58 (d, *J* = 8.3 Hz, 1H), 7.71 (d, *J* = 8.0 Hz, 1H), 7.47–7.43 (m, 3H), 7.34 (t, *J* = 7.6 Hz, 1H), 7.28 (t, *J* = 7.5 Hz, 1H), 7.17–7.11 (m, 2H), 7.06–7.04 (m, 3H), 2.25 (s, 3H), 2.00 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 151.7, 144.0, 139.2, 138.5, 138.1, 135.8, 131.2, 130.2, 129.8, 129.6, 129.4, 127.3, 125.8, 125.5, 124.9, 124.5, 121.8, 21.5, 20.2. HRMS (ESI) calcd for C₂₂H₁₉O₂S₂ [M+H]⁺ 379.0826, found 379.0825. The characterization data matched the literature.³

2-(2-Chlorophenyl)-3-tosylbenzo[b]thiophene (3u)³

The sulfonylation product was purified by flash column chromatography on silica gel (PE/AcOEt = 30:1) to afford the **3u** as a white liquid (33.43 mg, 42% yield). ¹H NMR (**600 MHz, CDCl₃**) δ 8.53 (d, *J* = 8.3 Hz, 1H), 7.81 (d, *J* = 8.1 Hz, 1H), 7.66 (d, *J* = 8.3 Hz, 2H), 7.53–7.50(m, 1H), 7.47–7.40 (m, 4H), 7.38–7.33 (m, 1H), 7.18 (d, *J* = 8.2 Hz, 2H), 2.35 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 148.4, 144.1, 138.8, 138.8, 135.3, 134.2, 132.5, 131.6, 130.8, 129.5, 129.3, 127.3, 126.0, 125.8, 125.8, 124.4, 121.9, 21.5.

HRMS (ESI) calcd for $C_{21}H_{16}ClO_2S_2$ [M+H]⁺ 399.0280, found 399.0279. The characterization data matched the literature.³

2-(Naphthalen-1-yl)-3-tosylbenzo[b]thiophene(3v)

The sulfonylation product was purified by flash column chromatography on silica gel (PE/AcOEt = 30:1) to afford the **3v** as a yellow solid (45.5 mg, 55% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.68 (d, J = 8.4 Hz, 1H), 7.85 (t, J = 4.7 Hz, 1H), 7.75 (d, J = 8.0 Hz, 2H), 7.49 (t, J = 7.8 Hz, 1H), 7.45–7.31 (m, 4H), 7.25 (d, J = 7.6 Hz, 2H), 7.21–7.11 (m, 2H), 6.77 (d, J = 7.9 Hz, 2H), 2.10 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 149.7, 143.7, 138.8, 138.4, 135.9, 133.0, 132.9, 132.3, 130.0, 129.3, 129.0, 128.7, 128.0, 127.3, 126.3, 125.9, 125.9, 125.7, 125.7, 124.7, 124.5, 121.8, 21.3.

2-(*m*-Tolyl)-3-tosylbenzo[*b*]thiophene (3w)

The sulfonylation product was purified by flash column chromatography on silica gel (PE/AcOEt = 30:1) to afford the **3w** as a yellow solid (63.5 mg, 84% yield). ¹H NMR (600 MHz, CDCl₃) δ 8.63 (d, J = 8.4 Hz, 1H), 7.79 (d, J = 8.1 Hz, 1H), 7.55 (d, J = 8.3 Hz, 2H), 7.52 (t, J = 7.8 Hz, 1H), 7.42 (t, J = 7.6 Hz, 1H), 7.30–7.25 (m, 2H), 7.22 (d, J = 7.3 Hz, 1H), 7.16–7.10 (m, 3H), 2.37 (s, 3H), 2.34 (s, 3H). ¹³C NMR (151 MHz,

CDCl₃) δ 152.7, 143.8, 139.5, 138.1, 137.2, 136.2, 131.5, 131.0, 130.1, 129.3, 127.5, 127.1, 125.8, 125.5, 124.6, 121.7, 21.5, 21.3. HRMS (ESI) calcd for C₂₂H₁₉O₂S₂ [M+H]⁺ 379.0826, found 379.0828. The characterization data matched the literature.³

2-(3-Fluorophenyl)-3-tosylbenzo[b]thiophene (3x)

The sulfonylation product was purified by flash column chromatography on silica gel (PE/AcOEt = 30:1) to afford the **3x** as a yellow solid (59.59mg, 78% yield). ¹H NMR (600 MHz, CDCl₃) δ 8.62 (d, *J* = 8.3 Hz, 1H), 7.80 (d, *J* = 8.1 Hz, 1H), 7.57 (d, *J* = 8.0 Hz, 2H), 7.53 (t, *J* = 7.8 Hz, 1H), 7.44 (t, *J* = 7.6 Hz, 1H), 7.37 (dd, *J* = 14.3, 7.3 Hz, 1H), 7.26–7.21 (m, 1H), 7.16 (t, *J* = 8.1 Hz, 3H), 7.10 (d, *J* = 9.2 Hz, 1H), 2.34 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 161.7 (d, *J* = 247.3 Hz), 150.3, 144.2, 139.2, 138.1, 135.9, 133.6 (d, *J* = 8.5 Hz), 130.8, 129.5, 129.2 (d, *J* = 8.4 Hz), 127.0, 126.5 (d, *J* = 3.1 Hz), 126.1, 125.8, 124.7, 121.8, 117.6 (d, *J* = 22.9 Hz), 116.4 (d, *J* = 20.9 Hz), 21.5. HRMS (ESI) calcd for C₂₁H₁₆FO₂S₂ [M+H]⁺ 383.0576, found 383.0576. The characterization data matched the literature.³

4-(3-Tosylbenzo[b]thiophen-2-yl)pyridine (3y)

The sulfonylation product was purified by flash column chromatography on silica gel (PE/AcOEt = 7:1) to afford the **3y** as a colorless liquid (43.8 mg, 60% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.62 (d, *J* = 4.8 Hz, 1H), 8.38 (d, *J* = 8.3 Hz, 1H), 7.75 (d, *J* = 7.5 Hz, 5H), 7.43–7.30 (m, 3H), 7.13 (d, *J* = 7.8 Hz, 2H), 2.25 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 151.1, 150.8, 148.9, 144.0, 139.0, 138.6, 135.8, 135.6, 130.4, 129.6, 127.3, 126.9, 125.9, 125.9, 124.5, 123.9, 122.0, 21.5. HRMS (ESI) calcd for C₂₀H₁₆NO₂S₂ [M+H]⁺ 366.0622, found 366.0620.

2-(Thiophen-2-yl)-3-tosylbenzo[b]thiophene (3z)¹

The sulfonylation product was purified by flash column chromatography on silica gel (PE/AcOEt = 30:1) to afford the **3z** as a yellow liquid (40.7 mg, 55% yield). ¹H NMR (600 MHz, CDCl₃) δ 8.67 (d, J = 8.4 Hz, 1H), 7.75 (d, J = 8.1 Hz, 1H), 7.59 (d, J = 8.3 Hz, 2H), 7.53–7.47 (m, 3H), 7.41 (t, J = 7.6 Hz, 1H), 7.16–7.11 (m 3H), 2.31 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 144.6, 144.0, 139.1, 138.2, 136.5, 132.2, 131.0, 130.7, 129.4, 129.3, 127.4, 126.5, 126.0, 125.8, 124.8, 121.6, 21.5. The characterization data matched the literature.³

2-(Thiophen-3-yl)-3-tosylbenzo[b]thiophene (3aa)

The sulfonylation product was purified by flash column chromatography on silica gel (PE/AcOEt = 30:1) to afford the **3aa** as a yellow liquid (47.36 mg, 64% yield). ¹H **NMR (600 MHz, CDCl₃)** δ 8.66 (d, *J* = 8.3 Hz, 1H), 7.76 (d, *J* = 8.1 Hz, 1H), 7.53–7.49 (m, 4H), 7.41 (t, *J* = 7.4 Hz, 1H), 7.34 (s, 1H), 7.26 (d, *J* = 5.1 Hz, 1H), 7.12 (d, *J* = 7.8 Hz, 2H), 2.31 (s, 3H). ¹³C **NMR (151 MHz, CDCl₃)** δ 147.1, 143.9, 139.3, 137.9, 136.4, 131.1, 130.2, 130.1, 129.4, 127.8, 126.8, 125.9, 125.6, 125.0, 124.6, 121.6, 21.5. HRMS (ESI) calcd for C₁₉H₁₅O₂S₃ [M+H]⁺ 371.0234, found 371.0235. The characterization data matched the literature.³

6-Methoxy-2-phenyl-3-tosylbenzo[b]thiophene (3ab)¹

The sulfonylation product was purified by flash column chromatography on silica gel (PE/AcOEt = 15:1) to afford the **3ab** as a yellow solid (63 mg, 80% yield). ¹H NMR (600 MHz, CDCl₃) δ 8.49 (d, J = 9.1 Hz, 1H), 7.52 (d, J = 8.0 Hz, 2H), 7.44–7.38 (m, 5H), 7.22 (s, 1H), 7.12 (t, J = 7.5 Hz, 3H), 3.85 (s, 3H), 2.31 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 158.0, 149.7, 143.8, 139.7, 139.4, 131.8, 130.6, 130.0, 129.8, 129.4, 129.3, 127.6, 126.9, 125.3, 115.8, 104.0, 55.6, 21.5. The characterization data matched the literature.¹

6-Fluoro-2-phenyl-3-tosylbenzo[b]thiophene (3ac)²

The sulfonylation product was purified by flash column chromatography on silica gel (PE/AcOEt = 30:1) to afford the **3ac** as a yellow solid (38.2 mg, 50% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.55 – 8.51 (m, 1H), 7.43 – 7.35 (m, 4H), 7.31 (d, *J* = 4.0 Hz, 4H), 7.20 – 7.16(m, 1H), 7.03 (d, *J* = 7.8 Hz, 2H), 2.24 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 160.8 (d, *J* = 247.9 Hz), 152.0 (d, J = 3.6 Hz), 144.0, 139.2, 139.1, 132.6, 131.3, 130.5, 130.1, 129.6, 129.4, 127.7, 127.0, 126.1 (d, J = 9.0 Hz), 114.9 (d, *J* = 23.7 Hz), 107.9 (d, *J* = 25.4 Hz), 21.5. The characterization data matched the literature.²

6-Chloro-2-phenyl-3-tosylbenzo[b]thiophene (3ad)²

The sulfonylation product was purified by flash column chromatography on silica gel (PE/AcOEt = 30:1) to afford the **3ad** as a yellow solid (57.6 mg, 72% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.48 (d, *J* = 8.9 Hz, 1H), 7.68 (s, 1H), 7.41–7.38(m, 4H), 7.31 (d, *J* = 3.7 Hz, 4H), 7.03 (d, *J* = 7.8 Hz, 2H), 2.24 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 152.7, 144.1, 139.1, 139.1, 134.7, 131.9, 131.2, 130.5, 129.6, 129.4, 127.7, 127.0, 126.7, 125.6, 121.3, 21.5. The characterization data matched the literature.²

6-Bromo-2-phenyl-3-tosylbenzo[b]thiophene (3ae)¹

The sulfonylation product was purified by flash column chromatography on silica gel (PE/AcOEt = 30:1) to afford the **3ae** as a yellow solid (67.03 mg, 76% yield). ¹H NMR

(400 MHz, CDCl₃) δ 8.42 (d, *J* = 8.9 Hz, 1H), 7.84 (s, 1H), 7.53 (d, *J* = 8.9 Hz, 1H), 7.41–7.37 (m, 3H), 7.32 (d, *J* = 4.2 Hz, 4H), 7.03 (d, *J* = 7.9 Hz, 2H), 2.24 (s, 3H). ¹³C **NMR (101 MHz, CDCl₃)** δ 152.7, 144.1, 139.5, 139.1, 135.0, 131.1, 130.5, 130.4, 129.7, 129.4, 129.4, 127.7, 127.0, 125.8, 124.3, 119.7, 21.5. The characterization data matched the literature.¹

6-Methyl-2-phenyl-3-tosylbenzo[b]thiophene (3af)¹

The sulfonylation product was purified by flash column chromatography on silica gel (PE/AcOEt = 30:1) to afford the **3af** as a yellow solid (54.43 mg, 72% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.39 (d, J = 8.5 Hz, 1H), 7.47–7.43(m, 3H), 7.38–7.26 (m, 5H), 7.23 (d, J = 8.5 Hz, 1H), 7.01 (d, J = 7.8 Hz, 2H), 2.37 (s, 3H), 2.22 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 151.3, 143.8, 139.5, 138.5, 135.8, 133.9, 131.8, 130.5, 130.0, 129.4, 129.3, 127.6, 127.6, 127.0, 124.2, 121.5, 21.5, 21.4. The characterization data matched the literature.¹

References for known compounds:

[1] J. Xu, X. Yu, J. Yan and Q. Song, Org. Lett., 2017, 19, 6292–6295.

[2] J. Yan, J. Xu, Y. Zhou, J. Chen and Q. Song, Org. Chem. Front., 2018, 5, 1483–1487.

[3] D. Zhang, J. Cai, J. Du, X. Wang, W. He, Z. Yang, C. Liu, Z. Fang and K. Guo, J. Org. Chem., 2021, 86, 2593–2601.

7. ¹H and ¹³C NMR spectra of the products

- 152.18 - 152.18 - 139.25 - 138.782 - 131.79 - 131.19 - 132.50 - 125

