Copper-Catalyzed ortho-selective direct sulfenylation of N -aryl-
7-azaindoles with Disulfides
Ru-Jian. Yu, ${ }^{\text {a }}$ Chun-Yan. Zhang, ${ }^{\text {a }}$ Xiang Zhou, ${ }^{\text {a }}$ Yan-Shi. Xiong, ${ }^{\text {a* }}$ and Xue-Min. Duan ${ }^{\text {a* }}$
a Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science \& Technology Normal University, Nanchang, 330013, Jiangxi, P. R. China
E-mail: xiongys1214@163.com or duanxuemin@126.com
Table of Contents

1. General Information S2
2. Experimental Section S2
2.1 Preparation of substrate S2
2.2 Optimization pf Reaction Condition S3
2.3 General Procedures for the Thiolation S4
2.4 Mechanism Investigation S15
3. Reference S16
4. Copies of ${ }^{\mathbf{1}} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR spectra of products S17

1. General information

Reagents and solvents. All starting materials, which were purchased from commercial sources, were used without further purification. Solvents for column chromatography were technical standard. Column chromatography was performed with silica gel 200-400 mesh. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR spectra were recorded on Bruker Avance 400 Mhz or 500 Mhz spectrometer. Chemical shifts in ${ }^{1} \mathrm{H}$ NMR spectra were reported in parts per million (ppm) downfield from the internal standard $\mathrm{Me}_{4} \mathrm{Si}$ (TMS). Chemical shifts in ${ }^{13} \mathrm{C}$ NMR spectra were reported relative to the central line of the chloroform signal ($\delta=77.0 \mathrm{ppm}$). Peaks were labelled as singlet (s), doublet (d), triplet (t), quarter (q), and multiplet (m). High resolution mass spectra were obtained with a Shimadzu LCMS-IT-TOF mass spectrometer. Analytical TLC was performed using EM separations percolated silica gel 0.2 mm layer UV 254 fluorescent sheets.

2.1 Synthesis of starting materials

General procedure (A) for the synthesis of \boldsymbol{N}-aryl-7-azaindoles (1a-1ai) ${ }^{1}$

To a mixture of 7 -azaindole ($423 \mathrm{mg}, 3.58 \mathrm{mmol}$), copper iodide $(5.7 \mathrm{mg}, 0.03 \mathrm{mmol})$ and potassium phosphate ($1.33 \mathrm{~g}, 6.29 \mathrm{mmol}$) under a N_{2} atmosphere is added racemic trans-1,2-diaminocyclohexane ($0.035 \mathrm{~mL}, 0.3 \mathrm{mmol}$), iodobenzene (0.335 $\mathrm{mL}, 3 \mathrm{mmol}$) followed by anhydrous dioxane (5 mL). The resulting suspension is heated in an oil bath at $110^{\circ} \mathrm{C}$. with magnetic stirring for 12 hours. The resulting mixture is filtered through a short pad of silica gel, washing the cake well with ethyl acetate. The filtrate is evaporated to leave a brown oil. and further purified by flash
chromatography on a 10 -gram silica gel cartridge by elution with heptane:ethyl acetate (20:1). Clean fractions containing the product are combined and evaporated to give 1-phenyl-7-azaindole as a light brown oil.

General procedure (B) for the synthesis of disulfides $\mathbf{2}^{2}$

To a mixture of p-toluenethiol ($620 \mathrm{mg}, 5 \mathrm{~mol}$) and $\mathrm{NaIO}_{4}(1.06 \mathrm{~g}, 5 \mathrm{~mol})$, the mixture was grind for 5 minutes, he reaction mixture was then diluted with water and extracted with ethyl acetate. After the combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure, the residue was purified by flash column chromatography on silica gel using petroleum ether to afford the pure product 2.

2.2 Optimization of Reaction Condition

Table S1. Screening of catalyst ${ }^{a}$

${ }^{a}$ Reactions were carried out by using $\mathbf{1 a}(0.1 \mathrm{mmol}), \mathbf{2 a}(0.15 \mathrm{mmol})$, metal catalyst $(0.02 \mathrm{mmol})$ and DCE $(1 \mathrm{~mL})$ stirred at $120^{\circ} \mathrm{C}$ for $12 \mathrm{~h} .{ }^{b}$ Isolated yields.

Table S2. Screening of solvent ${ }^{a}$

Entry	Cat.	Solvent	Temp. $\left({ }^{\circ} \mathrm{C}\right)$	Yield $(\%)^{b}$
1	$\mathrm{Cu}(\mathrm{OAc})_{2}$	DCE	120	50
2	$\mathrm{Cu}(\mathrm{OAc})_{2}$	toluene	120	55
3	$\mathrm{Cu}(\mathrm{OAc})_{2}$	DMF	120	--
4	$\mathrm{Cu}(\mathrm{OAc})_{2}$	DMSO	120	37
5	$\mathrm{Cu}(\mathrm{OAc})_{2}$	NMP	120	--
6	$\mathrm{Cu}(\mathrm{OAc})_{2}$	chlorbenzene	120	38
7	$\mathrm{Cu}(\mathrm{OAc})_{2}$	forbenzene	120	24
8	$\mathrm{Cu}(\mathrm{OAc})_{2}$	para-xylene	120	52
9	$\mathrm{Cu}(\mathrm{OAc})_{2}$	mesitylene	$\mathbf{1 2 0}$	57
10	$\mathrm{Cu}(\mathrm{OAc})_{2}$	1.4-dioxane	120	--

${ }^{a}$ Reactions were carried out by using $1 \mathbf{1 a}(0.1 \mathrm{mmol}), \mathbf{2 a}(0.15 \mathrm{mmol}), \mathrm{Cu}(\mathrm{OAc})_{2}(0.02 \mathrm{mmol})$ and solvent $(1 \mathrm{~mL})$ stirred at $120^{\circ} \mathrm{C}$ for $12 \mathrm{~h} .{ }^{b}$ Isolated yields.

Table S3. Screening of additives ${ }^{\boldsymbol{a}}$

Entry	Cat.	Additive	Temp. $\left({ }^{\circ} \mathrm{C}\right)$	Yield(\%)
1	$\mathrm{Cu}(\mathrm{OAc})_{2}$	$\mathrm{Li}_{2} \mathrm{CO}_{3}$	120	--
2	$\mathrm{Cu}(\mathrm{OAc})_{2}$	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	120	--
3	$\mathrm{Cu}(\mathrm{OAc})_{2}$	$\mathrm{~K}_{2} \mathrm{CO}_{3}$	120	--
4	$\mathrm{Cu}(\mathrm{OAc})_{2}$	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	120	--
5	$\mathrm{Cu}(\mathrm{OAc})_{2}$	NaHCO_{3}	120	23
6	$\mathrm{Cu}(\mathrm{OAc})_{2}$	KHCO_{3}	120	33
7	$\mathrm{Cu}(\mathrm{OAc})_{2}$	$\mathrm{~K}_{2} \mathrm{HPO}_{4}$	120	24
$\mathbf{8}$	$\mathrm{Cu}(\mathrm{OAc})_{2}$	$\mathbf{P h C O O H}_{2}$	$\mathbf{1 2 0}$	$\mathbf{7 0}$
9	$\mathrm{Cu}(\mathrm{OAc})_{2}$	Piv-OH	120	57
10	$\mathrm{Cu}(\mathrm{OAc})_{2}$	AcOH	120	44

${ }^{a}$ Reactions were carried out by using $1 \mathbf{a}(0.1 \mathrm{mmol})$, 2a $(0.15 \mathrm{mmol}), \mathrm{Cu}(\mathrm{OAc})_{2}(0.02 \mathrm{mmol})$, addtive $(0.2 \mathrm{~mol})$ and mesitylene $(1 \mathrm{~mL})$ stirred at $120^{\circ} \mathrm{C}$ for $12 \mathrm{~h} .{ }^{b}$ Isolated yields.

Table S4. Screening of additives equivalent and reaction

Entry	Cat.	Additive	Temp. $\left({ }^{\circ} \mathrm{C}\right)$	Yield(\%)
1	$\mathrm{Cu}(\mathrm{OAc})_{2}$	$\operatorname{PhCOOH}(1 \mathrm{eq})$	120	72
2	$\mathrm{Cu}(\mathrm{OAc})_{2}$	$\operatorname{PhCOOH}(0.5 \mathrm{eq})$	120	70
3	$\mathrm{Cu}(\mathrm{OAc})_{2}$	$\operatorname{PhCOOH}(0.2 \mathrm{eq})$	120	77
4	$\mathrm{Cu}(\mathrm{OAc})_{2}$	$\operatorname{PhCOOH}(0.1 \mathrm{eq})$	120	44
$\mathbf{5}$	$\mathrm{Cu}(\mathrm{OAc})_{2}$	$\operatorname{PhCOOH}(0.2 \mathrm{eq})$	100	55
$\mathbf{6}$	$\mathbf{C u}(\mathbf{O A c})_{2}$	$\operatorname{PhCOOH}(\mathbf{0 . 2} \mathbf{e q})$	$\mathbf{1 4 0}$	$\mathbf{8 7}$
7	--	$\operatorname{PhCOOH}(0.2 \mathrm{eq})$	140	--

${ }^{a}$ Reactions were carried out by using $\mathbf{1 a}(0.1 \mathrm{mmol}), \mathbf{2 a}(0.15 \mathrm{mmol}), \mathrm{Cu}(\mathrm{OAc})_{2}(0.02 \mathrm{mmol})$, addtive and mesitylene (1 mL) stirred for $12 \mathrm{~h} .{ }^{b}$ Isolated yields.

2.3 General Procedures for the Thiolation

To a oven-dried sealed tube was added N -aryl-7-azaindoles $\mathbf{1}(0.2 \mathrm{mmol})$, disulfide $\mathbf{2}$ (0.3 mmol), $\mathrm{Cu}(\mathrm{OAc})_{2}(7.2 \mathrm{mg}, 0.04 \mathrm{mmol}), \mathrm{PhCOOH}(4.9 \mathrm{mg}, 0.04 \mathrm{mmol})$ and mesitylene $(2.0 \mathrm{~mL})$. The mixture was stirred at $140^{\circ} \mathrm{C}$ for 12 hours until the complete consumption of $\mathbf{1}$ as monitored by TLC analysis. The reaction mixture was then diluted with water and extracted with ethyl acetate. After the combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure, the residue was purified by flash column chromatography on silica gel using petroleum ether/ethyl acetate as eluent $(8: 1, \mathrm{~V} / \mathrm{V})$ to afford the pure product 3 .

1-(2-(phenylthio)phenyl)-1H-pyrrolo[2,3-b]pyridine (3a)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 8.32(\mathrm{dd}, J=4.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{dd}, J=7.8,1.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.50-7.45(\mathrm{~m}, 1 \mathrm{H}), 7.42-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.34(\mathrm{dd}, J=6.1,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-$
$7.25(\mathrm{~m}, 1 \mathrm{H}), 7.24(\mathrm{dd}, J=2.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.13$ (m, 3H), 7.10 (dd, $J=7.8,4.8$ $\mathrm{Hz}, 1 \mathrm{H}$), 6.61 (d, $J=3.6 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 147.59,143.01$, 137.06, 135.62, 133.89, 133.48, 132.04, 129.60, 129.25, 129.15, 128.99, 127.76, 127.46, 124.76, 120.69, 116.34, 101.03; HRMS (ESI): m / z calcd. for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{~S}$, [M+H]+: 303.0950, found: 303.0942.

1-(4-methyl-2-(phenylthio)phenyl)-1H-pyrrolo[2,3-b]pyridine (3b)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 8.33-8.27(\mathrm{~m}, 1 \mathrm{H}), 7.92(\mathrm{dd}, J=7.8,1.3 \mathrm{~Hz}, 1 \mathrm{H})$, 7.41-7.33 (m, 2H), 7.21 (d, $J=5.8 \mathrm{~Hz}, 4 \mathrm{H}$), 7.19-7.11 (m, 3H), 7.07 (dd, $J=7.8,4.7$ $\mathrm{Hz}, 1 \mathrm{H}), 6.57(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : $148.15,143.34,139.08,135.07,134.75,134.42,132.99,131.58,129.58,128.98$, 128.88, 128.85, 128.82, 127.15, 120.43, 116.23, 100.68, 21.10; HRMS (ESI): m / z calcd. for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{~S},[\mathrm{M}+\mathrm{H}]^{+}: 317.1107$, found: 317.1103.

1-(4-methoxy-2-(phenylthio)phenyl)-1H-pyrrolo[2,3-b]pyridine (3c)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 8.33$ (dd, $J=4.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.95 (dd, $J=7.8,1.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H})$, 7.27 (d, $J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.15(\mathrm{~m}, 3 \mathrm{H}), 7.10(\mathrm{dd}, J=7.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{dd}, J$ $=8.6,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 158.72,141.81,136.37,132.25,131.50,129.07,128.06$, 126.73, 119.71, 115.76, 115.20, 111.93, 99.79, 54.52; HRMS (ESI): m / z calcd. for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{OS},[\mathrm{M}+\mathrm{H}]^{+}: 333.1056$, found: 333.1052 .
1-(4-(tert-butyl)-2-(phenylthio)phenyl)-1H-pyrrolo[2,3-b]pyridine (3d)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 8.31$ (dd, $\left.J=4.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.90(\mathrm{dd}, J=7.8,1.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.48-7.45(\mathrm{~m}, 1 \mathrm{H}), 7.45-7.41$ (m, 2H), 7.35 (s, 1H), 7.21-7.17 (m, 2H), 7.16$7.11(\mathrm{~m}, 2 \mathrm{H}), 7.11-7.07(\mathrm{~m}, 1 \mathrm{H}), 7.08-7.04(\mathrm{~m}, 1 \mathrm{H}), 6.56(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.29(\mathrm{~s}$, $9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 151.79,148.08,143.38,135.19,134.67,133.89$, $131.15,130.15,129.58,128.74,128.62,126.96,125.33,120.40,116.21,34.78,31.13$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{~S},[\mathrm{M}+\mathrm{H}]^{+}: 359.1576$, found: 359.1568 .
1-(4-fluoro-2-(phenylthio)phenyl)-1H-pyrrolo[2,3-b]pyridine (3e)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 8.34(\mathrm{dd}, J=4.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{dd}, J=7.8,1.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.42-7.38(\mathrm{~m}, 1 \mathrm{H}), 7.38-7.34(\mathrm{~m}, 3 \mathrm{H}), 7.29-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.12(\mathrm{dd}, J=7.8$, $4.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{dd}, J=8.1,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{dd}, J=9.1,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{~d}, J=$ $3.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 163.56,161.08,148.14,143.60,139.73$, $139.65,133.65,131.98,131.78,130.52,130.43,129.43,129.31,129.03,128.61$, $120.45,116.77,116.52,113.97,113.74,101.19$; ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : 111.91; HRMS (ESI): m / z calcd. for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{FN}_{2} \mathrm{~S}$, $[\mathrm{M}+\mathrm{H}]^{+}: 321.0856$, found: 321.0849.

1-(4-chloro-2-(phenylthio)phenyl)-1H-pyrrolo[2,3-b]pyridine (3f)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 8.33(\mathrm{dd}, J=4.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{dd}, J=7.8,1.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.41-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.29(\mathrm{~m}, 3 \mathrm{H}), 7.25(\mathrm{dd}, J=5.5,3.7 \mathrm{~Hz}, 3 \mathrm{H}), 7.20(\mathrm{~d}$, $J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{dd}, J=7.8,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 148.07,143.62,138.49,134.90,134.59,134.24,133.11,132.13$, $130.22,130.10,129.35,129.05,128.98,128.36,127.27,120.45,116.59,101.34 ;$ HRMS (ESI): m / z calcd. for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{ClN}_{2} \mathrm{~S},[\mathrm{M}+\mathrm{H}]^{+}: 337.0561$, found: 337.0558.
1-(4-bromo-2-(phenylthio)phenyl)-1H-pyrrolo[2,3-b]pyridine (3g)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 8.32$ (dd, $\left.J=4.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.95$ (dd, $J=7.8,1.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.47(\mathrm{dd}, J=8.3,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.26-$ $7.21(\mathrm{~m}, 3 \mathrm{H}), 7.11(\mathrm{dd}, J=7.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 147.89,143.52,138.64,135.49,133.31,132.95,132.25,130.43$, 130.35, 129.35, 129.11, 129.06, 128.32, 122.62, 120.54, 116.62, 101.42; HRMS (ESI): m / z calcd. for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{BrN}_{2} \mathrm{~S},[\mathrm{M}+\mathrm{H}]^{+}: 381.0056$, found: 381.0048 .

1-(4-iodo-2-(phenylthio)phenyl)-1H-pyrrolo[2,3-b]pyridine (3h)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 8.33-8.26(\mathrm{~m}, 1 \mathrm{H}), 7.92(\mathrm{dd}, J=7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.68$ (dd, $J=8.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.23$ (m, 2H), 7.19 (m, $J=8.1,4.9 \mathrm{~Hz}, 4 \mathrm{H}), 7.09$ (dd, $J=7.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{~d}, J=3.6$ $\mathrm{Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 147.85,143.49,139.68,138.34,136.54$, 132.61, 132.55, 130.67, 129.27, 129.08, 129.03, 128.12, 120.56, 116.61, 101.42, 94.09; HRMS (ESI): m / z calcd. for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{IN}_{2} \mathrm{~S},[\mathrm{M}+\mathrm{H}]^{+}: 482.9917$, found: 482.9910 .

1-(4-nitro-2-(phenylthio)phenyl)-1H-pyrrolo[2,3-b]pyridine (3i)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 8.34(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.14(\mathrm{dd}, J=8.6,2.4 \mathrm{~Hz}, 1 \mathrm{H})$, $8.02(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J$ $=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.15(\mathrm{dd}, J=7.8,4.8 \mathrm{~Hz}, 1 \mathrm{H})$, $6.69(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 147.74,147.17,143.72$, 141.03, 138.87, 134.55, 133.56, 130.91, 129.85, 129.68, 129.49, 129.30, 129.08, 128.36, 125.10, 121.56, 120.75, 117.16, 102.43; HRMS (ESI): m / z calcd. for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S},[\mathrm{M}+\mathrm{H}]^{+}: 348.0801$, found: 348.0811 .
3-(phenylthio)-4-(1H-pyrrolo[2,3-b]pyridin-1-yl)benzonitrile (3j)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 8.36-8.31(\mathrm{~m}, 1 \mathrm{H}), 8.00-7.96(\mathrm{~m}, 1 \mathrm{H}), 7.59(\mathrm{~s}, 2 \mathrm{H})$, $7.44(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.33(\mathrm{~m}, 3 \mathrm{H}), 7.30(\mathrm{dd}, J=7.3,3.3$ $\mathrm{Hz}, 3 \mathrm{H}), 7.17-7.14(\mathrm{~m}, 1 \mathrm{H}), 6.69(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : $147.75,143.74,143.17,139.56,139.01,134.79,133.84,133.40,130.86,130.01$, 129.94, 129.79, 129.65, 129.59, 129.37, 129.19, 128.50, 128.07, 120.78, 117.90, 117.13, 112.49, 102.30; HRMS (ESI): m / z calcd. for $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{~S},[\mathrm{M}+\mathrm{H}]^{+}: 328.0903$, found: 328.0910.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 8.36(\mathrm{dd}, J=4.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.08-8.05(\mathrm{~m}, 1 \mathrm{H})$, 8.00-7.92 (m, 3H), $7.62(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.25(\mathrm{~m}, 1 \mathrm{H})$, 7.19 (dd, $J=5.0,2.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{dd}, J=7.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H})$, $2.51(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 196.66,170.46,147.67,143.38,140.81$, 136.96, 136.43, 133.28, 132.91, 132.23, 131.92, 129.97, 129.19, 128.89, 128.33,
127.96, 127.34, 120.79, 116.80, 101.79, 26.56; HRMS (ESI): m / z calcd. for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{OS},[\mathrm{M}+\mathrm{H}]^{+}: 345.1056$, found: 345.1049 .

1-(2-(phenylthio)-4-(trifluoromethyl)phenyl)-1H-pyrrolo[2,3-b]pyridine (3I)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 8.16(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.40-7.31(\mathrm{~m}, 4 \mathrm{H}), 7.21(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{~m}, 3 \mathrm{H}), 7.09(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H})$, 6.69 (d, $J=3.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 148.47,143.67,139.59$, 136.81, 136.05, 135.67, 133.59, 133.39, 132.16, 132.03, 129.96, 129.17, 129.10, 128.95, 127.76, 127.53, 119.73, 116.50, 99.46; ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta:-62.80$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{~S},[\mathrm{M}+\mathrm{H}]^{+}: 371.0824$, found: 371.0815 .
1-(3-(phenylthio)-[1,1'-biphenyl]-4-yl)-1H-pyrrolo[2,3-b]pyridine (3m)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 8.32(\mathrm{dd}, J=4.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{dd}, J=7.8,1.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.59(\mathrm{~m}, ~ 2 \mathrm{H}), 7.54(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.38(\mathrm{~m}$, $3 \mathrm{H}), 7.37-7.33(\mathrm{~m}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.17-7.10(\mathrm{~m}$, $3 \mathrm{H}), 7.08$ (dd, $J=7.8,4.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 148.16,143.50$, 141.91, 139.79, 136.51, 135.63, 133.97, 131.79, 130.99, 129.42, 128.99, 128.83, 127.74, 127.42, 127.12, 126.70, 120.48, 116.41, 101.01; HRMS (ESI): m / z calcd. for $\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{~S},[\mathrm{M}+\mathrm{H}]^{+}: 379.1263$, found: 379.1251 .
1-(5-methyl-2-(phenylthio)phenyl)-1H-pyrrolo[2,3-b]pyridine (3n)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 8.30(\mathrm{dd}, J=4.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{dd}, J=7.8,1.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{t}, J=2.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.20-7.15(\mathrm{~m}, 3 \mathrm{H}), 7.15-$ $7.11(\mathrm{~m}, 2 \mathrm{H}), 7.09(\mathrm{dd}, J=3.7,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.08-7.05(\mathrm{~m}, 1 \mathrm{H}), 6.57(\mathrm{~d}, J=3.6 \mathrm{~Hz}$, 1H), $2.41(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 148.14,143.41,138.65,137.96$, 135.21, 133.30, 131.18, 130.95, 129.89, 129.51, 128.78, 128.76, 126.82, 120.39, $116.25,100.72,21.01$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{~S},[\mathrm{M}+\mathrm{H}]^{+}: 333.1056$, found: 333.1048 .

1-(2-(phenylthio)-5-(trifluoromethyl)phenyl)-1H-pyrrolo[2,3-b]pyridine (3o)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 8.37(\mathrm{dd}, J=4.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{dd}, J=7.8,1.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.69(\mathrm{~s}, 1 \mathrm{H}), 7.53-7.49(\mathrm{~m}, 1 \mathrm{H}), 7.40(\mathrm{~m}, 3 \mathrm{H}), 7.33-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.21(\mathrm{~d}, J$ $=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{dd}, J=7.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 147.79,143.62,142.62,135.69,134.17,131.19,129.74,129.58$, $129.40,128.95,128.88,126.07,126.03,125.99,125.95,125.52,125.48,125.45$, $125.41,124.91,122.20,120.69,116.83,101.95 ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta:-$ 62.29; HRMS (ESI): m / z calcd. for $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{~S},[\mathrm{M}+\mathrm{H}]^{+}: 371.0824$, found: 371.0817. 1-(5-methoxy-2-(phenylthio)phenyl)-1H-pyrrolo[2,3-b]pyridine (3p)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 8.28(\mathrm{dd}, J=4.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{dd}, J=7.8,1.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~m}, 6 \mathrm{H}), 7.03-6.97$ $(\mathrm{m}, 2 \mathrm{H}), 6.55(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 160.27$, $143.16,140.31,136.73,136.37,129.65,129.27,128.66,126.14,123.84,120.60$, $116.33,115.48,114.73,100.82,55.60 ; \mathrm{HRMS}$ (ESI): m / z calcd. for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{OS}$, $[\mathrm{M}+\mathrm{H}]^{+}: 333.1056$, found: 333.1048 .

1-(3-(phenylthio)thiophen-2-yl)-1H-pyrrolo[2,3-b]pyridine (3q)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 8.31(\mathrm{dd}, J=4.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{dd}, J=7.8,1.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.49-7.45(\mathrm{~m}, 1 \mathrm{H}), 7.39-7.33(\mathrm{~m}, 3 \mathrm{H}), 7.25(\mathrm{~m}, 2 \mathrm{H}), 7.16(\mathrm{dd}, J=7.9,1.7$ $\mathrm{Hz}, 2 \mathrm{H}), 7.08(\mathrm{dd}, J=7.8,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta: 148.11,143.48,137.22,135.61,133.94,132.10,132.01,129.37,129.12$, 128.96, 128.81, 127.65, 127.44, 120.40, 116.36, 100.90; HRMS (ESI): m/z calcd. for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{FN}_{2} \mathrm{~S},[\mathrm{M}+\mathrm{H}]^{+}: 321.0856$, found: 321.0849 .

1-(2-(phenylthio)phenyl)-1H-pyrazolo[3,4-b]pyridine (3r)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 8.58(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.24(\mathrm{~s}, 1 \mathrm{H}), 8.12(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~m}, 5 \mathrm{H}), 7.25-7.17(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 150.46,148.96,136.67,136.23,133.86,132.82,131.43,130.51$,
129.42, 129.07, 128.27, 127.71, 127.11, 117.43, 116.00; HRMS (ESI): m / z calcd. for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{~S},[\mathrm{M}+\mathrm{H}]^{+}: 304.0903$, found: 304.0890 .

3-bromo-1-(2-(phenylthio)phenyl)-1H-pyrrolo[2,3-b]pyridine (3s)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 8.33(\mathrm{dd}, J=4.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{dd}, J=7.9,1.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.45-7.35(\mathrm{~m}, 5 \mathrm{H}), 7.23-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.12(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 146.93,144.90,144.57,136.35,135.71,133.52,132.24,132.09$, $129.22,129.16,128.90,128.16,127.81,127.56,127.54,119.83,116.98,90.06$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{BrN}_{2} \mathrm{~S},[\mathrm{M}+\mathrm{H}]^{+}: 381.0056$, found: 381.0043 .

3-bromo-1-(5-methoxy-2-(phenylthio)phenyl)-1H-pyrrolo[2,3-b]pyridine (3t)

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 8.32-8.26(\mathrm{~m}, 1 \mathrm{H}), 7.83(\mathrm{dd}, J=7.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.55$ (d, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~s}, 1 \mathrm{H}), 7.13(\mathrm{dd}, J=7.9,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.07-7.01(\mathrm{~m}, 5 \mathrm{H})$, $6.99(\mathrm{~m}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 160.26,144.10,139.13$, $136.25,136.04,129.58,128.60,128.47,127.94,126.36,124.23,120.06,116.91$, 115.67, 114.90, 90.04, 55.62; HRMS (ESI): m / z calcd. for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{BrN}_{2} \mathrm{OS}$, $[\mathrm{M}+\mathrm{H}]^{+}$: 411.0161, found: 411.0145 .

4-chloro-1-(2-(phenylthio)phenyl)-1H-pyrrolo[2,3-b]pyridine (3u)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 8.18(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{dt}, J=7.4,1.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.40(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.39-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.14(\mathrm{~m}, 3 \mathrm{H})$, $7.11(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : 148.65, 143.83, 136.90, 136.02, 135.74, 133.67, 133.47, 132.21, 132.11, 129.96, $129.20,129.15,129.00,127.81,127.59,119.74,116.55,99.48$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{ClN}_{2} \mathrm{~S},[\mathrm{M}+\mathrm{H}]^{+}: 337.0561$, found: 337.0564 .

1-(2-(p-tolylthio)phenyl)-1H-pyrrolo[2,3-b]pyridine (3v)

${ }^{1}{ }^{1} \mathrm{~N}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 8.38-8.30(\mathrm{~m}, 1 \mathrm{H}), 7.96(\mathrm{dd}, J=7.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.45$ (dd, $J=7.5,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~m}, 2 \mathrm{H}), 7.24(\mathrm{dd}, J=7.8,1.5$
$\mathrm{Hz}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.11$ (dd, $J=7.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 6.63(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 143.26$, 138.03, 136.85, 136.38, 134.22, 133.15, 130.89, 129.92, 129.57, 129.03, 128.88, 120.64, 116.32, 100.98, 21.08; HRMS (ESI): m / z calcd. for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{~S},[\mathrm{M}+\mathrm{H}]^{+}$: 317.1107 , found: 317.1103 .

1-(2-((4-methoxyphenyl)thio)phenyl)-1H-pyrrolo[2,3-b]pyridine (3w)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 8.32(\mathrm{dd}, J=4.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{dd}, J=7.8,1.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.41(\mathrm{dd}, J=5.5,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.30-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.13-$ $7.07(\mathrm{~m}, 2 \mathrm{H}), 6.80-6.74(\mathrm{~m}, 2 \mathrm{H}), 6.64(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 159.91,148.12,143.55,138.01,135.80,135.68,129.63,129.45$, 128.96, 128.89, 128.79, 126.53, 122.89, 120.49, 116.37, 114.84, 100.94, 99.94, 55.27; HRMS (ESI): m / z calcd. for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{OS},[\mathrm{M}+\mathrm{H}]^{+}: 333.1056$, found: 333.1040.
1-(2-((4-(tert-butyl)phenyl)thio)phenyl)-1H-pyrrolo[2,3-b]pyridine (3x)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 8.30(\mathrm{dd}, J=4.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{dd}, J=7.8,1.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.46(\mathrm{~m}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.36-7.33(\mathrm{~m}, 2 \mathrm{H})$, $7.18(\mathrm{~s}, 4 \mathrm{H}), 7.10(\mathrm{dd}, J=7.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.24(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 150.92,142.82,136.57,136.28,132.27,131.59,129.76$, $129.74,129.15,128.93,127.45,126.06,120.82,116.30,101.03,34.47,31.17$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{~S},[\mathrm{M}+\mathrm{H}]^{+}: 359.1576$, found: 359.1562 .
1-(2-((4-fluorophenyl)thio)phenyl)-1H-pyrrolo[2,3-b]pyridine (3y)

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 8.33(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.46$ (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{q}, J=11.4,9.7 \mathrm{~Hz}, 3 \mathrm{H}), 7.32(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.20$ (m, 2H), 7.12 (dd, $J=7.7,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{t}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.63(\mathrm{~d}, J=3.5 \mathrm{~Hz}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 163.63,161.16,147.38,143.15,136.62,136.16$, $134.70,134.62,132.73,131.41,129.85,129.52,129.40,129.31,129.26,129.05$, 127.71, 120.71, 116.00; ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta:-113.35$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{FN}_{2} \mathrm{~S},[\mathrm{M}+\mathrm{H}]^{+}: 321.0856$, found: 321.0850 .
1-(2-((4-chlorophenyl)thio)phenyl)-1H-pyrrolo[2,3-b]pyridine (3z)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 8.34-8.26(\mathrm{~m}, 1 \mathrm{H}), 7.96(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J$ $=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{dq}, J=14.2,7.2 \mathrm{~Hz}, 3 \mathrm{H}), 7.36(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{q}, J=$ $8.6 \mathrm{~Hz}, 5 \mathrm{H}), 6.62(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 142.67,137.37$, $134.90,133.44,132.71,132.62,129.62,129.47,129.20,129.02,128.45,120.81$, 116.41, 101.29; HRMS (ESI): m / z calcd. for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{ClN}_{2} \mathrm{~S},[\mathrm{M}+\mathrm{H}]^{+}: 337.0561$, found: 337.0552.

1-(2-((4-bromophenyl)thio)phenyl)-1H-pyrrolo[2,3-b]pyridine (3aa)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 8.32-8.27(\mathrm{~m}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.47$ (m, 1H), 7.47-7.42 (m, 2H), 7.39 (dd, $J=7.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.21(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.11$ (dd, $J=7.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.61$ $(\mathrm{d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 142.81,137.54,134.64,133.41$, 132.97, 132.90, 131.90, 129.55, 129.48, 129.17, 128.53, 124.78, 121.40, 120.60, 116.41, 101.26; HRMS (ESI): m / z calcd. for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{BrN}_{2} \mathrm{~S},[\mathrm{M}+\mathrm{H}]^{+}: 381.0056$, found: 381.0040 .

1-(2-((4-nitrophenyl)thio)phenyl)-2,3-dihydro-1H-pyrrolo[2,3-b]pyridine (3ab)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 8.21(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.18(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.81$ $(\mathrm{m}, 3 \mathrm{H}), 7.73(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.63-7.58(\mathrm{~m}, 3 \mathrm{H}), 7.50(\mathrm{dd}, J=7.9,4.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.32(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{dd}, J=7.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.52(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 147.82,146.93,145.71,145.50,144.00,143.36,139.87$, 135.97, 130.62, 130.57, 130.07, 129.27, 129.05, 128.86, 128.13, 126.35, 124.38, 123.37, 120.20, 116.57, 101.35; HRMS (ESI): m / z calcd. for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$, $[\mathrm{M}+\mathrm{H}]^{+}$: 348.0801, found: 348.0797.

1-(2-((2-fluorophenyl)thio)phenyl)-1H-pyrrolo[2,3-b]pyridine (3ac)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 8.35-8.29(\mathrm{~m}, 1 \mathrm{H}), 7.99-7.93(\mathrm{~m}, 1 \mathrm{H}), 7.51-7.46(\mathrm{~m}$, $1 \mathrm{H}), 7.46-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.36(\mathrm{~m}, 2 \mathrm{H}), 7.20(\mathrm{~m}, 1 \mathrm{H}), 7.17-7.13(\mathrm{~m}, 1 \mathrm{H}), 7.10(\mathrm{dd}, J=$ $7.9,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~m}, 2 \mathrm{H}), 6.62(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 162.68,160.21,147.71,143.10,137.28,134.36,133.94,132.01,129.82,129.75$, 129.51, 129.22, 128.99, 128.07, 124.47, 124.43, 121.05, 120.88, 120.67, 116.39, $115.90,115.68 ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta:-107.79$. HRMS (ESI): m / z calcd. for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{FN}_{2} \mathrm{~S},[\mathrm{M}+\mathrm{H}]^{+}: 321.0856$, found: 321.0848 .

1-(2-(m-tolylthio)phenyl)-1H-pyrrolo[2,3-b]pyridine (3ad)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 8.33(\mathrm{dd}, J=4.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{dd}, J=7.8,1.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.48(\mathrm{dd}, J=8.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.34(\mathrm{dd}, J=6.4,1.7 \mathrm{~Hz}$, $2 \mathrm{H}), 7.12-7.09(\mathrm{~m}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 3 \mathrm{H}), 6.99-6.93(\mathrm{~m}, 1 \mathrm{H}), 6.62(\mathrm{~d}, J=3.6$ $\mathrm{Hz}, 1 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta: 147.84,143.23,138.82,136.98$, $135.85,132.96,132.79,132.64,131.87,129.53,129.36,129.12,128.93,128.80$, 128.39, 127.54, 120.53, 116.32, 100.89, 21.10; HRMS (ESI): m / z calcd. for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{~S},[\mathrm{M}+\mathrm{H}]^{+}: 317.1107$, found: 317.0998 .

1-(2-(thiophen-2-ylthio)phenyl)-1H-pyrrolo[2,3-b]pyridine (3ae)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 8.41(\mathrm{dd}, J=4.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{dd}, J=7.8,1.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.41(\mathrm{~m}, 3 \mathrm{H}), 7.37-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.19(\mathrm{~m}, 3 \mathrm{H}), 6.99(\mathrm{dd}, J=5.4,3.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.73(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 142.06,137.83,136.70$, $131.67,130.59,130.02,129.53,128.81,128.74,127.94,127.07,121.47,116.48$, 101.70; HRMS (ESI): m / z calcd. for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{~S}_{2},[\mathrm{M}+\mathrm{H}]^{+}: 309.0515$, found: 309.0503.

1-(2-(propylthio)phenyl)-1H-pyrrolo[2,3-b]pyridine (3af)

${ }^{1} \mathrm{H}$ NMR (400 MHz, CDC13) $\delta: 8.34(\mathrm{dd}, J=4.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{dd}, J=7.8,1.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.53-7.48(\mathrm{~m}, 1 \mathrm{H}), 7.45-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.39(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~m}, J=$ $7.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{dd}, J=7.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta: 147.98,143.41,136.78,136.09,129.61,129.23,129.07,128.98$, $128.77,126.28,120.55,116.33,100.76,34.88,22.04,13.27$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{~S},[\mathrm{M}+\mathrm{H}]^{+}: 269.1107$, found: 269.1099.

1-(2-(cyclohexylthio)phenyl)-1H-pyrrolo[2,3-b]pyridine (3ag)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 8.36-8.29(\mathrm{~m}, 1 \mathrm{H}), 8.05-7.99(\mathrm{~m}, 1 \mathrm{H}), 7.63-7.57(\mathrm{~m}$, $1 \mathrm{H}), 7.49-7.43(\mathrm{~m}, 1 \mathrm{H}), 7.39(\mathrm{dd}, J=6.6,2.6 \mathrm{~Hz}, 3 \mathrm{H}), 7.13(\mathrm{dd}, J=7.8,4.8 \mathrm{~Hz}, 1 \mathrm{H})$, $6.65(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.77-2.67(\mathrm{~m}, 1 \mathrm{H}), 1.76(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.63-1.52(\mathrm{~m}$, $2 \mathrm{H}), 1.48(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.07(\mathrm{q}, J=13.2,10.9 \mathrm{~Hz}, 4 \mathrm{H}), 0.88(\mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}) ;$ ${ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 142.77,138.11,134.41,132.57,130.13,129.46$, $129.11,128.71,127.38,120.89,116.24,100.70,46.06,33.06,25.85,25.52 ;$ HRMS (ESI): m / z calcd. for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{~S},[\mathrm{M}+\mathrm{H}]^{+}: 309.1420$, found: 309.1410 .

1-(2-(benzylthio)phenyl)-1H-pyrrolo[2,3-b]pyridine (3ah)

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 8.38(\mathrm{dd}, J=4.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.06$ (dd, $J=7.8,1.3$ $\mathrm{Hz}, 1 \mathrm{H}), 7.53$ (dd, $J=7.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.37(\mathrm{~m}, 3 \mathrm{H}), 7.27(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 2 \mathrm{H})$, 7.21-7.17 (m, 3H), 7.16-7.09 (m, 2H), $6.66(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 141.84,136.57,135.48,130.85,130.27,129.85,129.26$, 128.86, 128.40, 127.38, 127.19, 116.35, 101.26, 38.43; HRMS (ESI): m / z calcd. for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{~S},[\mathrm{M}+\mathrm{H}]^{+}: 317.1107$, found: 317.0998.
1-(2-(phenylselanyl)phenyl)-1H-pyrrolo[2,3-b]pyridine (3ai)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 8.35$ (dd, $J=4.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.99 (dd, $J=7.8,1.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.46-7.41$ (m, 3H), 7.39 (dd, $J=5.5,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.29$ (dd, $J=7.5,1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.26$ (d, $J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.21$ (q, $J=5.7 \mathrm{~Hz}, 3 \mathrm{H}), 7.13$ (dd, $J=7.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}$), $6.65(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 147.65,143.12,137.66$, 135.39, 134.54, 133.26, 132.57, 129.38, 129.21, 129.07, 128.75, 127.90, 120.67, 116.40, 101.15; HRMS (ESI): m / z calcd. for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{Se},[\mathrm{M}+\mathrm{H}]^{+}: 351.0396$, found: 351.0385 .

Diphenylsulfane 4

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33$ (dd, $\left.J=5.4,3.4 \mathrm{~Hz}, 4 \mathrm{H}\right), 7.31-7.26(\mathrm{~m}, 4 \mathrm{H}), 7.24(\mathrm{~d}, J=1.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.22-7.19(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 135.75,131.00,129.15,127.00$.

Procedure for gram-scale synthesis of compound 3a

To a oven-dried sealed tube was added N-aryl- 7 -azaindoles 1 a ($970 \mathrm{mg}, 5 \mathrm{~mol}$), diphenyl disulfide 2a ($1635 \mathrm{mg}, 7.5 \mathrm{~mol}$), $\mathrm{Cu}(\mathrm{OAc})_{2}(181.4 \mathrm{mg}, 1 \mathrm{~mol}), \mathrm{PhCOOH}$ ($122 \mathrm{mg}, 1 \mathrm{mmol}$) and mesitylene (50 mL). The mixture was stirred at $140^{\circ} \mathrm{C}$ for 12 hours until the complete consumption of $\mathbf{1}$ as monitored by TLC analysis. The reaction mixture was then diluted with water and extracted with ethyl acetate. After the combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure, the residue was purified by flash column chromatography on silica gel using petroleum ether/ethyl acetate as eluent (8:1, V/V) to afford the pure product 3a 1208 mg of 80% yield.

Procedure for removal the directed group 7-azaindoles

To a oven-dried sealed tube was added 1-(2-(phenylthio)phenyl)-1H-pyrrolo[2,3blpyridine 3 a ($60.4 \mathrm{mg}, 0.2 \mathrm{mmol}$), $\mathrm{NaOMe}(54.0 \mathrm{mg}, 1 \mathrm{mmol})$ and DMSO (5 mL). The mixture was stirred at $140^{\circ} \mathrm{C}$ for 4 hours until the complete consumption of $\mathbf{3 a}$ as monitored by TLC analysis. The reaction mixture was then diluted with water and extracted with ethyl acetate. After the combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure, the residue was purified by flash column chromatography on silica gel using petroleum ether/ethyl acetate as eluent (20:1, V/V) to afford the pure product 429.7 mg of 80% yield.

2.4 Mechanism investigation

Procedures for the radical trapping and control experiment

To a 5 mL tube equipped with a magnetic stirring bar, N-aryl-7-azaindole $\mathbf{1 a}$ (19.4 mg , 0.1 mmol), diphenyl disulfide 2a ($32.7 \mathrm{mg}, 0.15 \mathrm{mmol}$), $\mathrm{Cu}(\mathrm{OAc})_{2}(3.6 \mathrm{mg}, 0.02$ mmol), $\mathrm{PhCOOH}(2.4 \mathrm{mg}, 0.02 \mathrm{mmol}$), 2,2,6,6-tetramethylpiperidineoxy (TEMPO, $46.8 \mathrm{mg}, 0.3 \mathrm{mmol}$) and mesitylene (1 mL) were added. No special precautions were taken to exclude moisture and air. The reaction was stirred at $140^{\circ} \mathrm{C}$ for 12 h .

To a 5 mL tube equipped with a magnetic stirring bar, N-aryl-7-azaindole $\mathbf{1 a}(19.4 \mathrm{mg}$, 0.1 mmol), diphenyl disulfide 2a ($32.7 \mathrm{mg}, 0.15 \mathrm{mmol}$), $\mathrm{Cu}(\mathrm{OAc})_{2}(3.6 \mathrm{mg}, 0.02$ mmol), $\mathrm{PhCOOH}(2.4 \mathrm{mg}, 0.02 \mathrm{mmol})$, 2,6-di-tert-butyl-4-methylphenol (BHT, 66 $\mathrm{mg}, 0.3 \mathrm{mmol})$ and mesitylene $(1 \mathrm{~mL})$ were added. No special precautions were taken to exclude moisture and air. The reaction was stirred at $140^{\circ} \mathrm{C}$ for 12 h .

Procedures of 1a reacted with 6

To a solution of 4-methylbenzenethiol $6(24.8 \mathrm{mg}, 0.2 \mathrm{mmol}), \mathrm{Cu}(\mathrm{OAc})_{2}(3.6 \mathrm{mg}$, $0.02 \mathrm{mmol})$, $\mathrm{PhCOOH}(2.4 \mathrm{mg}, 0.02 \mathrm{mmol})$ and mesitylene $(1 \mathrm{~mL})$ were added. No special precautions were taken to exclude moisture and air. The reaction was stirred at $140{ }^{\circ} \mathrm{C}$ for 12 h . The reaction mixture was then diluted with water and extracted with ethyl acetate. After the combined organic layers were washed with brine, dried over
$\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure, the residue was purified by flash column chromatography on silica gel to afford the pure product $\mathbf{2 v}(4.9 \mathrm{mg}, 20 \%$ yield).

$H-D$ exchange and KIE experiments

To a oven-dried sealed tube was added N-aryl-7-azaindoles $\mathbf{1}(38.8 \mathrm{mg}, 0.2 \mathrm{mmol})$, disulfide $\mathbf{2 a}$ ($65.4 \mathrm{mg}, 0.3 \mathrm{mmol}$), $\mathrm{Cu}(\mathrm{OAc})_{2}(7.2 \mathrm{mg}, 0.04 \mathrm{mmol}), \mathrm{PhCOOH}(4.9 \mathrm{mg}$, $0.04 \mathrm{mmol}), \mathrm{D}_{2} \mathrm{O}(40 \mathrm{mg}, 2 \mathrm{mmol})$ and mesitylene $(2.0 \mathrm{~mL})$. The mixture was stirred at $140^{\circ} \mathrm{C}$ for 2 hours. The reaction mixture was then diluted with water and extracted with ethyl acetate. After the combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure, the residue was purified by flash column chromatography on silica gel using petroleum ether/ethyl acetate as eluent (20:1, V/V) to recovery $\mathbf{1 a}$.

Procedure for the synthesis of 1a-d To a oven-dried sealed tube was added N-aryl-7-azaindoles $1(38.8 \mathrm{mg}, 0.2 \mathrm{mmol}),\left[\left(\mathrm{RhCp}_{2} \mathrm{Cl}_{2}\right)\right] \mathrm{Cl}_{2}(6.18 \mathrm{mg}, 0.01 \mathrm{~mol})$, $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(40 \mathrm{mg}, 0.2 \mathrm{mmol}), \mathrm{D}_{2} \mathrm{O}(40 \mathrm{mg}, 2 \mathrm{mmol})$ and toluene $(2.0 \mathrm{~mL})$. The mixture was stirred at $120^{\circ} \mathrm{C}$ for 4 hours. The reaction mixture was then diluted with water and extracted with ethyl acetate. After the combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure, the residue was purified by flash column chromatography on silica gel using petroleum ether/ethyl acetate as eluent ($20: 1, \mathrm{~V} / \mathrm{V}$) to afford the $\mathbf{1 a - d}(36 \mathrm{mg}$ of 90% yield and 92% of deuterium).

Procedures of KIE experiments

To a 5 mL tube equipped with a magnetic stirring bar, N-aryl-7-azaindole 1a (19.4 mg , 0.1 mmol), diphenyl disulfide 2a ($32.7 \mathrm{mg}, 0.15 \mathrm{mmol}$), $\mathrm{Cu}(\mathrm{OAc})_{2}(3.6 \mathrm{mg}, 0.02$ mmol), $\mathrm{PhCOOH}(2.4 \mathrm{mg}, 0.02 \mathrm{mmol})$ and mesitylene (1 mL) were added. No special precautions were taken to exclude moisture and air. The reaction was stirred at $140^{\circ} \mathrm{C}$ for 2 h . The reaction mixture was then diluted with water and extracted with ethyl acetate. After the combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure, the residue was purified by flash column chromatography on silica gel using petroleum ether/ethyl acetate as eluent ($8: 1, \mathrm{~V} / \mathrm{V}$) to afford the pure product 3a 4.68 mg of 15.5% yield.

To a 5 mL tube equipped with a magnetic stirring bar, 1a-d ($20.0 \mathrm{mg}, 0.1 \mathrm{mmol}$), diphenyl disulfide 2a ($32.7 \mathrm{mg}, 0.15 \mathrm{mmol}$), $\mathrm{Cu}(\mathrm{OAc})_{2}$ ($3.6 \mathrm{mg}, 0.02 \mathrm{mmol}$), $\mathrm{PhCOOH}(2.4 \mathrm{mg}, 0.02 \mathrm{mmol})$ and mesitylene (1 mL) were added. No special precautions were taken to exclude moisture and air. The reaction was stirred at $140^{\circ} \mathrm{C}$
for 2 h . The reaction mixture was then diluted with water and extracted with ethyl acetate. After the combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure, the residue was purified by flash column chromatography on silica gel using petroleum ether/ethyl acetate as eluent $(8: 1, \mathrm{~V} / \mathrm{V})$ to afford the pure product $\mathbf{3 a}{ }^{\prime} 4.01 \mathrm{mg}$ of 13.2% yield.

Procedures of investigate the role of PhCOOH

To a 25 mL tube equipped with a magnetic stirring bar, $\mathrm{CuO}(160 \mathrm{mg}, 2 \mathrm{~mol})$ and $\mathrm{PhCOOH}(732 \mathrm{mg}, 6 \mathrm{~mol})$ was diulated in $10 \mathrm{~mL}\left(\mathrm{~V} \mathrm{H}_{2} \mathrm{O} / \mathrm{MeOH}=1: 1\right)$, the mixture was reflux for 4 h , and extraction gave the pure $\mathrm{Cu}(\mathrm{PhCOOH})_{2}$.

To a oven-dried sealed tube was added N-aryl-7-azaindoles 1a ($38.8 \mathrm{mg}, 0.2 \mathrm{mmol}$), diphenyl disulfide 2a ($65.4 \mathrm{mg}, 0.3 \mathrm{mmol}), \mathrm{Cu}(\mathrm{PhCOO})_{2}(12.1 \mathrm{mg}, 0.04 \mathrm{~mol})$, $\mathrm{PhCOOH}(4.9 \mathrm{mg}, 0.04 \mathrm{mmol})$ and mesitylene 2 mL . The mixture was stirred at 140 ${ }^{\circ} \mathrm{C}$ for 12 hours. The reaction mixture was then diluted with water and extracted with ethyl acetate. After the combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure, the residue was purified by flash column chromatography on silica gel using petroleum ether/ethyl acetate as eluent ($8: 1, \mathrm{~V} / \mathrm{V}$) to afford the pure product 3a 7.25 mg of 12% yield.

To a oven-dried sealed tube was added N-aryl-7-azaindoles $\mathbf{1 a}$ ($38.8 \mathrm{mg}, 0.2 \mathrm{mmol}$), diphenyl disulfide 2a ($65.4 \mathrm{mg}, 0.3 \mathrm{mmol}$), $\mathrm{Cu}(\mathrm{PhCOO})_{2}(12.1 \mathrm{mg}, 0.04 \mathrm{~mol})$ and mesitylene 2 mL . The mixture was stirred at $140{ }^{\circ} \mathrm{C}$ for 12 hours. The reaction mixture was then diluted with water and extracted with ethyl acetate. After the combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure, the residue was purified by flash column chromatography on silica gel using petroleum ether/ethyl acetate as eluent $(8: 1, \mathrm{~V} / \mathrm{V})$ to afford the pure product 3a 13.28 mg of 5% yield.

2. Reference

[1] Vats, T. K.; Mishra, A.; Deb, I. Adv. Synth. Catal. 2017, 360, 2291.
[2] Coelho, F. L.; Campo, L. F. Tetrahedron. Lett. 2017, 14, 2330.

Copies of ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR spectra of products
${ }^{1} \mathrm{H}$ NMR spectrum of 3 a in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of 3 a in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of 3 b in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of 3 b in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of 3 c in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of 3 c in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of 3 d in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of 3 d in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of 3 e in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of 3 e in CDCl_{3}

${ }^{19} \mathrm{~F}$ NMR spectrum of 3 e in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of 3 f in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of 3 f in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 g}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of 3 g in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of 3 h in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of 3 h in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of 3 i in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of 3 i in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of 3 j in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of 3 j in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of 3 k in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of 3 k in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of 31 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of 31 in CDCl_{3}

${ }^{19} \mathrm{~F}$ NMR spectrum of 31 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of 3 m in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of 3 m in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of 3 n in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of 3 n in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of 3 o in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of 30 in CDCl_{3}

${ }^{19} \mathrm{~F}$ NMR spectrum of 30 in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of 3 p in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of $3 p$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of 3 q in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of 3 q in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of 3 r in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of 3 r in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of 3 s in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of 3 s in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of 3 t in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of $3 t$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of 3 u in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of 3 u in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of 3 v in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of 3 v in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of 3 w in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of $3 w$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of 3 x in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of $3 x$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of 3 y in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of $3 y$ in CDCl_{3}

${ }^{19} \mathrm{~F}$ NMR spectrum of 3 y in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of $3 z$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of $3 z$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of 3aa in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of 3aa in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of 3 ab in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of 3 ab in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of 3 ac in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of 3 ac in CDCl_{3}

${ }^{19} \mathrm{~F}$ NMR spectrum of 3ac in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of 3ad in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of 3ad in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of 3ae in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of 3ae in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of 3af in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of 3 af in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of 3 ag in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of 3 ag in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of 3ah in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of 3 ah in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of 3ai in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of 3ai in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of 3ai in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of 3ai in CDCl_{3}

