Copper-Catalyzed ortho-selective direct sulfenylation of N-aryl-

7-azaindoles with Disulfides

Ru-Jian. Yu,^a Chun-Yan. Zhang,^a Xiang Zhou,^a Yan-Shi. Xiong,^{a*} and Xue-Min. Duan^{a*}

 Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, Jiangxi, P. R. China.
E-mail: xiongys1214@163.com or duanxuemin@126.com

Table of Contents

1. General Information S2
2. Experimental Section S2
2.1 Preparation of substrate ······S2
2.2 Optimization pf Reaction Condition ······S3
2.3 General Procedures for the Thiolation ······S4
2.4 Mechanism Investigation·····S15
3. Reference ······S16
4. Copies of ¹ H, ¹³ C and ¹⁹ F NMR spectra of productsS17

1. General information

Reagents and solvents. All starting materials, which were purchased from commercial sources, were used without further purification. Solvents for column chromatography were technical standard. Column chromatography was performed with silica gel 200-400 mesh. ¹H, ¹³C and ¹⁹F NMR spectra were recorded on Bruker Avance 400 Mhz or 500 Mhz spectrometer. Chemical shifts in ¹H NMR spectra were reported in parts per million (ppm) downfield from the internal standard Me₄Si (TMS). Chemical shifts in ¹³C NMR spectra were reported relative to the central line of the chloroform signal ($\delta = 77.0$ ppm). Peaks were labelled as singlet (s), doublet (d), triplet (t), quarter (q), and multiplet (m). High resolution mass spectra were obtained with a Shimadzu LCMS-IT-TOF mass spectrometer. Analytical TLC was performed using EM separations percolated silica gel 0.2 mm layer UV 254 fluorescent sheets.

2.1 Synthesis of starting materials

General procedure (A) for the synthesis of N-aryl-7-azaindoles (1a-1ai)¹

$$\begin{array}{c} \text{Cul (10 mol%)} \\ \hline \\ \text{N} \\ \text{N} \\ \text{H} \end{array} + \begin{array}{c} \\ \text{K}_{3}\text{PO}_{4} (2.0 \text{ equiv.}) \\ \text{trans-1,2-diaminocyclohexane} \\ 1,4-\text{dioxane, 110 °C} \end{array}$$

To a mixture of 7-azaindole (423 mg, 3.58 mmol), copper iodide (5.7 mg, 0.03 mmol) and potassium phosphate (1.33 g, 6.29 mmol) under a N_2 atmosphere is added racemic *trans*-1,2-diaminocyclohexane (0.035 mL, 0.3 mmol), iodobenzene (0.335 mL, 3 mmol) followed by anhydrous dioxane (5 mL). The resulting suspension is heated in an oil bath at 110 °C. with magnetic stirring for 12 hours. The resulting mixture is filtered through a short pad of silica gel, washing the cake well with ethyl acetate. The filtrate is evaporated to leave a brown oil. and further purified by flash

chromatography on a 10-gram silica gel cartridge by elution with heptane:ethyl acetate (20:1). Clean fractions containing the product are combined and evaporated to give 1-phenyl-7-azaindole as a light brown oil.

General procedure (B) for the synthesis of disulfides 2²

To a mixture of *p*-toluenethiol (620 mg, 5 mol) and NaIO₄ (1.06 g, 5 mol), the mixture was grind for 5 minutes, he reaction mixture was then diluted with water and extracted with ethyl acetate. After the combined organic layers were washed with brine, dried over Na_2SO_4 , and concentrated under reduced pressure, the residue was purified by flash column chromatography on silica gel using petroleum ether to afford the pure product **2**.

2.2 Optimization of Reaction Condition

	N + PhS	SSPh Metal of 120	cat.→	N SPh
			{	
1	la 2	2a	3a	
Entry	Cat.	Solvent	Temp.(℃)	Yield(%) ^b
1	CuCl	DCE	120	<5
2	CuBr	DCE	120	
3	CuI	DCE	120	
4	CuCl ₂	DCE	120	13
5	CuBr ₂	DCE	120	34
6	Cu(OAc) ₂	DCE	120	50
7	Cu(OTf) ₂	DCE	120	
8	Pd(OAc) ₂	DCE	120	
9	Ni(OAc) ₂	DCE	120	
10	Co(OAc) ₂	DCE	120	

Table S1. Screening of catalyst^a

^{*a*} Reactions were carried out by using **1a** (0.1 mmol), **2a** (0.15 mmol), metal catalyst (0.02 mmol) and DCE (1 mL) stirred at 120 °C for 12 h.^{*b*} Isolated yields.

Table S2. Screening of solvent^a

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
Entry	Cat.	Solvent	Temp.(℃)	Yield(%) ^b
1	Cu(OAc) ₂	DCE	120	50
2	Cu(OAc) ₂	toluene	120	55
3	Cu(OAc) ₂	DMF	120	
4	Cu(OAc) ₂	DMSO	120	37
5	Cu(OAc) ₂	NMP	120	
6	Cu(OAc) ₂	chlorbenzene	120	38
7	Cu(OAc) ₂	forbenzene	120	24
8	Cu(OAc) ₂	para-xylene	120	52
9	Cu(OAc) ₂	mesitylene	120	57
10	$Cu(OAc)_2$	1.4-dioxane	120	

^{*a*} Reactions were carried out by using **1a** (0.1 mmol), **2a** (0.15 mmol), Cu(OAc)₂ (0.02 mmol) and solvent (1 mL) stirred at 120°C for 12 h.^{*b*} Isolated yields.

Table S3. Screening of additives^a

	+ PhSSPt	Cu(AOc) ₂ (20 mo		
N		Additive	N	SPh
1a	2 a	120 °C,12h	3a	
Entry	Cat.	Additive	Temp.(°C)	Yield(%)
1	Cu(OAc) ₂	Li ₂ CO ₃	120	
2	Cu(OAc) ₂	Na ₂ CO ₃	120	
3	Cu(OAc) ₂	K_2CO_3	120	
4	Cu(OAc) ₂	Cs_2CO_3	120	
5	Cu(OAc) ₂	NaHCO ₃	120	23
6	Cu(OAc) ₂	KHCO ₃	120	33
7	Cu(OAc) ₂	K_2HPO_4	120	24
8	Cu(OAc) ₂	PhCOOH	120	70
9	Cu(OAc) ₂	Piv-OH	120	57
10	Cu(OAc) ₂	AcOH	120	44

^{*a*} Reactions were carried out by using **1a** (0.1 mmol), **2a** (0.15 mmol), Cu(OAc)₂ (0.02 mmol), addtive (0.2 mol) and mesitylene (1 mL) stirred at 120°C for 12 h.^{*b*} Isolated yields.

TableS4. Screeningofadditivesequivalentandreactiontemperature^a

1		PhSSPh Cu(OAc) ₂ PhCOOH 2a mesitylene,T	N N 3a	SPh
Entry	Cat.	Additive	Temp.(℃)	Yield(%)
1	Cu(OAc) ₂	PhCOOH(1 eq)	120	72
2	Cu(OAc) ₂	PhCOOH(0.5 eq)	120	70
3	Cu(OAc) ₂	PhCOOH(0.2 eq)	120	77
4	Cu(OAc) ₂	PhCOOH(0.1 eq)	120	44
5	Cu(OAc) ₂	PhCOOH(0.2 eq)	100	55
6	Cu(OAc) ₂	PhCOOH(0.2 eq)	140	87
7		PhCOOH(0.2 eq)	140	

^{*a*} Reactions were carried out by using **1a** (0.1 mmol), **2a** (0.15 mmol), $Cu(OAc)_2$ (0.02 mmol), addive and mesitylene (1 mL) stirred for 12 h.^{*b*} Isolated yields.

2.3 General Procedures for the Thiolation

To a oven-dried sealed tube was added *N*-aryl-7-azaindoles **1** (0.2 mmol), disulfide **2** (0.3 mmol), Cu(OAc)₂ (7.2 mg, 0.04 mmol), PhCOOH (4.9 mg, 0.04 mmol) and mesitylene (2.0 mL). The mixture was stirred at 140°C for 12 hours until the complete consumption of **1** as monitored by TLC analysis. The reaction mixture was then diluted with water and extracted with ethyl acetate. After the combined organic layers were washed with brine, dried over Na₂SO₄, and concentrated under reduced pressure, the residue was purified by flash column chromatography on silica gel using petroleum ether/ethyl acetate as eluent (8:1, V/V) to afford the pure product **3**.

1-(2-(phenylthio)phenyl)-1H-pyrrolo[2,3-b]pyridine (3a)

¹H NMR (400 MHz, CDCl₃) δ : 8.32 (dd, J = 4.8, 1.5 Hz, 1H), 7.95 (dd, J = 7.8, 1.5 Hz, 1H), 7.50-7.45 (m, 1H), 7.42-7.36 (m, 2H), 7.34 (dd, J = 6.1, 1.5 Hz, 2H), 7.27-

7.25 (m, 1H), 7.24 (dd, J = 2.2, 1.2 Hz, 1H), 7.20-7.13 (m, 3H), 7.10 (dd, J = 7.8, 4.8 Hz, 1H), 6.61 (d, J = 3.6 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ : 147.59, 143.01, 137.06, 135.62, 133.89, 133.48, 132.04, 129.60, 129.25, 129.15, 128.99, 127.76, 127.46, 124.76, 120.69, 116.34, 101.03; HRMS (ESI): m/z calcd. for C₁₉H₁₅N₂S, [M+H]⁺: 303.0950, found: 303.0942.

1-(4-methyl-2-(phenylthio)phenyl)-1H-pyrrolo[2,3-b]pyridine (3b)

¹H NMR (400 MHz, CDCl₃) δ : 8.33-8.27 (m, 1H), 7.92 (dd, J = 7.8, 1.3 Hz, 1H), 7.41-7.33 (m, 2H), 7.21 (d, J = 5.8 Hz, 4H), 7.19-7.11 (m, 3H), 7.07 (dd, J = 7.8, 4.7 Hz, 1H), 6.57 (d, J = 3.6 Hz, 1H), 2.34 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ : 148.15, 143.34, 139.08, 135.07, 134.75, 134.42, 132.99, 131.58, 129.58, 128.98, 128.88, 128.85, 128.82, 127.15, 120.43, 116.23, 100.68, 21.10; HRMS (ESI): m/z calcd. for C₂₀H₁₇N₂S, [M+H]⁺: 317.1107, found: 317.1103.

1-(4-methoxy-2-(phenylthio)phenyl)-1H-pyrrolo[2,3-b]pyridine (3c)

¹H NMR (400 MHz, CDCl₃) δ : 8.33 (dd, J = 4.8, 1.5 Hz, 1H), 7.95 (dd, J = 7.8, 1.5 Hz, 1H), 7.37 (d, J = 8.6 Hz, 1H), 7.33 (d, J = 3.6 Hz, 1H), 7.29 (d, J = 1.8 Hz, 1H), 7.27 (d, J = 1.5 Hz, 1H), 7.21-7.15 (m, 3H), 7.10 (dd, J = 7.8, 4.8 Hz, 1H), 6.90 (dd, J = 8.6, 2.8 Hz, 1H), 6.82 (d, J = 2.8 Hz, 1H), 6.60 (d, J = 3.6 Hz, 1H), 3.74 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ : 158.72, 141.81, 136.37, 132.25, 131.50, 129.07, 128.06, 126.73, 119.71, 115.76, 115.20, 111.93, 99.79, 54.52; HRMS (ESI): *m/z* calcd. for C₂₀H₁₇N₂OS, [M+H]⁺: 333.1056, found: 333.1052.

1-(4-(tert-butyl)-2-(phenylthio)phenyl)-1H-pyrrolo[2,3-b]pyridine (3d)

¹H NMR (400 MHz, CDCl₃) δ : 8.31 (dd, J = 4.7, 1.5 Hz, 1H), 7.90 (dd, J = 7.8, 1.4 Hz, 1H), 7.48-7.45 (m, 1H), 7.45-7.41 (m, 2H), 7.35 (s, 1H), 7.21-7.17 (m, 2H), 7.16-7.11 (m, 2H), 7.11-7.07 (m, 1H), 7.08-7.04 (m, 1H), 6.56 (d, J = 3.6 Hz, 1H), 1.29 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ : 151.79, 148.08, 143.38, 135.19, 134.67, 133.89, 131.15, 130.15, 129.58, 128.74, 128.62, 126.96, 125.33, 120.40, 116.21, 34.78, 31.13; HRMS (ESI): *m/z* calcd. for C₂₃H₂₃N₂S, [M+H]⁺: 359.1576, found: 359.1568. **1-(4-fluoro-2-(phenylthio)phenyl)-1H-pyrrolo[2,3-***b***]pyridine (***3e***)**

¹H NMR (400 MHz, CDCl₃) δ : 8.34 (dd, J = 4.7, 1.5 Hz, 1H), 7.96 (dd, J = 7.8, 1.5 Hz, 1H), 7.42-7.38 (m, 1H), 7.38-7.34 (m, 3H), 7.29-7.26 (m, 3H), 7.12 (dd, J = 7.8, 4.7 Hz, 1H), 7.03 (dd, J = 8.1, 2.8 Hz, 1H), 6.86 (dd, J = 9.1, 2.8 Hz, 1H), 6.64 (d, J = 3.6 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ : 163.56, 161.08, 148.14, 143.60, 139.73, 139.65, 133.65, 131.98, 131.78, 130.52, 130.43, 129.43, 129.31, 129.03, 128.61, 120.45, 116.77, 116.52, 113.97, 113.74, 101.19; ¹⁹F NMR (376 MHz, CDCl₃) δ : - 111.91; HRMS (ESI): m/z calcd. for C₁₉H₁₄FN₂S, [M+H]⁺: 321.0856, found: 321.0849.

1-(4-chloro-2-(phenylthio)phenyl)-1H-pyrrolo[2,3-b]pyridine (3f)

¹H NMR (400 MHz, CDCl₃) δ : 8.33 (dd, J = 4.7, 1.3 Hz, 1H), 7.94 (dd, J = 7.8, 1.6 Hz, 1H), 7.41-7.35 (m, 2H), 7.33-7.29 (m, 3H), 7.25 (dd, J = 5.5, 3.7 Hz, 3H), 7.20 (d, J = 2.1 Hz, 1H), 7.11 (dd, J = 7.8, 4.7 Hz, 1H), 6.63 (d, J = 3.6 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ : 148.07, 143.62, 138.49, 134.90, 134.59, 134.24, 133.11, 132.13, 130.22, 130.10, 129.35, 129.05, 128.98, 128.36, 127.27, 120.45, 116.59, 101.34; HRMS (ESI): *m/z* calcd. for C₁₉H₁₄ClN₂S, [M+H]⁺: 337.0561, found: 337.0558. **1-(4-bromo-2-(phenylthio)phenyl)-1H-pyrrolo[2,3-***b***]pyridine (***3g***)**

¹H NMR (400 MHz, CDCl₃) δ: 8.32 (dd, J = 4.7, 1.5 Hz, 1H), 7.95 (dd, J = 7.8, 1.6 Hz, 1H), 7.47 (dd, J = 8.3, 2.2 Hz, 1H), 7.37-7.35 (m, 2H), 7.34-7.28 (m, 3H), 7.26-7.21 (m, 3H), 7.11 (dd, J = 7.8, 4.8 Hz, 1H), 6.63 (d, J = 3.6 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ: 147.89, 143.52, 138.64, 135.49, 133.31, 132.95, 132.25, 130.43, 130.35, 129.35, 129.11, 129.06, 128.32, 122.62, 120.54, 116.62, 101.42; HRMS (ESI): m/z calcd. for C₁₉H₁₄BrN₂S, [M+H]⁺: 381.0056, found: 381.0048.

1-(4-iodo-2-(phenylthio)phenyl)-1H-pyrrolo[2,3-b]pyridine (3h)

¹H NMR (400 MHz, CDCl₃) δ : 8.33-8.26 (m, 1H), 7.92 (dd, J = 7.8, 1.2 Hz, 1H), 7.68 (dd, J = 8.2, 1.8 Hz, 1H), 7.59 (d, J = 1.8 Hz, 1H), 7.34 (d, J = 3.6 Hz, 1H), 7.28-7.23 (m, 2H), 7.19 (m, J = 8.1, 4.9 Hz, 4H), 7.09 (dd, J = 7.8, 4.8 Hz, 1H), 6.60 (d, J = 3.6 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ : 147.85, 143.49, 139.68, 138.34, 136.54, 132.61, 132.55, 130.67, 129.27, 129.08, 129.03, 128.12, 120.56, 116.61, 101.42, 94.09; HRMS (ESI): m/z calcd. for C₁₉H₁₄IN₂S, [M+H]⁺: 482.9917, found: 482.9910. **1-(4-nitro-2-(phenylthio)phenyl)-1H-pyrrolo[2.3-***b***]pyridine (***3i***)**

¹H NMR (400 MHz, CDCl₃) δ : 8.34 (d, *J* = 4.6 Hz, 1H), 8.14 (dd, *J* = 8.6, 2.4 Hz, 1H), 8.02 (d, *J* = 2.3 Hz, 1H), 7.97 (d, *J* = 7.8 Hz, 1H), 7.64 (d, *J* = 8.6 Hz, 1H), 7.47 (d, *J* = 3.6 Hz, 1H), 7.36-7.33 (m, 2H), 7.31-7.26 (m, 3H), 7.15 (dd, *J* = 7.8, 4.8 Hz, 1H), 6.69 (d, *J* = 3.6 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ : 147.74, 147.17, 143.72, 141.03, 138.87, 134.55, 133.56, 130.91, 129.85, 129.68, 129.49, 129.30, 129.08, 128.36, 125.10, 121.56, 120.75, 117.16, 102.43; HRMS (ESI): *m/z* calcd. for C₁₉H₁₄N₃O₂S, [M+H]⁺: 348.0801, found: 348.0811.

3-(phenylthio)-4-(1H-pyrrolo[2,3-b]pyridin-1-yl)benzonitrile (3j)

¹H NMR (400 MHz, CDCl₃) δ : 8.36-8.31 (m, 1H), 8.00-7.96 (m, 1H), 7.59 (s, 2H), 7.44 (d, J = 3.6 Hz, 1H), 7.43-7.38 (m, 2H), 7.38-7.33 (m, 3H), 7.30 (dd, J = 7.3, 3.3 Hz, 3H), 7.17-7.14 (m, 1H), 6.69 (d, J = 3.7 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ : 147.75, 143.74, 143.17, 139.56, 139.01, 134.79, 133.84, 133.40, 130.86, 130.01, 129.94, 129.79, 129.65, 129.59, 129.37, 129.19, 128.50, 128.07, 120.78, 117.90, 117.13, 112.49, 102.30; HRMS (ESI): m/z calcd. for C₂₀H₁₄N₃S, [M+H]⁺: 328.0903, found: 328.0910.

1-(3-(phenylthio)-4-(1H-pyrrolo[2,3-b]pyridin-1-yl)phenyl)ethan-1-one (3k)

¹H NMR (400 MHz, CDCl₃) δ : 8.36 (dd, J = 4.7, 1.4 Hz, 1H), 8.08-8.05 (m, 1H), 8.00-7.92 (m, 3H), 7.62 (d, J = 8.3 Hz, 1H), 7.50-7.43 (m, 2H), 7.27-7.25 (m, 1H), 7.19 (dd, J = 5.0, 2.2 Hz, 2H), 7.15 (dd, J = 7.8, 4.8 Hz, 1H), 6.66 (d, J = 3.6 Hz, 1H), 2.51 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ : 196.66, 170.46, 147.67, 143.38, 140.81, 136.96, 136.43, 133.28, 132.91, 132.23, 131.92, 129.97, 129.19, 128.89, 128.33,

127.96, 127.34, 120.79, 116.80, 101.79, 26.56; HRMS (ESI): m/z calcd. for $C_{21}H_{17}N_2OS$, $[M+H]^+$: 345.1056, found: 345.1049.

1-(2-(phenylthio)-4-(trifluoromethyl)phenyl)-1H-pyrrolo[2,3-b]pyridine (3l)

¹H NMR (500 MHz, CDCl₃) δ : 8.16 (d, J = 5.1 Hz, 1H), 7.43 (d, J = 7.5 Hz, 1H), 7.40–7.31 (m, 4H), 7.21 (d, J = 7.1 Hz, 2H), 7.14 (m, 3H), 7.09 (d, J = 5.1 Hz, 1H), 6.69 (d, J = 3.5 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ : 148.47, 143.67, 139.59, 136.81, 136.05, 135.67, 133.59, 133.39, 132.16, 132.03, 129.96, 129.17, 129.10, 128.95, 127.76, 127.53, 119.73, 116.50, 99.46; ¹⁹F NMR (376 MHz, CDCl₃) δ : -62.80; HRMS (ESI): m/z calcd. for C₂₀H₁₄F₃N₂S, [M+H]⁺: 371.0824, found: 371.0815.

1-(3-(phenylthio)-[1,1'-biphenyl]-4-yl)-1H-pyrrolo[2,3-b]pyridine (3m)

¹H NMR (400 MHz, CDCl₃) δ : 8.32 (dd, J = 4.7, 1.4 Hz, 1H), 7.92 (dd, J = 7.8, 1.5 Hz, 1H), 7.59 (m, 2H), 7.54 (d, J = 8.6 Hz, 1H), 7.52-7.48 (m, 2H), 7.44-7.38 (m, 3H), 7.37-7.33 (m, 1H), 7.26 (d, J = 1.6 Hz, 1H), 7.25-7.23 (m, 1H), 7.17-7.10 (m, 3H), 7.08 (dd, J = 7.8, 4.7 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ : 148.16, 143.50, 141.91, 139.79, 136.51, 135.63, 133.97, 131.79, 130.99, 129.42, 128.99, 128.83, 127.74, 127.42, 127.12, 126.70, 120.48, 116.41, 101.01; HRMS (ESI): *m/z* calcd. for C₂₅H₁₉N₂S, [M+H]⁺: 379.1263, found: 379.1251.

1-(5-methyl-2-(phenylthio)phenyl)-1H-pyrrolo[2,3-b]pyridine (3n)

¹H NMR (400 MHz, CDCl₃) δ : 8.30 (dd, J = 4.7, 1.5 Hz, 1H), 7.91 (dd, J = 7.8, 1.6 Hz, 1H), 7.36 (d, J = 8.1 Hz, 1H), 7.33 (t, J = 2.8 Hz, 2H), 7.20-7.15 (m, 3H), 7.15-7.11 (m, 2H), 7.09 (dd, J = 3.7, 2.0 Hz, 1H), 7.08-7.05 (m, 1H), 6.57 (d, J = 3.6 Hz, 1H), 2.41 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ : 148.14, 143.41, 138.65, 137.96, 135.21, 133.30, 131.18, 130.95, 129.89, 129.51, 128.78, 128.76, 126.82, 120.39, 116.25, 100.72, 21.01; HRMS (ESI): m/z calcd. for C₂₀H₁₇N₂S, [M+H]⁺: 333.1056, found: 333.1048.

1-(2-(phenylthio)-5-(trifluoromethyl)phenyl)-1H-pyrrolo[2,3-b]pyridine (30)

¹H NMR (400 MHz, CDCl₃) δ : 8.37 (dd, J = 4.7, 1.5 Hz, 1H), 8.00 (dd, J = 7.8, 1.5 Hz, 1H), 7.69 (s, 1H), 7.53-7.49 (m, 1H), 7.40 (m, 3H), 7.33-7.28 (m, 3H), 7.21 (d, J = 8.3 Hz, 1H), 7.16 (dd, J = 7.8, 4.8 Hz, 1H), 6.69 (d, J = 3.6 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ : 147.79, 143.62, 142.62, 135.69, 134.17, 131.19, 129.74, 129.58, 129.40, 128.95, 128.88, 126.07, 126.03, 125.99, 125.95, 125.52, 125.48, 125.45, 125.41, 124.91, 122.20, 120.69, 116.83, 101.95; ¹⁹F NMR (376 MHz, CDCl₃) δ : -62.29; HRMS (ESI): *m/z* calcd. for C₂₀H₁₄F₃N₂S, [M+H]⁺: 371.0824, found: 371.0817. **1-(5-methoxy-2-(phenylthio)phenyl)-1H-pyrrolo[2,3-***b***]pyridine (***3p***)**

¹H NMR (400 MHz, CDCl₃) δ : 8.28 (dd, J = 4.8, 1.5 Hz, 1H), 7.91 (dd, J = 7.8, 1.5 Hz, 1H), 7.53 (d, J = 8.7 Hz, 1H), 7.32 (d, J = 3.6 Hz, 1H), 7.07 (m, 6H), 7.03-6.97 (m, 2H), 6.55 (d, J = 3.6 Hz, 1H), 3.84 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 160.27, 143.16, 140.31, 136.73, 136.37, 129.65, 129.27, 128.66, 126.14, 123.84, 120.60, 116.33, 115.48, 114.73, 100.82, 55.60; HRMS (ESI): m/z calcd. for C₂₀H₁₇N₂OS, [M+H]⁺: 333.1056, found: 333.1048.

1-(3-(phenylthio)thiophen-2-yl)-1H-pyrrolo[2,3-b]pyridine (3q)

¹H NMR (400 MHz, CDCl₃) δ : 8.31 (dd, J = 4.7, 1.5 Hz, 1H), 7.92 (dd, J = 7.8, 1.5 Hz, 1H), 7.49-7.45 (m, 1H), 7.39-7.33 (m, 3H), 7.25 (m, 2H), 7.16 (dd, J = 7.9, 1.7 Hz, 2H), 7.08 (dd, J = 7.8, 4.7 Hz, 1H), 6.59 (d, J = 3.6 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ : 148.11, 143.48, 137.22, 135.61, 133.94, 132.10, 132.01, 129.37, 129.12, 128.96, 128.81, 127.65, 127.44, 120.40, 116.36, 100.90; HRMS (ESI): *m/z* calcd. for C₁₉H₁₄FN₂S, [M+H]⁺: 321.0856, found: 321.0849.

1-(2-(phenylthio)phenyl)-1H-pyrazolo[3,4-b]pyridine (3r)

¹H NMR (400 MHz, CDCl₃) δ : 8.58 (d, J = 4.5 Hz, 1H), 8.24 (s, 1H), 8.12 (d, J = 8.0 Hz, 1H), 7.57 (d, J = 7.6 Hz, 1H), 7.34 (m, 5H), 7.25-7.17 (m, 4H); ¹³C NMR (101 MHz, CDCl₃) δ : 150.46, 148.96, 136.67, 136.23, 133.86, 132.82, 131.43, 130.51,

129.42, 129.07, 128.27, 127.71, 127.11, 117.43, 116.00; HRMS (ESI): m/z calcd. for C₁₈H₁₄N₃S, [M+H]⁺: 304.0903, found: 304.0890.

3-bromo-1-(2-(phenylthio)phenyl)-1H-pyrrolo[2,3-b]pyridine (3s)

¹H NMR (400 MHz, CDCl₃) δ : 8.33 (dd, J = 4.7, 1.4 Hz, 1H), 7.86 (dd, J = 7.9, 1.5 Hz, 1H), 7.45-7.35 (m, 5H), 7.23-7.19 (m, 2H), 7.18-7.12 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ: 146.93, 144.90, 144.57, 136.35, 135.71, 133.52, 132.24, 132.09, 129.22, 129.16, 128.90, 128.16, 127.81, 127.56, 127.54, 119.83, 116.98, 90.06; HRMS (ESI): m/z calcd. for C₁₉H₁₄BrN₂S, [M+H]⁺: 381.0056, found: 381.0043.

3-bromo-1-(5-methoxy-2-(phenylthio)phenyl)-1H-pyrrolo[2,3-b]pyridine (3t)

¹H NMR (400 MHz, CDCl₃) δ : 8.32-8.26 (m, 1H), 7.83 (dd, J = 7.9, 1.3 Hz, 1H), 7.55 (d, J = 8.7 Hz, 1H), 7.35 (s, 1H), 7.13 (dd, J = 7.9, 4.7 Hz, 1H), 7.07-7.01 (m, 5H),6.99 (m, 2H), 3.83 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ: 160.26, 144.10, 139.13, 136.25, 136.04, 129.58, 128.60, 128.47, 127.94, 126.36, 124.23, 120.06, 116.91, 115.67, 114.90, 90.04, 55.62; HRMS (ESI): *m/z* calcd. for C₂₀H₁₆BrN₂OS, [M+H]⁺: 411.0161, found: 411.0145.

4-chloro-1-(2-(phenylthio)phenyl)-1H-pyrrolo[2,3-b]pyridine (3u)

¹H NMR (400 MHz, CDCl₃) δ : 8.18 (d, J = 5.2 Hz, 1H), 7.45 (dt, J = 7.4, 1.0 Hz, 1H), 7.40 (d, J = 3.7 Hz, 2H), 7.39-7.35 (m, 2H), 7.25-7.21 (m, 2H), 7.20-7.14 (m, 3H), 7.11 (d, J = 5.2 Hz, 1H), 6.71 (d, J = 3.6 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ : 148.65, 143.83, 136.90, 136.02, 135.74, 133.67, 133.47, 132.21, 132.11, 129.96, 129.20, 129.15, 129.00, 127.81, 127.59, 119.74, 116.55, 99.48; HRMS (ESI): m/z calcd. for C₁₉H₁₄ClN₂S, [M+H]⁺: 337.0561, found: 337.0564.

1-(2-(p-tolylthio)phenyl)-1H-pyrrolo[2,3-b]pyridine (3v)

¹H NMR (400 MHz, CDCl₃) δ : 8.38-8.30 (m, 1H), 7.96 (dd, J = 7.8, 1.4 Hz, 1H), 7.45 (dd, J = 7.5, 1.6 Hz, 1H), 7.40 (d, J = 3.6 Hz, 1H), 7.33 (m, 2H), 7.24 (dd, J = 7.8, 1.5) Hz, 1H), 7.20 (d, J = 8.1 Hz, 2H), 7.11 (dd, J = 7.8, 4.8 Hz, 1H), 7.02 (d, J = 8.0 Hz, 2H), 6.63 (d, J = 3.6 Hz, 1H), 2.27 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ : 143.26, 138.03, 136.85, 136.38, 134.22, 133.15, 130.89, 129.92, 129.57, 129.03, 128.88, 120.64, 116.32, 100.98, 21.08; HRMS (ESI): m/z calcd. for C₂₀H₁₇N₂S, [M+H]⁺: 317.1107, found: 317.1103.

1-(2-((4-methoxyphenyl)thio)phenyl)-1H-pyrrolo[2,3-b]pyridine (3w)

¹H NMR (400 MHz, CDCl₃) δ : 8.32 (dd, J = 4.7, 1.5 Hz, 1H), 7.95 (dd, J = 7.8, 1.6 Hz, 1H), 7.41 (dd, J = 5.5, 3.0 Hz, 2H), 7.30-7.28 (m, 2H), 7.27-7.25 (m, 2H), 7.13-7.07 (m, 2H), 6.80-6.74 (m, 2H), 6.64 (d, J = 3.6 Hz, 1H), 3.76 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ : 159.91, 148.12, 143.55, 138.01, 135.80, 135.68, 129.63, 129.45, 128.96, 128.89, 128.79, 126.53, 122.89, 120.49, 116.37, 114.84, 100.94, 99.94, 55.27; HRMS (ESI): *m/z* calcd. for C₂₀H₁₇N₂OS, [M+H]⁺: 333.1056, found: 333.1040.

1-(2-((4-(tert-butyl)phenyl)thio)phenyl)-1H-pyrrolo[2,3-*b*]pyridine (3*x*)

¹H NMR (400 MHz, CDCl₃) δ : 8.30 (dd, J = 4.8, 1.5 Hz, 1H), 7.95 (dd, J = 7.8, 1.5 Hz, 1H), 7.46 (m, 1H), 7.42 (d, J = 3.6 Hz, 1H), 7.40-7.36 (m, 1H), 7.36-7.33 (m, 2H), 7.18 (s, 4H), 7.10 (dd, J = 7.8, 4.8 Hz, 1H), 6.62 (d, J = 3.6 Hz, 1H), 1.24 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ : 150.92, 142.82, 136.57, 136.28, 132.27, 131.59, 129.76, 129.74, 129.15, 128.93, 127.45, 126.06, 120.82, 116.30, 101.03, 34.47, 31.17; HRMS (ESI): m/z calcd. for C₂₃H₂₃N₂S, [M+H]⁺: 359.1576, found: 359.1562.

1-(2-((4-fluorophenyl)thio)phenyl)-1H-pyrrolo[2,3-b]pyridine (3y)

¹H NMR (400 MHz, CDCl₃) δ: 8.33 (d, J = 4.5 Hz, 1H), 7.97 (d, J = 7.6 Hz, 1H), 7.46 (d, J = 7.2 Hz, 1H), 7.38 (q, J = 11.4, 9.7 Hz, 3H), 7.32 (d, J = 5.1 Hz, 1H), 7.26-7.20 (m, 2H), 7.12 (dd, J = 7.7, 4.9 Hz, 1H), 6.85 (t, J = 8.6 Hz, 2H), 6.63 (d, J = 3.5 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ: 163.63, 161.16, 147.38, 143.15, 136.62, 136.16, 134.70, 134.62, 132.73, 131.41, 129.85, 129.52, 129.40, 129.31, 129.26, 129.05, 127.71, 120.71, 116.00; ¹⁹F NMR (376 MHz, CDCl₃) δ: -113.35; HRMS (ESI): m/z calcd. for C₁₉H₁₄FN₂S, [M+H]⁺: 321.0856, found: 321.0850.

1-(2-((4-chlorophenyl)thio)phenyl)-1H-pyrrolo[2,3-b]pyridine (3z)

¹H NMR (400 MHz, CDCl₃) δ : 8.34-8.26 (m, 1H), 7.96 (d, J = 7.7 Hz, 1H), 7.49 (d, J = 7.3 Hz, 1H), 7.42 (dq, J = 14.2, 7.2 Hz, 3H), 7.36 (d, J = 3.5 Hz, 1H), 7.09 (q, J = 8.6 Hz, 5H), 6.62 (d, J = 3.4 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ : 142.67, 137.37, 134.90, 133.44, 132.71, 132.62, 129.62, 129.47, 129.20, 129.02, 128.45, 120.81, 116.41, 101.29; HRMS (ESI): m/z calcd. for C₁₉H₁₄ClN₂S, [M+H]⁺: 337.0561, found: 337.0552.

1-(2-((4-bromophenyl)thio)phenyl)-1H-pyrrolo[2,3-b]pyridine (3aa)

¹H NMR (400 MHz, CDCl₃) δ : 8.32-8.27 (m, 1H), 7.95 (d, *J* = 7.8 Hz, 1H), 7.52–7.47 (m, 1H), 7.47-7.42 (m, 2H), 7.39 (dd, *J* = 7.0, 1.6 Hz, 1H), 7.36 (d, *J* = 3.6 Hz, 1H), 7.21 (d, *J* = 8.5 Hz, 2H), 7.11 (dd, *J* = 7.8, 4.8 Hz, 1H), 7.03 (d, *J* = 8.5 Hz, 2H), 6.61 (d, *J* = 3.6 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ : 142.81, 137.54, 134.64, 133.41, 132.97, 132.90, 131.90, 129.55, 129.48, 129.17, 128.53, 124.78, 121.40, 120.60, 116.41, 101.26; HRMS (ESI): *m/z* calcd. for C₁₉H₁₄BrN₂S, [M+H]⁺: 381.0056, found: 381.0040.

1-(2-((4-nitrophenyl)thio)phenyl)-2,3-dihydro-1H-pyrrolo[2,3-b]pyridine (3ab)

¹H NMR (400 MHz, CDCl₃) δ : 8.21 (d, *J* = 4.1 Hz, 1H), 8.18 (d, *J* = 8.8 Hz, 1H), 7.81 (m, 3H), 7.73 (d, *J* = 7.7 Hz, 1H), 7.63-7.58 (m, 3H), 7.50 (dd, *J* = 7.9, 4.2 Hz, 1H), 7.32 (d, *J* = 3.5 Hz, 1H), 7.01 (dd, *J* = 7.8, 4.8 Hz, 1H), 6.52 (d, *J* = 3.6 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ : 147.82, 146.93, 145.71, 145.50, 144.00, 143.36, 139.87, 135.97, 130.62, 130.57, 130.07, 129.27, 129.05, 128.86, 128.13, 126.35, 124.38, 123.37, 120.20, 116.57, 101.35; HRMS (ESI): *m*/*z* calcd. for C₁₉H₁₄N₃O₂S, [M+H]⁺: 348.0801, found: 348.0797.

1-(2-((2-fluorophenyl)thio)phenyl)-1H-pyrrolo[2,3-b]pyridine (3ac)

¹H NMR (400 MHz, CDCl₃) δ : 8.35–8.29 (m, 1H), 7.99–7.93 (m, 1H), 7.51–7.46 (m, 1H), 7.46–7.39 (m, 2H), 7.36 (m, 2H), 7.20 (m, 1H), 7.17–7.13 (m, 1H), 7.10 (dd, J = 7.9, 4.8 Hz, 1H), 6.94 (m, 2H), 6.62 (d, J = 3.6 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ : 162.68, 160.21, 147.71, 143.10, 137.28, 134.36, 133.94, 132.01, 129.82, 129.75, 129.51, 129.22, 128.99, 128.07, 124.47, 124.43, 121.05, 120.88, 120.67, 116.39, 115.90, 115.68; ¹⁹F NMR (376 MHz, CDCl₃) δ : -107.79. HRMS (ESI): *m/z* calcd. for C₁₉H₁₄FN₂S, [M+H]⁺: 321.0856, found: 321.0848.

1-(2-(m-tolylthio)phenyl)-1H-pyrrolo[2,3-b]pyridine (3ad)

¹H NMR (400 MHz, CDCl₃) δ : 8.33 (dd, J = 4.7, 1.5 Hz, 1H), 7.95 (dd, J = 7.8, 1.6 Hz, 1H), 7.48 (dd, J = 8.0, 1.0 Hz, 1H), 7.42-7.36 (m, 2H), 7.34 (dd, J = 6.4, 1.7 Hz, 2H), 7.12-7.09 (m, 1H), 7.08 (d, J = 5.2 Hz, 3H), 6.99-6.93 (m, 1H), 6.62 (d, J = 3.6 Hz, 1H), 2.22 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ : 147.84, 143.23, 138.82, 136.98, 135.85, 132.96, 132.79, 132.64, 131.87, 129.53, 129.36, 129.12, 128.93, 128.80, 128.39, 127.54, 120.53, 116.32, 100.89, 21.10; HRMS (ESI): *m/z* calcd. for C₂₀H₁₇N₂S, [M+H]⁺: 317.1107, found: 317.0998.

1-(2-(thiophen-2-ylthio)phenyl)-1H-pyrrolo[2,3-b]pyridine (3ae)

¹H NMR (400 MHz, CDCl₃) δ : 8.41 (dd, J = 4.9, 1.4 Hz, 1H), 8.09 (dd, J = 7.8, 1.4 Hz, 1H), 7.41 (m, 3H), 7.37-7.33 (m, 2H), 7.19 (m, 3H), 6.99 (dd, J = 5.4, 3.6 Hz, 1H), 6.73 (d, J = 3.6 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ : 142.06, 137.83, 136.70, 131.67, 130.59, 130.02, 129.53, 128.81, 128.74, 127.94, 127.07, 121.47, 116.48, 101.70; HRMS (ESI): *m/z* calcd. for C₁₇H₁₃N₂S₂, [M+H]⁺: 309.0515, found: 309.0503. **1-(2-(propylthio)phenyl)-1H-pyrrolo[2,3-***b***]pyridine (***3af***)**

¹H NMR (400 MHz, CDCl3) δ : 8.34 (dd, J = 4.7, 1.3 Hz, 1H), 7.99 (dd, J = 7.8, 1.4 Hz, 1H), 7.53-7.48 (m, 1H), 7.45-7.39 (m, 2H), 7.39 (d, J = 3.7 Hz, 1H), 7.33 (m, J = 7.5, 1.3 Hz, 1H), 7.12 (dd, J = 7.8, 4.8 Hz, 1H), 6.65 (d, J = 3.6 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ : 147.98, 143.41, 136.78, 136.09, 129.61, 129.23, 129.07, 128.98, 128.77, 126.28, 120.55, 116.33, 100.76, 34.88, 22.04, 13.27; HRMS (ESI): *m/z* calcd. for C₁₆H₁₇N₂S, [M+H]⁺: 269.1107, found: 269.1099.

1-(2-(cyclohexylthio)phenyl)-1H-pyrrolo[2,3-b]pyridine (3ag)

¹H NMR (400 MHz, CDCl₃) δ : 8.36-8.29 (m, 1H), 8.05-7.99 (m, 1H), 7.63-7.57 (m, 1H), 7.49-7.43 (m, 1H), 7.39 (dd, J = 6.6, 2.6 Hz, 3H), 7.13 (dd, J = 7.8, 4.8 Hz, 1H), 6.65 (d, J = 3.6 Hz, 1H), 2.77-2.67 (m, 1H), 1.76 (d, J = 11.2 Hz, 2H), 1.63-1.52 (m, 2H), 1.48 (d, J = 10.0 Hz, 1H), 1.07 (q, J = 13.2, 10.9 Hz, 4H), 0.88 (t, J = 6.7 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ : 142.77, 138.11, 134.41, 132.57, 130.13, 129.46, 129.11, 128.71, 127.38, 120.89, 116.24, 100.70, 46.06, 33.06, 25.85, 25.52; HRMS (ESI): m/z calcd. for C₁₉H₂₁N₂S, [M+H]⁺: 309.1420, found: 309.1410.

1-(2-(benzylthio)phenyl)-1H-pyrrolo[2,3-b]pyridine (3ah)

¹H NMR (500 MHz, CDCl₃) δ : 8.38 (dd, J = 4.9, 1.4 Hz, 1H), 8.06 (dd, J = 7.8, 1.3 Hz, 1H), 7.53 (dd, J = 7.5, 1.7 Hz, 1H), 7.45-7.37 (m, 3H), 7.27 (d, J = 3.6 Hz, 2H), 7.21-7.17 (m, 3H), 7.16-7.09 (m, 2H), 6.66 (d, J = 3.6 Hz, 1H), 3.90 (s, 2H); ¹³C NMR (126 MHz, CDCl₃) δ : 141.84, 136.57, 135.48, 130.85, 130.27, 129.85, 129.26, 128.86, 128.40, 127.38, 127.19, 116.35, 101.26, 38.43; HRMS (ESI): m/z calcd. for C₂₀H₁₇N₂S, [M+H]⁺: 317.1107, found: 317.0998.

1-(2-(phenylselanyl)phenyl)-1H-pyrrolo[2,3-b]pyridine (3ai)

¹H NMR (400 MHz, CDCl₃) δ : 8.35 (dd, J = 4.7, 1.4 Hz, 1H), 7.99 (dd, J = 7.8, 1.4 Hz, 1H), 7.46-7.41 (m, 3H), 7.39 (dd, J = 5.5, 3.0 Hz, 2H), 7.29 (dd, J = 7.5, 1.5 Hz, 1H), 7.26 (d, J = 2.6 Hz, 1H), 7.21 (q, J = 5.7 Hz, 3H), 7.13 (dd, J = 7.8, 4.8 Hz, 1H), 6.65 (d, J = 3.6 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ : 147.65, 143.12, 137.66, 135.39, 134.54, 133.26, 132.57, 129.38, 129.21, 129.07, 128.75, 127.90, 120.67, 116.40, 101.15; HRMS (ESI): *m/z* calcd. for C₁₉H₁₅N₂Se, [M+H]⁺: 351.0396, found: 351.0385.

Diphenylsulfane 4

¹H NMR (400 MHz, CDCl₃) δ 7.33 (dd, *J* = 5.4, 3.4 Hz, 4H), 7.31-7.26 (m, 4H), 7.24 (d, *J* = 1.4 Hz, 1H), 7.22-7.19 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 135.75, 131.00, 129.15, 127.00.

Procedure for gram-scale synthesis of compound 3a

To a oven-dried sealed tube was added *N*-aryl-7-azaindoles **1a** (970 mg, 5mol), diphenyl disulfide **2a** (1635 mg, 7.5 mol), Cu(OAc)₂ (181.4 mg, 1mol), PhCOOH (122 mg, 1 mmol) and mesitylene (50 mL). The mixture was stirred at 140 °C for 12 hours until the complete consumption of **1** as monitored by TLC analysis. The reaction mixture was then diluted with water and extracted with ethyl acetate. After the combined organic layers were washed with brine, dried over Na₂SO₄, and concentrated under reduced pressure, the residue was purified by flash column chromatography on silica gel using petroleum ether/ethyl acetate as eluent (8:1, V/V) to afford the pure product **3a** 1208 mg of 80% yield.

Procedure for removal the directed group 7-azaindoles

To a oven-dried sealed tube was added 1-(2-(phenylthio)phenyl)-1H-pyrrolo[2,3*b*]pyridine 3a (60.4 mg, 0.2 mmol), NaOMe (54.0 mg, 1mmol) and DMSO (5 mL). The mixture was stirred at 140 °C for 4 hours until the complete consumption of 3a as monitored by TLC analysis. The reaction mixture was then diluted with water and extracted with ethyl acetate. After the combined organic layers were washed with brine, dried over Na₂SO₄, and concentrated under reduced pressure, the residue was purified by flash column chromatography on silica gel using petroleum ether/ethyl acetate as eluent (20:1, V/V) to afford the pure product 4 29.7 mg of 80% yield.

2.4 Mechanism investigation

Procedures for the radical trapping and control experiment

To a 5 mL tube equipped with a magnetic stirring bar, *N*-aryl-7-azaindole **1a** (19.4 mg, 0.1 mmol), diphenyl disulfide **2a** (32.7 mg, 0.15 mmol), $Cu(OAc)_2$ (3.6 mg, 0.02 mmol), PhCOOH (2.4 mg, 0.02 mmol), 2,2,6,6-tetramethylpiperidineoxy (TEMPO, 46.8 mg, 0.3 mmol) and mesitylene (1 mL) were added. No special precautions were taken to exclude moisture and air. The reaction was stirred at 140 °C for 12 h.

To a 5 mL tube equipped with a magnetic stirring bar, *N*-aryl-7-azaindole **1a** (19.4 mg, 0.1 mmol), diphenyl disulfide **2a** (32.7 mg, 0.15 mmol), $Cu(OAc)_2$ (3.6 mg, 0.02 mmol), PhCOOH (2.4 mg, 0.02 mmol), 2,6-di-tert-butyl-4-methylphenol (BHT, 66 mg, 0.3 mmol) and mesitylene (1 mL) were added. No special precautions were taken to exclude moisture and air. The reaction was stirred at 140 °C for 12 h.

Procedures of 1a reacted with 6

To a solution of 4-methylbenzenethiol **6** (24.8 mg, 0.2 mmol), $Cu(OAc)_2$ (3.6 mg, 0.02 mmol), PhCOOH (2.4 mg, 0.02 mmol) and mesitylene (1 mL) were added. No special precautions were taken to exclude moisture and air. The reaction was stirred at 140 °C for 12 h. The reaction mixture was then diluted with water and extracted with ethyl acetate. After the combined organic layers were washed with brine, dried over

 Na_2SO_4 , and concentrated under reduced pressure, the residue was purified by flash column chromatography on silica gel to afford the pure product 2v (4.9 mg, 20% yield).

H-D exchange and KIE experiments

To a oven-dried sealed tube was added *N*-aryl-7-azaindoles **1** (38.8 mg, 0.2 mmol), disulfide **2a** (65.4 mg, 0.3 mmol), Cu(OAc)₂ (7.2 mg, 0.04 mmol), PhCOOH (4.9 mg, 0.04 mmol), D₂O (40 mg, 2 mmol) and mesitylene (2.0 mL). The mixture was stirred at 140 °C for 2 hours. The reaction mixture was then diluted with water and extracted with ethyl acetate. After the combined organic layers were washed with brine, dried over Na₂SO₄, and concentrated under reduced pressure, the residue was purified by flash column chromatography on silica gel using petroleum ether/ethyl acetate as eluent (20:1, V/V) to recovery **1a**.

Procedure for the synthesis of 1a-d To a oven-dried sealed tube was added *N*-aryl-7-azaindoles **1** (38.8 mg, 0.2 mmol), $[(RhCp_2Cl_2)]Cl_2$ (6.18 mg, 0.01mol), $Cu(OAc)_2 \cdot H_2O$ (40 mg, 0.2 mmol), D_2O (40 mg, 2 mmol) and toluene (2.0 mL). The mixture was stirred at 120 °C for 4 hours. The reaction mixture was then diluted with water and extracted with ethyl acetate. After the combined organic layers were washed with brine, dried over Na₂SO₄, and concentrated under reduced pressure, the residue was purified by flash column chromatography on silica gel using petroleum ether/ethyl acetate as eluent (20:1, V/V) to afford the **1a-d** (36 mg of 90% yield and 92% of deuterium).

Procedures of KIE experiments

To a 5 mL tube equipped with a magnetic stirring bar, *N*-aryl-7-azaindole **1a** (19.4 mg, 0.1 mmol), diphenyl disulfide **2a** (32.7 mg, 0.15 mmol), Cu(OAc)₂ (3.6 mg, 0.02 mmol), PhCOOH (2.4 mg, 0.02 mmol) and mesitylene (1 mL) were added. No special precautions were taken to exclude moisture and air. The reaction was stirred at 140 °C for 2 h. The reaction mixture was then diluted with water and extracted with ethyl acetate. After the combined organic layers were washed with brine, dried over Na₂SO₄, and concentrated under reduced pressure, the residue was purified by flash column chromatography on silica gel using petroleum ether/ethyl acetate as eluent (8:1, V/V) to afford the pure product **3a** 4.68 mg of 15.5% yield.

To a 5 mL tube equipped with a magnetic stirring bar, **1a-d** (20.0 mg, 0.1 mmol), diphenyl disulfide **2a** (32.7 mg, 0.15 mmol), $Cu(OAc)_2$ (3.6 mg, 0.02 mmol), PhCOOH (2.4 mg, 0.02 mmol) and mesitylene (1 mL) were added. No special precautions were taken to exclude moisture and air. The reaction was stirred at 140 °C

for 2 h. The reaction mixture was then diluted with water and extracted with ethyl acetate. After the combined organic layers were washed with brine, dried over Na₂SO₄, and concentrated under reduced pressure, the residue was purified by flash column chromatography on silica gel using petroleum ether/ethyl acetate as eluent (8:1, V/V) to afford the pure product **3a'** 4.01 mg of 13.2% yield.

Procedures of investigate the role of PhCOOH

To a 25 mL tube equipped with a magnetic stirring bar, CuO (160 mg, 2 mol) and PhCOOH (732 mg, 6 mol) was diulated in 10 mL (V H₂O /MeOH= 1:1), the mixture was reflux for 4h, and extraction gave the pure Cu(PhCOOH)₂.

To a oven-dried sealed tube was added *N*-aryl-7-azaindoles **1a** (38.8 mg, 0.2 mmol), diphenyl disulfide **2a** (65.4 mg, 0.3 mmol), Cu(PhCOO)₂ (12.1 mg, 0.04 mol), PhCOOH (4.9 mg, 0.04 mmol) and mesitylene 2 mL. The mixture was stirred at 140 °C for 12 hours. The reaction mixture was then diluted with water and extracted with ethyl acetate. After the combined organic layers were washed with brine, dried over Na₂SO₄, and concentrated under reduced pressure, the residue was purified by flash column chromatography on silica gel using petroleum ether/ethyl acetate as eluent (8:1, V/V) to afford the pure product **3a** 7.25 mg of 12% yield.

To a oven-dried sealed tube was added *N*-aryl-7-azaindoles **1a** (38.8 mg, 0.2 mmol), diphenyl disulfide **2a** (65.4 mg, 0.3 mmol), Cu(PhCOO)₂ (12.1 mg, 0.04 mol) and mesitylene 2 mL. The mixture was stirred at 140 °C for 12 hours. The reaction mixture was then diluted with water and extracted with ethyl acetate. After the combined organic layers were washed with brine, dried over Na₂SO₄, and concentrated under reduced pressure, the residue was purified by flash column chromatography on silica gel using petroleum ether/ethyl acetate as eluent (8:1, V/V) to afford the pure product **3a** 13.28 mg of 5% yield.

2. Reference

- [1] Vats, T. K.; Mishra, A.; Deb, I. Adv. Synth. Catal. 2017, 360, 2291.
- [2] Coelho, F. L.; Campo, L. F. Tetrahedron. Lett. 2017, 14, 2330.

 $^{19}\mathrm{F}$ NMR spectrum of 3I in CDCI_3

 $^{19}\mathrm{F}\,\mathrm{NMR}$ spectrum of 30 in CDCI_3

 $^{19}\mathrm{F}$ NMR spectrum of 3y in CDCl_3

40 30 20

 $^{19}\mathrm{F}\,\mathrm{NMR}$ spectrum of 3ac in CDCl_3

