Sulfur-Controlled and Rhodium-Catalyzed Formal
 (3+3) Transannulation of Thioacyl Carbenes with
 Alk-2-enals and Mechanistic Insights
 Qiuyue Wu, Ziyang Dong, Jiaxi Xu* and Zhanhui Yang*
 Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China. Email: ixxu@mail.buct.edu.cn (J.X.); zhyang@mail.buct.edu.cn (Z.Y.)

Contents

1. General Information 2
2. Detailed Optimizations on the Reaction Conditions 3
3. Crystal Data and Structure of Ethyl 2,2-Dimethyl-4-oxo-6-phenyl-3,4-dihydro-2H- thiopyran-5-carboxylate (3aa) 4
4. General procedure for the synthesis of thiadizaoles 16
5. General procedure for the synthesis of alk-2-enals 2 9
6. General procedure for the synthesis of ethyl 4-oxo-3,4-dihydro-2H-thiopyran-5- carboxylates 3 and 13 13
7. Intermediate Probing Experiments 22
8. Isotope Tracing Experiments 23
9. KIE Studies 24
10. Gram-scale reaction 24
11. Trials on asymmetric catalysis 25
12. Reference 28
13. Copies of Spectra of Materials, Intermediates, and Products 30
14. Copies of NMR Spectra of the Crude Reaction Mixtures in KIE Studies 142

1. General Information

Unless otherwise noted, all starting materials were purchased from commercial suppliers. Chlorobenzene and acetonitrile were refluxed over CaH_{2} and freshly distilled prior to use. Tetrahydrofuran was refluxed over LiAlH_{4} and freshly distilled prior to use. Toluene was refluxed over Na and freshly distilled prior to use. Column chromatography was performed using silica gel (normal phase, 200-300 mesh) from branch of Anhui Liangchen Silicon Material Co. Ltd, with petroleum ether ($60-90^{\circ} \mathrm{C}$ fraction), hexane, methylene chloride and ethyl acetate as eluents. Reactions were monitored by thin-layer chromatography (TLC) on GF254 silica gel plates (0.2 mm) from Anhui Liangchen Silicon Material Co. Ltd. The plates were visualized under UV light, as well as other TLC stains (1% potassium permanganate in water; 10 g of iodine absorbed on 30 g of silica gel; $12 \mathrm{~g} 2,4-$ dinitrophenylhydrazine dissolved in $60 \mathrm{~mL}^{2}$ of $\mathrm{H}_{2} \mathrm{SO}_{4}$ and $80 \mathrm{mLH} \mathrm{H}_{2} \mathrm{O}$ in $200 \mathrm{~mL} 95 \%$ EtOH.). ${ }^{1} \mathrm{H},{ }^{19} \mathrm{~F}$, and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra were recorded on a 400 MHz spectrometer, usually in CDCl_{3} with TMS as an internal standard, and the chemical shifts (δ) are reported in parts per million (ppm). And multiplicities are indicated as s (singlet), d (doublet), t (triplet), q (quartet), dd (double doublet), m (multiplet). Coupling constants (J) are reported in Hertz (Hz). HRMS measurements were carried out on an LC/MSD TOF mass spectrometer. The IR spectra (film, $v\left[\mathrm{~cm}^{-1}\right]$) were taken on an FT IR spectrometer. Melting points were obtained on a melting point apparatus and are uncorrected. Single crystal X-ray diffraction analysis (3aa) was performed on a single crystal X-ray diffractometer. The enantiomeric excesses were determined by chiral HPLC analysis using an Agilent 1260 LC instrument with Daicel Chiralpak AS-H column with a mixture of isopropyl alcohol and hexane as eluents. PE, EA, PhCl, DCM, MeOH, $\mathrm{Et}_{2} \mathrm{O}$ and THF are abbreviated for petroleum ether, ethyl acetate, chlorobenzene, methylene chloride, methanol, diethyl ether and tetrahydrofuran, respectively.

Compounds 3aa, 3ag, 3aq, 3au, 3av, 3aw, 3ax, 3az, 3aaa and 3aab were reported in our previous work. ${ }^{1}$ For their analytical data and spectra, and those of the alkenals $(\mathbf{2 q}, \mathbf{2 u}, \mathbf{2 v}$, $\mathbf{2 w}, \mathbf{2 x}, \mathbf{2 z}, \mathbf{2 a a}$, and $\mathbf{2 a b}$), please see the supporting information of our previous publications. ${ }^{1}$

2. Detailed Optimizations on the Reaction Conditions

Table S1. Optimization of reaction conditions ${ }^{\text {a }}$

Entry	Catalyst (mol\%)	Ligand (mol\%)	Solvent	Yield ${ }^{\text {b }}$ (\%)
1	$[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}(5)$	DPPF (12)	PhCl	72
2	$[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}(5)$	-	PhCl	trace
3	$[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}(5)$	DPPF (12)	PhCl	trace ${ }^{\text {c }}$
4	$[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}(5)$	DPPF (12)	PhCl	$3^{\text {d }}$
5	$[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}(5)$	DPPM (12)	PhCl	trace
6	$[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}(5)$	DPPE (12)	PhCl	6
7	$[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}(5)$	DPPP (12)	PhCl	8
8	$[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}(5)$	DPPB (12)	PhCl	15
9	$[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}(5)$	DPPPenta (12)	PhCl	3
10	$\left[\mathrm{RhCp}^{*} \mathrm{Cl}_{2}\right]_{2}(5)$	DPPF (12)	PhCl	63
11	$\left[\mathrm{RhCp}^{*} \mathrm{Cl}_{2}\right]_{2}(5)$	DPPE (12)	PhCl	trace
12	$\left[\mathrm{RhCp}^{*} \mathrm{Cl}_{2}\right]_{2}(5)$	DPPP (12)	PhCl	8
13	$\left[\mathrm{RhCp}^{*} \mathrm{Cl}_{2}\right]_{2}(5)$	DPPB (12)	PhCl	7
14	$\left[\mathrm{RhCp}^{*} \mathrm{Cl}_{2}\right]_{2}(5)$	DPPPenta (12)	PhCl	1
15	$[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}(5)$	PPh_{3} (24)	PhCl	trace
16	$[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}(5)$	Triphenyl phosphorus oxychloride (24)	PhCl	trace
17	$[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}(5)$	Triethyl phosphite (24)	PhCl	trace
18	$[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}(5)$	Triphenyl phosphite (24)	PhCl	trace
19	$[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}(5)$	Triphenyl phosphate (24)	PhCl	trace
20	$[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}(5)$	Triethyl phosphate (24)	PhCl	trace
21	$[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}(5)$	Tris(4-trifluoromethylphenyl) phosphine (24)	PhCl	trace
22	$[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}(5)$	Tris(pentafluorophenyl)phosphine (24)	PhCl	trace
23	$[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}(5)$	DPPF (12)	PhMe	54
${ }^{a}$ Reaction was carried out with 1,2,3-thiadiazole 1a (0.25 mmol) and 3-methyl-2-butenal (2a) $(0.5 \mathrm{mmol})$ in the presence of 1.0 mL of solvent for 6 h . ${ }^{b}$ Yield of the isolated product. ${ }^{c}$ Reaction was carried out at $50^{\circ} \mathrm{C}$. ${ }^{d}$ Reaction was carried out at $100^{\circ} \mathrm{C}$.				

3. Crystal Data and Structure of Ethyl 2,2-Dimethyl-4-oxo-6-phenyl-3,4-dihydro-2H-thiopyran-5-carboxylate (3aa)

Figure S1. Thermal ellipsoid plot for the crystal structure of 3aa (at 50\% probability level)

Experimental

Single crystals of $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{~S}$ (3aa) were recrystallized from diethyl ether, mounted in inert oil, and transferred to the cold gas stream of the diffractometer.
The X-ray intensity data were measured at 105.6 K , on an Agilent Gemini E single crystal X-ray diffractometer. The crystal data of 3aa has been deposited in CCDC with number 1919688.

Crystal structure determination of 3aa

Crystal Data. $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{~S}, M=290.36$, monoclinic, $a=17.860(3) \AA, b=8.4885(4) \AA, c=$ $14.325(2) \AA, \beta=136.68(3)^{\circ}, U=1489.9(7) \AA^{3}, T=105.6$, space group Cc (no. 9), $Z=4, \mu$ $(\mathrm{CuKa})=1.968,2624$ reflections measured, 1579 unique ($R_{\text {int }}=0.0190$) which were used in all calculations. The final $w R\left(F_{2}\right)$ was 0.0755 (all data).

Table S2. Crystal data and structure refinement for 3aa

Identification code	exp_5184
Empirical formula	$\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{~S}$
Formula weight	290.36
Temperature / K	105.6
Crystal system	monoclinic
Space group	Cc
a / \AA, b/Å, c/A	17.860(3), 8.4885(4), 14.325(2)
$\alpha /^{\circ}, \beta /{ }^{\circ}, \gamma^{\prime}{ }^{\circ}$	90, 136.68(3), 90
Volume / \AA^{3}	1489.9(7)
Z	4
$\rho_{\text {calc }} / \mathrm{mg} \mathrm{mm}^{-3}$	1.294
μ / mm^{-1}	1.968
F(000)	616
Crystal size / mm ${ }^{3}$	$0.150 \times 0.140 \times 0.130$
2Θ range for data collection	12.138 to 142.142°
Index ranges	$-19 \leq \mathrm{h} \leq 21,-9 \leq \mathrm{k} \leq 10,-16 \leq \mathrm{l}$ 17
Reflections collected	2624
Independent reflections	$1579\left[R(\right.$ int $)=0.0190$ (inf-0.9 ${ }^{\text {a }}$)]
Data/restraints/parameters	1579/2/184
Goodness-of-fit on F^{2}	1.082
Final R indexes [l>2 ${ }^{(l)}$ i.e. $\mathrm{F}_{0}>4 \sigma\left(\mathrm{~F}_{\circ}\right)$]	$\mathrm{R}_{1}=0.0287, \mathrm{wR}_{2}=0.0753$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0289, w \mathrm{R}_{2}=0.0755$
Largest diff. peak/hole /e \AA^{-3}	0.227/-0.254
Flack Parameters	0.031(18)
Completeness	0.979

4. General procedure for the synthesis of thiadizaoles 1

Thiadiazoles 1a-1m were prepared according to Gevorgyan's ${ }^{2}$ and Lee's ${ }^{3}$ published procedures.
a)

b)

a) An oven-dried $100-\mathrm{mL}$ flask were charged with a stirrer bar, $\mathrm{NaH}(60 \%$ in mineral oil, $1.60 \mathrm{~g}, 40 \mathrm{mmol}$), dry THF (25 mL), and diethyl carbonate ($\mathbf{S 2}$) ($4.85 \mathrm{~mL}, 40 \mathrm{mmol}$) successively. To the mixture was added a solution of ketone $\mathbf{S 1}(10 \mathrm{mmol})$ in dry THF (15 mL) in 5 min under stirring at $0^{\circ} \mathrm{C}$. After warming up to room temperature, a spherical condenser was put on the flask. The reaction mixture was refluxed overnight, then quenched with $1 \mathrm{M} \mathrm{HCl}(30 \mathrm{~mL})$ under stirring at $0^{\circ} \mathrm{C}$. When there was no bubble released, solvent THF was removed in vacuo. The mixture was added water (20 mL), and then extracted with ethyl acetate ($20 \mathrm{~mL} \times 3$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent in vacuo, the residue was purified by flash chromatography (silica gel, PE:EA $20: 1$ to $5: 1, v / v$), affording the corresponding β-keto ester S3.
b) In a flask, the above prepared β-keto ester $\mathbf{S 3}(10 \mathrm{mmol})$ and 4acetamidobenzenesulfonyl azide (S4) ($2.64 \mathrm{~g}, 11 \mathrm{mmol}$) were dissolved in acetonitrile (60 $\mathrm{mL})$. Triethylamine ($3.05 \mathrm{~g}, 30 \mathrm{mmol}$) was slowly added at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at room temperature overnight. After removal of the solvent by rotary evaporation, the resulting residue was purified by column chromatography ($\mathrm{PE} / E A=3: 1, v / v$) to give ethyl 2-diazo-3-oxo-3-arylpropanoate S5. The diazo compound S5 was then dissolved in toluene (50 mL), followed by addition of Lawesson's reagent ($\mathbf{S 6}$) ($4.85 \mathrm{~g}, 12 \mathrm{mmol}$). The mixture was heated at reflux for 4 h . After the reaction was completed, the solvent was removed by rotary evaporation, and the resulting residue was purified by silica gel column chromatography (PE/EA = 10:1 to $20: 1$ or $\mathrm{DCM} / \mathrm{MeOH}=100: 1$, v / v) to afford ethyl 5 -aryl-1,2,3-thiadiazole-4-carboxylate 1.

All the thiodiazoles 1 are known compounds. For those without published spectra data, IR and HRMS data are also provided here.

Ethyl 5-phenyl-1,2,3-thiadiazole-4-carboxylate (1a) ${ }^{2,3}$ [CAS No. 60474-27-3]
Yellow solid, $2.06 \mathrm{~g}, 88 \%$ yield over the last two steps, m.p. $36-37^{\circ} \mathrm{C}, \mathrm{R}_{f}=0.45(\mathrm{PE} / \mathrm{EA}=$ $5: 1, v / v) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.55-7.44(\mathrm{~m}, 5 \mathrm{H}), 4.41(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.33$ (t, J = 7.1 Hz, 3H). ${ }^{13} \mathrm{C} \operatorname{NMR}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.9,160.4,148.4,130.6,129.7$, 128.6, 126.1, 62.0, 14.0.

Ethyl 5-(benzo[d][1,3]dioxol-5-yl)-1,2,3-thiadiazole-4-carboxylate (1b) ${ }^{3 \mathrm{a}}$ [CAS No. 2022219-62-9]

Pale yellow solid, $2.13 \mathrm{~g}, 77 \%$ yield over three steps, m.p. $81-82{ }^{\circ} \mathrm{C}$ (Lit. $\left.{ }^{3 a} 84-86{ }^{\circ} \mathrm{C}\right), \mathrm{R}_{f}=$ 0.5 (PE/EA $=3: 1, v / v), R_{f}=0.5(\mathrm{DCM} / \mathrm{MeOH}=100: 1, v / v) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.07-7.01$ (m, 2H), 6.89 (dd, J = 7.9, $0.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.06$ (s, 2H), 4.46 (q, J = $7.1 \mathrm{~Hz}, 2 \mathrm{H}$), $1.39(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.9,160.6,149.9,148.0$, 147.9, 124.6, 119.2, 110.0, 108.5, 101.9, 62.1, 14.1.

Ethyl 5-(4-methoxyphenyl)-1,2,3-thiadiazole-4-carboxylate (1c) ${ }^{3 b}$ [CAS No. 2010973-325]
Pale yellow solid, $2.05 \mathrm{~g}, 78 \%$ yield over three steps, m.p. $49-50^{\circ} \mathrm{C}$ (Lit. ${ }^{3 \mathrm{bb}} 50-52^{\circ} \mathrm{C}$), $\mathrm{R}_{f}=$ 0.3 (PE/EA $=5: 1, v / v), \mathrm{R}_{f}=0.45(\mathrm{DCM} / \mathrm{MeOH}=100: 1, \quad v / v) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.51 (d, J = $8.8 \mathrm{~Hz}, 2 \mathrm{H}$), 6.98 (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$), 4.44 (q, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.86$ (s, 3H), $1.37(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 162.1,161.6,160.7,147.6$, 131.4, 117.9, 114.1, 62.0, 55.4, 14.1.

Ethyl 5-(4-methylphenyl)-1,2,3-thiadiazole-4-carboxylate (1d) ${ }^{3 b}$ [CAS No. 340260-34-6] Yellow solid, $1.41 \mathrm{~g}, 57 \%$ yield over three steps, m.p. $46-47^{\circ} \mathrm{C}$ (Lit. ${ }^{3 \mathrm{~b}} 44-46^{\circ} \mathrm{C}$), $\mathrm{R}_{f}=0.3$ (PE/EA = 15:1, v/v). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 2 \mathrm{H}), 4.43(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left\{{ }^{1} \mathrm{H}\right\}(101$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.2,160.5,148.1,141.1,129.6,129.3,123.0,62.0,21.4,14.1$.

Ethyl 5-(4-fluorophenyl)-1,2,3-thiadiazole-4-carboxylate (1e) ${ }^{1}$ [CAS No. 2111487-42-2] White solid, $2.05 \mathrm{~g}, 81 \%$ yield over three steps, m.p. $67-69^{\circ} \mathrm{C}, \mathrm{R}_{f}=0.45$ (PE/EA $=5: 1$, $v / v), \mathrm{R}_{f}=0.55(\mathrm{DCM} / \mathrm{MeOH}=100: 1, \mathrm{v} / \mathrm{v}) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.58-7.50(\mathrm{~m}, 2 \mathrm{H})$, 7.17 (t, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.43(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.36(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left\{{ }^{1} \mathrm{H}\right\}(101$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.1$ (d, $\mathrm{J}_{\mathrm{C}-\mathrm{F}}=253.5 \mathrm{~Hz}$), 160.9, 160.4, 148.4, 131.9 ($\mathrm{d}, \mathrm{J}_{\mathrm{C}-\mathrm{F}}=7.1 \mathrm{~Hz}$), $122.0\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=3.0 \mathrm{~Hz}\right), 115.9\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=22.2 \mathrm{~Hz}\right), 62.2,14.1 .{ }^{19} \mathrm{~F} \mathrm{NMR}\left\{{ }^{1} \mathrm{H}\right\}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta-109.0$ (s). IR (film) 2981, 2922, 2359, 2341, 1730, 1684, 1653, 1635, 1601, 1558, 1540, 1520, 1507, 1474, 1457, 1418, 1395, 1371, 1324, 1272, 1236, 1187, 1161, 1132, 1096, 1075, 1052, 1018, 985, 848, 815, 785, 755, 696, 668, 566, $525 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{FN}_{2} \mathrm{O}_{2} \mathrm{~S}^{+}$253.0442, found 253.0445.

Ethyl 5-(4-chlorophenyl)-1,2,3-thiadiazole-4-carboxylate (1f) ${ }^{1}$ [CAS No. 340260-35-7] White solid, 73% yield over three steps, m.p. $74-75^{\circ} \mathrm{C}, \mathrm{R}_{f}=0.45$ (PE/EA $=5: 1, v / v$), $\mathrm{R}_{f}=$ 0.55 (DCM/MeOH = 100:1, v/v). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.50-7.41(\mathrm{~m}, 4 \mathrm{H}), 4.41$ (q , $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.34(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 160.6,160.2$, 148.4, 137.0, 131.0, 128.9, 124.4, 62.2, 14.0. IR (film) 2980, 2359, 2341, 1727, 1653, 1592, $1558,1540,1507,1473,1457,1399,1372,1338,1272,1195,1184,1092,1016,986,848$, 837, 776, 668, 655, 555, 522, 510, $474 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{ClN}_{2} \mathrm{O}_{3} \mathrm{~S}^{+}$269.0146, found 269.0145 .

Ethyl 5-(3,4-dichlorophenyl)-1,2,3-thiadiazole-4-carboxylate (1g) ${ }^{1}$ [CAS No. 2342602-622]
White solid, $2.25 \mathrm{~g}, 74 \%$ over three steps, m.p. $75-77^{\circ} \mathrm{C}, \mathrm{R}_{f}=0.45$ (PE/EA $\left.=5: 1, v / v\right), \mathrm{R}_{f}$ $=0.45(\mathrm{DCM} / \mathrm{MeOH}=100: 1, \mathrm{v} / \mathrm{v}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.65(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 1 \mathrm{H})$,
$7.56(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{dd}, J=8.3,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.38(\mathrm{t}, J$ $=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 160.0,159.1,148.7,135.2,133.1,131.5$, 130.6, 129.0, 125.9, 62.4, 14.1. IR (film) 2923, 2359, 2341, 1732, 1718, 1699, 1683, 1652, 1636, 1558, 1541, 1520, 1507, 1489, 1473, 1457, 1436, 1418, 1373, 1321, 1274, 1194, 1132, 1051, 1032, 1015, 971, 847, 680, $555 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}^{+}$302.9756, found 302.9751.

Ethyl 5-(4-iodophenyl)-1,2,3-thiadiazole-4-carboxylate (1h) ${ }^{1}$ [CAS No. 2342602-61-1] White solid, $2.80 \mathrm{~g}, 78 \%$ yield over three steps, m.p. $149-151^{\circ} \mathrm{C}, \mathrm{R}_{f}=0.5$ (PE/EA $=5: 1$, $v / v), \mathrm{R}_{f}=0.6(\mathrm{DCM} / \mathrm{MeOH}=100: 1, \mathrm{v} / \mathrm{v}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.85-7.80(\mathrm{~m}, 2 \mathrm{H})$, $\left.7.30-7.25(\mathrm{~m}, 2 \mathrm{H}), 4.44(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.37(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR\{ }{ }^{1} \mathrm{H}\right\}(101$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 160.8,160.2,148.4,137.8,131.2,125.5,97.2,62.2,14.1$. IR (film) 2973, 2921, 2358, 2341, 1718, 1684, 1652, 1636, 1577, 1558, 1540, 1520, 1507, 1471, 1457, 1418, 1393, 1369, 1336, 1271, 1193, 1131, 1076, 1056, 1010, 980, 846, 826, 776, 669, 654, 556, 519, 499, $419 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{IN}_{2} \mathrm{O}_{2} \mathrm{~S}^{+}$ 360.9502 , found 360.9504 .

Ethyl 5-(4-(trifluoromethyl)phenyl)-1,2,3-thiadiazole-4-carboxylate (1i) ${ }^{1}$ [CAS No. 2342602-63-3]
Brown solid, $2.19 \mathrm{~g}, 72 \%$ yield over three steps, m.p. $29-31^{\circ} \mathrm{C}, \mathrm{R}_{f}=0.45$ (PE/EA $=5: 1$, $v / v), \mathrm{R}_{f}=0.45(\mathrm{DCM} / \mathrm{MeOH}=100: 1, v / v) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.74(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.65(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.43(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.34(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left\{{ }^{1} \mathrm{H}\right\}$ $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 160.10,160.05,148.9,132.5\left(\mathrm{q}, \mathrm{J}_{\mathrm{C}-\mathrm{F}}=33.3 \mathrm{~Hz}\right), 130.2,129.9,125.5$ $\left.\left(q, J_{C-F}=4.0 \mathrm{~Hz}\right), 123.5\left(q, J_{C-F}=273.7 \mathrm{~Hz}\right), 62.3,14.0 .{ }^{19} \mathrm{~F} \mathrm{NMR} \mathrm{\{ }{ }^{1} \mathrm{H}\right\}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ -63.05 (s).IR (film) 2984, 2359, 1732, 1684, 1653, 1617, 1558, 1507, 1487, 1457, 1409, 1373, 1325, 1274, 1169, 1130, 1068, 1019, 985, 849, 787, 687, $577 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}^{+}$303.0410, found 303.0410.

Ethyl 5-(4-cyanophenyl)-1,2,3-thiadiazole-4-carboxylate (1j) ${ }^{3 a}$ [CAS No. 2022219-64-1] Pale brown solid, $1.54 \mathrm{~g}, 59 \%$ yield over three steps, m.p. $108-110{ }^{\circ} \mathrm{C}, \mathrm{R}_{f}=0.4(\mathrm{PE} / \mathrm{EA}=$ $3: 1, v / v) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.78(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.65(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, $4.44(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.36(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.9$, 159.5, 149.0, 132.2, 131.0, 130.5, 117.8, 114.4, 62.5, 14.1.

Ethyl 5-(furan-2-yl)-1,2,3-thiadiazole-4-carboxylate (1k) ${ }^{3 a}$ [CAS No. 2022219-65-2]
Brown solid, $1.47 \mathrm{~g}, 67 \%$, yield over three steps, m.p. $109-110^{\circ} \mathrm{C}, \mathrm{R}_{f}=0.55$ (PE/EA $=5: 1$, $v / v) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.81(\mathrm{dd}, J=3.7,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{dd}, J=1.9,0.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.59(\mathrm{dd}, J=3.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.46(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ $\operatorname{NMR}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 160.7,150.5,146.5,144.8,143.0,117.1,113.3,62.1,14.2$.

Ethyl 5-(thiophen-2-yl)-1,2,3-thiadiazole-4-carboxylate (1I) ${ }^{3 a}$ [CAS No. 2010973-34-7]
Brown solid, $2.13 \mathrm{~g}, 89 \%$ yield over three steps, m.p. $96-97^{\circ} \mathrm{C}, \mathrm{R}_{f}=0.3$ (PE/EA $=10: 1$, $v / v), \mathrm{R}_{f}=0.40(\mathrm{DCM} / \mathrm{MeOH}=200: 1, v / v) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.68(\mathrm{dd}, \mathrm{J}=3.8$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{dd}, J=5.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{dd}, J=5.2,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{q}, J=7.1$
$\mathrm{Hz}, 2 \mathrm{H}), 1.42(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 160.7,155.0,146.2$, 133.1, 131.8, 128.2, 125.9, 62.2, 14.1

Ethyl 5-(naphthalen-2-yl)-1,2,3-thiadiazole-4-carboxylate (1m) ${ }^{1}$ [CAS No. 2342602-64-4] Brown solid, $1.47 \mathrm{~g}, 66 \%$ yield over three steps, m.p. $50-52^{\circ} \mathrm{C}, \mathrm{R}_{f}=0.4$ (PE/EA $=10: 1$, $v / v) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.00-7.97(\mathrm{~m}, 1 \mathrm{H}), 7.90-7.82(\mathrm{~m}, 3 \mathrm{H}), 7.55-7.51(\mathrm{~m}$, $3 \mathrm{H}), 4.43-4.36(\mathrm{~m}, 2 \mathrm{H}), 1.31-1.26(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.8,160.2$, 148.2, 133.6, 132.4, 129.7, 128.2, 128.1, 127.6, 127.6, 126.9, 126.3, 123.2, 61.9, 13.9. IR (film) 2979, 2924, 2359, 2342, 1731, 1684, 1653, 1636, 1597, 1558, 1541, 1507, 1490, $1473,1457,1371,1320,1273,1243,1195,1178,1130,1076,1019,963,861,816,785$, $747,556,475 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}^{+} 285.0692$, found 285.0690 .

5. General procedure for the synthesis of alk-2-enals 2

Alk-2-enals $\mathbf{2 j}, \mathbf{2 I}, \mathbf{2 m}, \mathbf{2 n}, \mathbf{2 o}, \mathbf{2 p}$ were synthesized according to Christmann's procedure. ${ }^{4 a}$

To an oven-dried flask with a stirrer bar was added (1,3-dioxolan-2-ylmethyl) triphenylphosphonium bromide (S8) ($1.08 \mathrm{~g}, 2.5 \mathrm{mmol})$. The vial was sealed with a nitrogen gas balloon and cooled to $0^{\circ} \mathrm{C}$, after which dry THF (7 mL) and KOtBu (1 M in THF, 3 mL , 3 mmol) were added until the suspension turned a deep yellow color. After 30 min , a solution of aldehyde $\mathbf{S 7}$ (2 mmol) in dry THF (5 mL) was added. The reaction mixture was kept stirring at room temperature for 6 h . After addition of 20% aqueous oxalic acid (20 mL), the resulting solution was kept stirring for another 8 h . The mixture was extracted with EA $(10 \mathrm{~mL} \times 3)$. The combined organic phase was washed with saturated aqueous NaHCO_{3} and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After concentrated in vacuo, the resulting residue was purified by silica gel column chromatography with a mixture of PE and EA as eluent to give alk-2-enal 2.
(E)-3-(2,3-Dichlorophenyl)propenal (2j) ${ }^{4 \mathrm{~b}}$ [CAS No. 78444-18-5]

White solid, 334 mg , 83% yield, m.p. $95-97^{\circ} \mathrm{C}$ (Lit. ${ }^{23 \mathrm{~b}} 94-95^{\circ} \mathrm{C}$), $\mathrm{R}_{f}=0.3$ (PE/EA = 10:1, $v / v) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.78(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-$ $7.53(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.26(\mathrm{~m}, 1 \mathrm{H}), 6.69(\mathrm{dd}, J=16.0,7.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left\{{ }^{1} \mathrm{H}\right\}(101 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 193.2,147.7,134.4,134.3,133.2,132.4,131.6,127.6,126.0$.
(E)-3-(Naphthalen-2-yl)propenal (2I) ${ }^{4 \mathrm{c}}$ [CAS No. 113388-98-0]

Colorless solid, $346 \mathrm{mg}, 38$ \% yield (from 5 mmol scale reaction), m.p. $124-126{ }^{\circ} \mathrm{C}$ (Lit. ${ }^{23 \mathrm{c}}$ $\left.125-126^{\circ} \mathrm{C}\right), \mathrm{R}_{f}=0.6(\mathrm{PE} / E A=5: 1, v / v) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.77(\mathrm{~d}, J=7.7 \mathrm{~Hz}$, 1H), 8.02-7.98 (m, 1H), 7.91-7.85 (m, 3H), 7.71-7.61 (m, 2H), 7.59-7.51 (m, 2H), 6.84 (dd, $J=15.9,7.7 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 193.7,152.8,134.7,133.2$, 131.6, 130.7, 130.0, 128.8, 128.7, 127.9, 127.8, 127.0, 123.5.
(E)-5-Phenylpenta-2,4-dienal (2m) ${ }^{4 d}$ [CAS No. 24163-63-1]

Brown oil, $270 \mathrm{mg}, 85 \%$ yield, $\mathrm{R}_{f}=0.3$ (PE/EA $\left.=5: 1, \mathrm{v} / \mathrm{v}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $9.62(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.33(\mathrm{~m}, 3 \mathrm{H}), 7.30-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.03-$ $6.98(\mathrm{~m}, 2 \mathrm{H}), 6.27$ (dd, $J=15.3,7.9 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 193.5$, 152.0, 142.4, 135.5, 131.6, 129.6, 128.9, 127.5, 126.1.
(E)-3-((1R,5R)-6,6-Dimethylbicyclo[3.1.1]hept-2-en-3-yl)propenal (2n)

Pale yellow oil, $318 \mathrm{mg}, 90 \%$ yield, $\mathrm{R}_{f}=0.6$ (PE/EA $\left.=5: 1, \mathrm{v} / \mathrm{v}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.57(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.19-6.17 \mathrm{~m}, 1 \mathrm{H}), 6.05(\mathrm{dd}, J=15.6$, $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.59-2.44(\mathrm{~m}, 4 \mathrm{H}), 2.19-2.16(\mathrm{~m}, 1 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}), 1.15(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 1 \mathrm{H})$, 0.77 (s, 3H). ${ }^{13} \mathrm{C} \operatorname{NMR}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 194.2,153.2,146.2,136.8,125.5,41.4$, 40.5, 37.8, 32.9, 31.1, 26.0, 20.7. IR (film): 2926, 2821, 1680, 1612, 1180, 1155, 1121, 1075, 1042, 1011, 969, $581 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{12} \mathrm{H}_{7} \mathrm{O}^{+}$ 177.1274, found 177.1281.
(E)-3-Cyclohexylpropenal (20) ${ }^{4 e}$ [CAS No. 37868-74-9]

Pale yellow oil, $196 \mathrm{mg}, 76 \%$ yield, $\mathrm{R}_{f}=0.8$ ($\mathrm{PE} / \mathrm{EA}=5: 1, \mathrm{v} / \mathrm{v}$). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 9.49(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.77$ (dd, $J=15.7,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.06$ (ddd, $J=15.7,7.8,1.4 \mathrm{~Hz}$, 1H), 2.31-2.22 (m, 1H), 1.87-1.74 (m, 5H), 1.37-1.15 (m, 5H). ${ }^{13} \mathrm{C}$ NMR\{ $\left.{ }^{1} \mathrm{H}\right\}$ (101 MHz , CDCl_{3}): $\delta 194.5,163.8,130.5,40.8,31.5,25.8,25.6$.
(E)-4-Phenylpent-2-enal (2p) ${ }^{4 f}$ [CAS No. 1259027-51-4]

Pale yellow oil, $225 \mathrm{mg}, 70 \%$ yield, $\mathrm{R}_{f}=0.2$ (PE/EA $\left.=20: 1, v / v\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.55$ (d, J = $7.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.39-7.26 (m, 3H), 7.25-7.19 (m, 2H), 6.97 (dd, J=15.7, 6.4 $\mathrm{Hz}, 1 \mathrm{H}$), 6.13 (ddd, $J=15.7,7.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.79-3.71(\mathrm{~m}, 1 \mathrm{H}), 1.49(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C} \operatorname{NMR}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: δ 194.0, 161.7, 142.6, 131.2, 128.8, 128.1, 127.3, 127.0, 42.5, 19.9.

Alk-2-enals 2s, 2t,2y, and $\mathbf{1 2}$ were synthesized according to Jørgensen's procedure. ${ }^{5 a}$

In a flask with a stirrer bar, diethyl cyanomethylphosphonate (10) (1.14 g, 6.43 mmol$)$ was dissolved in 10 mL of dry tetrahydrofuran. The flask was cooled to $0^{\circ} \mathrm{C}$ and sodium hydride ($320 \mathrm{mg}, 60 \%$ in mineral oil, 8 mmol) was slowly added, followed by addition of a solution of ketone $\mathbf{S 9}(6.125 \mathrm{mmol})$ in 5 mL of dry tetrahydrofuran. The resulting solution was kept stirring under room temperature for 2 h . After the reaction was completed, the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL} \times 3)$. The combined organic phase was washed with water ($10 \mathrm{~mL} \times 3$) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After concentrated in vacuo, the resulting residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and DIBAL (1 M in cyclohexane, $8 \mathrm{~mL}, 8 \mathrm{mmol}$) was added dropwise at $-78{ }^{\circ} \mathrm{C}$ under nitrogen atmosphere. The reaction mixture was kept at $-20^{\circ} \mathrm{C}$
for 2 h and monitored by TLC. After reaction was completed, EA (10 mL) was added to quench the remaining DIBAL. The reaction mixture was warmed up to room temperature followed by addition of another 10 mL of EA and 10 mL of saturated potassium sodium tartrate aqueous solution. The suspension was stirred vigorously for 4 ho give a biphasic mixture, which was extracted with EA ($10 \mathrm{~mL} \times 3$). The organic layer was combined and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, then concentrated in vacuo. The residue was purified by silica gel column chromatography ($\mathrm{PE} / \mathrm{EA}=10: 1 \sim 20: 1, v / v$) to give the corresponding alk-2-enal 2.
(E)-3-Phenylbut-2-enal (2s) ${ }^{5 b}$ [CAS No. 21866-70-6]

Pale yellow oil, $1.13 \mathrm{~g}, 77 \%$ yield over two steps, $\mathrm{R}_{f}=0.3(\mathrm{PE} / \mathrm{EA}=10: 1 \mathrm{v} / \mathrm{v} / \mathrm{v}) .{ }^{1} \mathrm{H} \mathrm{NMR}$ ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 10.18$ (d, J = $7.9 \mathrm{~Hz}, 1 \mathrm{H}$), $7.58-7.51$ (m, 2H), 7.44-7.39 (m, 3H), 6.40 (dq, $J=7.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{CNMR}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 191.3$, 157.7, 140.5, 130.1, 128.7, 127.2, 126.2, 16.4.

3-Cyclopropylbut-2-enal (2t) ${ }^{5 \mathrm{c}}$ [CAS No. 59819-87-3]
Pale yellow oil, $1.00 \mathrm{~g}, 90 \%$ yield over two steps, $\mathrm{R}_{f}=0.4$ (pentane/acetone $=10: 1 \mathrm{v} / \mathrm{v}$), $E / Z=2 / 1 .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 10.10(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 0.5 \mathrm{H}), 9.90(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 5.87(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 0.5 \mathrm{H}), 5.83(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.96(\mathrm{~s}, 3 \mathrm{H}), 1.59(\mathrm{~s}, 1.5 \mathrm{H}), 0.94-$ $0.79(\mathrm{~m}, 5 \mathrm{H}), 0.77-0.70(\mathrm{~m}, 2.5 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 190.2,166.0,164.5$, 128.6, 124.9, 20.0, 19.1, 14.2, 13.3, 8.0, 7.1, 5.4, 0.9.
(2-Cyclohexenylidene)acetaldehyde (2y) ${ }^{5 e}$ [CAS No. 106019-07-2]
Pale yellow oil, $691 \mathrm{mg}, 57 \%$ yield over two steps, $\mathrm{R}_{f}=0.7$ (PE/EA $\left.=5: 1, ~ v / v\right)$, $\mathrm{E} / \mathrm{Z}=2 / 1$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 10.10(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 0.5 \mathrm{H}), 10.03(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.08$ (d, $J=10.0 \mathrm{~Hz}, 0.5 \mathrm{H}), 6.35-6.28(\mathrm{~m}, 1.5 \mathrm{H}), 6.20-6.17(\mathrm{~m}, 1 \mathrm{H}), 5.71(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H})$, $5.64(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 0.5 \mathrm{H}), 2.90-2.82(\mathrm{~m}, 2 \mathrm{H}), 2.49-2.41(\mathrm{~m}, 1 \mathrm{H}), 2.28-2.20(\mathrm{~m}, 3 \mathrm{H})$, 1.82-1.75 (m, 3 H). ${ }^{13} \mathrm{C} \operatorname{NMR}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 190.9,189.8,156.1,140.1,140.0$, 130.2, 125.6, 124.4, 122.8, 32.4, 26.9, 26.0, 25.3, 22.6, 22.2, 21.8.

2-((8S,9S,10R,13S,14S)-10,13-Dimethyl-1,2,7,8,9,10,11,12,13,14,15,16-dodecahydro-17H-cyclopenta[a]phenanthren-17-ylidene)acetaldehyde (12)
Yellow solid, 56 \% yield over the last two steps, m.p. $158-159^{\circ} \mathrm{C}, \mathrm{R}_{f}=0.7(\mathrm{PE} / \mathrm{EA}=5: 1$, $v / v), \mathrm{E} / \mathrm{Z}=2 / 1 .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 10.14(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 0.35 \mathrm{H}), 9.86(\mathrm{~d}, \mathrm{~J}=8.0$ $\mathrm{Hz}, 0.63 \mathrm{H}), 5.91(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.82(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 0.34 \mathrm{H}), 5.75(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 0.68 \mathrm{H})$, $5.59(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.40-5.34(\mathrm{~m}, 1 \mathrm{H}), 3.02-2.77(\mathrm{~m}, 1 \mathrm{H}), 2.41-2.04(\mathrm{~m}, 4 \mathrm{H}), 1.93-$ $1.68(\mathrm{~m}, 8 \mathrm{H}), 1.65-1.26(\mathrm{~m}, 4 \mathrm{H}), 1.24-1.04(\mathrm{~m}, 4 \mathrm{H}), 0.96(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR\{$\left.{ }^{1} \mathrm{H}\right\}$ (101 MHz, CDCl_{3}): $\delta 192.2,190.6,180.0,178.9,141.4,128.71,128.68,125.2,125.2$, 124.1, 122.3, 122.2, 119.4, 55.7, 53.6, 48.4, 47.7, 46.4, 38.7, 35.2, 34.7, 33.62, 33.56, $33.4,31.4,31.31,31.26,27.6,24.2,22.9,21.2,20.7,18.9,18.73,18.67,18.0$. IR (film): 2944, 1668, 1454, 1374, 1264, 1142, 1024, 906, 861, 755, 735, 702, $666 \mathrm{~cm}^{-1}$. HRMS (ESITOF) $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{12} \mathrm{H}_{28} \mathrm{NaO}^{+} 319.2032$, found 319.2029.

Cinnamaldehyde-1-d (2g-d) was synthesized according to Pierre's procedure. ${ }^{6}$

1) In a flask with a stir-bar, cinnamic aldehyde $(\mathbf{2 g})(1.32 \mathrm{~g}, 10 \mathrm{mmol})$, propane-1,3-dithiol ($\mathbf{S 1 1}$) ($1.30 \mathrm{~g}, 12 \mathrm{mmol}$), and 4-methylbenzenesulfonic acid monohydrate ($86 \mathrm{mg}, 0.5 \mathrm{mmol}$) were dissolved in 20 mL of toluene. The reaction mixture was heated to $70-80^{\circ} \mathrm{C}$ and kept stirring for 3-4 h. After the completion of the reaction and removal of solvent by rotary evaporation the resulting residue was purified by silica gel column chromatography (PE/EA $=50: 1, v / v)$ to give pale yellow oil (E)-2-styryl-1,3-dithiolane (S12).
2) To an oven-dried flask with a stirrer bar and sealed with a nitrogen gas balloon were added above prepared (E)-2-styryl-1,3-dithiolane ($\mathbf{S 1 2 \text {) and dry THF } (1 0 \mathrm { mL }) \text { . The reaction }}$ mixture was cooled down to -35 to $-30^{\circ} \mathrm{C}$. After addition of n-BuLi (1.6 M in THF, 12.5 mL , 20 mmol) dropwise the reaction mixture was stirred for 3 h . Then $\mathrm{D}_{2} \mathrm{O}(1.0 \mathrm{~mL}, 50 \mathrm{mmol})$ was added and the reaction mixture was further stirred at -35 to $-30{ }^{\circ} \mathrm{C}$ for 8 h . After the completion of the reaction and removal of solvent THF by rotary evaporation the resulting residue was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL} \times 3)$. The organic layer was combined and concentrated in vacuo. The residue was purified by silica gel column chromatography (PE/EA $=50: 1, v / v$) to give pale yellow oil (E)-2-styryl-1,3-dithiolane-2-d (S13) $1.345 \mathrm{~g} \mathrm{(60} \mathrm{\%}$ yield).
3) To a flask with a stirrer bar were added the above prepared (E)-2-styryl-1,3-dithiolane-2-d (S12) (1.2 g, 6mmol) and solvent (acetone: $\mathrm{H}_{2} \mathrm{O}=1: 1,15 \mathrm{~mL}$). The flask was cooled down to -35 to $-30^{\circ} \mathrm{C}$. After addition of (diacetoxyiodo)benzene ($4.83 \mathrm{~g}, 15 \mathrm{mmol}$) the flask was heated in an oil bath at $25^{\circ} \mathrm{C}$ for $5-10$ mins. After the reaction was completed and removal of solvent acetone by rotary evaporation the resulting residue was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL} \times 3)$. The organic layer was combined and concentrated in vacuo. The residue was purified by silica gel column chromatography ($\mathrm{PE} / \mathrm{EA}=20: 1, \mathrm{v} / \mathrm{v}$) to give pale yellow oil cinnamaldehyde-1-d (2g-d) (>99\%D) 649 mg (60 \% yield).
(E)-Cinnamaldehyde-1-d (2g-d) ${ }^{6}$ [CAS No. 77249-46-8]

Pale yellow oil, $649 \mathrm{mg}, 36 \%$ overall yield, $\mathrm{R}_{f}=0.2$ (PE/EA $\left.=10 / 1, \mathrm{v} / \mathrm{v}\right) .{ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta 7.61-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.48(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{dd}, J=5.0,2.0 \mathrm{~Hz}, 3 \mathrm{H}), 6.72$ (d, J = 16.0 Hz, 1H). ${ }^{13} \mathrm{C} \operatorname{NMR}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 193.4$ ($\mathrm{t}, \mathrm{J}_{\mathrm{c}-\mathrm{d}}=26.2 \mathrm{~Hz}$), 152.7, 134.0, 131.2, 129.1, 128.6, 128.5, 128.5. IR (film): 2359, 2341, 1698, 1669, 1654, 1636, 1623, 1575, 1558, 1541, 1520, 1507, 1489, 1456, 1448, 1194, 1144, 1074, 1052, 1032, 997, 975, 739, $687 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{DO}^{+} 134.0711$, found 134.0713.
(Z)-3-Phenylacrylaldehyde [(Z)-2g] was synthesized according to Lindlar's procedure. ${ }^{7}$

To an oven-dried vial with a stirrer bar was added palladium 5% on calcium carbonate (poisoned with lead) ($10 \mathrm{mg}, 0.1 \mathrm{mmol}$). The vial was sealed with a nitrogen balloon and then gas was exchanged with a hydrogen balloon (1 atm). After addition of 3phenylpropiolaldehyde ($\mathbf{S 1 4}$) $(260 \mathrm{mg}, 2 \mathrm{mmol})$ and hexane (1.5 mL), the reaction mixture was stirred overnight at room temperature. After the reaction was completed and removal of solvent hexane by rotary evaporation the resulting residue was purified by silica gel column chromatography to give (Z)-3-phenylacrylaldehyde [(Z)-2g] 165mg (30 \% yield).
(Z)-3-Phenylacrylaldehyde $[(Z)-2 g]^{7}[$ CAS No. 57194-69-1]

Pale yellow oil, $165 \mathrm{mg}, 30 \%$ yield, $\mathrm{R}_{f}=0.5(\mathrm{PE} / \mathrm{EA}=10: 1, v / v) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.98$ (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.39(\mathrm{~m}, 5 \mathrm{H}), 6.20(\mathrm{dd}, J=11.6$, 8.1 Hz, 1H). ${ }^{13} \mathrm{C}$ NMR\{ $\left.{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): ~ \delta 192.5,148.6,134.2,130.5,129.8,129.7$, 128.6.

6. General procedure for the synthesis of ethyl 4-oxo-3,4-dihydro-2H-thiopyran-5carboxylates 3 and 13

Conditions A: This procedure is used for the preparation of 3aa, 3ac-3af, 3ah-3at, 3ay, 3aac, 3aad, 3ba, 3ea, and 3ma.
To an oven-dried 10 mL -vial with a stirring bar were added 1,2,3-thiadiazole 1 (0.25 mmol), catalyst $[R h(C O D) C I]_{2}(6.2 \mathrm{mg}, 5 \mathrm{~mol} \%)$, ligand DPPF ($16.6 \mathrm{mg}, 12 \mathrm{~mol} \%$), and pre-dried solvent $\mathrm{PhCl}(1 \mathrm{~mL})$. The vial was sealed with a nitrogen gas balloon, then alkenal 2 (0.5 mmol) was added via a syringe. The reaction mixture was kept stirring at $130^{\circ} \mathrm{C}$ in an oilbath for 6 h . After the reaction mixture was cooled to room temperature, the solvent was removed by rotary evaporation. The resulting residue was purified by silica gel column chromatography ($\mathrm{PE} / \mathrm{EA}=5: 1 \sim 20: 1, \mathrm{v} / \mathrm{v}$) to give desired product 3.

Conditions B: This modification is used for the preparation of 3ca, 3fa, 3ga, 3ha, 3ia, 3ja 3ka, and 3la.
To an oven-dried 10 mL -vial with a stirring bar were added $1,2,3$-thiadiazole 1 (0.10 mmol), catalyst $\left[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}_{2}(12.4 \mathrm{mg}, 10 \mathrm{~mol} \%)\right.$, ligand DPPF ($33.2 \mathrm{mg}, 24 \mathrm{~mol} \%$), additive $\mathrm{AgBF}_{4}(9.7 \mathrm{mg}, 20 \mathrm{~mol} \%)$, and pre-dried solvent $\mathrm{PhCl}(0.5 \mathrm{~mL})$. The vial was sealed with a nitrogen gas balloon, then alkenal $2(0.3 \mathrm{mmol})$ was added via a syringe. The reaction mixture was kept stirring at $130^{\circ} \mathrm{C}$ in an oil-bath for 6 h . After the reaction mixture was cooled to room temperature, the solvent was removed by rotary evaporation. The resulting residue was purified by silica gel column chromatography (PE/EA $=5: 1 \sim 20: 1, v / v)$ to give desired product 3.

Conditions C: This modification was used for the preparation of 3ab.
To an oven-dried 10 mL -vial with a stirring bar were added 1,2,3-thiadiazole $1 \mathrm{a}(0.10 \mathrm{mmol}$, 23.4 mg), catalyst $\left[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}_{2}(2.5 \mathrm{mg}, 5 \mathrm{~mol} \%)\right.$, ligand DPPF ($6.7 \mathrm{mg}, 12 \mathrm{~mol} \%$), and
pre-dried solvent $\mathrm{PhCl}(1 \mathrm{~mL})$. The vial was sealed with a nitrogen gas balloon, then alkenal 2b ($0.4 \mathrm{mmol}, 22.4 \mathrm{mg}$) was added via a syringe. The reaction mixture was kept stirring at $130^{\circ} \mathrm{C}$ in an oil-bath for 6 h . After the reaction mixture was cooled to room temperature, the solvent was removed by rotary evaporation. The resulting residue was purified by silica gel column chromatography ($\mathrm{PE} / E A=5: 1, v / v$) to give desired product 3ab.

Conditions D : This modification was used for the preparation of 3aae.
To an oven-dried 10 mL -vial with a stirring bar were added 1,2,3-thiadiazole 1 a $(0.25 \mathrm{mmol}$, 58.6 mg), catalyst $\left[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}_{2}(12.3 \mathrm{mg}, 10 \mathrm{~mol} \%\right.$), ligand DPPF ($33.2 \mathrm{mg}, 24 \mathrm{~mol} \%$), and pre-dried solvent $\mathrm{PhCl}(1 \mathrm{~mL})$. The vial was sealed with a nitrogen gas balloon, then alkenal $\mathbf{2 a e}(0.5 \mathrm{mmol}, 73.0 \mathrm{mg}$) was added via a syringe. The reaction mixture was kept stirring at $130^{\circ} \mathrm{C}$ in an oil-bath for 12 h . After the reaction mixture was cooled to room temperature, the solvent was removed by rotary evaporation. The resulting residue was purified by silica gel column chromatography (PE/EA $=10: 1, v / v$) to give desired product 3aae

Ethyl 2,2-dimethyl-4-oxo-6-phenyl-3,4-dihydro-2H-thiopyran-5-carboxylate (3aa)
Prepared under Condition A on 0.25 mmol scale. Colorless crystal, $52 \mathrm{mg}, 72 \%$ yield, $\mathrm{R}_{f}=$ 0.2 (PE/EA = 5:1, v/v), m.p. $105-107{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.47-7.31(\mathrm{~m}, 5 \mathrm{H})$, 3.97 (q, J=7.1 Hz, 2H), $2.75(\mathrm{~s}, 2 \mathrm{H}), 1.52(\mathrm{~s}, 6 \mathrm{H}), 0.88(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR\{ $\left.{ }^{1} \mathrm{H}\right\}$ (101 MHz, CDCl 3): $\delta 191.5,165.9,160.8,136.5,130.4,128.4,127.8,126.9,61.1,51.2$, 45.6, 27.7, 13.5.

Ethyl 4-oxo-6-phenyl-3,4-dihydro-2H-thiopyran-5-carboxylate (3ab)
Prepared under Conditions C on 0.10 mmol scale. Brown oil, $17 \mathrm{mg}, 65 \%$ yield, $\mathrm{R}_{f}=0.3$ (PE/EA = 5:1, v/v). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.85-7.69(\mathrm{~m}, 5 \mathrm{H}), 4.32(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}$, $2 \mathrm{H}), 3.64$ (dd, $J=8.0,8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 3.19 (dd, $J=8.0,8.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.25(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR $\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 190.5,165.8,162.1,136.5,130.7,128.5,128.2,127.9$, 61.2, 36.3, 27.0, 13.6. IR (film): 2960, 2924, 1724, 1657, 1544, 1486, 1443, 1365, 1332, 1298, 1233, 1210, 1173, 1094, 1047, 1017, 940, 914, $840 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) m/z $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{O}_{3} \mathrm{~S}^{+}$263.0736, found 263.0738 .

Ethyl 2-(4-(dimethylamino)phenyl)-4-oxo-6-phenyl-3,4-dihydro-2H-thiopyran-5carboxylate (3ac)
Prepared under Conditions A on 0.25 mmol scale. Brown oil, $73 \mathrm{mg}, 77 \%$ yield, $\mathrm{R}_{f}=0.15$ (PE/EA = 5:1, v/v). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.55-7.35(\mathrm{~m}, 5 \mathrm{H}), 7.26(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}$, $2 \mathrm{H}), 6.71$ (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$), 4.74 (dd, $J=14.8,3.2 \mathrm{~Hz}, 1 \mathrm{H}$), $4.04-4.00(\mathrm{~m}, 2 \mathrm{H}), 3.23$ (dd, $J=15.4,15.4 \mathrm{~Hz} 1 \mathrm{H}$), $3.01(\mathrm{dd}, J=16.0,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{~s}, 6 \mathrm{H}), 0.94(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR $\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): ~ \delta 191.7,166.0,162.7,150.6,136.3,130.6,128.5,128.2$, 127.9, 127.8, 123.8, 112.4, 61.1, 46.1, 44.0, 40.3, 13.6. IR (film): 2979, 2897, 2805, 1728, 1658, 1611, 1524, 1484, 1444, 1362, 1323, 1228, 1210, 1166, 1142, 1095, 1038, 945, 915 , $847,818 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{NO}_{3} \mathrm{~S}^{+} 382.1471$, found 382.1472.

Ethyl 2-(4-methoxyphenyl)-4-oxo-6-phenyl-3,4-dihydro-2H-thiopyran-5-carboxylate (3ad) Prepared under Conditions A on 0.25 mmol scale. Brown oil, $72 \mathrm{mg}, 78 \%$ yield, $\mathrm{R}_{f}=0.3$ (PE/EA = 5:1, v/v). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.53-7.35(\mathrm{~m}, 5 \mathrm{H}), 7.33(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}$, 2H), 6.91 (d, J = $8.3 \mathrm{~Hz}, 2 \mathrm{H}$), 4.76 (dd, $J=14.5,2.8 \mathrm{~Hz}, 1 \mathrm{H}$), 4.03-3.99 (m, 2H), 3.80 (s, $3 \mathrm{H}), 3.21(\mathrm{dd}, J=16.0,14.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{dd}, J=15.9,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.93(\mathrm{t}, J=7.1 \mathrm{~Hz}$, 3H). ${ }^{13} \mathrm{C} \operatorname{NMR}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 191.2,165.9,162.2,159.8,136.1,130.7,128.8$, 128.6, 128.5, 127.890, 127.887, 114.4, 61.2, 55.3, 45.7, 43.9, 13.6. IR (film): 2979, 2932, 1728, 1659, 1609, 1580, 1513, 1486, 1463, 1443, 1365, 1321, 1303, 1254, 1225, 1180, $1144,1113,1095,1037,946,915,852,833 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{O}_{4} \mathrm{~S}^{+} 369.1155$, found 369.1154 .

Ethyl 2-(3-methoxyphenyl)-4-oxo-6-phenyl-3,4-dihydro-2H-thiopyran-5-carboxylate (3ae) Prepared under Conditions A on 0.25 mmol scale. Brown oil, $76 \mathrm{mg}, 83 \%$ yield, $\mathrm{R}_{f}=0.2$ (PE/EA = 5:1, v/v). ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta 7.53-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.34(\mathrm{~m}, 3 \mathrm{H})$, $7.32-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.01-6.86(\mathrm{~m}, 3 \mathrm{H}), 4.77(\mathrm{dd}, \mathrm{J}=14.3,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.03-3.98(\mathrm{~m}, 2 \mathrm{H})$, $3.80(\mathrm{~s}, 3 \mathrm{H}), 3.20(\mathrm{dd}, J=15.9,14.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{dd}, J=16.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.93(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 190.9,165.7,161.9,159.9,138.4,136.0$, 130.7, 130.2, 128.5, 127.9, 119.6, 114.1, 113.2, 61.2, 55.2, 46.1, 43.6, 13.5. IR (film): 2978, 1729, 1659, 1599, 1585, 1550, 1492, 1463, 1442, 1365, 1321, 1250, 1228, 1211, 1147, 1106, 1039, 1027, 946, $915 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{K}]^{+}$calcd. for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{KO}_{4} \mathrm{~S}^{+}$ 407.0714, found 407.0724.

Ethyl 2-(2-methoxyphenyl)-4-oxo-6-phenyl-3,4-dihydro-2H-thiopyran-5-carboxylate (3af) Prepared under Conditions A on 0.25 mmol scale. Brown oil, $73 \mathrm{mg}, 80 \%$ yield, $\mathrm{R}_{f}=0.3$ (PE/EA = 5:1, v/v). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.55-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.28(\mathrm{~m}, 5 \mathrm{H})$, 7.02-6.89 (m, 2H), 5.29 (dd, J = 13.6, 3.2 Hz, 1H), 4.05-3.99 (m, 2H), 3.87 (s, 3H), 3.22 (dd, $J=15.9,13.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.97(\mathrm{dd}, J=16.0,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.94(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR\{ $\left.{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 191.6,166.0,162.8,156.8,136.4,130.6,129.7,128.5$, 127.93, 127.88, 127.5, 125.2, 120.9, 111.0, 61.1, $55.5,42.8,39.6,13.6$. IR (film): 3057, $2978,1728,1660,1599,1584,1550,1490,1443,1365,1318,1267,1232,1213,1158$, 1094, 1039, 946, 915, $877 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{O}_{4} \mathrm{~S}^{+}$ 369.1155, found 369.1148.

Ethyl 2-(4-fluorophenyl)-4-oxo-6-phenyl-3,4-dihydro-2H-thiopyran-5-carboxylate (3ah) Prepared under Conditions A on 0.25 mmol scale. Yellow oil, $67 \mathrm{mg}, 75 \%$ yield, $\mathrm{R}_{f}=0.3$ (PE/PE = 5:1, v/v). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.50(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.45-7.36(\mathrm{~m}$, $5 \mathrm{H}), 7.10(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{dd}, J=14.3,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.09-$ $3.93(\mathrm{~m}, 2 \mathrm{H}), 3.19(\mathrm{dd}, J=15.6,14.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.02(\mathrm{dd}, J=16.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.92(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 190.8,165.7,162.4\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=249.5 \mathrm{~Hz}\right)$, $161.8,135.9,132.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=3.3 \mathrm{~Hz}\right), 130.8,129.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=8.3 \mathrm{~Hz}\right), 128.6,127.95,127.89$, $116.1\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=21.7 \mathrm{~Hz}\right), 61.3,45.4,43.7,13.6 .{ }^{19} \mathrm{~F} \operatorname{NMR}\left\{{ }^{1} \mathrm{H}\right\}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-112.3(\mathrm{~s})$. IR (film): 2981, 1728, 1660, 1603, 1550, 1509, 1486, 1444, 1416, 1366, 1319, 1225, 1160, 1144, 1097, 1039, 946, 915, 856, $838 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd. for

Ethyl 2-(4-bromophenyl)-4-oxo-6-phenyl-3,4-dihydro-2H-thiopyran-5-carboxylate (3ai) Prepared under Conditions A on 0.25 mmol scale. Brown oil, $75 \mathrm{mg}, 72 \%, \mathrm{R}_{f}=0.3$ (PE/EA $=5: 1, v / v)$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.53-7.48(\mathrm{~m}, 4 \mathrm{H}), 7.47-7.29(\mathrm{~m}, 5 \mathrm{H}), 4.76$ (dd, $J=14.0,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.07-3.95(\mathrm{~m}, 2 \mathrm{H}), 3.18$ (dd, $J=15.9,14.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.01$ (dd, $J=$ $15.9,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 0.93(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 190.6,165.6$, 161.5, 136.0, 135.9, 132.3, 130.8, 129.1, 128.6, 128.0, 127.9, 122.8, 61.3, 45.5, 43.4, 13.6. IR (film): 2920, 2850, 1727, 1660, 1591, 1549, 1487, 1470, 1400, 1366, 1316, 1298, 1263, 1223, 1141, 1091, 1074, 1012, 929, $827 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{BrNaO}_{3} \mathrm{~S}^{+} 438.9974$, found 438.9965 .

Ethyl 2-(2,3-dichlorophenyl)-4-oxo-6-phenyl-3,4-dihydro-2H-thiopyran-5-carboxylate (3aj) Prepared under Conditions A on 0.25 mmol scale. Brown oil, $66 \mathrm{mg}, 65 \%$ yield, $\mathrm{R}_{f}=0.2$ (PE/EA $=5: 1, \mathrm{v} / \mathrm{v}) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.57-7.29(\mathrm{~m}, 8 \mathrm{H}), 5.33(\mathrm{dd}, J=12.5,3.6$ $\mathrm{Hz}, 1 \mathrm{H}), 4.06-3.99(\mathrm{~m}, 2 \mathrm{H}), 3.19$ (dd, $J=15.9,12.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.06 (dd, $J=15.9,3.7 \mathrm{~Hz}$, $1 \mathrm{H}), 0.95(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 190.2,165.5,161.3,137.0$, 135.8, 134.1, 132.1, 130.9, 130.6, 128.6, 128.0, 127.9, 127.8, 126.4, 61.3, 42.9, 42.5, 13.6. IR (film): 3060, 2979, 1729, 1661, 1597, 1553, 1486, 1451, 1421, 1365, 1309, 1279, 1223, 1181, 1159, 1095, 1040, 947, 915, $859 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{Cl}_{2} \mathrm{O}_{3} \mathrm{~S}^{+} 407.0270$, found 407.0274 .

Ethyl 2-(4-nitrophenyl)-4-oxo-6-phenyl-3,4-dihydro-2H-thiopyran-5-carboxylate (3ak)
Prepared under Conditions A on 0.25 mmol scale. Brown oil, $40 \mathrm{mg}, 39 \%$ yield, $\mathrm{R}_{f}=0.15$ (PE/EA = 5:1, v/v). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.27(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.62(\mathrm{~d}, \mathrm{~J}=8.4$ $\mathrm{Hz}, 2 \mathrm{H}), 7.55-7.34(\mathrm{~m}, 5 \mathrm{H}), 4.91$ (dd, $J=13.4,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.04-3.99(\mathrm{~m}, 2 \mathrm{H}), 3.24$ (dd, $J=15.8,13.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.08 (dd, $J=15.8,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.93(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left\{{ }^{1} \mathrm{H}\right\}$ ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 189.9,165.4,160.8,148.0,144.1,135.6,131.1,128.7,128.6,128.2$, 128.0, 124.4, 61.4, 45.2, 43.0, 13.6. IR (film): 3079, 2981, 2927, 1727, 1660, 1598, 1523, 1490, 1444, 1347, 1320, 1264, 1227, 1212, 1146, 1111, 1038, 946, 916, 856, $833 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{NO}_{5} \mathrm{~S}^{+} 384.0900$, found 384.0900.

Ethyl 2-(naphthalen-2-yl)-4-oxo-6-phenyl-3,4-dihydro-2H-thiopyran-5-carboxylate (3al)
Prepared under Conditions A on 0.25 mmol scale. Brown oil, $67 \mathrm{mg}, 69 \%, \mathrm{R}_{f}=0.4$ (PE/EA = 5:1, v/v). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.93-7.80(\mathrm{~m}, 4 \mathrm{H}), 7.58-7.48(\mathrm{~m}, 5 \mathrm{H})$, $7.48-7.35(\mathrm{~m}, 3 \mathrm{H}), 4.97$ (dd, $J=14.3,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.07-7.02(\mathrm{~m}, 2 \mathrm{H}), 3.36$ (dd, $J=15.9$, $14.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.13(\mathrm{dd}, J=15.9,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.96(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left\{{ }^{1} \mathrm{H}\right\}(101$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 191.0, 165.8, 161.9, 136.1, 134.2, 133.2, 130.7, 129.1, 128.5, 127.99, 127.94 127.7, 126.75, 126.69, 124.8, 61.3, 46.4, 43.6, 13.6. IR (film): 2925, 2360, 2341, 1729, 1660, 1598, 1551, 1508, 1487, 1443, 1365, 1307, 1210, 1141, 1038, 946, 914, 858, 818, 751, 720, 697, 669, 568, $477 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{O}_{3} \mathrm{~S}^{+} 389.1206$, found 389.1207 .

Ethyl (E)-4-oxo-6-phenyl-2-styryl-3,4-dihydro-2H-thiopyran-5-carboxylate (3am)

Prepared under Conditions A on 0.25 mmol scale. Brown oil, $67 \mathrm{mg}, 74 \%$ yield, $\mathrm{R}_{f}=0.3$ (PE/EA = 5:1, v/v). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.52-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.37(\mathrm{~m}, 5 \mathrm{H})$, $7.36-7.31$ (m, 2H), 7.31-7.27 (m, 1H), 6.70 (d, J=15.7 Hz, 1H), 6.25 (dd, J=15.7, 8.3 Hz , 1 H), 4.39 (ddd, $J=12.1,8.3,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.03-3.98(\mathrm{~m}, 2 \mathrm{H}), 3.06-2.91(\mathrm{~m}, 2 \mathrm{H}), 0.93(\mathrm{t}, J$ $=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR\{$\left.{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 190.6,165.7,161.3,136.2,135.5,134.4$, 130.7, 128.7, 128.51, 128.46, 128.0, 127.9, 126.6, 124.4, 61.2, 44.5, 42.8, 13.6. IR (film): 3058, 3027, 2980. 1728, 1659, 1598, 1550, 1488, 1445, 1407, 1366, 1324, 1212, 1143, 1095, 1072, 1036, 964, 945, $914 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{O}_{3} \mathrm{~S}^{+}$ 365.1206 , found 365.1201 .

Ethyl 2-((1R,5R)-6,6-dimethylbicyclo[3.1.1]hept-2-en-2-yl)-4-oxo-6-phenyl-3,4-dihydro-2H-thiopyran-5-carboxylate (3an)
Prepared under Conditions A on 0.25 mmol scale. Yellow oil, $76 \mathrm{mg}, 80 \%$ yield, $\mathrm{R}_{f}=0.5$ (PE/EA = 5:1, v/v). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.45-7.32(\mathrm{~m}, 5 \mathrm{H}), 5.64-5.62(\mathrm{~m}, 1 \mathrm{H})$, 4.23-4.16 (m, 1H), 4.03-3.90 (m, 2H), 2.92 (ddd, $J=16.0,12.5,7.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.81 (ddd, J $=16.0,3.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.47-2.42(\mathrm{~m}, 1 \mathrm{H}), 2.38-2.08(\mathrm{~m}, 4 \mathrm{H}), 1.30(\mathrm{~d}, \mathrm{~J}=3.4 \mathrm{~Hz}, 3 \mathrm{H})$, 1.17 (dd, $J=8.8,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 0.89(\mathrm{td}, J=7.1,1.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.83(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR\{1 H$\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 191.5,191.3,165.8,162.1,161.9,143.4,143.2,136.6$, 136.5, 130.52, 130.50, 128.5, 127.9, 127.8, 122.6, 122.5, 61.1, 47.4, 47.1, 44.0, 43.7, 41.3, $40.9,40.5,40.4,38.2,38.1,31.7,31.6,31.3,31.3,26.0,21.4,21.3,13.6,13.5$. IR (film): 2979, 2932, 1731, 1660, 1611, 1552, 1466, 1444, 1366, 1309, 1212, 1142, 1096, 1038, $945 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{O}_{3} \mathrm{~S}^{+} 383.1675$, found 383.1671.

Ethyl 2-cyclohexyl-4-oxo-6-phenyl-3,4-dihydro-2H-thiopyran-5-carboxylate (3ao)
Prepared under Conditions A on 0.25 mmol scale. Pale yellow oil, $62 \mathrm{mg}, 72 \%$ yield, $\mathrm{R}_{f}=$ 0.5 (PE/EA = 5:1, v/v). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.49-7.32(\mathrm{~m}, 5 \mathrm{H}), 4.00-3.93(\mathrm{~m}, 2 \mathrm{H})$, 3.48 (ddd, $J=12.9,6.4,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.86$ (dd, $J=15.8,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.75$ (dd, $J=15.8$, $12.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.92-1.61(\mathrm{~m}, 6 \mathrm{H}), 1.32-1.07(\mathrm{~m}, 5 \mathrm{H}), 0.90(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left\{{ }^{1} \mathrm{H}\right\}$ ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 191.9,165.9,162.3,136.8,130.5,128.4,127.8,127.6,61.1,48.2$, 40.9, 40.8, 30.1, 29.9, 26.0, 25.92, 25.90, 13.6. IR (film): 2927, 2853, 1730, 1660, 1551, 1486, 1445, 1365, 1322, 1234, 1210, 1095, 1030, 956, $915 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) m/z $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{O}_{3} \mathrm{~S}^{+} 345.1519$, found 345.1519.

Ethyl 4-oxo-6-phenyl-2-(1-phenylethyl)-3,4-dihydro-2H-thiopyran-5-carboxylate (3ap)
Prepared under Conditions A on 0.25 mmol scale. Yellow oil, $54 \mathrm{mg}, 59 \%$ yield, $\mathrm{R}_{f}=0.15$ (PE/EA = 10:1, $v / v), \mathrm{dr}=1: 1 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.54-7.49(\mathrm{~m}, 1 \mathrm{H}), 7.49-7.34$ ($\mathrm{m}, 6 \mathrm{H}$), 7.34-7.18 (m, 4H), 4.07-3.93 (m, 2H), 3.85-3.72 (m, 1H), 3.16-3.08 (m, 1H), 3.04 (dd, $J=15.8,3.1 \mathrm{~Hz}, 0.5 \mathrm{H}$), 2.78 (dd, $J=16,12.8 \mathrm{~Hz}, 0.5 \mathrm{H}$), 2.72 (dd, $J=16,3.6 \mathrm{~Hz}$, 0.5 H), 2.58 (dd, $J=16,12.4 \mathrm{~Hz}, 0.5 \mathrm{H}$), 1.52 (d, $J=7.0 \mathrm{~Hz}, 1.5 \mathrm{H}$), 1.47 (d, $J=7.0 \mathrm{~Hz}$, $1.5 \mathrm{H}), 0.924(\mathrm{t}, J=7 \mathrm{~Hz}, 1.5 \mathrm{H}), 0.915(\mathrm{t}, J=7 \mathrm{~Hz}, 1.5 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):$ $\delta 191.24,191.21,165.8,162.2,161.4,141.97,141.95,136.61,136.57,130.63,130.55$, 128.9, 128.7, 128.5, 128.4, 128.1, 127.95, 127.85, 127.7, 127.5, 127.43, 127.40, 61.16, 61.14, 48.7, 48.6, 43.13, 43.11, 41.6, 41.2, 19.2, 18.5, 13.6. IR (film): 3060, 2970, 2928, 1727, 1658, 1599, 1551, 1491, 1444, 1365, 1326, 1304, 1233, 1211, 1075, 1049, 1028,

Ethyl 2-methyl-2-(4-methylpent-3-en-1-yl)-4-oxo-6-phenyl-3,4-dihydro-2H-thiopyran-5carboxylate (3ar)
Prepared under Conditions A on 0.25 mmol scale. Yellow oil, $74 \mathrm{mg}, 83 \%$ yield, $\mathrm{R}_{f}=0.3$ (PE/EA = 5:1, v/v). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.46-7.32(\mathrm{~m}, 5 \mathrm{H}), 5.08(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}$, $1 \mathrm{H}), 3.96$ (q, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}$), 2.84 (d, $J=15.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.71 (d, $J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.17-$ $2.10(\mathrm{~m}, 2 \mathrm{H}), 1.87-1.69(\mathrm{~m}, 2 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}), 0.88$ (t, J=7.1 $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 191.5,165.8,160.6,136.6,132.8,130.4,128.4$, 127.8, 126.8, 122.6, 61.0, 49.7, 49.1, 40.2, 25.5, 24.9, 22.8, 17.6, 13.5. IR (film): 2974, 2930, 1729, 1659, 1551, 1444, 1366, 1326, 1241, 1211, 1075, 1042, $945,914 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{O}_{3} \mathrm{~S}^{+} 359.1675$, found 359.1682.

Ethyl 2-methyl-4-oxo-2,6-diphenyl-3,4-dihydro-2H-thiopyran-5-carboxylate (3as)
Prepared under Conditions A on 0.25 mmol scale. Yellow oil, $76 \mathrm{mg}, 86 \%$ yield, $\mathrm{R}_{f}=0.3$ (PE/EA = 5:1, v/v). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.57-7.29(\mathrm{~m}, 10 \mathrm{H}), 3.97(\mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}$, $2 \mathrm{H}), 3.44(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.89(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 191.1,165.6,160.5,142.0,136.1,130.5,128.8$, 128.5, 128.4, 128.0, 127.9, 125.7, 61.0, 51.3, 49.8, 27.4, 13.5. IR (film): 3058, 2979, 2927, 1729, 1659, 1598, 1553, 1493, 1444, 1366, 1325, 1241, 1213, 1069, 1028, 1001, 946, 914 , $818 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{O}_{3} \mathrm{~S}^{+} 353.1206$, found 353.1206.

Ethyl 2-cyclopropyl-2-methyl-4-oxo-6-phenyl-3,4-dihydro-2H-thiopyran-5-carboxylate (3at) Prepared under Conditions A on 0.25 mmol scale. Yellow oil, $62 \mathrm{mg}, 78 \%$ yield, $\mathrm{R}_{f}=0.3$ (PE/EA = 5:1, v/v). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.48-7.31(\mathrm{~m}, 5 \mathrm{H}), 3.97(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}$, 2 H), 2.85 ($\mathrm{d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.75 ($\mathrm{d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}$), $1.34(\mathrm{~s}, 3 \mathrm{H}), 1.21-1.11(\mathrm{~m}, 1 \mathrm{H})$, $0.88(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.60-0.51(\mathrm{~m}, 3 \mathrm{H}), 0.49-0.42(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left\{{ }^{1} \mathrm{H}\right\}(101 \mathrm{MHz}$, CDCl_{3}): $\delta 191.5,165.9,160.9,136.5,130.4,128.4,127.8,127.1,61.0,50.0,49.3,22.9$, $20.0,13.5,1.9,1.5$. IR (film): 2979, 1729, 1660, 1598, 1553, 1487, 1444, 1386, 1366, 1325, 1212, 1086, 1051, 1026, 944, 912, $819 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) m/z [M+H] calcd. for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{O}_{3} \mathrm{~S}^{+} 317.1206$, found 317.1204.

Ethyl 4-oxo-2-phenyl-1-thiaspiro[5.5]undeca-2,7-diene-3-carboxylate (3ay)
Prepared under Conditions A on 0.25 mmol scale. Yellow oil, $21 \mathrm{mg}, 64 \%$ yield, $\mathrm{R}_{f}=0.4$ (PE/EA = 5:1, v/v). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.51-7.32(\mathrm{~m}, 5 \mathrm{H}), 5.98(\mathrm{~d}, \mathrm{~J}=9.2 \mathrm{~Hz}$, $1 \mathrm{H}), 5.69(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.01(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{~d}, J$ $=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.33-2.31(\mathrm{~m}, 1 \mathrm{H}), 2.21-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.97-1.76(\mathrm{~m}, 2 \mathrm{H}), 1.72-1.58(\mathrm{~m}$, $1 \mathrm{H}), 0.90(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 191.0,165.9,160.9,136.5$, 132.8, 130.5, 128.5, 128.0, 127.9, 127.4, 61.1, 50.2, 49.2, 32.6, 24.9, 19.1, 13.6. IR (film): 2933, 1729, 1660, 1550, 1444, 1365, 1323, 1299, 1248, 1234, 1212, 1095, 1066, 1036, $941 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{O}_{3} \mathrm{~S}^{+} 329.1206$, found 329.1201.

Ethyl 3-methyl-4-oxo-6-phenyl-3,4-dihydro-2H-thiopyran-5-carboxylate (3aac)

Prepared under Conditions A on 0.25 mmol scale. Yellow oil, $19 \mathrm{mg}, 28 \%$ yield, $\mathrm{R}_{f}=0.2$ (PE/EA = 5:1, v/v). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.53-7.32(\mathrm{~m}, 5 \mathrm{H}), 3.99(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}$, 2H), 3.18 (d, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}$), 2.81 (tq, $J=7.9,6.8 \mathrm{~Hz}, 1 \mathrm{H}$), 1.32 (d, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.93$ (t, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 193.1,166.1,160.8,136.6,130.6$, 128.5, 127.9, 127.7, 61.2, 39.0, 33.5, 14.3, 13.6. IR (film): 3431, 2975, 2931, 1726, 1660, 1551, 1488, 1444, 1365, 1341, 1324, 1288, 1214, 1194, 1093, 1020, 943, 913, 771, 743 , $698 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{O}_{3} \mathrm{~S}^{+} 277.0893$, found 277.0891 .

Ethyl 2,3-dimethyl-4-oxo-6-phenyl-3,4-dihydro-2H-thiopyran-5-carboxylate (3aad)
Prepared under Conditions A on 0.25 mmol scale. Yellow oil, $22 \mathrm{mg}, 31 \%$ yield, $\mathrm{R}_{f}=0.2$ (PE/EA = 5:1, v/v), dr = 2:1. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.51-7.31(\mathrm{~m}, 5 \mathrm{H}), 4.01-3.96$ $(\mathrm{m}, 2 \mathrm{H}), 3.66-3.62(\mathrm{~m}, 0.6 \mathrm{H}), 3.37-3.31(\mathrm{~m}, 0.3 \mathrm{H}), 2.91-2.85(\mathrm{~m}, 0.6 \mathrm{H}), 2.62-2.58(\mathrm{~m}$, 0.4 H), 1.50 (d, $J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.41$ (d, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.32$ (d, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.26$ (d, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 0.92-0.89(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 166.1,136.6,136.5$, $130.5,128.5,127.88,127.86,127.0,61.1,46.2,44.5,42.5,41.4,18.9,15.1,13.6,12.6$, 10.3. IR (film): 2968, 2929, 1719, 1701, 1654, 1648, 1629, 1618, 1577, 1559, 1541, 1534, 1508, 1458, 1443, 1364, 1290, 1211, 1094, 1074, 1020, 945, 912, 773, 760, 735, $696 \mathrm{~cm}^{-}$ ${ }^{1}$. HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{O}_{3} \mathrm{~S}^{+}$291.1049, found 291.1054.

Ethyl 3-methyl-4-oxo-2,6-diphenyl-3,4-dihydro-2H-thiopyran-5-carboxylate (3aae)
Prepared under Conditions D on 0.25 mmol scale. Yellow oil, $89 \mathrm{mg}, 50 \%$ yield, $\mathrm{R}_{f}=0.3$ (PE/EA = 5:1, v/v), dr = 2:1. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.53-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.31$ (m, 8H), 4.45 (d, $J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.07-3.99(\mathrm{~m}, 2 \mathrm{H}), 3.17(\mathrm{dq}, J=13.2,6.8 \mathrm{~Hz}, 0.7 \mathrm{H}), 3.0$ (dq, $J=6.8,4 \mathrm{~Hz}, 0.3 \mathrm{H}), 1.26(\mathrm{~d}, J=4 \mathrm{~Hz}, 0.3 \mathrm{H}), 1.24(\mathrm{~d}, J=10 \mathrm{~Hz}, 1 \mathrm{H}), 1.23(\mathrm{~d}, J=13.6$ $\mathrm{Hz}, 0.7 \mathrm{H}), 1.05(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 0.96(\mathrm{t}, J=7.2,2 \mathrm{H}), 0.94(\mathrm{t}, J=7.2,1 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left\{{ }^{1} \mathrm{H}\right\}$ ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 194.2,193.1,166.1,165.9,160.7,159.8,136.5,136.4,136.3,136.0$, 130.61, 130.60, 129.0, 128.9, 128.7, 128.5, 128.4, 128.3, 128.2, 128.1, 127.84, 127.81, 127.4, 126.9, 61.2, 52.3, 50.9, 45.4, 45.2, 13.60, 13.58, 12.1. IR (film): 3060, 2979, 2928, 1728, 1658, 1598, 1556, 1489, 1453, 1366, 1325, 1276, 1212, 1193, 1091, 1022, 943, 916, $844 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{O}_{3} \mathrm{~S}^{+} 353.1206$, found 353.1209.

Ethyl 6-(benzo[d][1,3]dioxol-5-yl)-2,2-dimethyl-4-oxo-3,4-dihydro-2H-thiopyran-5carboxylate (3ba)
Prepared under Conditions A on 0.25 mmol scale. Pale yellow oil, $56 \mathrm{mg}, 67 \%$ yield, $\mathrm{R}_{f}=$ 0.3 (PE/EA = 5:1, v/v). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.03-6.97$ (dd, $\left.J=8,1.2 \mathrm{~Hz} 1 \mathrm{H}\right), 6.97-$ $6.91(\mathrm{~d}, J=0.8 \mathrm{~Hz} 1 \mathrm{H}), 6.78(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.72(\mathrm{~s}, 2 \mathrm{H}), 1.49$ (s, 6H), 1.03 (t, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 191.6,166.3,160.2$, 149.7, 147.8, 130.2, 126.5, 122.6, 108.4, 108.3, 101.6, 61.1, 51.3, 45.2, 27.7, 13.8. IR (film): 2974, 2917, 1726, 1655, 1546, 1503, 1484, 1437, 1367, 1345, 1321, 1299, 1251, 1211, 1101, 1038, $932 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{O}_{5} \mathrm{~S}^{+} 335.0948$, found 335.0949 .

Ethyl 6-(4-methoxyphenyl)-2,2-dimethyl-4-oxo-3,4-dihydro-2H-thiopyran-5-carboxylate (3ca)

Prepared under Conditions B on 0.10 mmol scale with reaction time extended to 12 h . Pale yellow oil, $22 \mathrm{mg}, 69 \%$ yield, $\mathrm{R}_{\mathrm{f}}=0.3$ (PE/EA $\left.=5: 1, v / v\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.42$ (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.03(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.81$ (s, 3H), 2.73 (s, $2 \mathrm{H}), 1.50(\mathrm{~s}, 6 \mathrm{H}), 0.98(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 191.6,166.4$, 161.6, 160.6, 129.6, 128.8, 126.2, 113.9, 61.1, 55.3, 51.3, 45.0, 27.7, 13.8. IR (film): 2964, 2932, 2840, 1727, 1656,1604, 1574, 1546, 1505, 1461, 1444, 1414, 1388, 1367, 1325, 1294, 1253, 1211, 1176, 1148, 1103, 1040, 949, 933, 836, $813 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) m/z $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{O}_{4} \mathrm{~S}^{+} 321.1155$, found 321.1158.

Ethyl 2,2-dimethyl-6-(4-methylphenyl)-4-oxo-3,4-dihydro-2H-thiopyran-5-carboxylate (3da) Prepared under Conditions A on 0.25 mmol scale. Pale yellow oil, $56 \mathrm{mg}, 74 \%$ yield, $\mathrm{R}_{f}=$ 0.3 (PE/EA $=5: 1, v / v) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.34(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{~d}, J=$ $7.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.00$ (q, J = $7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.73$ (s, 2H), 2.35 (s, 3H), 1.50 (s, 6H), 0.94 (t, J = $7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR\{ $\left.{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 191.5,166.2,160.9,140.9,133.6,129.1$, 127.8, 126.5, 61.0, 51.3, 45.3, 27.7, 21.3, 13.6. IR (film): 2974, 2927, 1729, 1658, 1608, 1550, 1505, 1460, 1408, 1388, 1367, 1325, 1246, 1215, 1184, 1148, 1103, 1041, 1021, $936,814 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{O}_{3} \mathrm{~S}^{+} 305.1206$, found 305.1210.

Ethyl 6-(4-fluorophenyl)-2,2-dimethyl-4-oxo-3,4-dihydro-2H-thiopyran-5-carboxylate (3ea) Prepared under Conditions A on 0.25 mmol scale. Pale yellow oil, $42 \mathrm{mg}, 55 \%$ yield, $\mathrm{R}_{f}=$ 0.3 (PE/EA = 5:1, v/v). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.51-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.09-7.03(\mathrm{~m}, 2 \mathrm{H})$, 4.01 ($\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}$), $2.75(\mathrm{~s}, 2 \mathrm{H}), 1.52(\mathrm{~s}, 6 \mathrm{H}), 0.96(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left\{{ }^{1} \mathrm{H}\right\}$ ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 191.4,165.9,164.0$ (d, $\mathrm{J}_{\mathrm{C}-\mathrm{F}}=252.7 \mathrm{~Hz}$), 159.4, 132.5 (d, JC-F $=3.2$ $\mathrm{Hz}), 130.1\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=8.7 \mathrm{~Hz}\right), 127.1,115.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=22.0 \mathrm{~Hz}\right), 61.2,51.2,45.7,27.8,13.7$. ${ }^{19} \mathrm{~F} \operatorname{NMR}\left\{{ }^{1} \mathrm{H}\right\}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-109.3$ (s). IR (film): 2974, 2930, 1729, 1661, 1600, 1551, 1503, 1368, 1324, 1299, 1245, 1215, 1160, 1105, 1040, $840 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) m/z $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{FO}_{3} \mathrm{~S}^{+} 309.0955$, found 309.0952 .

Ethyl 6-(4-chlorophenyl)-2,2-dimethyl-4-oxo-3,4-dihydro-2H-thiopyran-5-carboxylate (3fa) Prepared under Conditions B on 0.10 mmol scale. Pale yellow oil, $24 \mathrm{mg}, 74 \%$ yield, $\mathrm{R}_{f}=$ 0.3 (PE/EA = 5:1, v/v). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.40(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 2 \mathrm{H}$), $4.02(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.76(\mathrm{~s}, 2 \mathrm{H}), 1.52(\mathrm{~s}, 6 \mathrm{H}), 0.98(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR\{ $\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 191.4,165.8,159.2,136.7,134.9,129.3,128.8,61.3$, 51.2, 45.8, 27.8, 13.7, 1.0. IR (film): 2966, 2926, 1729, 1662, 1593, 1549, 1486, 1461, 1398, 1368, 1323, 1298, 1246, 1212, 1091, 1041, 1014, 936, 877, $830 \mathrm{~cm}^{-1}$. HRMS (ESITOF) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{ClO}_{3} \mathrm{~S}^{+} 325.0660$, found 325.0657 .

Ethyl 6-(3,4-dichlorophenyl)-2,2-dimethyl-4-oxo-3,4-dihydro-2H-thiopyran-5-carboxylate (3ga)
Prepared under Conditions B on 0.10 mmol scale. Pale yellow oil, $26 \mathrm{mg}, 72 \%$ yield, $\mathrm{R}_{f}=$ 0.3 (hexane/EA = 5:1, v/v). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.58(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~d}$, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{dd}, J=8.3,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.76(\mathrm{~s}, 2 \mathrm{H}), 1.53$ (s, 6H), $1.04(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 191.3,165.5,157.4$,
136.2, 134.9, 133.0, 130.6, 129.9, 127.5, 127.2, 61.5, 51.1, 46.2, 27.8, 13.8. IR (film): 2975, 2928, 1729, 1665, 1588, 1560, 1543, 1465, 1369, 1322, 1244, 1210, 1133, 1103, 1033, 943, 883, $824 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{Cl}_{2} \mathrm{O}_{3} \mathrm{~S}^{+}$359.0270, found 359.0275 .

Ethyl 6-(4-iodophenyl)-2,2-dimethyl-4-oxo-3,4-dihydro-2H-thiopyran-5-carboxylate (3ha) Prepared under Conditions B on 0.10 mmol scale. Pale yellow oil, $29 \mathrm{mg}, 70 \%$ yield, $\mathrm{R}_{f}=$ 0.3 (hexane/EA = 5:1, v/v). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.72$ (d, J = $8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.18 (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.02(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.75(\mathrm{~s}, 2 \mathrm{H}), 1.52(\mathrm{~s}, 6 \mathrm{H}), 0.98(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C} \operatorname{NMR}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 191.4,165.7,159.3,137.7,136.0,129.5,127.0,97.0$, 61.3, 51.2, 45.9, 27.8, 13.7. IR (film): 2974. 2924, 1727, 1660, 1583, 1560, 1543, 1478, 1460, 1389, 1367, 1323, 1298, 1245, 1212, 1102, 1039, 1005, 936, $821 \mathrm{~cm}^{-1}$. HRMS (ESITOF) $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{IO}_{3} \mathrm{~S}^{+} 417.0016$, found 417.0010.

Ethyl 2,2-dimethyl-4-oxo-6-(4-(trifluoromethyl)phenyl)-3,4-dihydro-2H-thiopyran-5carboxylate (3ia)
Prepared under Conditions B on 0.10 mmol scale. Pale yellow oil, $28 \mathrm{mg}, 78 \%$ yield, $\mathrm{R}_{f}=$ 0.3 (PE/EA = 5:1, v/v). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.64(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{~d}, J=$ $8.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.00(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.78(\mathrm{~s}, 2 \mathrm{H}), 1.55(\mathrm{~s}, 6 \mathrm{H}), 0.92(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C} \operatorname{NMR}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 191.2,165.4,158.7,140.0,132.2\left(\mathrm{q}, \mathrm{J}_{\mathrm{C}-\mathrm{F}}=32.9 \mathrm{~Hz}\right)$, $128.4,127.6,125.4\left(q, J_{C-F}=3.9 \mathrm{~Hz}\right), 123.6\left(q, J_{C-F}=274.0 \mathrm{~Hz}\right), 61.4,51.2,46.3,27.8$, 13.6. ${ }^{19} \mathrm{~F} \operatorname{NMR}\left\{{ }^{1} \mathrm{H}\right\}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-63.0$ (s). IR (film): 2967, 1730, 1664, 1557, 1508, 1461, 1407, 1369, 1322, 1246, 1215, 1169, 1129, 1067, 1040, 1016, 939, $842 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{O}_{3} \mathrm{~S}^{+}$259.0923, found 259.0924.

Ethyl 6-(4-cyanophenyl)-2,2-dimethyl-4-oxo-3,4-dihydro-2H-thiopyran-5-carboxylate (3ja) Prepared under Conditions B on 0.10 mmol scale with reaction time extended to 10 h . Pale yellow oil, $22 \mathrm{mg}, 70 \%$ yield, $\mathrm{R}_{f}=0.3$ (PE/EA $\left.=5: 1, \mathrm{v} / \mathrm{v}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.68$ (d, J = 8.0 Hz, 2H), $7.56(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.00(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.78(\mathrm{~s}, 2 \mathrm{H}), 1.54(\mathrm{~s}$, $6 \mathrm{H}), 0.95(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 191.1,165.2,157.9,140.9$, 132.2, 128.8, 127.7, 117.9, 114.1, 61.5, 51.1, 46.6, 27.8, 13.7. IR (film): 2966, 2926, 2854, 2230, 1729, 1664, 1565, 1496, 1462, 1389, 1368, 1324, 1273, 1246, 1215, 1148, 1103, 1041, 1019, $841 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{K}]^{+}$calcd. for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{KNO}_{3} \mathrm{~S}^{+} 354.0561$, found 354.0568 .

Ethyl 6-(furan-2-yl)-2,2-dimethyl-4-oxo-3,4-dihydro-2H-thiopyran-5-carboxylate (3ka)
Prepared under Conditions B on 0.10 mmol scale with reaction time extended to 12 h . Pale yellow oil, $13 \mathrm{mg}, 46 \%$ yield, $\mathrm{R}_{f}=0.3(\mathrm{PE} / \mathrm{EA}=5: 1, \mathrm{v} / \mathrm{v}) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 7.53$ (d, $J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{dd}, J=3.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{q}, J=7.1$ $\mathrm{Hz}, 2 \mathrm{H}), 2.74(\mathrm{~s}, 2 \mathrm{H}), 1.50(\mathrm{~s}, 6 \mathrm{H}), 1.27(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):$ $\delta 191.9,166.7,148.0,145.9,144.0,122.9,115.8,112.6,61.6,51.8,44.8,27.8,14.1 . \operatorname{IR}$ (film): 2973, 2929, 1731, 1654, 1579, 1528, 1462, 1386, 1367, 1326, 1234, 1210, 1104, 1043, 1026, 948, $883 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{O}_{4} \mathrm{~S}^{+}$281.0842, found 281.0847 .

Ethyl 2,2-dimethyl-4-oxo-6-(thiophen-2-yl)-3,4-dihydro-2H-thiopyran-5-carboxylate (3la) Prepared under Conditions B on 0.10 mmol scale. Pale yellow oil, $21 \mathrm{mg}, 72 \%$ yield, $\mathrm{R}_{f}=$ 0.4 (PE/EA $=5: 1, v / v) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.52$ (dd, $\left.J=5.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.42$ (dd, $J=3.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.07$ (dd, $J=5.1,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.75$ (s, 2H), $1.52(\mathrm{~s}, 6 \mathrm{H}), 1.15(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 191.6,166.7$, $150.8,137.9,130.5,129.8,128.1,125.4,61.6,51.5,45.4,27.6,13.8$. IR (film): 2963, 2927, 1728, 1655, 1546, 1509, 1460, 1415, 1388, 1366, 1320, 1298, 1245, 1213, 1103, 1036, 936, $859 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{O}_{3} \mathrm{~S}^{+} 297.0614$, found 297.0615.

Ethyl 2,2-dimethyl-6-(naphthalen-2-yl)-4-oxo-3,4-dihydro-2H-thiopyran-5-carboxylate (3ma)
Prepared under Conditions A on 0.20 mmol scale. Pale yellow oil, $60 \mathrm{mg}, 71 \%$ yield, $\mathrm{R}_{f}=$ 0.3 (PE/EA = 5:1, v/v). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.00(\mathrm{~s}, 1 \mathrm{H}), 7.85(\mathrm{~m}, 3 \mathrm{H}), 7.54(\mathrm{~m}$, $3 \mathrm{H}), 3.97(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.81(\mathrm{~s}, 3 \mathrm{H}), 1.57(\mathrm{~s}, 6 \mathrm{H}), 0.82(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR\{ $\left.{ }^{1} \mathrm{H}\right\}$ ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 191.6,166.1,160.9,134.0,133.9,132.6,128.6,128.3,128.0,127.7$, 127.5, 127.2, 126.8, 125.0, 61.2, 51.4, 45.7, 27.8, 13.6. IR (film): 3056, 2963, 2928, 1728, 1659, 1597, 1548, 1502, 1462, 1387, 1367, 1349, 1321, 1298, 1240, 1214, 1180, 1147, 1103, 1041, 1018, 861, $817 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{K}]^{+}$calcd. for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{KO}_{3} \mathrm{~S}^{+}$ 379.0765 , found 379.0770 .

Ethyl (10R,13S)-10,13-dimethyl-4'-oxo-6'-phenyl-1,2,3', 4', $7,8,9,10,11,12,13,14,15,16-$ tetradecahydrospiro[cyclopenta[a]phenanthrene-17,2'-thiopyran]-5'-carboxylate (13)
Pale yellow oil, $46 \mathrm{mg}, 91 \%$ yield, $\mathrm{R}_{f}=0.2(\mathrm{PE} / \mathrm{EA}=20: 1, \mathrm{v} / \mathrm{v}) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: б 7.50-7.34 (m, 5H), 5.96-5.90 (m, 1H), 5.64-5.58 (m, 1H), 5.42-5.36 (m, 1H), 4.04-3.93 (m, 2H), $2.94(\mathrm{~s}, 2 \mathrm{H}), 2.30-2.19(\mathrm{~m}, 3 \mathrm{H}), 2.15-2.12(\mathrm{~m}, 1 \mathrm{H}), 2.10-2.02(\mathrm{~m}, 1 \mathrm{H}), 1.91-1.65$ $(\mathrm{m}, 8 \mathrm{H}), 1.50-1.30(\mathrm{~m}, 3 \mathrm{H}), 1.22-1.15(\mathrm{~m}, 1 \mathrm{H}), 1.13-1.10(\mathrm{~m}, 1 \mathrm{H}), 0.96(\mathrm{~s}, 3 \mathrm{H}), 0.90(\mathrm{~s}$, 3H), $0.89(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 192.1,165.9,161.7,141.5$, $136.7,130.9,130.5,128.8,128.5,127.9,125.3,122.4,63.1,61.1,51.5,48.0,47.9,45.0$, $36.4,35.2,33.8,33.6,32.3,31.7,23.9,23.0,20.8,18.8,14.6,13.6$. IR (film): 3019, 2936, 1724, 1655, 1550, 1444, 1382, 1328, 1216, 1028, 911, 740, 669, $650 \mathrm{~cm}^{-1}$. HRMS (ESITOF) $m / z[M+H]^{+}$calcd. for $\mathrm{C}_{32} \mathrm{H}_{39} \mathrm{O}_{3} \mathrm{~S}^{+} 503.2614$, found 503.2617 .

7. Intermediate Probing Experiments

Dimerization of carbenes

To an oven-dried 10 mL -vial with a stirrer bar were added 1,2,3-thiadiazole 1a (0.25 mmol , 58.6 mg), catalyst $[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}(12.3 \mathrm{mg}, 10 \mathrm{~mol} \%)$, ligand DPPF ($33.3 \mathrm{mg}, 24 \mathrm{~mol} \%$), and pre-dried solvent $\mathrm{PhCl}(1 \mathrm{~mL})$. The vial was sealed with a nitrogen gas balloon. Then the reaction mixture was kept stirring at $130{ }^{\circ} \mathrm{C}$ in an oil-bath for 6 h . After the ensuing mixture was cooled to room temperature, the solvent was removed by rotary evaporation. The resulting residue was purified by silica gel column chromatography ($\mathrm{PE} / \mathrm{EA}=5: 1 \sim 20: 1$, $v / v)$ to give 1,2,3-thiadiazole 1a (14 mg, 21\% recovery), dimer of the carbene $4(22 \mathrm{mg}$, 46% yield) and phosphine sulfide 5 ($11 \mathrm{mg}, 7 \%$ yield).

Diethyl 2,3-dibenzoylbut-2-enedioate (4) ${ }^{8}$ [(E)-isomer: CAS No. 77249-46-8] [(Z)-isomer: CAS No. 60903-90-4]
Pale yellow oil, $22 \mathrm{mg}, 46 \%$ yield, $\mathrm{R}_{f}=0.55$ (PE:EA $\left.=5: 1, \mathrm{v} / \mathrm{v}\right) .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.54-7.19(\mathrm{~m}, 10 \mathrm{H}), 4.18(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{q}, J=7.2 \mathrm{~Hz}, 0.67 \mathrm{H} ;), 3.94$ (q, $J=$ $7.1 \mathrm{~Hz}, 1.33 \mathrm{H}), 1.17(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H} ; \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.83(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR\{ $\left.{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 164.7,161.4,148.6,147.8,135.1,134.8,132.5,129.8$, 129.2, 129.0, 128.8, 128.6, 127.9, 127.5, 127.4, 127.3, 61.4, 61.13, 61.09, 13.92, 13.90, 13.4. HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{NaO}_{6}{ }^{+} 403.1152$, found 403.1149 .

Phosphine sulfide $5{ }^{9}$ [CAS No. 170656-69-6]
Yellow solid, m.p. $240-250{ }^{\circ} \mathrm{C}, 11 \mathrm{mg}, 7 \%$ yield, $\mathrm{R}_{f}=0.4$ (PE:EA $\left.=5: 1, \mathrm{v} / \mathrm{v}\right) .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.64-7.58(\mathrm{~m}, 8 \mathrm{H}), \delta 7.46-7.43(\mathrm{~m}, 4 \mathrm{H}), 7.40-7.36(\mathrm{~m}, 8 \mathrm{H}), 4.64(\mathrm{dd}, J=$ $3.6,1.6 \mathrm{~Hz}, 4 \mathrm{H}), 4.29(\mathrm{dd}, \mathrm{J}=4.0,2.0 \mathrm{~Hz}, 4 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 134.5$, 133.7, 131.5, 131.4, 131.32, 131.29, 128.3, 128.2, 75.04, 74.94, 74.1, 74.0. ${ }^{31} \mathrm{P}$ NMR $\left\{{ }^{1} \mathrm{H}\right\}$ ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 40.73$. HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{34} \mathrm{H}_{28} \mathrm{FeNaP}_{2} \mathrm{~S}_{2}{ }^{+}$ 641.0349, found 641.0353.

Decarbonylation of (E)-3-(naphthalene-2-yl)propenal (2I)

To an oven-dried 10 mL -vial with a stirrer bar were added (E)-3-(naphthalene-2-yl)propenal (2I) ($0.2 \mathrm{mmol}, 36.4 \mathrm{mg}$), catalyst $[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}(5 \mathrm{mg}, 5 \mathrm{~mol} \%)$, ligand DPPF ($13 \mathrm{mg}, 12$ $\mathrm{mol} \%)$, and pre-dried solvent $\mathrm{PhCl}(1 \mathrm{~mL})$. The vial was sealed with a nitrogen gas balloon. The reaction mixture was kept stirring at $130^{\circ} \mathrm{C}$ in an oil-bath for 6 h . After the ensuing mixture was cooled to room temperature, the solvent was removed by rotary evaporation. The resulting residue was purified by silica gel column chromatography (PE/EA $=20: 1, \mathrm{v} / \mathrm{v}$) to give (E)-3-(naphthalene-2-yl)propenal (2I) ($2 \mathrm{mg}, 5 \%$ recovery) and 2-vinylnaphthalene (6) ($28 \mathrm{mg}, 91 \%$ yield).

2-VinyInaphthalene (6) ${ }^{10}$ [CAS No. 827-54-3]
White solid, m.p. $66-67^{\circ} \mathrm{C}$ (Lit. $\left.{ }^{10} 65.5-66{ }^{\circ} \mathrm{C}\right), \mathrm{R}_{f}=0.8$ (PE:EA $\left.=10: 1, \mathrm{v} / \mathrm{v}\right) .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.85-7.74(\mathrm{~m}, 4 \mathrm{H}), 7.64(\mathrm{dd}, J=8.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.42(\mathrm{~m}, 2 \mathrm{H}), 6.89$ (dd, $J=17.6,10.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.88(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.34(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR\{ $\left.{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 136.9,135.0,133.1,128.1,128.0,127.7,126.3,126.2$, 125.9, 123.2, 114.2, 100.0.

8. Isotope Tracing Experiments

To an oven-dried 10 mL -vial with a stirrer bar were added 1,2,3-thiadiazole 1a (0.2 mmol , 46 mg), catalyst $[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}$ ($5 \mathrm{mg}, 5 \mathrm{~mol} \%$), ligand DPPF ($13.3 \mathrm{mg}, 12 \mathrm{~mol} \%$), and predried solvent $\mathrm{PhCl}(1 \mathrm{~mL})$. The vial was sealed with a nitrogen gas balloon, then alk-2-enal $(2 \mathrm{~g}-d)(0.4 \mathrm{mmol}, 53.2 \mathrm{mg})$ was added. The reaction mixture was kept stirring at $130^{\circ} \mathrm{C}$ in an oil-bath for 6 h . After the ensuing mixture was cooled to room temperature, the solvent was removed by rotary evaporation. The resulting residue was purified by silica gel column chromatography (PE/EA 5:1~20:1, v/v) to give 2,3-dihydro-4H-thiopyran-4-one 3ag-dh as brown oil in 85% yield.

Ethyl 4-oxo-2,6-diphenyl-3,4-dihydro-2H-thiopyran-5-carboxylate-3-d (3ag-d/h)
Brown oil, $57 \mathrm{mg}, 85 \%$ yield, $\mathrm{R}_{f}=0.3(\mathrm{PE}: E A=10: 1, \mathrm{v} / \mathrm{v}) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.55-7.49 (m, 2H), 7.47-7.32 (m, 8H), 4.83-4.79 (m, 1H), 4.08-3.96 (m, 2H), 3.23 (dd, J $=15.2,15.2 \mathrm{~Hz}, 0.8 \mathrm{H}$), 3.04 (dd, $J=16.0,3.0 \mathrm{~Hz}, 0.8 \mathrm{H}), 0.94(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 191.06,191.03,165.8,162.0,136.9,136.1,130.7,129.1$, 128.8, 128.5, 127.9, 127.4, 61.2, 46.22, 46.15, 43.6, 13.6. HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$ calcd. for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{DO}_{3} \mathrm{~S}^{+} 340.1112$, found 340.1116.

9. KIE Studies

To two oven-dried 10 mL -vials with stirrer bars each were added 1,2,3-thiadiazole 1a ($0.25 \mathrm{mmol}, 58.6 \mathrm{mg}$), catalyst $[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}(6.2 \mathrm{mg}, 5 \mathrm{~mol} \%)$, ligand DPPF (16.6 mg , $12 \mathrm{~mol} \%$), and pre-dried solvent $\mathrm{PhCl}(1 \mathrm{~mL})$. The vials were sealed with nitrogen gas balloons, then alk-2-enal $\mathbf{2 g}-d(0.5 \mathrm{mmol}, 67 \mathrm{mg})$ and $\mathbf{2 g}(0.5 \mathrm{mmol}, 66 \mathrm{mg})$ were added, respectively. When the reaction mixtures were stirred and heated at $130^{\circ} \mathrm{C}$ in an oil-bath for 5 min , a small portion of the reaction mixtures was taken out from reactions 1 and 2 for ${ }^{1}$ HNMR analysis. Samples of $10 \mathrm{~min}, 15 \mathrm{~min}, 20 \mathrm{~min}, 30 \mathrm{~min}, 40 \mathrm{~min}, 50 \mathrm{~min}$ and 60 min were made by the same procedure.

Table S3. ${ }^{1}$ HNMR analysis for reactions 1 and 2

Entry	Time (min)	Yield of 3ag (\%) (Reaction 2)	Yield of 3ag-d (\%) (Reaction 1)
1	5 min	12	30
2	10 min	17	39
3	15 min	20	48
4	20 min	28	52
5	30 min	30	59
6	40 min	38	60
7	50 min	44	64
8	60 min	49	65

10. Gram-scale reaction

Ethyl 5-phenyl-1,2,3-thiadiazole-4-carboxylate (1a) (5 mmol, 1.17g), [Rh(COD) $]_{2} \mathrm{Cl}_{2}(123$ $\mathrm{mg}, 0.25 \mathrm{mmol}$), and DPPF ($333 \mathrm{mg}, 0.6 \mathrm{mmol}$) were added into a three-neck round bottom flask. The flask was equipped with a condenser tube and then sealed with N_{2} balloon. PhCl $(20 \mathrm{~mL})$ and cinnamaldehyde $(\mathbf{2 g})(10 \mathrm{mmol}, 1.32 \mathrm{~g})$ were added. The reaction mixture was then heated in an oil bath at $130{ }^{\circ} \mathrm{C}$ for 6 h . After removal of solvent under reduced pressure the residue was purified by silica gel column chromatography (PE/EA=10:1, v/v). The product ethyl 4-oxo-2,6-diphenyl-3,4-dihydro-2H-thiopyran-5-carboxylate (3ag) was obtained in $1.27 \mathrm{~g}, 75 \%$ yield.

11. Trials on asymmetric catalysis

(i) To an oven-dried 10 mL -vial with a stirring bar were added 1,2,3-thiadiazole 1a (0.1 $\mathrm{mmol}, 23.4 \mathrm{mg})$, catalyst $\left[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}_{2}(2.5 \mathrm{mg}, 5 \mathrm{~mol} \%)\right.$, ligand (R)-BINAP ($7.5 \mathrm{mg}, 12$ $\mathrm{mol} \%)$ and pre-dried solvent $\mathrm{PhCl}(0.5 \mathrm{~mL})$. The vial was sealed with a nitrogen gas balloon, then alkenyl aldehyde $\mathbf{2 h}(0.2 \mathrm{mmol}, 30 \mathrm{mg})$ was added via a syringe. The reaction mixture was kept stirring at $130^{\circ} \mathrm{C}$ in an oil-bath for 6 h . After the reaction mixture was cooled to room temperature, the solvent was removed by rotary evaporation. The resulting residue was purified by silica gel column chromatography ($\mathrm{PE} / \mathrm{EA}=5: 1, v / v$) to give desired product 3ah in 17% yield (6 mg). HPLC analysis: Daicel Chiralpak AS-H ($i-\mathrm{PrOH} / \mathrm{hexane}=15 / 85$, $\mathrm{v} / \mathrm{v}, 1.0 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm})$ major $\mathrm{t}_{\mathrm{R}}=12.009 \mathrm{~min}$ and 13.647 min .
(ii) The same procedure as above but using (S)-BINAP ($7.5 \mathrm{mg}, 12 \mathrm{~mol} \%$) as ligand gave desired product 3ah in 6% yield (2 mg). HPLC analysis: Daicel Chiralpak AS-H ($i-$ PrOH $/$ hexane $=15 / 85, v / v, 1.0 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$) major $\mathrm{t}_{\mathrm{R}}=12.042 \mathrm{~min}$ and 13.661 min .

HPLC data of the product obtained using DPPF ligand.
Daicel Chiralpak AS-H ($i-$ PrOH/hexane $=15 / 85, v / v, 1.0 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$)

HPLC data of the product obtained using (R)-BINAP ligand.
Daicel Chiralpak AS-H ($i-$ PrOH/hexane $=15 / 85, v / v, 1.0 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$)

HPLC data of the product obtained using (S)-BINAP ligand.
Daicel Chiralpak AS-H ($i-\mathrm{PrOH} / \mathrm{hexane}=15 / 85, v / v, 1.0 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$)

13. Reference

(1) B. Zhou, Q. Wu, Z. Dong, J. Xu and Z. Yang, Rhodium-Catalyzed 1,1-Hydroacylation of Thioacyl Carbenes with Alkynyl Aldehydes and Subsequent Cyclization. Org. Lett., 2019, 21, 3594.
(2) D. Kurandina and V. Gevorgyan, Rhodium Thiavinyl Carbenes from 1,2,3-Thiadiazoles Enable Modular Synthesis of Multisubstituted Thiophenes. Org. Lett., 2016, 18, 1804.
(3) (a) J.-Y. Son, J. Kim, S. H. Han, S. H. Kim and P. H. Lee, Regioselective Synthesis of Dihydrothiophenes and Thiophenes via the Rhodium-Catalyzed Transannulation of 1,2,3Thiadiazoles with Alkenes. Org. Lett., 2016, 18, 5408; (b) B. Seo, Y. G. Kim and P. H. Lee, Synthesis of Isothiazole via the Rhodium-Catalyzed Transannulation of 1,2,3-Thiadiazoles with Nitriles. Org. Lett., 2016, 18, 5050; (c) B. Seo, H. Kim, Y. G. Kim, Y. Baek, K. Um and P. H. Lee, Synthesis of Bicyclic Isothiazoles through an Intramolecular Rhodium-Catalyzed Transannulation of Cyanothiadiazoles. J. Org. Chem., 2017, 82, 10574; (d) J. E. Kim, J. Lee, H. Yun, Y. Baek and P. H. Lee, Rhodium-Catalyzed Intramolecular Transannulation Reaction of Alkynyl Thiadiazole Enabled 5,n-Fused Thiophenes. J. Org. Chem., 2017, 82, 1437.
(4) (a) R. M. de Figueiredo, R. Berner, J. Julis, T. Liu, D. Türp and M. Christmann, Bidirectional, Organocatalytic Synthesis of Lepidopteran Sex Pheromones. J. Org. Chem., 2007, 72, 640; (b) A. K. Willard, F. C. Novello, W. F. Hoffman and E. J. Jr. Cragoe, Substituted pyranone inhibitors of cholesterol synthesis, 1983, US 4375475; (c) A. Nordqvist, C. Björkelid, M. Andaloussi, A. M. Jansson, S. L. Mowbray, A. Karlén and M. Larhed, Synthesis of Functionalized Cinnamaldehyde Derivatives by an Oxidative Heck Reaction and Their Use as Starting Materials for Preparation of Mycobacterium tuberculosis 1-Deoxy-d-xylulose-5-phosphate Reductoisomerase Inhibitors. J. Org. Chem., 2011, 76, 8986; (d) M. Shi, G.-Q. Tian and J. Li, Palladium(II) and Palladium(0)Cocatalyzed Ring Opening and Oxidation Reactions of 2(Arylmethylene)cyclopropylcarbinols. Tetrahedron, 2009, 65, 3404; (e) L. K. Ransborg, L. Lykke, N. Hammer, L. Næsborg and K. A. Jørgensen, An Organocatalytic One-Pot Cascade Incorporating the Achmatowicz Reaction Affording 3-Pyrone Derivatives. Chem. Commun., 2014, 50, 7604; (f) J. Stiller, E. Marqués-López, R. P. Herrera, R. Fröhlich, C. Strohmann and M. Christmann, Enantioselective α - and γ-Alkylation of α, β-Unsaturated Aldehydes Using Dienamine Activation. Org. Lett., 2011, 13, 70; (g) M. G. Lauer, W. H. Henderson, A. Awad and J. P. Stambuli, Palladium-Catalyzed Reactions of Enol Ethers: Access to Enals, Furans, and Dihydrofurans. Org. Lett., 2012, 14, 6000.
(5) (a) H. Jiang, K. S. Halskov, T. K. Johansen and K. A. Jørgensen, Deracemization of Axially Chiral α, β-Unsaturated Aldehydes through an Amino-Catalyzed Symmetry-Making-Symmetry-Breaking Cascade. Chem. - Eur. J., 2011, 17, 3842; (b) D. Castagnolo, L. Botta and M. Botta, Alkyne-Enol Ether Cross-Metathesis in the Presence of CuSO_{4} : Direct Formation of 3-Substituted Crotonaldehydes in Aqueous Medium. J. Org. Chem., 2009, 74, 3172; (c) S. Julia, M. Julia, S.-Y. Tchen and P. Graffin, Vinylogous homoallylic rearrangement of α, β-ethylene- γ-cyclopropane alcohols. Bull. Soc. Chim. Fr., 1964, 3207;
(d) G. Wickham, G. J. Wells, L. Waykole and L. A. Paquette, Strain-activated 1,3butadienes. Synthesis and dienic reactivity of dicyclobutylideneethane. J. Org. Chem.,

1985, 50, 3485; (e) K. S. Halskov, T. K. Johansen, R. L. Davis, M. Steurer, F. Jensen and K. A. Jørgensen, Cross-trienamines in Asymmetric Organocatalysis. J. Am. Chem. Soc., 2012, 134, 12943.
(6) D. Michel, P. Y. Louis, B. J. Jacques and D. Pierre, Preparation d'aidehydesethyleniques deuteries sur le groupemen carbonyle. J. Labelled Compd. Radiopharm., 1976, 12, 389.
(7) H. Lindlar and R. Dubuis, Palladium Catalyst for Partial Reduction of Acetylenes. Org. Synth., 1966, 46, 89.
(8) W. Han, Y. Yang, Y. Zhu and Y. Shi, A Facile Copper(I)-Catalyzed Homo-Coupling of Indanone Derivatives Using Diaziridinone under Mild Conditions. Org. Biomol. Chem., 2019, 17, 6998.
(9) Z.-G. Fang, T. S. Andy, Y.-S. Wen, L.-K. Liu and T. C. W. Mak, Molecular Structures of 1,1'-Bis(diphenylphosphino)ferrocene Oxide and Sulphide and Their Thermal Properties. Polyhedron, 1995, 14, 2403.
(10) T. M. Gøgsig, L. S. Søbjerg, A. T. Lindhardt, K. L. Jensen and T. Skrydstrup, Direct Vinylation and Difluorovinylation of Arylboronic Acids Using Vinyl- and 2,2-Difluorovinyl Tosylates via the Suzuki-Miyaura Cross Coupling. J. Org. Chem., 2008, 73, 3404.
13. Copies of Spectra of Materials, Intermediates, and Products

Ethyl 5-phenyl-1,2,3-thiadiazole-4-carboxylate (1a)
${ }^{1} \mathrm{H}$ MNR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C} \operatorname{NMR}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Ethyl 5-(benzo[d][1,3]dioxol-5-yl)-1,2,3-thiadiazole-4-carboxylate (1b) ${ }^{1} \mathrm{H}$ MNR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C} \operatorname{NMR}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Ethyl 5－（4－methoxyphenyl）－1，2，3－thiadiazole－4－carboxylate（1c） ${ }^{1} \mathrm{H}$ MNR（ $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）

登皆节

${ }^{13} \mathrm{C} \operatorname{NMR}\left\{{ }^{1} \mathrm{H}\right\}$（ $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）

Ethyl 5-(4-methylphenyl)-1,2,3-thiadiazole-4-carboxylate (1d) ${ }^{1} \mathrm{H}$ MNR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C} \operatorname{NMR}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Ethyl 5-(4-fluorophenyl)-1,2,3-thiadiazole-4-carboxylate (1e)

${ }^{1} \mathrm{H}$ MNR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

共

${ }^{13} \mathrm{C} \operatorname{NMR}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{19} \mathrm{~F} \operatorname{NMR}\left\{{ }^{1} \mathrm{H}\right\}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

HRMS

Ethyl 5-(4-chlorophenyl)-1,2,3-thiadiazole-4-carboxylate (1f) ${ }^{1} \mathrm{H}$ MNR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C} \operatorname{NMR}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

HRMS

Ethyl 5－（3，4－dichlorophenyl）－1，2，3－thiadiazole－4－carboxylate（1g） ${ }^{1} \mathrm{H}$ MNR（ $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）

守学学等等

${ }^{13} \mathrm{C} \operatorname{NMR}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

กั		
웅	¢	ભ్లైల్లైల్లై
，		－TiTj

$\stackrel{8}{\dot{+}}$

HRMS

Ethyl 5-(4-iodophenyl)-1,2,3-thiadiazole-4-carboxylate (1h) ${ }^{1} \mathrm{H}$ MNR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C} \operatorname{NMR}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

HRMS

Ethyl 5-(4-(trifluoromethyl)phenyl)-1,2,3-thiadiazole-4-carboxylate (1i) ${ }^{1} \mathrm{H}$ MNR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C} \operatorname{NMR}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{19} \mathrm{~F} \operatorname{NMR}\left\{{ }^{1} \mathrm{H}\right\}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\begin{array}{llllllllllllllllllllllllllllllllllllll}-55 & -60 & -65 & -70 & -75 & -80 & -85 & -90 & -95 & -100 & -105 & -110 & -115 & -120 & -125 & -130 & -135 & -140 & -145\end{array}$

HRMS

Ethyl 5-(4-cyanophenyl)-1,2,3-thiadiazole-4-carboxylate (1j) ${ }^{1} \mathrm{H}$ MNR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C} \operatorname{NMR}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Ethyl 5-(furan-2-yl)-1,2,3-thiadiazole-4-carboxylate (1k)
${ }^{1} \mathrm{H}$ MNR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Abstract

 \qquad

${ }^{13} \mathrm{C} \operatorname{NMR}\left\{{ }^{1} \mathrm{H}\right\}$ ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Ethyl 5-(thiophen-2-yl)-1,2,3-thiadiazole-4-carboxylate (1I)

${ }^{1} \mathrm{H}$ MNR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Abstract

${ }^{13} \mathrm{C} \operatorname{NMR}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Ethyl 5-(naphthalen-2-yl)-1,2,3-thiadiazole-4-carboxylate (1m)

${ }^{1} \mathrm{H}$ MNR (400 MHz, CDCl $_{3}$)

${ }^{13} \mathrm{C} \operatorname{NMR}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

HRMS

(Z)-3-Phenylacrylaldehyde [(Z)-2g]
${ }^{1} \mathrm{H}$ MNR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C} \operatorname{NMR}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Cinnamaldehyde-1-d $(\mathbf{2 g}-d)$
${ }^{1} \mathrm{H}$ MNR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C} \operatorname{NMR}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

HRMS

3-(2,3-Dichlorophenyl)acrylaldehyde (2j)
${ }^{1} \mathrm{H}$ MNR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C} \operatorname{NMR}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
N
N
N

$\begin{array}{llllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$
(E)-3-(Naphthalen-2-yl)propenal (2I)
${ }^{1} \mathrm{H}$ MNR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C} \operatorname{NMR}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

(E)-5-Phenylpenta-2,4-dienal (2m)
${ }^{1} \mathrm{H}$ MNR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

会

3-((1R,5R)-6,6-Dimethylbicyclo[3.1.1]hept-2-en-3-yl)acrylaldehyde (2n)
${ }^{1} \mathrm{H}$ MNR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C} \operatorname{NMR}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^0]HRMS

(E)-3-Cyclohexylpropenal (20)
${ }^{1} \mathrm{H}$ MNR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C} \operatorname{NMR}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

(E)-4-Phenylpent-2-enal (2p)
${ }^{1} \mathrm{H}$ MNR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C} \operatorname{NMR}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

(E)-3-Phenylbut-2-enal (2s)
${ }^{1} \mathrm{H}$ MNR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
$\underbrace{\text { Non }}$

No
0
i

${ }^{13} \mathrm{C} \operatorname{NMR}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

人介	

0,

3-Cyclopropylbut-2-enal (2t)
${ }^{1} \mathrm{H}$ MNR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C} \operatorname{NMR}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

(2-Cyclohexenylidene)acetaldehyde (2y)
${ }^{1} \mathrm{H}$ MNR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C} \operatorname{NMR}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$)^{\mathrm{CHO}}$

2-((8S,9S,10R,13S,14S)-10,13-Dimethyl-1,2,7,8,9,10,11,12,13,14,15,16-dodecahydro-17H-cyclopenta[a]phenanthren-17-ylidene)acetaldehyde (12) ${ }^{1} \mathrm{H}$ MNR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C} \operatorname{NMR}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

HRMS

Ethyl 4-oxo-6-phenyl-3,4-dihydro-2H-thiopyran-5-carboxylate (3ab) ${ }^{1} \mathrm{H}$ MNR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C} \operatorname{NMR}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

HRMS

Ethyl 2-(4-(dimethylamino)phenyl)-4-oxo-6-phenyl-3,4-dihydro-2H-thiopyran-5-carboxylate (3ac)
${ }^{1} \mathrm{H}$ MNR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C} \operatorname{NMR}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

HRMS

Ethyl 2-(4-methoxyphenyl)-4-oxo-6-phenyl-3,4-dihydro-2H-thiopyran-5-carboxylate (3ad) ${ }^{1} \mathrm{H}$ MNR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C} \operatorname{NMR}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

HRMS

Ethyl 2-(3-methoxyphenyl)-4-oxo-6-phenyl-3,4-dihydro-2H-thiopyran-5-carboxylate (3ae) ${ }^{1} \mathrm{H}$ MNR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C} \operatorname{NMR}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\begin{array}{llllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$

HRMS

Ethyl 2-(2-methoxyphenyl)-4-oxo-6-phenyl-3,4-dihydro-2H-thiopyran-5-carboxylate (3af) ${ }^{1} \mathrm{H}$ MNR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C} \operatorname{NMR}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

HRMS

Ethyl 4-oxo-2,6-diphenyl-3,4-dihydro-2H-thiopyran-5-carboxylate (3ag-d/h)
${ }^{1} \mathrm{H}$ MNR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C} \operatorname{NMR}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

HRMS

Ethyl 2－（4－fluorophenyl）－4－oxo－6－phenyl－3，4－dihydro－2H－thiopyran－5－carboxylate（3ah） ${ }^{1} \mathrm{H}$ MNR（ $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）

N゙NNNNへNへNべN	

${ }^{13} \mathrm{C} \operatorname{NMR}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{19} \mathrm{~F} \operatorname{NMR}\left\{{ }^{1} \mathrm{H}\right\}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

HRMS

Ethyl 2-(4-bromophenyl)-4-oxo-6-phenyl-3,4-dihydro-2H-thiopyran-5-carboxylate (3ai) ${ }^{1} \mathrm{H}$ MNR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C} \operatorname{NMR}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

HRMS

Ethyl 2-(2,3-dichlorophenyl)-4-oxo-6-phenyl-3,4-dihydro-2H-thiopyran-5-carboxylate (3aj) ${ }^{1} \mathrm{H}$ MNR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C} \operatorname{NMR}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

®.
$\stackrel{\sim}{m}$
Γ

$\begin{array}{llllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & & 10\end{array}$

HRMS

Ethyl 2-(4-nitrophenyl)-4-oxo-6-phenyl-3,4-dihydro-2H-thiopyran-5-carboxylate (3ak) ${ }^{1} \mathrm{H}$ MNR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C} \operatorname{NMR}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^1]
HRMS

Ethyl 2-(naphthalen-2-yl)-4-oxo-6-phenyl-3,4-dihydro-2H-thiopyran-5-carboxylate (3al) ${ }^{1} \mathrm{H}$ MNR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C} \operatorname{NMR}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

HRMS

Ethyl (E)-4-oxo-6-phenyl-2-styryl-3,4-dihydro-2H-thiopyran-5-carboxylate (3am)
${ }^{1} \mathrm{H}$ MNR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C} \operatorname{NMR}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

HRMS

Ethyl 2-((1R,5R)-6,6-dimethylbicyclo[3.1.1]hept-2-en-2-yl)-4-oxo-6-phenyl-3,4-dihydro-2H-thiopyran-5-carboxylate (3an)
${ }^{1} \mathrm{H}$ MNR (400 MHz, CDCl_{3})

${ }^{13} \mathrm{C} \operatorname{NMR}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

HRMS

Ethyl 2-cyclohexyl-4-oxo-6-phenyl-3,4-dihydro-2H-thiopyran-5-carboxylate (3ao) ${ }^{1} \mathrm{H}$ MNR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C} \operatorname{NMR}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

HRMS

Ethyl 4-oxo-6-phenyl-2-(1-phenylethyl)-3,4-dihydro-2H-thiopyran-5-carboxylate (3ap) ${ }^{1} \mathrm{H}$ MNR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C} \operatorname{NMR}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^2]
HRMS

Ethyl 4-oxo-6-phenyl-2-(1-phenylethyl)-3,4-dihydro-2H-thiopyran-5-carboxylate 3ap ($d r=1: 1$)
${ }^{1} \mathrm{H}$ MNR (400 MHz, CDCl_{3})

${ }^{13} \mathrm{C} \operatorname{NMR}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

HRMS

Ethyl 2-methyl-2-(4-methylpent-3-en-1-yl)-4-oxo-6-phenyl-3,4-dihydro-2H-thiopyran-5carboxylate (3ar)
${ }^{1} \mathrm{H}$ MNR (400 MHz, CDCl_{3})

${ }^{13} \mathrm{C} \operatorname{NMR}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

HRMS

Ethyl 2-methyl-4-oxo-2,6-diphenyl-3,4-dihydro-2H-thiopyran-5-carboxylate (3as)
${ }^{1} \mathrm{H}$ MNR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C} \operatorname{NMR}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

HRMS

Ethyl 2-cyclopropyl-2-methyl-4-oxo-6-phenyl-3,4-dihydro-2H-thiopyran-5-carboxylate (3at) ${ }^{1} \mathrm{H}$ MNR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C} \operatorname{NMR}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

HRMS

Ethyl 4-oxo-2-phenyl-1-thiaspiro[5.5]undeca-2,7-diene-3-carboxylate (3ay) ${ }^{1} \mathrm{H}$ MNR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C} \operatorname{NMR}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^3]
HRMS

Ethyl 3-methyl-4-oxo-6-phenyl-3,4-dihydro-2H-thiopyran-5-carboxylate (3aac) ${ }^{1} \mathrm{H}$ MNR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C} \operatorname{NMR}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^4]
HRMS

Ethyl 2,3-dimethyl-4-oxo-6-phenyl-3,4-dihydro-2H-thiopyran-5-carboxylate (3aad, $\mathrm{dr}=2: 1$) ${ }^{1} \mathrm{H}$ MNR (400 MHz, CDCl_{3})

${ }^{13} \mathrm{C} \operatorname{NMR}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

CH2

HRMS

Ethyl 3-methyl-4-oxo-2,6-diphenyl-3,4-dihydro-2H-thiopyran-5-carboxylate
(3aae-single isomer)
${ }^{1} \mathrm{H}$ MNR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C} \operatorname{NMR}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\begin{array}{llllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$

Ethyl 3-methyl-4-oxo-2,6-diphenyl-3,4-dihydro-2H-thiopyran-5-carboxylate (3aae, $\mathrm{dr}=2: 1$) ${ }^{1} \mathrm{H}$ MNR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C} \operatorname{NMR}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

HRMS

Ethyl
3-methyl-4-oxo-2,6-diphenyl-3,4-dihydro-2H-thiopyran-5-carboxylate
(3aae, diastereomers repurified)
${ }^{1} \mathrm{H}$ MNR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C} \operatorname{NMR}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\begin{array}{llllllllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & 10\end{array}$

Ethyl 6-(benzo[d][1,3]dioxol-5-yl)-2,2-dimethyl-4-oxo-3,4-dihydro-2H-thiopyran-5-carboxylate (3ba)
${ }^{1} \mathrm{H}$ MNR (400 MHz, CDCl_{3})

${ }^{13} \mathrm{C} \operatorname{NMR}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

HRMS

Ethyl 6-(4-methoxyphenyl)-2,2-dimethyl-4-oxo-3,4-dihydro-2H-thiopyran-5-carboxylate (3ca) ${ }^{1} \mathrm{H}$ MNR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C} \operatorname{NMR}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

HRMS

Ethyl 2,2-dimethyl-4-oxo-6-(p-tolyl)-3,4-dihydro-2H-thiopyran-5-carboxylate (3da) ${ }^{1} \mathrm{H}$ MNR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C} \operatorname{NMR}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

HRMS

Ethyl 6-(4-fluorophenyl)-2,2-dimethyl-4-oxo-3,4-dihydro-2H-thiopyran-5-carboxylate (3ea) ${ }^{1} \mathrm{H}$ MNR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C} \operatorname{NMR}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\left.\begin{array}{lllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10\end{array}\right) 0$
${ }^{19} \mathrm{~F} \operatorname{NMR}\left\{{ }^{1} \mathrm{H}\right\}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

HRMS

Ethyl 6-(4-chlorophenyl)-2,2-dimethyl-4-oxo-3,4-dihydro-2H-thiopyran-5-carboxylate (3fa) ${ }^{1} \mathrm{H}$ MNR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C} \operatorname{NMR}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\left.\begin{array}{lllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10\end{array}\right) 0$

HRMS

Ethyl 6-(3,4-dichlorophenyl)-2,2-dimethyl-4-oxo-3,4-dihydro-2H-thiopyran-5-carboxylate (3ga) ${ }^{1} \mathrm{H}$ MNR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C} \operatorname{NMR}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

HRMS

Ethyl 6-(4-iodophenyl)-2,2-dimethyl-4-oxo-3,4-dihydro-2H-thiopyran-5-carboxylate (3ha) ${ }^{1} \mathrm{H}$ MNR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C} \operatorname{NMR}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

HRMS

Ethyl 2,2-dimethyl-4-oxo-6-(4-(trifluoromethyl)phenyl)-3,4-dihydro-2H-thiopyran-5-carboxylate (3ia)
${ }^{1} \mathrm{H}$ MNR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C} \operatorname{NMR}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

HRMS

Ethyl 6-(4-cyanophenyl)-2,2-dimethyl-4-oxo-3,4-dihydro-2H-thiopyran-5-carboxylate (3ja) ${ }^{1} \mathrm{H}$ MNR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C} \operatorname{NMR}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

HRMS

Ethyl 6-(furan-2-yl)-2,2-dimethyl-4-oxo-3,4-dihydro-2H-thiopyran-5-carboxylate (3ka) ${ }^{1} \mathrm{H}$ MNR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C} \operatorname{NMR}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

HRMS

Ethyl 2,2-dimethyl-4-oxo-6-(thiophen-2-yl)-3,4-dihydro-2H-thiopyran-5-carboxylate (3la) ${ }^{1} \mathrm{H}$ MNR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C} \operatorname{NMR}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^5]
HRMS

Ethyl 2,2-dimethyl-6-(naphthalen-2-yl)-4-oxo-3,4-dihydro-2H-thiopyran-5-carboxylate (3ma) ${ }^{1} \mathrm{H}$ MNR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\stackrel{\text { ì }}{\text { i }}$

${ }^{13} \mathrm{C} \operatorname{NMR}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

HRMS

Ethyl (10R,13S)-10,13-Dimethyl-4'-oxo-6'-phenyl-1,2,3',4',7,8,9,10,11,12,13,14,15,16-tetradecahydrospiro[cyclopenta[a]phenanthrene-17,2'-thiopyran]-5'-carboxylate (13) ${ }^{1} \mathrm{H}$ MNR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C} \operatorname{NMR}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^6]

Diethyl 2,3-Dibenzoylbut-2-enedioate (4)
${ }^{1} \mathrm{H}$ MNR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C} \operatorname{NMR}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Ph

Phosphine sulfide (5)
${ }^{1} \mathrm{H}$ MNR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C} \operatorname{NMR}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

2-vinyInaphthalene (6)
${ }^{1} \mathrm{H}$ MNR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

S

${ }^{13} \mathrm{C} \operatorname{NMR}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

14. Copies of NMR Spectra of the Crude Reaction Mixtures in KIE Studies

Reaction 1

Reaction 2

Reaction 1 (5 min)
${ }^{1} \mathrm{H}$ MNR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Reaction 1 (10 min)
${ }^{1} \mathrm{H}$ MNR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Reaction 1 (15 min)
${ }^{1} \mathrm{H}$ MNR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Reaction 1 (20 min)

${ }^{1} \mathrm{H}$ MNR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Reaction 1 (30 min)
${ }^{1} \mathrm{H}$ MNR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Reaction 1 (40 min)
${ }^{1} \mathrm{H}$ MNR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Reaction 1 (50 min)
${ }^{1} \mathrm{H}$ MNR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Reaction 1 (60 min)
${ }^{1} \mathrm{H}$ MNR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Reaction 2 (5 min)
${ }^{1} \mathrm{H}$ MNR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\mathrm{EtO}_{2} \mathrm{C}_{\mathrm{Ph}}^{\mathrm{N}=\mathrm{N}}$

MM~~~~~N
管
1
n-m

Reaction 2 (10 min)
${ }^{1} \mathrm{H}$ MNR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Reaction 2 (15 min)
${ }^{1} \mathrm{H}$ MNR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Reaction 2 (20 min)
${ }^{1} \mathrm{H}$ MNR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Reaction 2 (30 min)
${ }^{1} \mathrm{H}$ MNR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Reaction 2 (40 min)
${ }^{1} \mathrm{H}$ MNR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Reaction 2 (50 min)
${ }^{1} \mathrm{H}$ MNR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Reaction 2 (60 min)
${ }^{1} \mathrm{H}$ MNR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

[^0]: $\left.\begin{array}{lllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10\end{array}\right) 0$

[^1]: $\begin{array}{llllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$

[^2]: $\begin{array}{llllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$

[^3]: $\begin{array}{llllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$

[^4]: | 210 | 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 |
 | :--- |

[^5]: $\begin{array}{llllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$

[^6]:

