Sulfur-Controlled and Rhodium-Catalyzed Formal (3 + 3) Transannulation of Thioacyl Carbenes with Alk-2-enals and Mechanistic Insights

Qiuyue Wu, Ziyang Dong, Jiaxi Xu* and Zhanhui Yang*

Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China.

Email: jxxu@mail.buct.edu.cn (J.X.); zhyang@mail.buct.edu.cn (Z.Y.)

Contents

1. General Information	2
2. Detailed Optimizations on the Reaction Conditions	3
3. Crystal Data and Structure of Ethyl 2,2-Dimethyl-4-oxo-6-phenyl-3,4-dihydro-2 <i>H</i> - thiopyran-5-carboxylate (3aa)	4
4. General procedure for the synthesis of thiadizaoles 1	6
5. General procedure for the synthesis of alk-2-enals 2	9
6. General procedure for the synthesis of ethyl 4-oxo-3,4-dihydro-2 <i>H</i> -thiopyran-5- carboxylates 3 and 13	13
7. Intermediate Probing Experiments	22
8. Isotope Tracing Experiments	23
9. KIE Studies	24
10. Gram-scale reaction	24
11. Trials on asymmetric catalysis	25
12. Reference	28
13. Copies of Spectra of Materials, Intermediates, and Products	30
14. Copies of NMR Spectra of the Crude Reaction Mixtures in KIE Studies	142

1. General Information

Unless otherwise noted, all starting materials were purchased from commercial suppliers. Chlorobenzene and acetonitrile were refluxed over CaH₂ and freshly distilled prior to use. Tetrahydrofuran was refluxed over LiAIH₄ and freshly distilled prior to use. Toluene was refluxed over Na and freshly distilled prior to use. Column chromatography was performed using silica gel (normal phase, 200–300 mesh) from branch of Anhui Liangchen Silicon Material Co. Ltd, with petroleum ether (60–90 °C fraction), hexane, methylene chloride and ethyl acetate as eluents. Reactions were monitored by thin-layer chromatography (TLC) on GF254 silica gel plates (0.2 mm) from Anhui Liangchen Silicon Material Co. Ltd. The plates were visualized under UV light, as well as other TLC stains (1% potassium permanganate in water; 10 g of iodine absorbed on 30 g of silica gel; 12 g 2,4dinitrophenylhydrazine dissolved in 60 mL of H₂SO₄ and 80 mL H₂O in 200 mL 95% EtOH.). ¹H, ¹⁹F, and ¹³C{¹H} NMR spectra were recorded on a 400 MHz spectrometer, usually in $CDCl_3$ with TMS as an internal standard, and the chemical shifts (δ) are reported in parts per million (ppm). And multiplicities are indicated as s (singlet), d (doublet), t (triplet), q (quartet), dd (double doublet), m (multiplet). Coupling constants (J) are reported in Hertz (Hz). HRMS measurements were carried out on an LC/MSD TOF mass spectrometer. The IR spectra (film, v [cm⁻¹]) were taken on an FT IR spectrometer. Melting points were obtained on a melting point apparatus and are uncorrected. Single crystal X-ray diffraction analysis (3aa) was performed on a single crystal X-ray diffractometer. The enantiomeric excesses were determined by chiral HPLC analysis using an Agilent 1260 LC instrument with Daicel Chiralpak AS-H column with a mixture of isopropyl alcohol and hexane as eluents. PE, EA, PhCl, DCM, MeOH, Et₂O and THF are abbreviated for petroleum ether, ethyl acetate, chlorobenzene, methylene chloride, methanol, diethyl ether and tetrahydrofuran, respectively.

Compounds **3aa**, **3ag**, **3aq**, **3au**, **3av**, **3aw**, **3ax**, **3az**, **3aaa** and **3aab** were reported in our previous work.¹ For their analytical data and spectra, and those of the alkenals (**2q**, **2u**, **2v**, **2w**, **2x**, **2z**, **2aa**, and **2ab**), please see the supporting information of our previous publications.¹

2. Detailed Optimizations on the Reaction Conditions

Table S1. Optimization of reaction conditions^a

Entry	Catalyst (mol%)	Ligand (mol%)	Solvent	Yield ^b (%)
1	[Rh(COD)Cl] ₂ (5)	DPPF (12)	PhCl	72
2	[Rh(COD)Cl] ₂ (5)	_	PhCl	trace
3	[Rh(COD)Cl] ₂ (5)	DPPF (12)	PhCl	trace ^c
4	[Rh(COD)Cl]2(5)	DPPF (12)	PhCl	3 ^{<i>d</i>}
5	[Rh(COD)Cl]2(5)	DPPM (12)	PhCl	trace
6	[Rh(COD)Cl]2(5)	DPPE (12)	PhCl	6
7	[Rh(COD)Cl]2(5)	DPPP (12)	PhCl	8
8	[Rh(COD)Cl]2(5)	DPPB (12)	PhCl	15
9	[Rh(COD)Cl]2(5)	DPPPenta (12)	PhCl	3
10	[RhCp*Cl ₂] ₂ (5)	DPPF (12)	PhCl	63
11	[RhCp*Cl ₂] ₂ (5)	DPPE (12)	PhCl	trace
12	[RhCp*Cl ₂] ₂ (5)	DPPP (12)	PhCl	8
13	[RhCp*Cl ₂] ₂ (5)	DPPB (12)	PhCl	7
14	[RhCp*Cl ₂] ₂ (5)	DPPPenta (12)	PhCl	1
15	[Rh(COD)Cl]2(5)	PPh ₃ (24)	PhCl	trace
16	[Rh(COD)Cl] ₂ (5)	Triphenyl phosphorus oxychloride	PhCI	trace
		(24)		
17	[Rh(COD)Cl] ₂ (5)	Triethyl phosphite (24)	PhCl	trace
18	[Rh(COD)CI] ₂ (5)	Triphenyl phosphite (24)	PhCl	trace
19	[Rh(COD)Cl] ₂ (5)	Triphenyl phosphate (24)	PhCl	trace
20	[Rh(COD)Cl] ₂ (5)	Triethyl phosphate (24)	PhCl	trace
21	[Rh(COD)Cl] ₂ (5)	Tris(4-trifluoromethylphenyl) phosphine (24)	PhCl	trace
22	[Rh(COD)Cl] ₂ (5)	Tris(pentafluorophenyl)phosphine (24)	PhCI	trace
23	[Rh(COD)Cl] ₂ (5)	DPPF (12)	PhMe	54

^a Reaction was carried out with 1,2,3-thiadiazole **1a** (0.25 mmol) and 3-methyl-2-butenal (**2a**) (0.5 mmol) in the presence of 1.0 mL of solvent for 6 h.

^b Yield of the isolated product.

^c Reaction was carried out at 50 °C.

^{*d*} Reaction was carried out at 100 °C.

3. Crystal Data and Structure of Ethyl 2,2-Dimethyl-4-oxo-6-phenyl-3,4-dihydro-2*H*-thiopyran-5-carboxylate (3aa)

Figure S1. Thermal ellipsoid plot for the crystal structure of 3aa (at 50% probability level)

Experimental

Single crystals of $C_{16}H_{18}O_3S$ (**3aa**) were recrystallized from diethyl ether, mounted in inert oil, and transferred to the cold gas stream of the diffractometer.

The X-ray intensity data were measured at 105.6 K, on an Agilent Gemini E single crystal X-ray diffractometer. The crystal data of **3aa** has been deposited in CCDC with number 1919688.

Crystal structure determination of 3aa

Crystal Data. $C_{16}H_{18}O_3S$, *M* =290.36, monoclinic, *a* = 17.860(3) Å, *b* = 8.4885(4) Å, *c* = 14.325(2) Å, β = 136.68(3)°, *U* = 1489.9(7) Å³, *T* = 105.6, space group Cc (no. 9), *Z* = 4, μ (Cu K α) = 1.968, 2624 reflections measured, 1579 unique (R_{int} = 0.0190) which were used in all calculations. The final *wR*(*F*₂) was 0.0755 (all data).

Table S2. Crystal data and structure refinement for 3aa

Identification code **Empirical formula** Formula weight Temperature / K Crystal system Space group a/Å, b/Å, c/Å $\alpha/^{\circ}, \beta/^{\circ}, \gamma/^{\circ}$ Volume / Å³ Ζ ρ_{calc} / mg mm⁻³ μ / mm⁻¹ F(000) Crystal size / mm³ 2O range for data collection Index ranges **Reflections collected** Independent reflections Data/restraints/parameters Goodness-of-fit on F² Final R indexes [I> 2σ (I) i.e. F₀> 4σ (F₀)] Final R indexes [all data] Largest diff. peak/hole / e Å-3 Flack Parameters Completeness

exp_5184 $C_{16}H_{18}O_3S$ 290.36 105.6 monoclinic Сс 17.860(3), 8.4885(4), 14.325(2) 90, 136.68(3), 90 1489.9(7) 4 1.294 1.968 616 0.150 × 0.140 × 0.130 12.138 to 142.142° $-19 \le h \le 21, -9 \le k \le 10, -16 \le l \le 17$ 2624 1579[R(int) = 0.0190 (inf-0.9Å)] 1579/2/184 1.082 $R_1 = 0.0287$, $wR_2 = 0.0753$ R₁ = 0.0289, wR₂ = 0.0755 0.227/-0.254 0.031(18) 0.979

4. General procedure for the synthesis of thiadizaoles 1

Thiadiazoles **1a–1m** were prepared according to Gevorgyan's² and Lee's³ published procedures.

a) An oven-dried 100-mL flask were charged with a stirrer bar, NaH (60% in mineral oil, 1.60 g, 40 mmol), dry THF (25 mL), and diethyl carbonate (**S2**) (4.85 mL, 40 mmol) successively. To the mixture was added a solution of ketone **S1** (10 mmol) in dry THF (15 mL) in 5 min under stirring at 0 °C. After warming up to room temperature, a spherical condenser was put on the flask. The reaction mixture was refluxed overnight, then quenched with 1 M HCl (30 mL) under stirring at 0 °C. When there was no bubble released, solvent THF was removed in vacuo. The mixture was added water (20 mL), and then extracted with ethyl acetate (20 mL × 3). The combined organic layers were dried over Na₂SO₄. After removal of the solvent in vacuo, the residue was purified by flash chromatography (silica gel, PE:EA 20:1 to 5:1, *v*/*v*), affording the corresponding β -keto ester **S3**.

b) In a flask, the above prepared β -keto ester **S3** (10 mmol) and 4acetamidobenzenesulfonyl azide (**S4**) (2.64 g, 11 mmol) were dissolved in acetonitrile (60 mL). Triethylamine (3.05 g, 30 mmol) was slowly added at 0 °C. The reaction mixture was stirred at room temperature overnight. After removal of the solvent by rotary evaporation, the resulting residue was purified by column chromatography (PE/EA = 3:1, *v/v*) to give ethyl 2-diazo-3-oxo-3-arylpropanoate **S5**. The diazo compound **S5** was then dissolved in toluene (50 mL), followed by addition of Lawesson's reagent (**S6**) (4.85 g, 12 mmol). The mixture was heated at reflux for 4 h. After the reaction was completed, the solvent was removed by rotary evaporation, and the resulting residue was purified by silica gel column chromatography (PE/EA = 10:1 to 20:1 or DCM/MeOH = 100:1, *v/v*) to afford ethyl 5-aryl-1,2,3-thiadiazole-4-carboxylate **1**.

All the thiodiazoles **1** are known compounds. For those without published spectra data, IR and HRMS data are also provided here.

Ethyl 5-phenyl-1,2,3-thiadiazole-4-carboxylate (**1a**) ^{2,3} [CAS No. 60474-27-3] Yellow solid, 2.06 g, 88% yield over the last two steps, m.p. 36–37 °C, $R_f = 0.45$ (PE/EA = 5:1, v/v). ¹H NMR (400 MHz, CDCl₃) δ 7.55 – 7.44 (m, 5H), 4.41 (q, J = 7.1 Hz, 2H), 1.33 (t, J = 7.1 Hz, 3H). ¹³C NMR{¹H} (101 MHz, CDCl₃) δ 161.9, 160.4, 148.4, 130.6, 129.7, 128.6, 126.1, 62.0, 14.0.

Ethyl 5-(benzo[d][1,3]dioxol-5-yl)-1,2,3-thiadiazole-4-carboxylate (**1b**)^{3a} [CAS No. 2022219-62-9]

Pale yellow solid, 2.13 g, 77% yield over three steps, m.p. 81–82 °C (Lit.^{3a} 84–86 °C), R_f = 0.5 (PE/EA = 3:1, v/v), R_f = 0.5 (DCM/MeOH = 100:1, v/v). ¹H NMR (400 MHz, CDCl₃) δ 7.07 – 7.01 (m, 2H), 6.89 (dd, J = 7.9, 0.6 Hz, 1H), 6.06 (s, 2H), 4.46 (q, J = 7.1 Hz, 2H), 1.39 (t, J = 7.1 Hz, 3H). ¹³C NMR{¹H} (101 MHz, CDCl₃) δ 161.9, 160.6, 149.9, 148.0, 147.9, 124.6, 119.2, 110.0, 108.5, 101.9, 62.1, 14.1.

Ethyl 5-(4-methoxyphenyl)-1,2,3-thiadiazole-4-carboxylate (**1c**) ^{3b} [CAS No. 2010973-32-5]

Pale yellow solid, 2.05 g, 78% yield over three steps, m.p. 49–50 °C (Lit.^{3b} 50–52 °C), $R_f = 0.3$ (PE/EA = 5:1, v/v), $R_f = 0.45$ (DCM/MeOH = 100:1, v/v). ¹H NMR (400 MHz, CDCl₃) δ 7.51 (d, J = 8.8 Hz, 2H), 6.98 (d, J = 8.8 Hz, 2H), 4.44 (q, J = 7.1 Hz, 2H), 3.86 (s, 3H), 1.37 (t, J = 7.1 Hz, 3H). ¹³C NMR{¹H} (101 MHz, CDCl₃) δ 162.1, 161.6, 160.7, 147.6, 131.4, 117.9, 114.1, 62.0, 55.4, 14.1.

Ethyl 5-(4-methylphenyl)-1,2,3-thiadiazole-4-carboxylate (**1d**) ^{3b} [CAS No. 340260-34-6] Yellow solid, 1.41 g, 57% yield over three steps, m.p. 46–47 °C (Lit.^{3b} 44–46 °C), R_f = 0.3 (PE/EA = 15:1, *v*/*v*). ¹H NMR (400 MHz, CDCl₃) δ 7.42 (d, *J* = 8.1 Hz, 2H), 7.27 (d, *J* = 8.5 Hz, 2H), 4.43 (q, *J* = 7.1 Hz, 2H), 2.41 (s, 3H), 1.36 (t, *J* = 7.1 Hz, 3H). ¹³C NMR{¹H} (101 MHz, CDCl₃) δ 162.2, 160.5, 148.1, 141.1, 129.6, 129.3, 123.0, 62.0, 21.4, 14.1.

Ethyl 5-(4-fluorophenyl)-1,2,3-thiadiazole-4-carboxylate (**1e**) ¹ [CAS No. 2111487-42-2] White solid, 2.05 g, 81% yield over three steps, m.p. 67–69 °C, R_f = 0.45 (PE/EA = 5:1, v/v), R_f = 0.55 (DCM/MeOH = 100:1, v/v). ¹H NMR (400 MHz, CDCl₃) δ 7.58–7.50 (m, 2H), 7.17 (t, *J* = 8.5 Hz, 2H), 4.43 (q, *J* = 7.1 Hz, 2H), 1.36 (t, *J* = 7.1 Hz, 3H). ¹³C NMR{¹H} (101 MHz, CDCl₃) δ 164.1 (d, *J*_{C-F} = 253.5 Hz), 160.9, 160.4, 148.4, 131.9 (d, *J*_{C-F} = 7.1 Hz), 122.0 (d, *J*_{C-F} = 3.0 Hz), 115.9 (d, *J*_{C-F} = 22.2 Hz), 62.2, 14.1. ¹⁹F NMR{¹H} (376 MHz, CDCl₃) δ -109.0 (s). IR (film) 2981, 2922, 2359, 2341, 1730, 1684, 1653, 1635, 1601, 1558, 1540, 1520, 1507, 1474, 1457, 1418, 1395, 1371, 1324, 1272, 1236, 1187, 1161, 1132, 1096, 1075, 1052, 1018, 985, 848, 815, 785, 755, 696, 668, 566, 525 cm⁻¹. HRMS (ESI-TOF) *m/z* [M+H]⁺ calcd. for C₁₁H₁₀FN₂O₂S⁺ 253.0442, found 253.0445.

Ethyl 5-(4-chlorophenyl)-1,2,3-thiadiazole-4-carboxylate (**1f**) ¹ [CAS No. 340260-35-7] White solid, 73% yield over three steps, m.p. 74–75 °C, $R_f = 0.45$ (PE/EA = 5:1, *v/v*), $R_f = 0.55$ (DCM/MeOH = 100:1, *v/v*). ¹H NMR (400 MHz, CDCl₃) δ 7.50–7.41 (m, 4H), 4.41 (q, J = 7.1 Hz, 2H), 1.34 (t, J = 7.1 Hz, 3H). ¹³C NMR{¹H} (101 MHz, CDCl₃) δ 160.6, 160.2, 148.4, 137.0, 131.0, 128.9, 124.4, 62.2, 14.0. IR (film) 2980, 2359, 2341, 1727, 1653, 1592, 1558, 1540, 1507, 1473, 1457, 1399, 1372, 1338, 1272, 1195, 1184, 1092, 1016, 986, 848, 837, 776, 668, 655, 555, 522, 510, 474 cm⁻¹. HRMS (ESI-TOF) *m/z* [M+H]⁺ calcd. for C₁₁H₁₀CIN₂O₃S⁺ 269.0146, found 269.0145.

Ethyl 5-(3,4-dichlorophenyl)-1,2,3-thiadiazole-4-carboxylate (**1g**) ¹ [CAS No. 2342602-62-2]

White solid, 2.25 g, 74% over three steps, m.p. 75–77 °C, $R_f = 0.45$ (PE/EA = 5:1, v/v), $R_f = 0.45$ (DCM/MeOH = 100:1, v/v). ¹H NMR (400 MHz, CDCl₃) δ 7.65 (d, J = 2.2 Hz, 1H),

7.56 (d, J = 8.3 Hz, 1H), 7.37 (dd, J = 8.3, 2.2 Hz, 1H), 4.44 (q, J = 7.2 Hz, 2H), 1.38 (t, J = 7.1 Hz, 3H). ¹³C NMR{¹H} (101 MHz, CDCl₃) δ 160.0, 159.1, 148.7, 135.2, 133.1, 131.5, 130.6, 129.0, 125.9, 62.4, 14.1. IR (film) 2923, 2359, 2341, 1732, 1718, 1699, 1683, 1652, 1636, 1558, 1541, 1520, 1507, 1489, 1473, 1457, 1436, 1418, 1373, 1321, 1274, 1194, 1132, 1051, 1032, 1015, 971, 847, 680, 555 cm⁻¹. HRMS (ESI-TOF) *m*/*z* [M+H]⁺ calcd. for C₁₁H₉Cl₂N₂O₂S⁺ 302.9756, found 302.9751.

Ethyl 5-(4-iodophenyl)-1,2,3-thiadiazole-4-carboxylate (**1h**) ¹ [CAS No. 2342602-61-1] White solid, 2.80 g, 78% yield over three steps, m.p. 149–151 °C, R_f = 0.5 (PE/EA = 5:1, v/v), R_f = 0.6 (DCM/MeOH = 100:1, v/v). ¹H NMR (400 MHz, CDCl₃) δ 7.85–7.80 (m, 2H), 7.30–7.25 (m, 2H), 4.44 (q, J = 7.1 Hz, 2H), 1.37 (t, J = 7.1 Hz, 3H). ¹³C NMR{¹H} (101 MHz, CDCl₃) δ 160.8, 160.2, 148.4, 137.8, 131.2, 125.5, 97.2, 62.2, 14.1. IR (film) 2973, 2921, 2358, 2341, 1718, 1684, 1652, 1636, 1577, 1558, 1540, 1520, 1507, 1471, 1457, 1418, 1393, 1369, 1336, 1271, 1193, 1131, 1076, 1056, 1010, 980, 846, 826, 776, 669, 654, 556, 519, 499, 419 cm⁻¹. HRMS (ESI-TOF) m/z [M+H]⁺ calcd. for C₁₁H₁₀IN₂O₂S⁺ 360.9502, found 360.9504.

Ethyl 5-(4-(trifluoromethyl)phenyl)-1,2,3-thiadiazole-4-carboxylate (**1i**) ¹ [CAS No. 2342602-63-3]

Brown solid, 2.19 g, 72% yield over three steps, m.p. 29–31 °C, $R_f = 0.45$ (PE/EA = 5:1, v/v), $R_f = 0.45$ (DCM/MeOH = 100:1, v/v). ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, J = 8.2 Hz, 2H), 7.65 (d, J = 8.1 Hz, 2H), 4.43 (q, J = 7.1 Hz, 2H), 1.34 (t, J = 7.1 Hz, 3H). ¹³C NMR{¹H} (101 MHz, CDCl₃) δ 160.10, 160.05, 148.9, 132.5 (q, $J_{C-F} = 33.3$ Hz), 130.2, 129.9, 125.5 (q, $J_{C-F} = 4.0$ Hz), 123.5 (q, $J_{C-F} = 273.7$ Hz), 62.3, 14.0. ¹⁹F NMR{¹H} (376 MHz, CDCl₃) δ -63.05 (s).IR (film) 2984, 2359, 1732, 1684, 1653, 1617, 1558, 1507, 1487, 1457, 1409, 1373, 1325, 1274, 1169, 1130, 1068, 1019, 985, 849, 787, 687, 577 cm⁻¹. HRMS (ESI-TOF) m/z [M+H]⁺ calcd. for C₁₂H₁₀F₃N₂O₂S⁺ 303.0410, found 303.0410.

Ethyl 5-(4-cyanophenyl)-1,2,3-thiadiazole-4-carboxylate (**1**j) ^{3a} [CAS No. 2022219-64-1] Pale brown solid, 1.54 g, 59% yield over three steps, m.p. 108–110 °C, R_f = 0.4 (PE/EA = 3:1, v/v). ¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, J = 8.5 Hz, 2H), 7.65 (d, J = 8.5 Hz, 2H), 4.44 (q, J = 7.1 Hz, 2H), 1.36 (t, J = 7.1 Hz, 3H). ¹³C NMR{¹H} (101 MHz, CDCl₃) δ 159.9, 159.5, 149.0, 132.2, 131.0, 130.5, 117.8, 114.4, 62.5, 14.1.

Ethyl 5-(furan-2-yl)-1,2,3-thiadiazole-4-carboxylate (**1k**) ^{3a} [CAS No. 2022219-65-2] Brown solid, 1.47 g, 67%, yield over three steps, m.p. 109–110 °C, R_f = 0.55 (PE/EA = 5:1, v/v). ¹H NMR (400 MHz, CDCl₃) δ 7.81 (dd, J = 3.7, 0.7 Hz, 1H), 7.60 (dd, J = 1.9, 0.8 Hz, 1H), 6.59 (dd, J = 3.7, 1.8 Hz, 1H), 4.52 (q, J = 7.1 Hz, 2H), 1.46 (t, J = 7.1 Hz, 3H). ¹³C NMR{¹H} (101 MHz, CDCl₃) δ 160.7, 150.5, 146.5, 144.8, 143.0, 117.1, 113.3, 62.1, 14.2.

Ethyl 5-(thiophen-2-yl)-1,2,3-thiadiazole-4-carboxylate (**1**I) ^{3a} [CAS No. 2010973-34-7] Brown solid, 2.13 g, 89% yield over three steps, m.p. 96–97 °C, $R_f = 0.3$ (PE/EA = 10:1, v/v), $R_f = 0.40$ (DCM/MeOH = 200:1, v/v). ¹H NMR (400 MHz, CDCl₃) δ 7.68 (dd, J = 3.8, 1.2 Hz, 1H), 7.59 (dd, J = 5.1, 1.2 Hz, 1H), 7.12 (dd, J = 5.2, 3.8 Hz, 1H), 4.49 (q, J = 7.1 Hz, 2H), 1.42 (t, J = 7.1 Hz, 3H). ¹³C NMR{¹H} (101 MHz, CDCl₃) δ 160.7, 155.0, 146.2, 133.1, 131.8, 128.2, 125.9, 62.2, 14.1

Ethyl 5-(naphthalen-2-yl)-1,2,3-thiadiazole-4-carboxylate (**1m**) ¹ [CAS No. 2342602-64-4] Brown solid, 1.47 g, 66% yield over three steps, m.p. 50–52 °C, $R_f = 0.4$ (PE/EA = 10:1, v/v). ¹H NMR (400 MHz, CDCl₃) δ 8.00–7.97 (m, 1H), 7.90–7.82 (m, 3H), 7.55–7.51 (m, 3H), 4.43–4.36 (m, 2H), 1.31–1.26 (m, 3H). ¹³C NMR{¹H} (101 MHz, CDCl₃) δ 161.8, 160.2, 148.2, 133.6, 132.4, 129.7, 128.2, 128.1, 127.6, 127.6, 126.9, 126.3, 123.2, 61.9, 13.9. IR (film) 2979, 2924, 2359, 2342, 1731, 1684, 1653, 1636, 1597, 1558, 1541, 1507, 1490, 1473, 1457, 1371, 1320, 1273, 1243, 1195, 1178, 1130, 1076, 1019, 963, 861, 816, 785, 747, 556, 475 cm⁻¹. HRMS (ESI-TOF) *m*/*z* [M+H]⁺ calcd. for C₁₅H₁₃N₂O₂S⁺ 285.0692, found 285.0690.

5. General procedure for the synthesis of alk-2-enals 2

Alk-2-enals 2j, 2l, 2m, 2n, 2o, 2p were synthesized according to Christmann's procedure.4a

$$\begin{array}{cccc} \mathsf{R}-\mathsf{CHO} &+ & \mathsf{Ph}_3\mathsf{P}^{\textcircled{\oplus}} & \overset{\mathsf{O}}{\longrightarrow} & \overset{\mathsf{KO}^t\mathsf{Bu}\ (1.5\ \mathsf{equiv})}{\mathsf{THF}, 0\ ^\circ\mathsf{C}-\mathsf{rt}} & \mathsf{R} & \overset{\mathsf{n}}{\longrightarrow} \mathsf{CHO} \\ & & \mathbf{S8}\ (1.25\ \mathsf{equiv}) \end{array}$$

To an oven-dried flask with a stirrer bar was added (1,3-dioxolan-2-ylmethyl) triphenylphosphonium bromide (**S8**) (1.08 g, 2.5 mmol). The vial was sealed with a nitrogen gas balloon and cooled to 0 °C, after which dry THF (7 mL) and KO^tBu (1 M in THF, 3 mL, 3 mmol) were added until the suspension turned a deep yellow color. After 30 min, a solution of aldehyde **S7** (2 mmol) in dry THF (5 mL) was added. The reaction mixture was kept stirring at room temperature for 6 h. After addition of 20% aqueous oxalic acid (20 mL), the resulting solution was kept stirring for another 8 h. The mixture was extracted with EA (10 mL \times 3). The combined organic phase was washed with saturated aqueous NaHCO₃ and dried over Na₂SO₄. After concentrated *in vacuo*, the resulting residue was purified by silica gel column chromatography with a mixture of PE and EA as eluent to give alk-2-enal **2**.

(*E*)-3-(2,3-Dichlorophenyl)propenal (**2j**)^{4b} [CAS No. 78444-18-5]

White solid, 334 mg, 83% yield, m.p. 95–97 °C (Lit.^{23b} 94–95 °C), R_f = 0.3 (PE/EA = 10:1, v/v). ¹H NMR (400 MHz, CDCl₃): δ 9.78 (d, J = 7.6 Hz, 1H), 7.94 (d, J = 16.0 Hz, 1H), 7.58–7.53 (m, 2H), 7.30–7.26 (m, 1H), 6.69 (dd, J = 16.0, 7.6 Hz, 1H). ¹³C NMR{¹H} (101 MHz, CDCl₃): δ 193.2, 147.7, 134.4, 134.3, 133.2, 132.4, 131.6, 127.6, 126.0.

(*E*)-3-(Naphthalen-2-yl)propenal (2I)^{4c} [CAS No. 113388-98-0]

Colorless solid, 346 mg, 38 % yield (from 5 mmol scale reaction), m.p. 124–126 °C (Lit.^{23c} 125–126 °C), $R_f = 0.6$ (PE/EA = 5:1, v/v). ¹H NMR (400 MHz, CDCl₃) δ 9.77 (d, J = 7.7 Hz, 1H), 8.02–7.98 (m, 1H), 7.91–7.85 (m, 3H), 7.71–7.61 (m, 2H), 7.59–7.51 (m, 2H), 6.84 (dd, J = 15.9, 7.7 Hz, 1H). ¹³C NMR{¹H} (101 MHz, CDCl₃): δ 193.7, 152.8, 134.7, 133.2, 131.6, 130.7, 130.0, 128.8, 128.7, 127.9, 127.8, 127.0, 123.5.

(*E*)-5-Phenylpenta-2,4-dienal (**2m**)^{4d} [CAS No. 24163-63-1]

Brown oil, 270 mg, 85% yield, $R_f = 0.3$ (PE/EA = 5:1, v/v). ¹H NMR (400 MHz, CDCl₃): δ 9.62 (d, J = 8.0 Hz, 1H), 7.53–7.47 (m, 2H), 7.41–7.33 (m, 3H), 7.30–7.22 (m, 1H), 7.03–6.98 (m, 2H), 6.27 (dd, J = 15.3, 7.9 Hz, 1H). ¹³C NMR{¹H} (101 MHz, CDCl₃): δ 193.5, 152.0, 142.4, 135.5, 131.6, 129.6, 128.9, 127.5, 126.1.

(E)-3-((1R,5R)-6,6-Dimethylbicyclo[3.1.1]hept-2-en-3-yl)propenal (**2n**)

Pale yellow oil, 318 mg, 90% yield, $R_f = 0.6$ (PE/EA = 5:1, v/v). ¹H NMR (400 MHz, CDCl₃): δ 9.57 (d, J = 7.8 Hz, 1H), 7.09 (d, J = 15.6 Hz, 1H), 6.19–6.17 m, 1H), 6.05 (dd, J = 15.6, 7.8 Hz, 1H), 2.59–2.44 (m, 4H), 2.19–2.16 (m, 1H), 1.34 (s, 3H), 1.15 (d, J = 9.0 Hz, 1H), 0.77 (s, 3H). ¹³C NMR{¹H} (101 MHz, CDCl₃): δ 194.2, 153.2, 146.2, 136.8, 125.5, 41.4, 40.5, 37.8, 32.9, 31.1, 26.0, 20.7. IR (film): 2926, 2821, 1680, 1612, 1180, 1155, 1121, 1075, 1042, 1011, 969, 581 cm⁻¹; HRMS (ESI-TOF) m/z [M + H]⁺ calcd. for C₁₂H₇O⁺ 177.1274, found 177.1281.

(*E*)-3-Cyclohexylpropenal (**20**)^{4e} [CAS No. 37868-74-9]

Pale yellow oil, 196 mg, 76% yield, $R_f = 0.8$ (PE/EA = 5:1, v/v). ¹H NMR (400 MHz, CDCl₃): δ 9.49 (d, J = 7.9 Hz, 1H), 6.77 (dd, J = 15.7, 6.5 Hz, 1H), 6.06 (ddd, J = 15.7, 7.8, 1.4 Hz, 1H), 2.31–2.22 (m, 1H), 1.87–1.74 (m, 5H), 1.37–1.15 (m, 5H). ¹³C NMR{¹H} (101 MHz, CDCl₃): δ 194.5, 163.8, 130.5, 40.8, 31.5, 25.8, 25.6.

(*E*)-4-Phenylpent-2-enal (**2p**)^{4f} [CAS No. 1259027-51-4]

Pale yellow oil, 225 mg, 70% yield, $R_f = 0.2$ (PE/EA = 20:1, v/v). ¹H NMR (400 MHz, CDCl₃): δ 9.55 (d, J = 7.8 Hz, 1H), 7.39–7.26 (m, 3H), 7.25–7.19 (m, 2H), 6.97 (dd, J = 15.7, 6.4 Hz, 1H), 6.13 (ddd, J = 15.7, 7.8, 1.5 Hz, 1H), 3.79–3.71 (m, 1H), 1.49 (d, J = 7.1 Hz, 3H). ¹³C NMR{¹H} (101 MHz, CDCl₃): δ 194.0, 161.7, 142.6, 131.2, 128.8, 128.1, 127.3, 127.0, 42.5, 19.9.

Alk-2-enals 2s, 2t, 2y, and 12 were synthesized according to Jørgensen's procedure.^{5a}

$$\begin{array}{c} O \\ R^{1} \\ \mathbf{S9} \\ \mathbf{S9} \\ 0 \\ \circ \mathbf{C} - \mathbf{rt} \\ \mathbf{S9} \end{array} \xrightarrow{\mathsf{NC}} \begin{array}{c} O \\ \mathsf{P}(\mathsf{OEt})_{2} \\ \mathsf{I0} \\ \mathsf{NaH, THF} \\ \mathsf{NaH, THF} \\ \mathsf{R}^{1} \\ \mathsf{R}^{2} \\ \mathsf{R}^{2} \\ \mathsf{R}^{2} \\ \mathsf{R}^{2} \\ \mathsf{R}^{2} \\ \mathsf{C to - 20 \\ \circ C \\ \mathsf{C} \\ \mathsf{R}^{2} \\ \mathsf$$

In a flask with a stirrer bar, diethyl cyanomethylphosphonate (**10**) (1.14 g, 6.43 mmol) was dissolved in 10 mL of dry tetrahydrofuran. The flask was cooled to 0 °C and sodium hydride (320 mg, 60% in mineral oil, 8 mmol) was slowly added, followed by addition of a solution of ketone **S9** (6.125 mmol) in 5 mL of dry tetrahydrofuran. The resulting solution was kept stirring under room temperature for 2 h. After the reaction was completed, the mixture was extracted with CH_2Cl_2 (10 mL \times 3). The combined organic phase was washed with water (10 mL \times 3) and dried over Na₂SO₄. After concentrated *in vacuo*, the resulting residue was dissolved in CH_2Cl_2 (5 mL) and DIBAL (1 M in cyclohexane, 8 mL, 8 mmol) was added dropwise at -78 °C under nitrogen atmosphere. The reaction mixture was kept at -20 °C

for 2 h and monitored by TLC. After reaction was completed, EA (10 mL) was added to quench the remaining DIBAL. The reaction mixture was warmed up to room temperature followed by addition of another 10 mL of EA and 10 mL of saturated potassium sodium tartrate aqueous solution. The suspension was stirred vigorously for 4 ho give a biphasic mixture, which was extracted with EA (10 mL × 3). The organic layer was combined and dried over Na₂SO₄, then concentrated *in vacuo*. The residue was purified by silica gel column chromatography (PE/EA = $10:1 \sim 20:1$, v/v) to give the corresponding alk-2-enal **2**.

(E)-3-Phenylbut-2-enal (2s)^{5b} [CAS No. 21866-70-6]

Pale yellow oil, 1.13 g, 77% yield over two steps, $R_f = 0.3$ (PE/EA = 10:1, v/v). ¹H NMR (400 MHz, CDCl₃): δ 10.18 (d, J = 7.9 Hz, 1H), 7.58–7.51 (m, 2H), 7.44–7.39 (m, 3H), 6.40 (dq, J = 7.9, 1.3 Hz, 1H), 2.58 (d, J = 1.3 Hz, 3H). ¹³C NMR{¹H} (101 MHz, CDCl₃): δ 191.3, 157.7, 140.5, 130.1, 128.7, 127.2, 126.2, 16.4.

3-Cyclopropylbut-2-enal (2t)^{5c} [CAS No. 59819-87-3]

Pale yellow oil, 1.00 g, 90% yield over two steps, $R_f = 0.4$ (pentane/acetone = 10:1, v/v), E/Z = 2/1. ¹H NMR (400 MHz, CDCl₃): δ 10.10 (d, J = 8.1 Hz, 0.5H), 9.90 (d, J = 8.1 Hz, 1H), 5.87 (d, J = 8.1 Hz, 0.5H), 5.83 (d, J = 8.1 Hz, 1H), 1.96 (s, 3H), 1.59 (s, 1.5H), 0.94–0.79 (m, 5H), 0.77–0.70 (m, 2.5H). ¹³C NMR{¹H} (101 MHz, CDCl₃): δ 190.2, 166.0, 164.5, 128.6, 124.9, 20.0, 19.1, 14.2, 13.3, 8.0, 7.1, 5.4, 0.9.

(2-Cyclohexenylidene)acetaldehyde (2y)^{5e} [CAS No. 106019-07-2]

Pale yellow oil, 691 mg, 57% yield over two steps, $R_f = 0.7$ (PE/EA = 5:1, v/v), E/Z = 2/1. ¹H NMR (400 MHz, CDCl₃): δ 10.10 (d, J = 8.2 Hz, 0.5 H), 10.03 (d, J = 8.2 Hz, 1 H), 7.08 (d, J = 10.0 Hz, 0.5 H), 6.35–6.28 (m, 1.5 H), 6.20–6.17 (m, 1H), 5.71 (d, J = 8.3 Hz, 1H), 5.64 (d, J = 8.3 Hz, 0.5 H), 2.90–2.82 (m, 2H), 2.49–2.41 (m, 1 H), 2.28–2.20 (m, 3 H), 1.82–1.75 (m, 3 H). ¹³C NMR{¹H} (101 MHz, CDCl₃): δ 190.9, 189.8, 156.1, 140.1, 140.0, 130.2, 125.6, 124.4, 122.8, 32.4, 26.9, 26.0, 25.3, 22.6, 22.2, 21.8.

2-((8*S*,9*S*,10*R*,13*S*,14*S*)-10,13-Dimethyl-1,2,7,8,9,10,11,12,13,14,15,16-dodecahydro-17*H*-cyclopenta[*a*]phenanthren-17-ylidene)acetaldehyde (**12**)

Yellow solid, 56 % yield over the last two steps, m.p. 158–159 °C, $R_f = 0.7$ (PE/EA = 5:1, v/v), E/Z = 2/1. ¹H NMR (400 MHz, CDCl₃): δ 10.14 (d, J = 8.7 Hz, 0.35H), 9.86 (d, J = 8.0 Hz, 0.63H), 5.91 (d, J = 9.6 Hz, 1H), 5.82 (d, J = 7.9 Hz, 0.34H), 5.75 (d, J = 7.9 Hz, 0.68H), 5.59 (t, J = 7.7 Hz, 1H), 5.40–5.34 (m, 1H), 3.02–2.77 (m, 1H), 2.41–2.04 (m, 4H), 1.93–1.68 (m, 8H), 1.65–1.26 (m, 4H), 1.24–1.04 (m, 4H), 0.96 (s, 3H), 0.89 (s, 3H). ¹³C NMR{¹H} (101 MHz, CDCl₃): δ 192.2, 190.6, 180.0, 178.9, 141.4, 128.71, 128.68, 125.2, 125.2, 124.1, 122.3, 122.2, 119.4, 55.7, 53.6, 48.4, 47.7, 46.4, 38.7, 35.2, 34.7, 33.62, 33.56, 33.4, 31.4, 31.31, 31.26, 27.6, 24.2, 22.9, 21.2, 20.7, 18.9, 18.73, 18.67, 18.0. IR (film): 2944, 1668, 1454, 1374, 1264, 1142, 1024, 906, 861, 755, 735, 702, 666 cm⁻¹. HRMS (ESI-TOF) m/z [M+Na]⁺ calcd. for C₁₂H₂₈NaO⁺ 319.2032, found 319.2029.

Cinnamaldehyde-1-d (2g-d) was synthesized according to Pierre's procedure.⁶

1) In a flask with a stir-bar, cinnamic aldehyde (**2g**) (1.32 g, 10 mmol), propane-1,3-dithiol (**S11**) (1.30 g, 12 mmol), and 4-methylbenzenesulfonic acid monohydrate (86 mg, 0.5 mmol) were dissolved in 20 mL of toluene. The reaction mixture was heated to 70–80 °C and kept stirring for 3–4 h. After the completion of the reaction and removal of solvent by rotary evaporation the resulting residue was purified by silica gel column chromatography (PE/EA = 50:1, v/v) to give pale yellow oil (*E*)-2-styryl-1,3-dithiolane (**S12**).

2) To an oven-dried flask with a stirrer bar and sealed with a nitrogen gas balloon were added above prepared (*E*)-2-styryl-1,3-dithiolane (**S12**) and dry THF (10 mL). The reaction mixture was cooled down to -35 to -30 °C. After addition of *n*-BuLi (1.6 M in THF, 12.5 mL, 20 mmol) dropwise the reaction mixture was stirred for 3 h. Then D₂O (1.0 mL, 50 mmol) was added and the reaction mixture was further stirred at -35 to -30 °C for 8 h. After the completion of the reaction and removal of solvent THF by rotary evaporation the resulting residue was extracted with CH_2Cl_2 (10 mL × 3). The organic layer was combined and concentrated *in vacuo*. The residue was purified by silica gel column chromatography (PE/EA = 50:1, *v/v*) to give pale yellow oil (*E*)-2-styryl-1,3-dithiolane-2-*d* (**S13**) 1.345 g (60% yield).

3) To a flask with a stirrer bar were added the above prepared (*E*)-2-styryl-1,3-dithiolane-2-*d* (**S12**) (1.2 g, 6mmol) and solvent (acetone: $H_2O = 1:1$, 15 mL). The flask was cooled down to -35 to -30 °C. After addition of (diacetoxyiodo)benzene (4.83 g, 15 mmol) the flask was heated in an oil bath at 25 °C for 5–10 mins. After the reaction was completed and removal of solvent acetone by rotary evaporation the resulting residue was extracted with CH_2Cl_2 (10 mL × 3). The organic layer was combined and concentrated *in vacuo*. The residue was purified by silica gel column chromatography (PE/EA = 20:1, *v/v*) to give pale yellow oil cinnamaldehyde-1-*d* (**2g**-*d*) (>99%D) 649 mg (60 % yield).

(E)-Cinnamaldehyde-1-d (2g-d) ⁶ [CAS No. 77249-46-8]

Pale yellow oil, 649 mg, 36% overall yield, $R_f = 0.2$ (PE/EA = 10/1, v/v). ¹H NMR (400 MHz, CDCl₃): δ 7.61–7.55 (m, 2H), 7.48 (d, J = 16.0 Hz, 1H), 7.44 (dd, J = 5.0, 2.0 Hz, 3H), 6.72 (d, J = 16.0 Hz, 1H). ¹³C NMR{¹H} (101 MHz, CDCl₃): δ 193.4 (t, $J_{C-D} = 26.2$ Hz), 152.7, 134.0, 131.2, 129.1, 128.6, 128.5, 128.5. IR (film): 2359, 2341, 1698, 1669, 1654, 1636, 1623, 1575, 1558, 1541, 1520, 1507, 1489, 1456, 1448, 1194, 1144, 1074, 1052, 1032, 997, 975, 739, 687 cm⁻¹. HRMS (ESI-TOF) *m/z* [M+H]⁺ calcd. for C₉H₈DO⁺ 134.0711, found 134.0713.

(Z)-3-Phenylacrylaldehyde [(Z)-2g] was synthesized according to Lindlar's procedure.⁷

To an oven-dried vial with a stirrer bar was added palladium 5% on calcium carbonate (poisoned with lead) (10 mg, 0.1 mmol). The vial was sealed with a nitrogen balloon and then gas was exchanged with a hydrogen balloon (1 atm). After addition of 3-phenylpropiolaldehyde (**S14**) (260 mg, 2 mmol) and hexane (1.5 mL), the reaction mixture was stirred overnight at room temperature. After the reaction was completed and removal of solvent hexane by rotary evaporation the resulting residue was purified by silica gel column chromatography to give (*Z*)-3-phenylacrylaldehyde [(*Z*)-**2g**] 165mg (30 % yield).

(*Z*)-3-Phenylacrylaldehyde [(*Z*)-**2g**] ⁷ [CAS No. 57194-69-1]

Pale yellow oil, 165 mg, 30% yield, $R_f = 0.5$ (PE/EA = 10:1, v/v). ¹H NMR (400 MHz, CDCl₃): δ 9.98 (d, J = 8.1 Hz, 1H), 7.63 (d, J = 11.6 Hz, 1H), 7.45–7.39 (m, 5H), 6.20 (dd, J = 11.6, 8.1 Hz, 1H). ¹³C NMR{¹H} (101 MHz, CDCl₃): δ 192.5, 148.6, 134.2, 130.5, 129.8, 129.7, 128.6.

6. General procedure for the synthesis of ethyl 4-oxo-3,4-dihydro-2*H*-thiopyran-5-carboxylates 3 and 13

Conditions A: This procedure is used for the preparation of **3aa**, **3ac-3af**, **3ah-3at**, **3ay**, **3aac**, **3aad**, **3ba**, **3ea**, and **3ma**.

To an oven-dried 10 mL-vial with a stirring bar were added 1,2,3-thiadiazole **1** (0.25 mmol), catalyst [Rh(COD)Cl]₂ (6.2 mg, 5 mol%), ligand DPPF (16.6 mg, 12 mol%), and pre-dried solvent PhCl (1 mL). The vial was sealed with a nitrogen gas balloon, then alkenal **2** (0.5 mmol) was added via a syringe. The reaction mixture was kept stirring at 130 °C in an oilbath for 6 h. After the reaction mixture was cooled to room temperature, the solvent was removed by rotary evaporation. The resulting residue was purified by silica gel column chromatography (PE/EA = 5:1~20:1, *v/v*) to give desired product **3**.

Conditions B: This modification is used for the preparation of **3ca**, **3fa**, **3ga**, **3ha**, **3ia**, **3ja 3ka**, and **3la**.

To an oven-dried 10 mL-vial with a stirring bar were added 1,2,3-thiadiazole **1** (0.10 mmol), catalyst [Rh(COD)Cl]₂ (12.4 mg, 10 mol%), ligand DPPF (33.2 mg, 24 mol%), additive AgBF₄ (9.7 mg, 20 mol%), and pre-dried solvent PhCl (0.5 mL). The vial was sealed with a nitrogen gas balloon, then alkenal **2** (0.3 mmol) was added via a syringe. The reaction mixture was kept stirring at 130 °C in an oil-bath for 6 h. After the reaction mixture was cooled to room temperature, the solvent was removed by rotary evaporation. The resulting residue was purified by silica gel column chromatography (PE/EA = 5:1~20:1, *v/v*) to give desired product **3**.

Conditions C: This modification was used for the preparation of 3ab.

To an oven-dried 10 mL-vial with a stirring bar were added 1,2,3-thiadiazole **1a** (0.10 mmol, 23.4 mg), catalyst [Rh(COD)Cl]₂ (2.5 mg, 5 mol%), ligand DPPF (6.7 mg, 12 mol%), and

pre-dried solvent PhCl (1 mL). The vial was sealed with a nitrogen gas balloon, then alkenal **2b** (0.4 mmol, 22.4 mg) was added via a syringe. The reaction mixture was kept stirring at 130 °C in an oil-bath for 6 h. After the reaction mixture was cooled to room temperature, the solvent was removed by rotary evaporation. The resulting residue was purified by silica gel column chromatography (PE/EA = 5:1, v/v) to give desired product **3ab**.

Conditions D: This modification was used for the preparation of 3aae.

To an oven-dried 10 mL-vial with a stirring bar were added 1,2,3-thiadiazole **1a** (0.25 mmol, 58.6 mg), catalyst [Rh(COD)Cl]₂ (12.3 mg, 10 mol%), ligand DPPF (33.2 mg, 24 mol%), and pre-dried solvent PhCl (1 mL). The vial was sealed with a nitrogen gas balloon, then alkenal **2ae** (0.5 mmol, 73.0 mg) was added via a syringe. The reaction mixture was kept stirring at 130 °C in an oil-bath for 12 h. After the reaction mixture was cooled to room temperature, the solvent was removed by rotary evaporation. The resulting residue was purified by silica gel column chromatography (PE/EA = 10:1, *v/v*) to give desired product **3aae**

Ethyl 2,2-dimethyl-4-oxo-6-phenyl-3,4-dihydro-2*H*-thiopyran-5-carboxylate (**3aa**) Prepared under *Condition A* on 0.25 mmol scale. Colorless crystal, 52 mg, 72% yield, R_f = 0.2 (PE/EA = 5:1, *v/v*), m.p. 105–107 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.47–7.31 (m, 5H), 3.97 (q, *J* = 7.1 Hz, 2H), 2.75 (s, 2H), 1.52 (s, 6H), 0.88 (t, *J* = 7.1 Hz, 3H). ¹³C NMR{¹H} (101 MHz, CDCl₃): δ 191.5, 165.9, 160.8, 136.5, 130.4, 128.4, 127.8, 126.9, 61.1, 51.2, 45.6, 27.7, 13.5.

Ethyl 4-oxo-6-phenyl-3,4-dihydro-2*H*-thiopyran-5-carboxylate (**3ab**)

Prepared under *Conditions C* on 0.10 mmol scale. Brown oil, 17 mg, 65% yield, $R_f = 0.3$ (PE/EA = 5:1, *v/v*). ¹H NMR (400 MHz, CDCl₃): δ 7.85–7.69 (m, 5H), 4.32 (q, *J* = 7.1 Hz, 2H), 3.64 (dd, *J* = 8.0, 8.0 Hz, 2H), 3.19 (dd, *J* = 8.0, 8.0 Hz, 2H), 1.25 (t, *J* = 7.1 Hz, 3H). ¹³C NMR{¹H} (101 MHz, CDCl₃): δ 190.5, 165.8, 162.1, 136.5, 130.7, 128.5, 128.2, 127.9, 61.2, 36.3, 27.0, 13.6. IR (film): 2960, 2924, 1724, 1657, 1544, 1486, 1443, 1365, 1332, 1298, 1233, 1210, 1173, 1094, 1047, 1017, 940, 914, 840 cm⁻¹. HRMS (ESI-TOF) *m/z* [M+H]⁺ calcd. for C₁₄H₁₅O₃S⁺ 263.0736, found 263.0738.

Ethyl 2-(4-(dimethylamino)phenyl)-4-oxo-6-phenyl-3,4-dihydro-2*H*-thiopyran-5carboxylate (**3ac**)

Prepared under *Conditions A* on 0.25 mmol scale. Brown oil, 73 mg, 77% yield, $R_f = 0.15$ (PE/EA = 5:1, *v/v*). ¹H NMR (400 MHz, CDCl₃): δ 7.55–7.35 (m, 5H), 7.26 (d, *J* = 8.8 Hz, 2H), 6.71 (d, *J* = 8.8 Hz, 2H), 4.74 (dd, *J* = 14.8, 3.2 Hz, 1H), 4.04–4.00 (m, 2H), 3.23 (dd, *J* = 15.4, 15.4 Hz 1H), 3.01 (dd, *J* = 16.0, 2.6 Hz, 1H), 2.96 (s, 6H), 0.94 (t, *J* = 7.1 Hz, 3H). ¹³C NMR{¹H} (101 MHz, CDCl₃): δ 191.7, 166.0, 162.7, 150.6, 136.3, 130.6, 128.5, 128.2, 127.9, 127.8, 123.8, 112.4, 61.1, 46.1, 44.0, 40.3, 13.6. IR (film): 2979, 2897, 2805, 1728, 1658, 1611, 1524, 1484, 1444, 1362, 1323, 1228, 1210, 1166, 1142, 1095, 1038, 945, 915, 847, 818 cm⁻¹. HRMS (ESI-TOF) *m/z* [M+H]⁺ calcd. for C₂₀H₂₄NO₃S⁺ 382.1471, found 382.1472.

Ethyl 2-(4-methoxyphenyl)-4-oxo-6-phenyl-3,4-dihydro-2*H*-thiopyran-5-carboxylate (**3ad**) Prepared under *Conditions A* on 0.25 mmol scale. Brown oil, 72 mg, 78% yield, $R_f = 0.3$ (PE/EA = 5:1, *v/v*). ¹H NMR (400 MHz, CDCl₃): δ 7.53–7.35 (m, 5H), 7.33 (d, *J* = 8.3 Hz, 2H), 6.91 (d, *J* = 8.3 Hz, 2H), 4.76 (dd, *J* = 14.5, 2.8 Hz, 1H), 4.03–3.99 (m, 2H), 3.80 (s, 3H), 3.21 (dd, *J* = 16.0, 14.4 Hz, 1H), 3.01 (dd, *J* = 15.9, 2.8 Hz, 1H), 0.93 (t, *J* = 7.1 Hz, 3H). ¹³C NMR{¹H} (101 MHz, CDCl₃): δ 191.2, 165.9, 162.2, 159.8, 136.1, 130.7, 128.8, 128.6, 128.5, 127.890, 127.887, 114.4, 61.2, 55.3, 45.7, 43.9, 13.6. IR (film): 2979, 2932, 1728, 1659, 1609, 1580, 1513, 1486, 1463, 1443, 1365, 1321, 1303, 1254, 1225, 1180, 1144, 1113, 1095, 1037, 946, 915, 852, 833 cm⁻¹. HRMS (ESI-TOF) *m/z* [M+H]⁺ calcd. for C₂₀H₂₁O₄S⁺ 369.1155, found 369.1154.

Ethyl 2-(3-methoxyphenyl)-4-oxo-6-phenyl-3,4-dihydro-2*H*-thiopyran-5-carboxylate (**3ae**) Prepared under *Conditions A* on 0.25 mmol scale. Brown oil, 76 mg, 83% yield, $R_f = 0.2$ (PE/EA = 5:1, *v/v*). ¹H NMR (400 MHz, CDCl₃): δ 7.53–7.48 (m, 2H), 7.46–7.34 (m, 3H), 7.32–7.26 (m, 1H), 7.01–6.86 (m, 3H), 4.77 (dd, *J* = 14.3, 3.0 Hz, 1H), 4.03–3.98 (m, 2H), 3.80 (s, 3H), 3.20 (dd, *J* = 15.9, 14.3 Hz, 1H), 3.03 (dd, *J* = 16.0, 3.0 Hz, 1H), 0.93 (t, *J* = 7.2 Hz, 3H). ¹³C NMR{¹H} (101 MHz, CDCl₃): δ 190.9, 165.7, 161.9, 159.9, 138.4, 136.0, 130.7, 130.2, 128.5, 127.9, 119.6, 114.1, 113.2, 61.2, 55.2, 46.1, 43.6, 13.5. IR (film): 2978, 1729, 1659, 1599, 1585, 1550, 1492, 1463, 1442, 1365, 1321, 1250, 1228, 1211, 1147, 1106, 1039, 1027, 946, 915 cm⁻¹. HRMS (ESI-TOF) *m/z* [M+K]⁺ calcd. for C₂₁H₂₀KO₄S⁺ 407.0714, found 407.0724.

Ethyl 2-(2-methoxyphenyl)-4-oxo-6-phenyl-3,4-dihydro-2*H*-thiopyran-5-carboxylate (**3af**) Prepared under *Conditions A* on 0.25 mmol scale. Brown oil, 73 mg, 80% yield, $R_f = 0.3$ (PE/EA = 5:1, v/v). ¹H NMR (400 MHz, CDCl₃): δ 7.55–7.47 (m, 2H), 7.47–7.28 (m, 5H), 7.02–6.89 (m, 2H), 5.29 (dd, *J* = 13.6, 3.2 Hz, 1H), 4.05–3.99 (m, 2H), 3.87 (s, 3H), 3.22 (dd, *J* = 15.9, 13.6 Hz, 1H), 2.97 (dd, *J* = 16.0, 3.2 Hz, 1H), 0.94 (t, *J* = 7.1 Hz, 3H). ¹³C NMR{¹H} (101 MHz, CDCl₃): δ 191.6, 166.0, 162.8, 156.8, 136.4, 130.6, 129.7, 128.5, 127.93, 127.88, 127.5, 125.2, 120.9, 111.0, 61.1, 55.5, 42.8, 39.6, 13.6. IR (film): 3057, 2978, 1728, 1660, 1599, 1584, 1550, 1490, 1443, 1365, 1318, 1267, 1232, 1213, 1158, 1094, 1039, 946, 915, 877 cm⁻¹. HRMS (ESI-TOF) *m*/*z* [M+H]⁺ calcd. for C₂₁H₂₁O₄S⁺ 369.1155, found 369.1148.

Ethyl 2-(4-fluorophenyl)-4-oxo-6-phenyl-3,4-dihydro-2*H*-thiopyran-5-carboxylate (**3ah**) Prepared under *Conditions A* on 0.25 mmol scale. Yellow oil, 67 mg, 75% yield, $R_f = 0.3$ (PE/PE = 5:1, v/v). ¹H NMR (400 MHz, CDCl₃): δ 7.50 (d, *J* = 7.6 Hz, 2H), 7.45–7.36 (m, 5H), 7.10 (d, *J* = 8.4 Hz, 1H), 7.07 (d, *J* = 8.4 Hz, 1H), 4.79 (dd, *J* = 14.3, 2.8 Hz, 1H), 4.09– 3.93 (m, 2H), 3.19 (dd, *J* = 15.6, 14.8 Hz, 1H), 3.02 (dd, *J* = 16.0, 3.0 Hz, 1H), 0.92 (t, *J* = 7.2 Hz, 3H). ¹³C NMR{¹H} (101 MHz, CDCl₃): δ 190.8, 165.7, 162.4 (d, *J*_{C-F} = 249.5 Hz), 161.8, 135.9, 132.7 (d, *J*_{C-F} = 3.3 Hz), 130.8, 129.2 (d, *J*_{C-F} = 8.3 Hz), 128.6, 127.95, 127.89, 116.1(d, *J*_{C-F} = 21.7 Hz), 61.3, 45.4, 43.7, 13.6.¹⁹F NMR{¹H} (376 MHz, CDCl₃) δ -112.3 (s). IR (film): 2981, 1728, 1660, 1603, 1550, 1509, 1486, 1444, 1416, 1366, 1319, 1225, 1160, 1144, 1097, 1039, 946, 915, 856, 838 cm⁻¹. HRMS (ESI-TOF) *m*/z [M+H]⁺ calcd. for $C_{20}H_{18}FO_3S^+$ 356.0882, found 356.0884.

Ethyl 2-(4-bromophenyl)-4-oxo-6-phenyl-3,4-dihydro-2*H*-thiopyran-5-carboxylate (**3ai**) Prepared under *Conditions A* on 0.25 mmol scale. Brown oil, 75 mg, 72%, R_f = 0.3 (PE/EA = 5:1, *v/v*). ¹H NMR (400 MHz, CDCl₃): δ 7.53–7.48 (m, 4H), 7.47 – 7.29 (m, 5H), 4.76 (dd, *J* = 14.0, 3.1 Hz, 1H), 4.07–3.95 (m, 2H), 3.18 (dd, *J* = 15.9, 14.0 Hz, 1H), 3.01 (dd, *J* = 15.9, 3.1 Hz, 1H), 0.93 (t, *J* = 7.1 Hz, 3H). ¹³C NMR{¹H} (101 MHz, CDCl₃): δ 190.6, 165.6, 161.5, 136.0, 135.9, 132.3, 130.8, 129.1, 128.6, 128.0, 127.9, 122.8, 61.3, 45.5, 43.4, 13.6. IR (film): 2920, 2850, 1727, 1660, 1591, 1549, 1487, 1470, 1400, 1366, 1316, 1298, 1263, 1223, 1141, 1091, 1074, 1012, 929, 827 cm⁻¹. HRMS (ESI-TOF) *m/z* [M+Na]⁺ calcd. for C₂₀H₁₇BrNaO₃S⁺ 438.9974, found 438.9965.

Ethyl 2-(2,3-dichlorophenyl)-4-oxo-6-phenyl-3,4-dihydro-2*H*-thiopyran-5-carboxylate (**3aj**) Prepared under *Conditions A* on 0.25 mmol scale. Brown oil, 66 mg, 65% yield, $R_f = 0.2$ (PE/EA = 5:1, *v/v*). ¹H NMR (400 MHz, CDCl₃): δ 7.57–7.29 (m, 8H), 5.33 (dd, *J* = 12.5, 3.6 Hz, 1H), 4.06–3.99 (m, 2H), 3.19 (dd, *J* = 15.9, 12.5 Hz, 1H), 3.06 (dd, *J* = 15.9, 3.7 Hz, 1H), 0.95 (t, *J* = 7.1 Hz, 3H). ¹³C NMR{¹H} (101 MHz, CDCl₃): δ 190.2, 165.5, 161.3, 137.0, 135.8, 134.1, 132.1, 130.9, 130.6, 128.6, 128.0, 127.9, 127.8, 126.4, 61.3, 42.9, 42.5, 13.6. IR (film): 3060, 2979, 1729, 1661, 1597, 1553, 1486, 1451, 1421, 1365, 1309, 1279, 1223, 1181, 1159, 1095, 1040, 947, 915, 859 cm⁻¹. HRMS (ESI-TOF) *m/z* [M+H]⁺ calcd. for C₂₀H₁₇Cl₂O₃S⁺ 407.0270, found 407.0274.

Ethyl 2-(4-nitrophenyl)-4-oxo-6-phenyl-3,4-dihydro-2*H*-thiopyran-5-carboxylate (**3ak**) Prepared under *Conditions A* on 0.25 mmol scale. Brown oil, 40 mg, 39% yield, R_f = 0.15 (PE/EA = 5:1, v/v). ¹H NMR (400 MHz, CDCl₃): δ 8.27 (d, *J* = 8.3 Hz, 2H), 7.62 (d, *J* = 8.4 Hz, 2H), 7.55–7.34 (m, 5H), 4.91 (dd, *J* = 13.4, 3.1 Hz, 1H), 4.04–3.99 (m, 2H), 3.24 (dd, *J* = 15.8, 13.5 Hz, 1H), 3.08 (dd, *J* = 15.8, 3.2 Hz, 1H), 0.93 (t, *J* = 7.2 Hz, 3H). ¹³C NMR{¹H} (101 MHz, CDCl₃): δ 189.9, 165.4, 160.8, 148.0, 144.1, 135.6, 131.1, 128.7, 128.6, 128.2, 128.0, 124.4, 61.4, 45.2, 43.0, 13.6. IR (film): 3079, 2981, 2927, 1727, 1660, 1598, 1523, 1490, 1444, 1347, 1320, 1264, 1227, 1212, 1146, 1111, 1038, 946, 916, 856, 833 cm⁻¹. HRMS (ESI-TOF) *m*/*z* [M+H]⁺ calcd. for C₂₀H₁₈NO₅S⁺ 384.0900, found 384.0900.

Ethyl 2-(naphthalen-2-yl)-4-oxo-6-phenyl-3,4-dihydro-2H-thiopyran-5-carboxylate (**3al**) Prepared under *Conditions A* on 0.25 mmol scale. Brown oil, 67 mg, 69%, R_f = 0.4 (PE/EA = 5:1, *v/v*). ¹H NMR (400 MHz, CDCl₃): δ 7.93–7.80 (m, 4H), 7.58–7.48 (m, 5H), 7.48–7.35 (m, 3H), 4.97 (dd, *J* = 14.3, 3.0 Hz, 1H), 4.07–7.02 (m, 2H), 3.36 (dd, *J* = 15.9, 14.3 Hz, 1H), 3.13 (dd, *J* = 15.9, 3.0 Hz, 1H), 0.96 (t, *J* = 7.1 Hz, 3H). ¹³C NMR{¹H} (101 MHz, CDCl₃): δ 191.0, 165.8, 161.9, 136.1, 134.2, 133.2, 130.7, 129.1, 128.5, 127.99, 127.94 127.7, 126.75, 126.69, 124.8, 61.3, 46.4, 43.6, 13.6. IR (film): 2925, 2360, 2341, 1729, 1660, 1598, 1551, 1508, 1487, 1443, 1365, 1307, 1210, 1141, 1038, 946, 914, 858, 818, 751, 720, 697, 669, 568, 477 cm⁻¹. HRMS (ESI-TOF) *m/z* [M+H]⁺ calcd. for C₂₄H₂₁O₃S⁺ 389.1206, found 389.1207.

Ethyl (*E*)-4-oxo-6-phenyl-2-styryl-3,4-dihydro-2*H*-thiopyran-5-carboxylate (**3am**)

Prepared under *Conditions A* on 0.25 mmol scale. Brown oil, 67 mg, 74% yield, $R_f = 0.3$ (PE/EA = 5:1, v/v). ¹H NMR (400 MHz, CDCl₃): δ 7.52–7.47 (m, 2H), 7.44–7.37 (m, 5H), 7.36–7.31 (m, 2H), 7.31–7.27 (m, 1H), 6.70 (d, *J* = 15.7 Hz, 1H), 6.25 (dd, *J* = 15.7, 8.3 Hz, 1H), 4.39 (ddd, *J* = 12.1, 8.3, 4.3 Hz, 1H), 4.03–3.98 (m, 2H), 3.06–2.91 (m, 2H), 0.93 (t, *J* = 7.1 Hz, 3H). ¹³C NMR{¹H} (101 MHz, CDCl₃): δ 190.6, 165.7, 161.3, 136.2, 135.5, 134.4, 130.7, 128.7, 128.51, 128.46, 128.0, 127.9, 126.6, 124.4, 61.2, 44.5, 42.8, 13.6. IR (film): 3058, 3027, 2980. 1728, 1659, 1598, 1550, 1488, 1445, 1407, 1366, 1324, 1212, 1143, 1095, 1072, 1036, 964, 945, 914 cm⁻¹. HRMS (ESI-TOF) *m/z* [M+H]⁺ calcd. for C₂₂H₂₁O₃S⁺ 365.1206, found 365.1201.

Ethyl 2-((1R,5R)-6,6-dimethylbicyclo[3.1.1]hept-2-en-2-yl)-4-oxo-6-phenyl-3,4-dihydro-2H-thiopyran-5-carboxylate (**3an**)

Prepared under *Conditions A* on 0.25 mmol scale. Yellow oil, 76 mg, 80% yield, $R_f = 0.5$ (PE/EA = 5:1, v/v). ¹H NMR (400 MHz, CDCl₃): δ 7.45–7.32 (m, 5H), 5.64–5.62 (m, 1H), 4.23–4.16 (m, 1H), 4.03–3.90 (m, 2H), 2.92 (ddd, *J* = 16.0, 12.5, 7.6 Hz, 1H), 2.81 (ddd, *J* = 16.0, 3.6, 1.8 Hz, 1H), 2.47–2.42 (m, 1H), 2.38–2.08 (m, 4H), 1.30 (d, *J* = 3.4 Hz, 3H), 1.17 (dd, *J* = 8.8, 5.4 Hz, 1H), 0.89 (td, *J* = 7.1, 1.5 Hz, 3H), 0.83 (d, *J* = 4.2 Hz, 3H). ¹³C NMR{¹H} (101 MHz, CDCl₃): δ 191.5, 191.3, 165.8, 162.1, 161.9, 143.4, 143.2, 136.6, 136.5, 130.52, 130.50, 128.5, 127.9, 127.8, 122.6, 122.5, 61.1, 47.4, 47.1, 44.0, 43.7, 41.3, 40.9, 40.5, 40.4, 38.2, 38.1, 31.7, 31.6, 31.3, 31.3, 26.0, 21.4, 21.3, 13.6, 13.5. IR (film): 2979, 2932, 1731, 1660, 1611, 1552, 1466, 1444, 1366, 1309, 1212, 1142, 1096, 1038, 945 cm⁻¹. HRMS (ESI-TOF) *m*/z [M+H]⁺ calcd. for C₂₃H₂₇O₃S⁺ 383.1675, found 383.1671.

Ethyl 2-cyclohexyl-4-oxo-6-phenyl-3,4-dihydro-2*H*-thiopyran-5-carboxylate (**3ao**)

Prepared under *Conditions A* on 0.25 mmol scale. Pale yellow oil, 62 mg, 72% yield, $R_f = 0.5$ (PE/EA = 5:1, v/v). ¹H NMR (400 MHz, CDCl₃): δ 7.49–7.32 (m, 5H), 4.00–3.93 (m, 2H), 3.48 (ddd, J = 12.9, 6.4, 3.3 Hz, 1H), 2.86 (dd, J = 15.8, 3.3 Hz, 1H), 2.75 (dd, J = 15.8, 12.9 Hz, 1H), 1.92–1.61 (m, 6H), 1.32–1.07 (m, 5H), 0.90 (t, J = 7.1 Hz, 3H). ¹³C NMR{¹H} (101 MHz, CDCl₃): δ 191.9, 165.9, 162.3, 136.8, 130.5, 128.4, 127.8, 127.6, 61.1, 48.2, 40.9, 40.8, 30.1, 29.9, 26.0, 25.92, 25.90, 13.6. IR (film): 2927, 2853, 1730, 1660, 1551, 1486, 1445, 1365, 1322, 1234, 1210, 1095, 1030, 956, 915 cm⁻¹. HRMS (ESI-TOF) *m/z* [M+H]⁺ calcd. for C₂₀H₂₅O₃S⁺ 345.1519, found 345.1519.

Ethyl 4-oxo-6-phenyl-2-(1-phenylethyl)-3,4-dihydro-2*H*-thiopyran-5-carboxylate (**3ap**) Prepared under *Conditions A* on 0.25 mmol scale. Yellow oil, 54 mg, 59% yield, $R_f = 0.15$ (PE/EA = 10:1, *v/v*), dr = 1:1. ¹H NMR (400 MHz, CDCl₃): δ 7.54–7.49 (m, 1H), 7.49–7.34 (m, 6H), 7.34–7.18 (m, 4H), 4.07–3.93 (m, 2H), 3.85–3.72 (m, 1H), 3.16–3.08 (m, 1H), 3.04 (dd, *J* = 15.8, 3.1 Hz, 0.5H), 2.78 (dd, *J* = 16, 12.8 Hz, 0.5H), 2.72 (dd, *J* = 16, 3.6 Hz, 0.5H), 2.58 (dd, *J* = 16, 12.4 Hz, 0.5H), 1.52 (d, *J* = 7.0 Hz, 1.5H), 1.47 (d, *J* = 7.0 Hz, 1.5H), 0.924 (t, *J* = 7 Hz, 1.5H), 0.915 (t, *J* = 7 Hz, 1.5H). ¹³C NMR{¹H} (101 MHz, CDCl₃): δ 191.24, 191.21, 165.8, 162.2, 161.4, 141.97, 141.95, 136.61, 136.57, 130.63, 130.55, 128.9, 128.7, 128.5, 128.4, 128.1, 127.95, 127.85, 127.7, 127.5, 127.43, 127.40, 61.16, 61.14, 48.7, 48.6, 43.13, 43.11, 41.6, 41.2, 19.2, 18.5, 13.6. IR (film): 3060, 2970, 2928, 1727, 1658, 1599, 1551, 1491, 1444, 1365, 1326, 1304, 1233, 1211, 1075, 1049, 1028, 946, 914 cm⁻¹. HRMS (ESI-TOF) *m*/*z* C₂₂H₂₃O₃S⁺ calcd. for 367.1362; found 367.1362.

Ethyl 2-methyl-2-(4-methylpent-3-en-1-yl)-4-oxo-6-phenyl-3,4-dihydro-2*H*-thiopyran-5-carboxylate (**3ar**)

Prepared under *Conditions A* on 0.25 mmol scale. Yellow oil, 74 mg, 83% yield, $R_f = 0.3$ (PE/EA = 5:1, v/v). ¹H NMR (400 MHz, CDCl₃): δ 7.46–7.32 (m, 5H), 5.08 (t, J = 6.9 Hz, 1H), 3.96 (q, J = 7.1 Hz, 2H), 2.84 (d, J = 15.4 Hz, 1H), 2.71 (d, J = 15.4 Hz, 1H), 2.17–2.10 (m, 2H), 1.87–1.69 (m, 2H), 1.67 (s, 3H), 1.60 (s, 3H), 1.50 (s, 3H), 0.88 (t, J = 7.1 Hz, 3H). ¹³C NMR{¹H} (101 MHz, CDCl₃): δ 191.5, 165.8, 160.6, 136.6, 132.8, 130.4, 128.4, 127.8, 126.8, 122.6, 61.0, 49.7, 49.1, 40.2, 25.5, 24.9, 22.8, 17.6, 13.5. IR (film): 2974, 2930, 1729, 1659, 1551, 1444, 1366, 1326, 1241, 1211, 1075, 1042, 945, 914 cm⁻¹. HRMS (ESI-TOF) m/z [M+H]⁺ calcd. for C₂₁H₂₇O₃S⁺ 359.1675, found 359.1682.

Ethyl 2-methyl-4-oxo-2,6-diphenyl-3,4-dihydro-2*H*-thiopyran-5-carboxylate (**3as**) Prepared under *Conditions A* on 0.25 mmol scale. Yellow oil, 76 mg, 86% yield, $R_f = 0.3$ (PE/EA = 5:1, *v/v*). ¹H NMR (400 MHz, CDCl₃): δ 7.57–7.29 (m, 10H), 3.97 (q, *J* = 7.0 Hz, 2H), 3.44 (d, *J* = 15.6 Hz, 1H), 3.03 (d, *J* = 15.6 Hz, 1H), 1.89 (s, 3H), 0.88 (t, *J* = 7.1 Hz, 3H). ¹³C NMR{¹H} (101 MHz, CDCl₃): δ 191.1, 165.6, 160.5, 142.0, 136.1, 130.5, 128.8, 128.5, 128.4, 128.0, 127.9, 125.7, 61.0, 51.3, 49.8, 27.4, 13.5. IR (film): 3058, 2979, 2927, 1729, 1659, 1598, 1553, 1493, 1444, 1366, 1325, 1241, 1213, 1069, 1028, 1001, 946, 914, 818 cm⁻¹. HRMS (ESI-TOF) *m/z* [M+H]⁺ calcd. for C₂₁H₂₁O₃S⁺ 353.1206, found 353.1206.

Ethyl 2-cyclopropyl-2-methyl-4-oxo-6-phenyl-3,4-dihydro-2*H*-thiopyran-5-carboxylate (**3at**) Prepared under *Conditions A* on 0.25 mmol scale. Yellow oil, 62 mg, 78% yield, $R_f = 0.3$ (PE/EA = 5:1, *v/v*). ¹H NMR (400 MHz, CDCl₃): δ 7.48–7.31 (m, 5H), 3.97 (q, *J* = 7.1 Hz, 2H), 2.85 (d, *J* = 15.3 Hz, 1H), 2.75 (d, *J* = 15.3 Hz, 1H), 1.34 (s, 3H), 1.21–1.11 (m, 1H), 0.88 (t, *J* = 7.1 Hz, 3H), 0.60–0.51 (m, 3H), 0.49–0.42 (m, 1H). ¹³C NMR{¹H} (101 MHz, CDCl₃): δ 191.5, 165.9, 160.9, 136.5, 130.4, 128.4, 127.8, 127.1, 61.0, 50.0, 49.3, 22.9, 20.0, 13.5, 1.9, 1.5. IR (film): 2979, 1729, 1660, 1598, 1553, 1487, 1444, 1386, 1366, 1325, 1212, 1086, 1051, 1026, 944, 912, 819 cm⁻¹. HRMS (ESI-TOF) *m/z* [M+H]⁺ calcd. for C₁₈H₂₁O₃S⁺ 317.1206, found 317.1204.

Ethyl 4-oxo-2-phenyl-1-thiaspiro[5.5]undeca-2,7-diene-3-carboxylate (**3ay**)

Prepared under *Conditions A* on 0.25 mmol scale. Yellow oil, 21 mg, 64% yield, $R_f = 0.4$ (PE/EA = 5:1, *v/v*). ¹H NMR (400 MHz, CDCl₃): δ 7.51–7.32 (m, 5H), 5.98 (d, *J* = 9.2 Hz, 1H), 5.69 (d, *J* = 9.6 Hz, 1H), 3.99 (q, *J* = 7.1 Hz, 2H), 3.01 (d, *J* = 15.3 Hz, 1H), 2.70 (d, *J* = 15.3 Hz, 1H), 2.33–2.31 (m, 1H), 2.21–1.98 (m, 2H), 1.97–1.76 (m, 2H), 1.72–1.58 (m, 1H), 0.90 (t, *J* = 7.1 Hz, 3H). ¹³C NMR{¹H} (101 MHz, CDCl₃): δ 191.0, 165.9, 160.9, 136.5, 132.8, 130.5, 128.5, 128.0, 127.9, 127.4, 61.1, 50.2, 49.2, 32.6, 24.9, 19.1, 13.6. IR (film): 2933, 1729, 1660, 1550, 1444, 1365, 1323, 1299, 1248, 1234, 1212, 1095, 1066, 1036, 941 cm⁻¹. HRMS (ESI-TOF) *m/z* [M+H]⁺ calcd. for C₁₉H₂₁O₃S⁺ 329.1206, found 329.1201.

Ethyl 3-methyl-4-oxo-6-phenyl-3,4-dihydro-2*H*-thiopyran-5-carboxylate (3aac)

Prepared under *Conditions A* on 0.25 mmol scale. Yellow oil, 19 mg, 28% yield, $R_f = 0.2$ (PE/EA = 5:1, *v/v*). ¹H NMR (400 MHz, CDCl₃): δ 7.53–7.32 (m, 5H), 3.99 (q, *J* = 7.1 Hz, 2H), 3.18 (d, *J* = 7.9 Hz, 2H), 2.81 (tq, *J* = 7.9, 6.8 Hz, 1H), 1.32 (d, *J* = 6.8 Hz, 3H), 0.93 (t, *J* = 7.2 Hz, 3H). ¹³C NMR{¹H} (101 MHz, CDCl₃): δ 193.1, 166.1, 160.8, 136.6, 130.6, 128.5, 127.9, 127.7, 61.2, 39.0, 33.5, 14.3, 13.6. IR (film): 3431, 2975, 2931, 1726, 1660, 1551, 1488, 1444, 1365, 1341, 1324, 1288, 1214, 1194, 1093, 1020, 943, 913, 771, 743, 698 cm⁻¹. HRMS (ESI-TOF) *m/z* [M+H]⁺ calcd. for C₁₅H₁₇O₃S⁺ 277.0893, found 277.0891.

Ethyl 2,3-dimethyl-4-oxo-6-phenyl-3,4-dihydro-2*H*-thiopyran-5-carboxylate (**3aad**) Prepared under *Conditions A* on 0.25 mmol scale. Yellow oil, 22 mg, 31% yield, $R_f = 0.2$

(PE/EA = 5:1, v/v), dr = 2:1. ¹H NMR (400 MHz, CDCl₃): δ 7.51–7.31 (m, 5H), 4.01–3.96 (m, 2H), 3.66–3.62 (m, 0.6H), 3.37–3.31 (m, 0.3H), 2.91–2.85 (m, 0.6H), 2.62–2.58 (m, 0.4H), 1.50 (d, J = 7.1 Hz, 1H), 1.41 (d, J = 6.8 Hz, 2H), 1.32 (d, J = 6.8 Hz, 1H), 1.26 (d, J = 6.8 Hz, 2H), 0.92–0.89 (m, 3H). ¹³C NMR{¹H} (101 MHz, CDCl₃): δ 166.1, 136.6, 136.5, 130.5, 128.5, 127.88, 127.86, 127.0, 61.1, 46.2, 44.5, 42.5, 41.4, 18.9, 15.1, 13.6, 12.6, 10.3. IR (film): 2968, 2929, 1719, 1701, 1654, 1648, 1629, 1618, 1577, 1559, 1541, 1534, 1508, 1458, 1443, 1364, 1290, 1211, 1094, 1074, 1020, 945, 912, 773, 760, 735, 696 cm⁻¹. HRMS (ESI-TOF) *m/z* [M+H]⁺ calcd. for C₁₆H₁₉O₃S⁺ 291.1049, found 291.1054.

Ethyl 3-methyl-4-oxo-2,6-diphenyl-3,4-dihydro-2*H*-thiopyran-5-carboxylate (3aae)

Prepared under *Conditions D* on 0.25 mmol scale. Yellow oil, 89 mg, 50% yield, $R_f = 0.3$ (PE/EA = 5:1, v/v), dr = 2:1. ¹H NMR (400 MHz, CDCl₃): δ 7.53–7.48 (m, 2H), 7.45–7.31 (m, 8H), 4.45 (d, *J* = 13.2 Hz, 1H), 4.07–3.99 (m, 2H), 3.17(dq, *J* = 13.2, 6.8 Hz, 0.7H), 3.0 (dq, *J* = 6.8, 4 Hz, 0.3H), 1.26 (d, *J* = 4 Hz, 0.3H), 1.24 (d, *J* = 10 Hz, 1H), 1.23 (d, *J* = 13.6 Hz, 0.7H), 1.05 (d, *J* = 6.7 Hz, 2H), 0.96 (t, *J* = 7.2, 2H), 0.94 (t, *J* = 7.2, 1H).¹³C NMR{¹H} (101 MHz, CDCl₃): δ 194.2, 193.1, 166.1, 165.9, 160.7, 159.8, 136.5, 136.4, 136.3, 136.0, 130.61, 130.60, 129.0, 128.9, 128.7, 128.5, 128.4, 128.3, 128.2, 128.1, 127.84, 127.81, 127.4, 126.9, 61.2, 52.3, 50.9, 45.4, 45.2, 13.60, 13.58, 12.1. IR (film): 3060, 2979, 2928, 1728, 1658, 1598, 1556, 1489, 1453, 1366, 1325, 1276, 1212, 1193, 1091, 1022, 943, 916, 844 cm⁻¹. HRMS (ESI-TOF) *m*/*z* [M+H]⁺ calcd. for C₂₁H₂₁O₃S⁺ 353.1206, found 353.1209.

Ethyl 6-(benzo[*d*][1,3]dioxol-5-yl)-2,2-dimethyl-4-oxo-3,4-dihydro-2*H*-thiopyran-5-carboxylate (**3ba**)

Prepared under *Conditions A* on 0.25 mmol scale. Pale yellow oil, 56 mg, 67% yield, $R_f = 0.3$ (PE/EA = 5:1, *v/v*). ¹H NMR (400 MHz, CDCl₃): δ 7.03–6.97 (dd, *J* = 8, 1.2Hz 1H), 6.97–6.91 (d, *J* = 0.8Hz 1H), 6.78 (d, *J* = 8.1 Hz, 1H), 4.07 (q, *J* = 7.1 Hz, 2H), 2.72 (s, 2H), 1.49 (s, 6H), 1.03 (t, *J* = 7.1 Hz, 3H). ¹³C NMR{¹H} (101 MHz, CDCl₃) δ 191.6, 166.3, 160.2, 149.7, 147.8, 130.2, 126.5, 122.6, 108.4, 108.3, 101.6, 61.1, 51.3, 45.2, 27.7, 13.8. IR (film): 2974, 2917, 1726, 1655, 1546, 1503, 1484, 1437, 1367, 1345, 1321, 1299, 1251, 1211, 1101, 1038, 932 cm⁻¹. HRMS (ESI-TOF) *m/z* [M+H]⁺ calcd. for C₁₇H₁₉O₅S⁺ 335.0948, found 335.0949.

Ethyl 6-(4-methoxyphenyl)-2,2-dimethyl-4-oxo-3,4-dihydro-2*H*-thiopyran-5-carboxylate (**3ca**)

Prepared under *Conditions B* on 0.10 mmol scale with reaction time extended to 12 h. Pale yellow oil, 22 mg, 69% yield, $R_f = 0.3$ (PE/EA = 5:1, v/v). ¹H NMR (400 MHz, CDCl₃): δ 7.42 (d, *J* = 8.6 Hz, 2H), 6.87 (d, *J* = 8.7 Hz, 2H), 4.03 (q, *J* = 7.1 Hz, 2H), 3.81 (s, 3H), 2.73 (s, 2H), 1.50 (s, 6H), 0.98 (t, *J* = 7.1 Hz, 3H). ¹³C NMR{¹H} (101 MHz, CDCl₃): δ 191.6, 166.4, 161.6, 160.6, 129.6, 128.8, 126.2, 113.9, 61.1, 55.3, 51.3, 45.0, 27.7, 13.8. IR (film): 2964, 2932, 2840, 1727, 1656,1604, 1574, 1546, 1505, 1461, 1444, 1414, 1388, 1367, 1325, 1294, 1253, 1211, 1176, 1148, 1103, 1040, 949, 933, 836, 813 cm⁻¹. HRMS (ESI-TOF) *m/z* [M+H]⁺ calcd. for C₁₇H₂₁O₄S⁺ 321.1155, found 321.1158.

Ethyl 2,2-dimethyl-6-(4-methylphenyl)-4-oxo-3,4-dihydro-2*H*-thiopyran-5-carboxylate (**3da**) Prepared under *Conditions A* on 0.25 mmol scale. Pale yellow oil, 56 mg, 74% yield, $R_f = 0.3$ (PE/EA = 5:1, *v/v*). ¹H NMR (400 MHz, CDCl₃): δ 7.34 (d, *J* = 7.8 Hz, 2H), 7.16 (d, *J* = 7.8 Hz, 2H), 4.00 (q, *J* = 7.1 Hz, 2H), 2.73 (s, 2H), 2.35 (s, 3H), 1.50 (s, 6H), 0.94 (t, *J* = 7.1 Hz, 3H). ¹³C NMR{¹H} (101 MHz, CDCl₃): δ 191.5, 166.2, 160.9, 140.9, 133.6, 129.1, 127.8, 126.5, 61.0, 51.3, 45.3, 27.7, 21.3, 13.6. IR (film): 2974, 2927, 1729, 1658, 1608, 1550, 1505, 1460, 1408, 1388, 1367, 1325, 1246, 1215, 1184, 1148, 1103, 1041, 1021, 936, 814 cm⁻¹. HRMS (ESI-TOF) *m/z* [M+H]⁺ calcd. for C₁₇H₂₁O₃S⁺ 305.1206, found 305.1210.

Ethyl 6-(4-fluorophenyl)-2,2-dimethyl-4-oxo-3,4-dihydro-2*H*-thiopyran-5-carboxylate (**3ea**) Prepared under *Conditions A* on 0.25 mmol scale. Pale yellow oil, 42 mg, 55% yield, $R_f = 0.3$ (PE/EA = 5:1, *v/v*). ¹H NMR (400 MHz, CDCl₃): δ 7.51–7.40 (m, 2H), 7.09–7.03 (m, 2H), 4.01 (q, *J* = 7.1 Hz, 2H), 2.75 (s, 2H), 1.52 (s, 6H), 0.96 (t, *J* = 7.1 Hz, 3H). ¹³C NMR{¹H} (101 MHz, CDCl₃): δ 191.4, 165.9, 164.0 (d, *J*_{C-F} = 252.7 Hz), 159.4, 132.5 (d, *J*_{C-F} = 3.2 Hz), 130.1(d, *J*_{C-F} = 8.7 Hz), 127.1, 115.6(d, *J*_{C-F} = 22.0 Hz), 61.2, 51.2, 45.7, 27.8, 13.7. ¹⁹F NMR{¹H} (376 MHz, CDCl₃) δ -109.3 (s). IR (film): 2974, 2930, 1729, 1661, 1600, 1551, 1503, 1368, 1324, 1299, 1245, 1215, 1160, 1105, 1040, 840 cm⁻¹. HRMS (ESI-TOF) *m/z* [M+H]⁺ calcd. for C₁₆H₁₈FO₃S⁺ 309.0955, found 309.0952.

Ethyl 6-(4-chlorophenyl)-2,2-dimethyl-4-oxo-3,4-dihydro-2*H*-thiopyran-5-carboxylate (**3fa**) Prepared under *Conditions B* on 0.10 mmol scale. Pale yellow oil, 24 mg, 74% yield, $R_f = 0.3$ (PE/EA = 5:1, *v/v*). ¹H NMR (400 MHz, CDCl₃): δ 7.40 (d, *J* = 8.6 Hz, 2H), 7.35 (d, *J* = 8.5 Hz, 2H), 4.02 (q, *J* = 7.1 Hz, 2H), 2.76 (s, 2H), 1.52 (s, 6H), 0.98 (t, *J* = 7.1 Hz, 3H). ¹³C NMR{¹H} (101 MHz, CDCl₃): δ 191.4, 165.8, 159.2, 136.7, 134.9, 129.3, 128.8, 61.3, 51.2, 45.8, 27.8, 13.7, 1.0. IR (film): 2966, 2926, 1729, 1662, 1593, 1549, 1486, 1461, 1398, 1368, 1323, 1298, 1246, 1212, 1091, 1041, 1014, 936, 877, 830 cm⁻¹. HRMS (ESI-TOF) *m*/*z* [M+H]⁺ calcd. for C₁₆H₁₇ClO₃S⁺ 325.0660, found 325.0657.

Ethyl 6-(3,4-dichlorophenyl)-2,2-dimethyl-4-oxo-3,4-dihydro-2*H*-thiopyran-5-carboxylate (**3ga**)

Prepared under *Conditions B* on 0.10 mmol scale. Pale yellow oil, 26 mg, 72% yield, $R_f = 0.3$ (hexane/EA = 5:1, v/v). ¹H NMR (400 MHz, CDCl₃): δ 7.58 (d, J = 2.1 Hz, 1H), 7.46 (d, J = 8.3 Hz, 1H), 7.30 (dd, J = 8.3, 2.1 Hz, 1H), 4.07 (q, J = 7.1 Hz, 2H), 2.76 (s, 2H), 1.53 (s, 6H), 1.04 (t, J = 7.1 Hz, 3H). ¹³C NMR{¹H} (101 MHz, CDCl₃): δ 191.3, 165.5, 157.4,

136.2, 134.9, 133.0, 130.6, 129.9, 127.5, 127.2, 61.5, 51.1, 46.2, 27.8, 13.8. IR (film): 2975, 2928, 1729, 1665, 1588, 1560, 1543, 1465, 1369, 1322, 1244, 1210, 1133, 1103, 1033, 943, 883, 824 cm⁻¹. HRMS (ESI-TOF) m/z [M+H]⁺ calcd. for C₁₆H₁₇Cl₂O₃S⁺ 359.0270, found 359.0275.

Ethyl 6-(4-iodophenyl)-2,2-dimethyl-4-oxo-3,4-dihydro-2*H*-thiopyran-5-carboxylate (**3ha**) Prepared under *Conditions B* on 0.10 mmol scale. Pale yellow oil, 29 mg, 70% yield, R_f = 0.3 (hexane/EA = 5:1, v/v). ¹H NMR (400 MHz, CDCl₃): δ 7.72 (d, J = 8.4 Hz, 2H), 7.18 (d, J = 8.5 Hz, 2H), 4.02 (q, J = 7.1 Hz, 2H), 2.75 (s, 2H), 1.52 (s, 6H), 0.98 (t, J = 7.2 Hz, 3H). ¹³C NMR{¹H} (101 MHz, CDCl₃): δ 191.4, 165.7, 159.3, 137.7, 136.0, 129.5, 127.0, 97.0, 61.3, 51.2, 45.9, 27.8, 13.7. IR (film): 2974. 2924, 1727, 1660, 1583, 1560, 1543, 1478, 1460, 1389, 1367, 1323, 1298, 1245, 1212, 1102, 1039, 1005, 936, 821 cm⁻¹. HRMS (ESI-TOF) m/z [M+H]⁺ calcd. for C₁₆H₁₈IO₃S⁺ 417.0016, found 417.0010.

Ethyl 2,2-dimethyl-4-oxo-6-(4-(trifluoromethyl)phenyl)-3,4-dihydro-2*H*-thiopyran-5-carboxylate (**3ia**)

Prepared under *Conditions B* on 0.10 mmol scale. Pale yellow oil, 28 mg, 78% yield, R_f = 0.3 (PE/EA = 5:1, *v/v*). ¹H NMR (400 MHz, CDCl₃): δ 7.64 (d, *J* = 8.2 Hz, 2H), 7.57 (d, *J* = 8.1 Hz, 2H), 4.00 (q, *J* = 7.1 Hz, 2H), 2.78 (s, 2H), 1.55 (s, 6H), 0.92 (t, *J* = 7.1 Hz, 3H). ¹³C NMR{¹H} (101 MHz, CDCl₃): δ 191.2, 165.4, 158.7, 140.0, 132.2 (q, *J*_{C-F} = 32.9 Hz), 128.4, 127.6, 125.4 (q, *J*_{C-F} = 3.9 Hz), 123.6 (q, *J*_{C-F} = 274.0 Hz), 61.4, 51.2, 46.3, 27.8, 13.6. ¹⁹F NMR{¹H} (376 MHz, CDCl₃) δ -63.0 (s). IR (film): 2967, 1730, 1664, 1557, 1508, 1461, 1407, 1369, 1322, 1246, 1215, 1169, 1129, 1067, 1040, 1016, 939, 842 cm⁻¹. HRMS (ESI-TOF) *m/z* [M+H]⁺ calcd. for C₁₇H₁₈F₃O₃S⁺ 259.0923, found 259.0924.

Ethyl 6-(4-cyanophenyl)-2,2-dimethyl-4-oxo-3,4-dihydro-2*H*-thiopyran-5-carboxylate (**3ja**) Prepared under *Conditions B* on 0.10 mmol scale with reaction time extended to 10 h. Pale yellow oil, 22 mg, 70% yield, $R_f = 0.3$ (PE/EA = 5:1, *v/v*). ¹H NMR (400 MHz, CDCl₃): δ 7.68 (d, *J* = 8.0 Hz, 2H), 7.56 (d, *J* = 8.0 Hz, 2H), 4.00 (q, *J* = 7.1 Hz, 2H), 2.78 (s, 2H), 1.54 (s, 6H), 0.95 (t, *J* = 7.2 Hz, 3H). ¹³C NMR{¹H} (101 MHz, CDCl₃): δ 191.1, 165.2, 157.9, 140.9, 132.2, 128.8, 127.7, 117.9, 114.1, 61.5, 51.1, 46.6, 27.8, 13.7. IR (film): 2966, 2926, 2854, 2230, 1729, 1664, 1565, 1496, 1462, 1389, 1368, 1324, 1273, 1246, 1215, 1148, 1103, 1041, 1019, 841 cm⁻¹. HRMS (ESI-TOF) *m/z* [M+K]⁺ calcd. for C₁₇H₁₇KNO₃S⁺ 354.0561, found 354.0568.

Ethyl 6-(furan-2-yl)-2,2-dimethyl-4-oxo-3,4-dihydro-2*H*-thiopyran-5-carboxylate (**3ka**) Prepared under *Conditions B* on 0.10 mmol scale with reaction time extended to 12 h. Pale yellow oil, 13 mg, 46% yield, $R_f = 0.3$ (PE/EA = 5:1, *v/v*). ¹H NMR (400 MHz, CDCl₃): δ 7.53 (d, *J* = 1.7 Hz, 1H), 6.95 (d, *J* = 3.6 Hz, 1H), 6.51 (dd, *J* = 3.6, 1.8 Hz, 1H), 4.30 (q, *J* = 7.1 Hz, 2H), 2.74 (s, 2H), 1.50 (s, 6H), 1.27 (t, *J* = 7.1 Hz, 3H). ¹³C NMR{¹H} (101 MHz, CDCl₃): δ 191.9, 166.7, 148.0, 145.9, 144.0, 122.9, 115.8, 112.6, 61.6, 51.8, 44.8, 27.8, 14.1. IR (film): 2973, 2929, 1731, 1654, 1579, 1528, 1462, 1386, 1367, 1326, 1234, 1210, 1104, 1043, 1026, 948, 883 cm⁻¹. HRMS (ESI-TOF) *m/z* [M+H]⁺ calcd. for C₁₄H₁₇O₄S⁺ 281.0842, found 281.0847. Ethyl 2,2-dimethyl-4-oxo-6-(thiophen-2-yl)-3,4-dihydro-2*H*-thiopyran-5-carboxylate (**3la**) Prepared under *Conditions B* on 0.10 mmol scale. Pale yellow oil, 21 mg, 72% yield, $R_f = 0.4$ (PE/EA = 5:1, *v/v*). ¹H NMR (400 MHz, CDCl₃): δ 7.52 (dd, *J* = 5.1, 1.2 Hz, 1H), 7.42 (dd, *J* = 3.8, 1.2 Hz, 1H), 7.07 (dd, *J* = 5.1, 3.8 Hz, 1H), 4.19 (q, *J* = 7.1 Hz, 2H), 2.75 (s, 2H), 1.52 (s, 6H), 1.15 (t, *J* = 7.1 Hz, 3H). ¹³C NMR{¹H} (101 MHz, CDCl₃): δ 191.6, 166.7, 150.8, 137.9, 130.5, 129.8, 128.1, 125.4, 61.6, 51.5, 45.4, 27.6, 13.8. IR (film): 2963, 2927, 1728, 1655, 1546, 1509, 1460, 1415, 1388, 1366, 1320, 1298, 1245, 1213, 1103, 1036, 936, 859 cm⁻¹. HRMS (ESI-TOF) *m/z* [M+H]⁺ calcd. for C₁₄H₁₇O₃S⁺ 297.0614, found 297.0615.

Ethyl 2,2-dimethyl-6-(naphthalen-2-yl)-4-oxo-3,4-dihydro-2*H*-thiopyran-5-carboxylate (**3ma**)

Prepared under *Conditions A* on 0.20 mmol scale. Pale yellow oil, 60 mg, 71% yield, $R_f = 0.3$ (PE/EA = 5:1, v/v). ¹H NMR (400 MHz, CDCl₃): δ 8.00 (s, 1H), 7.85 (m, 3H), 7.54 (m, 3H), 3.97 (q, J = 7.1 Hz, 2H), 2.81 (s, 3H), 1.57 (s, 6H), 0.82 (t, J = 7.1 Hz, 3H). ¹³C NMR{¹H} (101 MHz, CDCl₃): δ 191.6, 166.1, 160.9, 134.0, 133.9, 132.6, 128.6, 128.3, 128.0, 127.7, 127.5, 127.2, 126.8, 125.0, 61.2, 51.4, 45.7, 27.8, 13.6. IR (film): 3056, 2963, 2928, 1728, 1659, 1597, 1548, 1502, 1462, 1387, 1367, 1349, 1321, 1298, 1240, 1214, 1180, 1147, 1103, 1041, 1018, 861, 817 cm⁻¹. HRMS (ESI-TOF) m/z [M+K]⁺ calcd. for C₂₀H₂₀KO₃S⁺ 379.0765, found 379.0770.

Ethyl (10*R*,13*S*)-10,13-dimethyl-4'-oxo-6'-phenyl-1,2,3',4',7,8,9,10,11,12,13,14,15,16tetradecahydrospiro[cyclopenta[*a*]phenanthrene-17,2'-thiopyran]-5'-carboxylate (**13**) Pale yellow oil, 46 mg, 91% yield, $R_f = 0.2$ (PE/EA = 20:1, *v/v*). ¹H NMR (400 MHz, CDCl₃): δ 7.50–7.34 (m, 5H), 5.96–5.90 (m, 1H), 5.64–5.58 (m, 1H), 5.42–5.36 (m, 1H), 4.04–3.93 (m, 2H), 2.94 (s, 2H), 2.30–2.19 (m, 3H), 2.15–2.12 (m, 1H), 2.10–2.02 (m, 1H), 1.91–1.65 (m, 8H), 1.50–1.30 (m, 3H), 1.22–1.15 (m, 1H), 1.13–1.10 (m, 1H), 0.96 (s, 3H), 0.90 (s, 3H), 0.89 (t, *J* = 7.2 Hz, 3H). ¹³C NMR{¹H} (101 MHz, CDCl₃): δ 192.1, 165.9, 161.7, 141.5, 136.7, 130.9, 130.5, 128.8, 128.5, 127.9, 125.3, 122.4, 63.1, 61.1, 51.5, 48.0, 47.9, 45.0, 36.4, 35.2, 33.8, 33.6, 32.3, 31.7, 23.9, 23.0, 20.8, 18.8, 14.6, 13.6. IR (film): 3019, 2936, 1724, 1655, 1550, 1444, 1382, 1328, 1216, 1028, 911, 740, 669, 650 cm⁻¹. HRMS (ESI-TOF) *m/z* [M+H]⁺ calcd. for C₃₂H₃₉O₃S⁺ 503.2614, found 503.2617.

7. Intermediate Probing Experiments

Dimerization of carbenes

To an oven-dried 10 mL-vial with a stirrer bar were added 1,2,3-thiadiazole **1a** (0.25 mmol, 58.6 mg), catalyst [Rh(COD)CI]₂ (12.3 mg, 10 mol%), ligand DPPF (33.3 mg, 24 mol%), and pre-dried solvent PhCl (1 mL). The vial was sealed with a nitrogen gas balloon. Then the reaction mixture was kept stirring at 130 °C in an oil-bath for 6 h. After the ensuing mixture was cooled to room temperature, the solvent was removed by rotary evaporation. The resulting residue was purified by silica gel column chromatography (PE/EA = 5:1~20:1, v/v) to give 1,2,3-thiadiazole **1a** (14 mg, 21% recovery), dimer of the carbene **4** (22 mg, 46% yield) and phosphine sulfide **5** (11 mg, 7% yield).

Diethyl 2,3-dibenzoylbut-2-enedioate (**4**) ⁸ [(*E*)-isomer: CAS No. 77249-46-8] [(*Z*)-isomer: CAS No. 60903-90-4]

Pale yellow oil, 22 mg, 46% yield, $R_f = 0.55$ (PE:EA = 5:1, v/v). ¹H NMR (400 MHz, CDCl₃) δ 7.54–7.19 (m, 10H), 4.18 (q, J = 7.2 Hz, 2H; q, J = 7.2 Hz, 0.67H;), 3.94 (q, J = 7.1 Hz, 1.33H), 1.17 (t, J = 7.2 Hz, 3H; t, J = 7.2 Hz, 1H), 0.83 (t, J = 7.1 Hz, 2H). ¹³C NMR{¹H} (101 MHz, CDCl₃) δ 164.7, 161.4, 148.6, 147.8, 135.1, 134.8, 132.5, 129.8, 129.2, 129.0, 128.8, 128.6, 127.9, 127.5, 127.4, 127.3, 61.4, 61.13, 61.09, 13.92, 13.90, 13.4. HRMS (ESI-TOF) m/z [M+Na]⁺ calcd. for C₂₂H₂₀NaO₆⁺ 403.1152, found 403.1149.

Phosphine sulfide 5 9 [CAS No. 170656-69-6]

Yellow solid, m.p. 240–250 °C, 11 mg, 7% yield, $R_f = 0.4$ (PE:EA = 5:1, v/v). ¹H NMR (400 MHz, CDCl₃) δ 7.64–7.58 (m, 8H), δ 7.46–7.43 (m, 4H), 7.40–7.36 (m, 8H), 4.64 (dd, J = 3.6, 1.6 Hz, 4H), 4.29 (dd, J = 4.0, 2.0 Hz, 4H). ¹³C NMR{¹H} (101 MHz, CDCl₃) δ 134.5, 133.7, 131.5, 131.4, 131.32, 131.29, 128.3, 128.2, 75.04, 74.94, 74.1, 74.0. ³¹P NMR{¹H} (162 MHz, CDCl₃) δ 40.73. HRMS (ESI-TOF) m/z [M+Na]⁺ calcd. for C₃₄H₂₈FeNaP₂S₂⁺ 641.0349, found 641.0353.

Decarbonylation of (*E*)-3-(naphthalene-2-yl)propenal (2l)

To an oven-dried 10 mL-vial with a stirrer bar were added (*E*)-3-(naphthalene-2-yl)propenal (**2I**) (0.2 mmol, 36.4 mg), catalyst [Rh(COD)Cl]₂ (5 mg, 5 mol%), ligand DPPF (13 mg, 12 mol%), and pre-dried solvent PhCl (1 mL). The vial was sealed with a nitrogen gas balloon. The reaction mixture was kept stirring at 130 °C in an oil-bath for 6 h. After the ensuing mixture was cooled to room temperature, the solvent was removed by rotary evaporation. The resulting residue was purified by silica gel column chromatography (PE/EA = 20:1, v/v) to give (*E*)-3-(naphthalene-2-yl)propenal (**2I**) (2 mg, 5% recovery) and 2-vinylnaphthalene (**6**) (28 mg, 91% yield).

2-Vinylnaphthalene (6) ¹⁰ [CAS No. 827-54-3]

White solid, m.p. 66–67 °C (Lit.¹⁰ 65.5–66 °C), $R_f = 0.8$ (PE:EA = 10:1, v/v). ¹H NMR (400 MHz, CDCl₃) δ 7.85–7.74 (m, 4H), 7.64 (dd, J = 8.5, 1.8 Hz, 1H), 7.50–7.42 (m, 2H), 6.89 (dd, J = 17.6, 10.9 Hz, 1H), 5.88 (d, J = 17.6 Hz, 1H), 5.34 (d, J = 10.9 Hz, 1H). ¹³C NMR{¹H} (101 MHz, CDCl₃) δ 136.9, 135.0, 133.1, 128.1, 128.0, 127.7, 126.3, 126.2, 125.9, 123.2, 114.2, 100.0.

8. Isotope Tracing Experiments

To an oven-dried 10 mL-vial with a stirrer bar were added 1,2,3-thiadiazole **1a** (0.2 mmol, 46 mg), catalyst [Rh(COD)Cl]₂ (5 mg, 5 mol%), ligand DPPF (13.3 mg, 12 mol%), and predried solvent PhCl (1 mL). The vial was sealed with a nitrogen gas balloon, then alk-2-enal (**2g**-*d*) (0.4 mmol, 53.2 mg) was added. The reaction mixture was kept stirring at 130 °C in an oil-bath for 6 h. After the ensuing mixture was cooled to room temperature, the solvent was removed by rotary evaporation. The resulting residue was purified by silica gel column chromatography (PE/EA 5:1~20:1, v/v) to give 2,3-dihydro-4*H*-thiopyran-4-one **3ag**-*dh* as brown oil in 85% yield.

Ethyl 4-oxo-2,6-diphenyl-3,4-dihydro-2*H*-thiopyran-5-carboxylate-3-*d* (**3ag**-*d*/*h*) Brown oil, 57 mg, 85% yield, $R_f = 0.3$ (PE:EA = 10:1, *v*/*v*). ¹H NMR (400 MHz, CDCl₃) δ 7.55–7.49 (m, 2H), 7.47–7.32 (m, 8H), 4.83–4.79 (m, 1H), 4.08–3.96 (m, 2H), 3.23 (dd, *J* = 15.2, 15.2 Hz, 0.8H), 3.04 (dd, *J* = 16.0, 3.0 Hz, 0.8H), 0.94 (t, *J* = 7.2 Hz, 3H). ¹³C NMR{¹H} (101 MHz, CDCl₃) δ 191.06, 191.03, 165.8, 162.0, 136.9, 136.1, 130.7, 129.1, 128.8, 128.5, 127.9, 127.4, 61.2, 46.22, 46.15, 43.6, 13.6. HRMS (ESI-TOF) *m*/*z* [M+H]⁺ calcd. for C₂₀H₁₈DO₃S⁺ 340.1112, found 340.1116.

9. KIE Studies

To two oven-dried 10 mL-vials with stirrer bars each were added 1,2,3-thiadiazole **1a** (0.25 mmol, 58.6 mg), catalyst [Rh(COD)Cl]₂ (6.2 mg, 5 mol%), ligand DPPF (16.6 mg, 12 mol%), and pre-dried solvent PhCl (1 mL). The vials were sealed with nitrogen gas balloons, then alk-2-enal **2g**-*d* (0.5 mmol, 67 mg) and **2g** (0.5 mmol, 66 mg) were added, respectively. When the reaction mixtures were stirred and heated at 130 °C in an oil-bath for 5 min, a small portion of the reaction mixtures was taken out from reactions 1 and 2 for ¹HNMR analysis. Samples of 10 min, 15 min, 20 min, 30 min, 40 min, 50 min and 60 min were made by the same procedure.

Entry	Time (min)	Yield of 3ag (%)	Yield of 3ag - <i>d</i> (%)			
		(Reaction 2)	(Reaction 1)			
1	5 min	12	30			
2	10 min	17	39			
3	15 min	20	48			
4	20 min	28	52			
5	30 min	30	59			
6	40 min	38	60			
7	50 min	44	64			
8	60 min	49	65			

Table S3. ¹HNMR analysis for reactions 1 and 2

10. Gram-scale reaction

Ethyl 5-phenyl-1,2,3-thiadiazole-4-carboxylate (**1a**) (5 mmol, 1.17g), $[Rh(COD)]_2Cl_2$ (123 mg, 0.25 mmol), and DPPF (333 mg, 0.6 mmol) were added into a three-neck round bottom flask. The flask was equipped with a condenser tube and then sealed with N₂ balloon. PhCl (20 mL) and cinnamaldehyde (**2g**) (10 mmol, 1.32 g) were added. The reaction mixture was then heated in an oil bath at 130 °C for 6 h. After removal of solvent under reduced pressure the residue was purified by silica gel column chromatography (PE/EA = 10:1, *v/v*). The product ethyl 4-oxo-2,6-diphenyl-3,4-dihydro-2*H*-thiopyran-5-carboxylate (**3ag**) was obtained in 1.27 g, 75 % yield.

11. Trials on asymmetric catalysis

(*i*) To an oven-dried 10 mL-vial with a stirring bar were added 1,2,3-thiadiazole **1a** (0.1 mmol, 23.4 mg), catalyst [Rh(COD)Cl]₂ (2.5 mg, 5 mol%), ligand (*R*)-BINAP (7.5 mg, 12 mol%) and pre-dried solvent PhCl (0.5 mL). The vial was sealed with a nitrogen gas balloon, then alkenyl aldehyde **2h** (0.2 mmol, 30 mg) was added via a syringe. The reaction mixture was kept stirring at 130 °C in an oil-bath for 6 h. After the reaction mixture was cooled to room temperature, the solvent was removed by rotary evaporation. The resulting residue was purified by silica gel column chromatography (PE/EA = 5:1, v/v) to give desired product **3ah** in 17% yield (6 mg). HPLC analysis: Daicel Chiralpak AS-H (*i*-PrOH/hexane = 15/85, v/v, 1.0 mL/min, 210 nm) major t_R = 12.009 min and 13.647 min.

(*ii*) The same procedure as above but using (*S*)-BINAP (7.5 mg, 12 mol%) as ligand gave desired product **3ah** in 6% yield (2 mg). HPLC analysis: Daicel Chiralpak AS-H (*i*-PrOH/hexane = 15/85, *v*/*v*, 1.0 mL/min, 210 nm) major t_R = 12.042 min and 13.661 min.

HPLC data of the product obtained using **DPPF** ligand. Daicel Chiralpak AS-H (*i*-PrOH/hexane = 15/85, *v*/*v*, 1.0 mL/min, 210 nm)

HPLC data of the product obtained using **(***R***)-BINAP ligand**. Daicel Chiralpak AS-H (*i*-PrOH/hexane = 15/85, *v*/*v*, 1.0 mL/min, 210 nm)

HPLC data of the product obtained using **(S)-BINAP** ligand. Daicel Chiralpak AS-H (*i*-PrOH/hexane = 15/85, v/v, 1.0 mL/min, 210 nm)

0.4485 1.38990e4

478.99881

50.3181

2

13.661 VBA

13. Reference

(1) B. Zhou, Q. Wu, Z. Dong, J. Xu and Z. Yang, Rhodium-Catalyzed 1,1-Hydroacylation of Thioacyl Carbenes with Alkynyl Aldehydes and Subsequent Cyclization. *Org. Lett.*, 2019, **21**, 3594.

(2) D. Kurandina and V. Gevorgyan, Rhodium Thiavinyl Carbenes from 1,2,3-Thiadiazoles Enable Modular Synthesis of Multisubstituted Thiophenes. *Org. Lett.*, 2016, **18**, 1804.
(3) (a) J.-Y. Son, J. Kim, S. H. Han, S. H. Kim and P. H. Lee, Regioselective Synthesis of

Dihydrothiophenes and Thiophenes via the Rhodium-Catalyzed Transannulation of 1,2,3-Thiadiazoles with Alkenes. *Org. Lett.*, 2016, **18**, 5408; (b) B. Seo, Y. G. Kim and P. H. Lee, Synthesis of Isothiazole via the Rhodium-Catalyzed Transannulation of 1,2,3-Thiadiazoles with Nitriles. *Org. Lett.*, 2016, **18**, 5050; (c) B. Seo, H. Kim, Y. G. Kim, Y. Baek, K. Um and P. H. Lee, Synthesis of Bicyclic Isothiazoles through an Intramolecular Rhodium-Catalyzed Transannulation of Cyanothiadiazoles. *J. Org. Chem.*, 2017, **82**, 10574; (d) J. E. Kim, J. Lee, H. Yun, Y. Baek and P. H. Lee, Rhodium-Catalyzed Intramolecular Transannulation Reaction of Alkynyl Thiadiazole Enabled 5,n-Fused Thiophenes. *J. Org. Chem.*, 2017, **82**, 1437.

(4) (a) R. M. de Figueiredo, R. Berner, J. Julis, T. Liu, D. Türp and M. Christmann, Bidirectional, Organocatalytic Synthesis of Lepidopteran Sex Pheromones. J. Org. Chem., 2007, 72, 640; (b) A. K. Willard, F. C. Novello, W. F. Hoffman and E. J. Jr. Cragoe, Substituted pyranone inhibitors of cholesterol synthesis, 1983, US 4375475; (c) A. Nordqvist, C. Björkelid, M. Andaloussi, A. M. Jansson, S. L. Mowbray, A. Karlén and M. Larhed, Synthesis of Functionalized Cinnamaldehyde Derivatives by an Oxidative Heck Reaction and Their Use as Starting Materials for Preparation of Mycobacterium tuberculosis 1-Deoxy-d-xylulose-5-phosphate Reductoisomerase Inhibitors. J. Org. Chem., 2011, 76, 8986; (d) M. Shi, G.-Q. Tian and J. Li, Palladium(II) and Palladium(0)-Cocatalyzed Ring Opening and Oxidation Reactions of 2-(Arylmethylene)cyclopropylcarbinols. Tetrahedron, 2009, 65, 3404; (e) L. K. Ransborg, L. Lykke, N. Hammer, L. Næsborg and K. A. Jørgensen, An Organocatalytic One-Pot Cascade Incorporating the Achmatowicz Reaction Affording 3-Pyrone Derivatives. Chem. Commun., 2014, 50, 7604; (f) J. Stiller, E. Marqués-López, R. P. Herrera, R. Fröhlich, C. Strohmann and M. Christmann, Enantioselective α - and γ -Alkylation of α , β -Unsaturated Aldehydes Using Dienamine Activation. Org. Lett., 2011, 13, 70; (g) M. G. Lauer, W. H. Henderson, A. Awad and J. P. Stambuli, Palladium-Catalyzed Reactions of Enol Ethers: Access to Enals, Furans, and Dihydrofurans. Org. Lett., 2012, 14, 6000.

(5) (a) H. Jiang, K. S. Halskov, T. K. Johansen and K. A. Jørgensen, Deracemization of Axially Chiral α,β -Unsaturated Aldehydes through an Amino-Catalyzed Symmetry-Making–Symmetry-Breaking Cascade. *Chem. - Eur. J.*, 2011, **17**, 3842; (b) D. Castagnolo, L. Botta and M. Botta, Alkyne-Enol Ether Cross-Metathesis in the Presence of CuSO₄: Direct Formation of 3-Substituted Crotonaldehydes in Aqueous Medium. *J. Org. Chem.*, 2009, **74**, 3172; (c) S. Julia, M. Julia, S.-Y. Tchen and P. Graffin, Vinylogous homoallylic rearrangement of α,β -ethylene- γ -cyclopropane alcohols. *Bull. Soc. Chim. Fr.*, 1964, 3207; (d) G. Wickham, G. J. Wells, L. Waykole and L. A. Paquette, Strain-activated 1,3-butadienes. Synthesis and dienic reactivity of dicyclobutylideneethane. *J. Org. Chem.*,

1985, **50**, 3485; (e) K. S. Halskov, T. K. Johansen, R. L. Davis, M. Steurer, F. Jensen and K. A. Jørgensen, Cross-trienamines in Asymmetric Organocatalysis. *J. Am. Chem. Soc.*, 2012, **134**, 12943.

(6) D. Michel, P. Y. Louis, B. J. Jacques and D. Pierre, Preparation d'aidehydesethyleniques deuteries sur le groupemen carbonyle. *J. Labelled Compd. Radiopharm.*, 1976, **12**, 389.

(7) H. Lindlar and R. Dubuis, Palladium Catalyst for Partial Reduction of Acetylenes. *Org. Synth.*, 1966, **46**, 89.

(8) W. Han, Y. Yang, Y. Zhu and Y. Shi, A Facile Copper(I)-Catalyzed Homo-Coupling of Indanone Derivatives Using Diaziridinone under Mild Conditions. *Org. Biomol. Chem.*, 2019, **17**, 6998.

(9) Z.-G. Fang, T. S. Andy, Y.-S. Wen, L.-K. Liu and T. C. W. Mak, Molecular Structures of 1,1'-Bis(diphenylphosphino)ferrocene Oxide and Sulphide and Their Thermal Properties. *Polyhedron*, 1995, **14**, 2403.

(10) T. M. Gøgsig, L. S. Søbjerg, A. T. Lindhardt, K. L. Jensen and T. Skrydstrup, Direct Vinylation and Difluorovinylation of Arylboronic Acids Using Vinyl- and 2,2-Difluorovinyl Tosylates via the Suzuki–Miyaura Cross Coupling. *J. Org. Chem.*, 2008, **73**, 3404.

13. Copies of Spectra of Materials, Intermediates, and Products

Ethyl 5-phenyl-1,2,3-thiadiazole-4-carboxylate (1a)

Ethyl 5-(benzo[*d*][1,3]dioxol-5-yl)-1,2,3-thiadiazole-4-carboxylate (**1b**) ¹H MNR (400 MHz, CDCI₃)

Ethyl 5-(4-methoxyphenyl)-1,2,3-thiadiazole-4-carboxylate (1c) ¹H MNR (400 MHz, CDCI₃)

¹³C NMR{¹H} (101 MHz, CDCI₃)

¹³C NMR{¹H} (101 MHz, CDCI₃)

Ń

Ethyl 5-(4-fluorophenyl)-1,2,3-thiadiazole-4-carboxylate (1e) ¹H MNR (400 MHz, CDCl₃)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

¹⁹F NMR{¹H } (376 MHz, CDCI₃)

-108.993

									· · ·							·		
-55	-60	-65	-70	-75	-80	-85	-90	-95	-100	-105	-110	-115	-120	-125	-130	-135	-140	-145

HRMS

Ethyl 5-(4-chlorophenyl)-1,2,3-thiadiazole-4-carboxylate (1f) ¹H MNR (400 MHz, CDCl₃)

¹³C NMR{¹H} (101 MHz, CDCI₃)

Ethyl 5-(3,4-dichlorophenyl)-1,2,3-thiadiazole-4-carboxylate (**1g**) ¹H MNR (400 MHz, CDCI₃)

Ethyl 5-(4-iodophenyl)-1,2,3-thiadiazole-4-carboxylate (1h) ¹H MNR (400 MHz, CDCI₃)

100 90 f1 (ppm)

20200916_ 100-	XJX-pos-3 46 (0.204)		360.	9504				1: TOF MS ES+ 7.29e3
-						!		
360.880	360.900	360.920	360.940	360.960	360.980	361.000	361.020	361.040 m/z

Ethyl 5-(4-(trifluoromethyl)phenyl)-1,2,3-thiadiazole-4-carboxylate (1i) ¹H MNR (400 MHz, CDCI₃)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

¹⁹F NMR{¹H } (376 MHz, CDCI₃)

-55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145

Ethyl 5-(4-cyanophenyl)-1,2,3-thiadiazole-4-carboxylate (1j) ¹H MNR (400 MHz, CDCl₃)

Ethyl 5-(furan-2-yl)-1,2,3-thiadiazole-4-carboxylate (1k) ^{1}H MNR (400 MHz, CDCl₃)

100 90 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm) Ethyl 5-(naphthalen-2-yl)-1,2,3-thiadiazole-4-carboxylate (1m) ¹H MNR (400 MHz, CDCl₃)

1.310 1.305 1.292 1.286 1.286 1.280 1.275 1.275

¹³C NMR{¹H} (101 MHz, CDCI₃)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

(Z)-3-Phenylacrylaldehyde [(Z)-2g] ¹H MNR (400 MHz, CDCl₃)

1.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5

¹³C NMR{¹H} (101 MHz, CDCI₃)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

3-(2,3-Dichlorophenyl)acrylaldehyde (2j) ¹H MNR (400 MHz, CDCI₃)

(E)-5-Phenylpenta-2,4-dienal (2m)

¹H MNR (400 MHz, CDCI₃)

9.627 9.626 9.626 9.626 9.605 8 9.605 8 9.605 8 9.605 8 9.605 8 9.605 8 7.339 9 7.339 8 7.339

11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5

¹³C NMR{¹H} (101 MHz, CDCI₃)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

3-((1*R*,5*R*)-6,6-Dimethylbicyclo[3.1.1]hept-2-en-3-yl)acrylaldehyde (**2n**) ¹H MNR (400 MHz, CDCl₃)

11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5

20200916_XJX-pos-6 76 (0.311) 1007	177.1281	1: TOF MS ES+ 310
8- -		
0 177.112 177.114 177.116 177.118 177.120 177.122 177.124	177.126 177.128 177.130 177	132 177.134 177.136

(E)-3-Cyclohexylpropenal (20)

¹H MNR (400 MHz, CDCI₃)

9.503 9.483 9.483 9.483 9.483 9.483 9.483 9.483 9.483 9.483 9.483 9.483 9.483 9.483 9.483 9.483 9.483 9.483 9.603 9.703

(*E*)-4-Phenylpent-2-enal (**2p**)

¹H MNR (400 MHz, CDCI₃)

9.555 9.555 9.555 9.535 9.535 9.535 9.535 9.535 9.535 9.535 9.535 9.535 9.535 9.535 9.535 9.535 9.535 9.535 9.535 9.535 9.535 9.545 9.526 9.527 9.527 9.527 9.526 9.526 9.526 9.527 9.527 9.527 9.527 9.527 9.527 9.527 9.527 9.527 9.527 9.527 9.526 9.527 9.526 9.527 9.526 9.527 9.526 9.526 9.526 9.526 9.526 9.526 9.526 9.526 9.526 9.526 9.526 9.526 9.526 9.526 9.526 9.526 9.526 9.526 9.527 9.526 9.527 9.526 9.526 9.526 9.527 9.526 9.527 9.526 9.527 9.526 9.5279 9.5279 9.5279 9.5279 9.5279 9.5277 9.5279 9.5279 9.5279 9.5279 9.

¹³C NMR{¹H} (101 MHz, CDCI₃)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

(2-Cyclohexenylidene)acetaldehyde (2y)

¹H MNR (400 MHz, CDCI₃)

2-((8*S*,9*S*,10*R*,13*S*,14*S*)-10,13-Dimethyl-1,2,7,8,9,10,11,12,13,14,15,16-dodecahydro-17*H*-cyclopenta[*a*]phenanthren-17-ylidene)acetaldehyde (**12**) ¹H MNR (400 MHz, CDCI₃)

2020091 100	6_XJX-pos-6 56 (0.240)		319.2029					1: TOF MS ES+ 51
*								
۰.	319.190	319.195	319.200	319.205	319.210	319.215	319.220	319.225 m/z

Ethyl 4-oxo-6-phenyl-3,4-dihydro-2*H*-thiopyran-5-carboxylate (**3ab**) ¹H MNR (400 MHz, CDCI₃)

NQY-20	0190521-POS-G 45	(0.189)	2	63.0738									1: TOF MS ES+ 1.21e3
*													
	263.060	263.065	263.070	263.075	263.080	263.085	263.090	263.095	263.100	263.105	263.1113	263.115	263.120 m/z

Ethyl 2-(4-(dimethylamino)phenyl)-4-oxo-6-phenyl-3,4-dihydro-2*H*-thiopyran-5-carboxylate (**3ac**)

¹H MNR (400 MHz, CDCI₃)

Ethyl 2-(4-methoxyphenyl)-4-oxo-6-phenyl-3,4-dihydro-2*H*-thiopyran-5-carboxylate (**3ad**) ¹H MNR (400 MHz, CDCl₃)

Ethyl 2-(3-methoxyphenyl)-4-oxo-6-phenyl-3,4-dihydro-2*H*-thiopyran-5-carboxylate (**3ae**) ¹**H MNR (400 MHz, CDCI₃)**

WQY-20190521-POS-D 63 (0.265)	407.0724				1: TOF MS ES+ 2.35e3
-					
-					
3 ⁶					
407.050 407.055 407.060 407.065	5 407.070 407.075 407.08	0 407.085 407.090	407.095 407.100 407.105	407.110 407.115	407.120 407.125 m/z

Ethyl 2-(2-methoxyphenyl)-4-oxo-6-phenyl-3,4-dihydro-2*H*-thiopyran-5-carboxylate (**3af**) ¹H MNR (400 MHz, CDCI₃)

$\begin{array}{c} 7.524\\ 7.7.524\\ 7.7.524\\ 7.7.524\\ 7.7.547\\ 7.7.547\\ 7.7.547\\ 7.7.547\\ 7.7.447\\ 7.7.447\\ 7.7.335\\ 7.7.339\\ 7.7.339\\ 7.7.339\\ 7.7.339\\ 7.7.339\\ 7.7.339\\ 7.7.339\\ 7.7.339\\ 7.7.336\\ 7.7.336\\ 7.7.336\\ 7.7.338\\ 7.7.336\\ 7.7.338$

WQY-20190521-POS-E 127 (0.505)	.! 369.1148	1: TOF MS ES+ 438
3 ⁴		
369 114	369.115	m/z

20200928_1	WQY_POS 35 (0.	153)				340.1	116					1: TC	0F MS ES+ 9.55e4
]													
*													
-													
0	340.085	340.090	340.095	340.100	340.105	340.110	340.115	340.120	340.125	340.130	340.135	340.140	340.145

Ethyl 2-(4-fluorophenyl)-4-oxo-6-phenyl-3,4-dihydro-2*H*-thiopyran-5-carboxylate (**3ah**) ¹**H MNR (400 MHz, CDCI₃)**

 -55	-60	-65	-70	-75	-80	-85	-90	-95	-100	-105	-110	-115	-120	-125	-130	-135	-140	-145
-00	-00	-00	-10	-10	-00	-00	-00	-00	-100	-100	-110	-110	-120	-120	-100	-100	-140	-140

Ethyl 2-(4-bromophenyl)-4-oxo-6-phenyl-3,4-dihydro-2*H*-thiopyran-5-carboxylate (**3ai**) ¹H MNR (400 MHz, CDCI₃)

7,531 7,5515 7,5515 7,5515 7,5515 7,5515 7,5515 7,5515 7,5515 7,5515 7,5515 7,455 7,455 7,444 7,444 7,445 7,445 7,445 7,445 7,445 7,445 7,745 7,445 7,735 7,735 7,745 7,735 7,745 7,745 7,745 7,745 7,745 7,745 7,745 7,745 7,745 7,745 7,745 7,

WQY-20190521-PO	S-C 66 (0.275)		438.9	965					1: T	OF MS ES+ 114
·										
438.993	438.994	438.995	438.996	438.997	438.998	438.999	439.000	439.001	439.002	m/z

Ethyl 2-(2,3-dichlorophenyl)-4-oxo-6-phenyl-3,4-dihydro-2*H*-thiopyran-5-carboxylate (**3aj**) ¹H MNR (400 MHz, CDCl₃)

7, 524 7, 515 7, 515 7, 517 516 517, 51

Ethyl 2-(4-nitrophenyl)-4-oxo-6-phenyl-3,4-dihydro-2*H*-thiopyran-5-carboxylate (**3ak**) ¹H MNR (400 MHz, CDCI₃)

NQY-2019052	21-POS-C 75 (0.30	8)			36	34.0900							1: TOF MS ES+ 149
*-													
0 384.084	384.085	384.086	384.087	384.088	384.089	384.090	384.091	384.092	384.093	384.094	384.095	384.096	m/z 384.097

Ethyl 2-(naphthalen-2-yl)-4-oxo-6-phenyl-3,4-dihydro-2H-thiopyran-5-carboxylate (**3al**) ¹**H MNR (400 MHz, CDCI₃)**

20200916_XJX-pos-5 58 (0.247) 100-	389.120	70			1: TOF MS ES+ 6.81e3
*					
389.090 389.095 389.100 389.105	389.110 389.115 389.120	389.125 389.130 3	89.135 389.140 389.145	389.150 389.155	389.160 389.165 m/z

Ethyl (*E*)-4-oxo-6-phenyl-2-styryl-3,4-dihydro-2*H*-thiopyran-5-carboxylate (**3am**) ¹H MNR (400 MHz, CDCI₃)

WQY-20190521-POS-F 51 (0.222) 100-	365.1201 1: TC	F MS ES+ 2.38e3
0		m/z

365.120

Ethyl 2-((1R,5R)-6,6-dimethylbicyclo[3.1.1]hept-2-en-2-yl)-4-oxo-6-phenyl-3,4-dihydro-2*H*-thiopyran-5-carboxylate (**3an**)

¹H MNR (400 MHz, CDCI₃)

Ethyl 2-cyclohexyl-4-oxo-6-phenyl-3,4-dihydro-2*H*-thiopyran-5-carboxylate (**3ao**) ¹H MNR (400 MHz, CDCI₃)

WQY-20190521-POS-E 40 (0.171) 1007	345.1519	OF MS ES+ 8.70e3
0 345.120 345.125 345.130 345.135 345.140 345.145	345.1873 345.150 345.155 345.160 345.165 345.170 345.175 345.180 345.185 345.190	m/z 345.195

Ethyl 4-oxo-6-phenyl-2-(1-phenylethyl)-3,4-dihydro-2*H*-thiopyran-5-carboxylate (**3ap**) ¹H MNR (400 MHz, CDCI₃)

Ethyl 4-oxo-6-phenyl-2-(1-phenylethyl)-3,4-dihydro-2*H*-thiopyran-5-carboxylate **3ap** (*dr* = 1:1) ¹H MNR (400 MHz, CDCI₃)

Ethyl 2-methyl-2-(4-methylpent-3-en-1-yl)-4-oxo-6-phenyl-3,4-dihydro-2*H*-thiopyran-5-carboxylate (**3ar**)

¹H MNR (400 MHz, CDCl₃)

¹³C NMR{¹H} (101 MHz, CDCI₃)

wqy 100	20190521-POS-D 39 (0.168) 34	59.1682					1: TOF MS ES+ 9.38e3
*							
]							
0			 	 ! 359.2202	 	 	

WQY-20	190521-POS-G 44 (0.185)		353.1206						1: TOF MS ES+ 1.42e4
1									
]									
0	353.100	353.110	353.120	353.130	353.140	353.150	353.160	353.170	353.180 m/z

Ethyl 2-cyclopropyl-2-methyl-4-oxo-6-phenyl-3,4-dihydro-2*H*-thiopyran-5-carboxylate (**3at**) ¹H MNR (400 MHz, CDCI₃)

Ethyl 4-oxo-2-phenyl-1-thiaspiro[5.5]undeca-2,7-diene-3-carboxylate (**3ay**) ¹H MNR (400 MHz, CDCl₃)

wqy-20190	0521-POS-H 42 (0.1	178)			329.1201						1: TOF	MS ES+ 6.21e3
-												
· *												
0	329.100	329.105	329.110	329.115	329.120	329.125	329.130	329.135	329.140	329.145	329.150	m/z

Ethyl 3-methyl-4-oxo-6-phenyl-3,4-dihydro-2*H*-thiopyran-5-carboxylate (**3aac**) ¹H MNR (400 MHz, CDCI₃)

WQY-20190 100-	0530-POS-M 40 (0.171)				277.0891								1	: TOF MS ES+ 3.34e3
-														
*														
-	!	! 277.0602							!				I	
04	277.040 277.050	277.060	277.070	277.080	277.090	277.100	277.110	277.120	277.130	277.140	277.150	277.160	277.1685 277.170	m/z

Ethyl 2,3-dimethyl-4-oxo-6-phenyl-3,4-dihydro-2*H*-thiopyran-5-carboxylate (**3aad**, dr = 2:1) ¹H MNR (400 MHz, CDCl₃)

WQY-2019053	0-POS-M 36 (0.157	7)					291	1054						1: 1	OF MS ES+ 8.95e3
*															
	! 291.0426	! 291.054	14									! 291.1540	5	291.1744	
291.030	291.040 2	91.050	291.060	291.070	291.080	291.090	291.100	291.110	291.120	291.130	291.140	291.150	291.160	291.170	m/z

Ethyl 3-methyl-4-oxo-2,6-diphenyl-3,4-dihydro-2*H*-thiopyran-5-carboxylate (**3aae**-single isomer)

¹H MNR (400 MHz, CDCl₃)

Ethyl 3-methyl-4-oxo-2,6-diphenyl-3,4-dihydro-2*H*-thiopyran-5-carboxylate (**3aae**, dr = 2:1) ¹H MNR (400 MHz, CDCl₃)

¹³C NMR{¹H} (101 MHz, CDCI₃)

Ethyl 3-methyl-4-oxo-2,6-diphenyl-3,4-dihydro-2*H*-thiopyran-5-carboxylate (**3aae**, diastereomers repurified)

¹H MNR (400 MHz, CDCI₃)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

Ethyl 6-(benzo[*d*][1,3]dioxol-5-yl)-2,2-dimethyl-4-oxo-3,4-dihydro-2*H*-thiopyran-5-carboxylate (**3ba**)

¹H MNR (400 MHz, CDCI₃)

WQY-20190 100	521-POS-I 57 (0	.243)				335.	0949					1: TOF MS ES+ 6.11e3
-												
*												
<u>ما</u> ــــ	335.040	335.0465 335.050	335.060	335.070	335.080	335.090	335.100	335.110	335.120	335.130	335.140	335.1540 335.150 335.150

Ethyl 6-(4-methoxyphenyl)-2,2-dimethyl-4-oxo-3,4-dihydro-2*H*-thiopyran-5-carboxylate (**3ca**) ¹H MNR (400 MHz, CDCI₃)

¹³C NMR{¹H} (101 MHz, CDCI₃)

WQY-201	190521-POS-J 40 ((0.171)		321.1158								1: TOF	MS ES+ 4.19e3
]													
ملب	321.110	321.112	321.114	321.116	321.118	321.120	321.122	321.124	321.126	321.128	321.130		m/z

Ethyl 2,2-dimethyl-4-oxo-6-(p-tolyl)-3,4-dihydro-2*H*-thiopyran-5-carboxylate (**3da**) ¹H MNR (400 MHz, CDCl₃)

¹³C NMR{¹H} (101 MHz, CDCI₃)

Ethyl 6-(4-fluorophenyl)-2,2-dimethyl-4-oxo-3,4-dihydro-2*H*-thiopyran-5-carboxylate (**3ea**) ¹H MNR (400 MHz, CDCI₃)

¹³C NMR{¹H} (101 MHz, CDCI₃)

¹⁹F NMR{¹H } (376 MHz, CDCI₃)

-55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145

Ethyl 6-(3,4-dichlorophenyl)-2,2-dimethyl-4-oxo-3,4-dihydro-2*H*-thiopyran-5-carboxylate (**3ga**) ¹H MNR (400 MHz, CDCI₃)

WQY-20190521-I 100	POS-L 85 (0.343)					359.	0275				1: TOF MS ES+ 66
-											
%-											
358.995	359.000	359.005	359.010	359.015	359.020	359.025	359.030	359.035	359.040	359.045	359.050 m/z

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60

20

10

50 40 30

Ó

Ethyl 6-(4-iodophenyl)-2,2-dimethyl-4-oxo-3,4-dihydro-2*H*-thiopyran-5-carboxylate (**3ha**) ¹H MNR (400 MHz, CDCI₃)

Ethyl 2,2-dimethyl-4-oxo-6-(4-(trifluoromethyl)phenyl)-3,4-dihydro-2*H*-thiopyran-5-carboxylate (**3ia**)

¹H MNR (400 MHz, CDCl₃)

-55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145

Ethyl 6-(4-cyanophenyl)-2,2-dimethyl-4-oxo-3,4-dihydro-2*H*-thiopyran-5-carboxylate (**3ja**) ¹H MNR (400 MHz, CDCI₃)

WQY-20190521-POS-K 51 (0.222) 100-	364.0568	1: TOF MS ES+ 788
8- -		
0 354.052 354.054 354.	056 354.068 354.060 354.062 354.064	

Ethyl 6-(furan-2-yl)-2,2-dimethyl-4-oxo-3,4-dihydro-2*H*-thiopyran-5-carboxylate (**3ka**) ¹**H MNR (400 MHz, CDCI**₃)

WQY-20190521 100-	-POS-J 42 (0.178	3)			281.0847							1: TC	OF MS ES+ 2.75e3
-													
*													
-													
<u>البب</u>										·	281.1166		m/z
	281.065	281.070	281.075	281.080	281.085	281.090	281.095	281.100	281.105	281.110	281.115	281.120	

Ethyl 2,2-dimethyl-4-oxo-6-(thiophen-2-yl)-3,4-dihydro-2*H*-thiopyran-5-carboxylate (**3la**) ¹H MNR (400 MHz, CDCI₃)

¹³C NMR{¹H} (101 MHz, CDCI₃)

Ethyl 2,2-dimethyl-6-(naphthalen-2-yl)-4-oxo-3,4-dihydro-2*H*-thiopyran-5-carboxylate (**3ma**) ¹H MNR (400 MHz, CDCI₃)

WQY-20190 100 ₇	0521-POS-H 43 (0.182)	379.0	770			1: TOF MS ES+ 4.45e3
-						
-						
0 378	!!!! 8.4652 378.5758 378.6450 378.6794	378.9783 379.0390	379.1311 379.1660 379.2335 379.3395	379.5680	! ! 379.6996 379.869	7 380.0329
-		379				380

Ethyl (10R,13S)-10,13-Dimethyl-4'-oxo-6'-phenyl-1,2,3',4',7,8,9,10,11,12,13,14,15,16tetradecahydrospiro[cyclopenta[a]phenanthrene-17,2'-thiopyran]-5'-carboxylate (13) ¹H MNR (400 MHz, CDCl₃)

¹³C NMR{¹H} (101 MHz, CDCI₃)

Diethyl 2,3-Dibenzoylbut-2-enedioate (4) ¹H MNR (400 MHz, CDCI₃)

¹³C NMR{¹H} (101 MHz, CDCI₃)

Phosphine sulfide (5) ¹H MNR (400 MHz, CDCI₃)

³¹P NMR{¹H} (162 MHz, CDCI₃)

S**139** / S**147**

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

14. Copies of NMR Spectra of the Crude Reaction Mixtures in KIE Studies

Reaction 1 (15 min) ¹H MNR (400 MHz, CDCl₃)

Reaction 1 (20 min) ¹H MNR (400 MHz, CDCl₃)

Reaction 1 (40 min) ¹H MNR (400 MHz, CDCI₃)

Reaction 1 (50 min) ¹H MNR (400 MHz, CDCI₃)

Reaction 1 (60 min) ¹H MNR (400 MHz, CDCI₃)

Reaction 2 (10 min) ¹H MNR (400 MHz, CDCI₃)

Reaction 2 (15 min) ¹H MNR (400 MHz, CDCI₃)

Reaction 2 (20 min) ¹H MNR (400 MHz, CDCI₃)

Reaction 2 (40 min) ¹H MNR (400 MHz, CDCI₃)

Reaction 2 (50 min) ¹H MNR (400 MHz, CDCI₃)

Reaction 2 (60 min) ¹H MNR (400 MHz, CDCI₃)

