Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2021

Supplementary information for

Catalytic Asymmetric Synthesis of 5-Membered Alicyclic α-Quaternary β-Amino Acids via [3+2]-Photocycloaddition of α-Substituted Acrylates

Yuto Kimura,¹ Daisuke Uraguchi,² Takashi Ooi*,¹

¹ Institute of Transformative Bio-Molecules (WPI-ITbM) and Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8601, Japan ² Institute for Catalysis, Hokkaido University, Sapporo 001-0021, Japan

tooi@chembio.nagoya-u.ac.jp

1	General Information		S2
2	Experimental Section		
	2.1	Preparation and Characterization of Chiral Iridium Borates	S3
	2.2	Synthesis and Characterization of α -Substituted Methyl Acrylates	S5
	2.3	Asymmetric [3+2] Photocycloaddition Reaction	S6
	2.4	Deprotection and Sulfonylation of 4a	S11
	2.5	Crystallographic Analysis of 4e	S13
3	References		S15
4	Copies of ¹ H, ¹³ C, and ¹⁹ F NMR Spectra		S16
5	Copies of HPLC Traces		S40

1. General Information

Infrared spectra were recorded on a Shimadzu IRAffinity-1 spectrometer. ¹H NMR spectra were recorded on a JEOL JNM-ECS400 (400 MHz) and JEOL JNM-ECA500II (500 MHz) spectrometers. Chemical shifts are reported in ppm from tetramethylsilane (0.0 ppm) resonance as the internal standard ((CD₃)₂CO and CDCl₃). Data are reported as follows: chemical shift, integration, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, quin = quintet, sex = sextet, sept = septet, m = multiplet, br = broad) and coupling constants (Hz). 13 C NMR spectra were recorded on a JEOL JNM-ECS400 (101 MHz), JEOL JNM-ECA500II (126 MHz), and JEOL JNM-ECS600 (151 MHz) spectrometers with complete proton decoupling. Chemical shifts are reported in ppm from the solvent resonance as the internal standard ((CD₃)₂CO; 29.84 ppm, CDCl₃; 77.16 ppm). ¹⁹F NMR spectra were recorded on a JEOL JNM-ECA500II (471 MHz) spectrometer. Chemical shifts are reported in ppm from benzotrifluoride (-64.0 ppm) resonance as the external standard. ¹¹B NMR spectra were recorded on a JEOL JNM-ECA500II (161 MHz) spectrometer with complete proton decoupling. Chemical shifts are reported in ppm from BF₃·OEt₂ resonance (0.0 ppm) as the external standard. Optical rotations were measured on a HORIBA SEPA-500 The high resolution mass spectra were measured on Thermo Fisher Scientific Exactive (ESI). polarimeter. Analytical thin layer chromatography (TLC) was performed on Merck precoated TLC plates (silica gel 60 GF₂₅₄, 0.25 mm). Manual flash column chromatography was conducted on silica gel 60N (spherical, 40–50 µm; Kanto Chemical Co., Inc.), PSQ60AB (spherical, av. 55 µm; Fuji Silysia Chemical ltd.), Silica gel 60 (Merck 1.09385.9929, 230-400 mesh), and CHROMATOREX NH-DM-2035 (spherical, av. 60 µm; Fuji Silysia Chemical ltd.). Enantiomeric excesses were determined by HPLC analysis using chiral columns [ϕ 4.6 mm x 250 mm, DAICEL CHIRALPAK IB-3 (IB3), CHIRALPAK IB N-3 (IBN3), CHIRALPAK IC-3 (IC3), and CHIRALCEL OZ-3 (OZ3)] with hexane (H), 2-propanol (ⁱPrOH), and ethanol (EtOH) as eluent.

Tetrahydrofurane (THF), dichloromethane (CH₂Cl₂), toluene, and acetonitrile (MeCN) were supplied from Kanto Chemical Co., Inc. as "Dehydrated" and further purified by passing through neutral alumina under nitrogen atmosphere. α -Substituted methyl acrylates were synthesized by following the literature procedures.¹ Other simple chemicals were purchased and used as such.

2. Experimental Section

2.1 Characterization of a Chiral Iridium Borate $[rac-Ir] \cdot 1$ (TRIP = 2,4,6-^{*i*}Pr₃C₆H₂)

The synthesis was implemented by following the literature procedure² on 0.14 mmol scale and purification was performed by column chromatography on silica gel (ethyl acetate (EA)/H = 3:100 to 1:1 as eluent) to afford 1b HNEt₃ (0.22 g, 0.12 mmol, 87%) as an off-white solid. 1b·HNEt₃ (Ar = 3.5-"Pent₂C₆H₃): ¹H NMR (500 MHz, CDCl₃) δ 9.64 (1H, br), 7.87 (2H, d, J = 9.0 Hz), 7.77 (2H, d, J = 9.0 Hz), 7.66 (2H, s), 7.45 (4H, s), 7.05₃ (2H, s), 7.04₈ (2H, d, *J* = 9.0 Hz), 7.04 (2H, s), 6.90 (2H, s), 6.86 (2H, d, *J* = 9.0 Hz), 6.49 (2H, s), 6.33 (4H,

s), 2.94 (2H, sept, J = 6.9 Hz), 2.64 (2H, sept, J = 6.9 Hz), 2.63-2.55 (2H, m), 2.58 (8H, t, J = 7.3 Hz), 2.28-2.12 (6H, m), 2.10-2.01 (4H, m), 2.00-1.90 (4H, m), 1.59 (8H, quin, J = 7.3 Hz), 1.39-1.31 (8H, m), 1.31-1.26 (16H, m), 1.30 (12H, d, J = 6.9 Hz), 1.24 (8H, sex, J = 7.3 Hz), 1.20-1.14 (8H, m), 1.13 (6H, d, J = 6.9 Hz), 1.09 (6H, d, J = 6.9 Hz),0.93₃ (6H, d, *J* = 6.9 Hz), 0.92₆ (6H, d, *J* = 6.9 Hz), 0.85 (12H, t, *J* = 7.3 Hz), 0.83 (12H, t, *J* = 7.3 Hz), 0.61 (9H, t, J = 7.5 Hz); ¹³C NMR (126 MHz, CDCl₃) δ 177.7, 148.0, 146.9, 146.5, 144.9, 144.2, 142.3, 141.3, 137.9, 137.2, 137.1, 132.4, 132.0, 130.2, 128.9, 128.0, 127.79, 127.75, 127.2, 126.9, 125.3, 125.2, 120.63, 120.59, 85.8, 45.7, 36.3, 35.7, 34.4, 31.8, 31.7, 31.5, 31.3, 30.4, 30.3, 24.6, 24.5, 24.4, 24.2₂, 24.1₉, 23.9, 22.7, 14.2, 8.2, two carbon atoms were not found probably due to overlapping.; ¹¹B NMR (160 MHz, CDCl₃) δ 11.0; IR (film): 2927, 2855, 1635, 1590, 1487, 1409, 1396, 1122, 1063, 909 cm⁻¹; HRMS (ESI) Calcd for C₁₁₈H₁₅₆N₂O₄B⁻ ([M-HNEt₃]⁻) 1676.2153. Found 1676.2155; $[\alpha]_D^{22}$ –91.0 (*c* = 5.4, CHCl₃).

The synthesis was implemented by following the literature procedure² on 0.11 mmol scale and purification by column chromatography on silica gel (EA/H = 1:10 to 100:0 as eluent) afforded 1c·HNEt₃ (0.15 g, 0.10 mmol, 93%) as an off-white solid. 1c·HNEt₃ (Ar = 3,5-(MeO)₂C₆H₃): ¹H NMR (500 MHz, CDCl₃) δ 9.08 (1H, br), 7.78

(2H, d, J = 8.4 Hz), 7.68 (2H, d, J = 8.4 Hz), 7.57 (2H, s), 7.03 (2H, s), 7.01 (2H, s), 6.97 (2H, d, *J* = 8.4 Hz), 6.85 (2H, d, *J* = 8.4 Hz), 6.78 (4H, s), 6.17 (2H, s), 6.13 (4H, s), 5.95 (2H, s), 3.47 (12H, s), 3.26(12H, s), 2.92(2H, sept, J = 6.8 Hz), 2.55(2H, sept, J = 6.8 Hz), 2.49(2H, sept, J = 6.8 Hz), 2.43-2.33(6H, m),1.28 (12H, d, J = 6.8 Hz), 1.11 (6H, d, J = 6.8 Hz), 1.03 (6H, d, J = 6.8 Hz), 0.90 (6H, d, J = 6.8 Hz), 0.89 (6H, d, J = 6.8 Hz), 0.61 (9H, t, J = 7.3 Hz); ¹³C NMR (126 MHz, CDCl₃) δ 176.9, 160.6, 159.7, 148.1, 146.9, 146.4, 146.0, 137.6, 137.0, 136.8, 132.2, 129.7, 129.2, 128.1, 128.0, 127.4, 127.0, 120.7, 120.6, 105.9, 105.6, 99.0, 98.9, 85.6, 55.3, 55.1, 46.2, 34.4, 30.4, 24.5, 24.3₁, 24.2₆, 24.2₄, 24.1₈, 23.9, 8.1, two carbon atoms were not found probably due to overlapping.; ¹¹B NMR (160 MHz, CDCl₃) δ 10.6; IR (film): 2959, 2906, 1651, 1591, 1452, 1414, 1343, 1288, 1142, 1038, 910 cm⁻¹; HRMS (ESI) Calcd for C₈₆H₉₂N₂O₁₂B⁻ ([M-HNEt₃]⁻) 1355.6738. Found 1355.6745; [α]_D²² -69.4 $(c = 6.0, \text{CHCl}_3).$

Representative Procedure for the Preparation of Chiral Iridium Borate [rac-Ir] 1

A solution of iridium chloride [rac-Ir]·Cl (47.6 mg, 0.047 mmol)³ and 1b·HNEt₃ (117.0 mg, 0.066 mmol) in CH₂Cl₂ (10.0 mL) was vigorously washed with distilled water (15.0 mL) four times. The organic phase was dried over Na₂SO₄ and concentrated under vacuum to afford [*rac*-Ir]·**1b** (0.17 g, 0.064 mmol) as a yellow solid, which was used as a catalyst for the asymmetric [3+2] radical cycloaddition reaction without further purification. [rac-Ir]·1b (Ar = 3,5-"Pent₂C₆H₃): ¹H NMR (500 MHz, CDCl₃) mixture of diastereomers δ 8.48 (1H, dd, $J_{\text{H-H}}$ = 8.6 Hz, $J_{\text{H-F}}$ = 2.0 Hz), 8.44 (1H, dd, *J*_{H-H} = 8.6 Hz, *J*_{H-F} = 2.0 Hz), 8.34 (2H, s), 8.01 (1H, d, *J* = 8.6 Hz), 7.96 (1H, d, *J* = 8.6 Hz), 7.92 (2H, d, J = 5.7 Hz), 7.78 (4H, s), 7.77 (2H, d, J = 8.8 Hz), 7.71 (2H, d, J = 8.8 Hz), 7.63 (1H, dd, J = 5.7, 1.5 Hz), 7.62 (2H, s), 7.59 (1H, dd, J = 5.7, 1.5 Hz), 7.29 (2H, s), 7.20 (2H, d, J = 8.8 Hz), 7.06 (2H, s), 7.04 (2H, s), 6.85 (2H, d, *J* = 8.8 Hz), 6.82 (2H, s), 6.64 (1H, ddd, *J*_{H-F} = 12.1, 9.3 Hz, *J*_{H-H} = 2.3 Hz), 6.60 (1H, ddd, *J*_{H-F} = 12.1, 9.3 Hz, $J_{\text{H-H}} = 2.3$ Hz), 6.40 (2H, s), 6.20 (4H, s), 5.61 (1H, dd, $J_{\text{H-F}} = 7.9$ Hz, $J_{\text{H-H}} = 2.3$ Hz), 5.60 (1H, dd, $J_{\text{H-F}} = 7.9$ Hz, $J_{H-H} = 2.3$ Hz), 2.94 (2H, sept, J = 6.8 Hz), 2.77 (2H, sept, J = 6.8 Hz), 2.68 (2H, sept, J = 6.8 Hz), 2.61 (8H, t, J = 7.1 Hz), 2.00 (4H, dt, J = 13.8, 7.1 Hz), 1.82 (4H, dt, J = 13.8, 7.1 Hz), 1.61 (8H, quin, J = 7.1 Hz), 1.41 (9H, s), 1.39 (9H, s), 1.35-1.30 (8H, m), 1.31 (12H, d, J = 6.8 Hz), 1.30-1.24 (16H, m), 1.19 (8H, sex, J = 7.1 Hz), 1.15-1.08(8H, m), 1.13 (6H, d, *J* = 6.8 Hz), 1.09 (6H, d, *J* = 6.8 Hz), 0.96 (6H, d, *J* = 6.8 Hz), 0.93 (6H, d, *J* = 6.8 Hz), 0.83 (12H, t, J = 7.1 Hz), 0.78 (12H, t, J = 7.1 Hz); ¹³C NMR (126 MHz, CDCl₃) mixture of diastereomers δ 178.2, 168.1 $(d, J_{C-F} = 6.0 \text{ Hz}), 166.7, 165.1 \text{ (ddd}, J_{C-F} = 263.0, 12.7, 3.7 \text{ Hz}), 155.3, 153.8 \text{ (d}, J_{C-F} = 6.0 \text{ Hz}), 150.7, 150.6, 147.5, 147.5, 150.6, 150.6, 150$ $147.2, 146.9_2, 146.9_0, 144.5, 144.2$ (d, $J_{C-F} = 4.9$ Hz), 143.0, 140.8, 140.6, 139.4, 137.8, 137.2, 137.1, 136.2, 132.7, 131.9, 130.9, 128.6, 128.4, 128.3, 127.7, 127.6, 127.1, 126.9₀, 126.8₆, 126.4, 126.3, 126.0₃ (q, J_{C-F} = 35.1 Hz), 125.9₈ $(d, J_{C-F} = 35.1 \text{ Hz}), 125.94, 125.89, 125.8, 124.42 (d, J_{C-F} = 20.5 \text{ Hz}), 124.35 (d, J_{C-F} = 20.7 \text{ Hz}), 121.7 (q, J_{C-F} = 273.3 \text{ Hz})$ Hz), 121.6, 120.5, 120.4, 114.1 (d, $J_{C-F} = 18.1$ Hz), 100.4₂ (t, $J_{C-F} = 26.6$ Hz), 100.3₇ (t, $J_{C-F} = 26.6$ Hz), 85.4, 36.4, 36.2, 35.6, 34.4, 31.8, 31.6, 31.5, 31.3, 30.3, 24.8, 24.5, 24.4, 24.2₃, 24.1₈, 23.9, 27.8, 14.3, 14.2, 57 carbon atoms were not found probably due to overlapping.; ¹⁹F NMR (470 MHz, CDCl₃) mixture of diastereomers δ –62.8, –100.3, -100.5, -104.6, two fluorine atoms were not found probably due to overlapping.; ¹¹B NMR (160 MHz, CDCl₃) *mixture of diastereomers* δ 11.0 (overlapped); IR (film): 2931, 1653, 1602, 1569, 1465, 1397, 1330, 1298, 1143, 1112, 1027, 903 cm⁻¹.

[*rac*-Ir]·1c (Ar = 3,5-(MeO)₂C₆H₃): ¹H NMR (500 MHz, CDCl₃) *mixture of diastereomers* δ 8.46-8.41 (2H, m), 8.36 (2H, s), 8.00 (2H, d, *J* = 9.0 Hz), 7.94₂ (1H, d, *J* = 6.2 Hz), 7.93₈ (1H, d, *J* = 6.2 Hz), 7.70 (2H, d, *J* = 8.6 Hz), 7.65 (2H, d, *J* = 8.6 Hz), 7.63 (1H, dd, *J* = 6.2, 1.6 Hz), 7.61 (1H, dd, *J* = 6.2, 1.6 Hz), 7.54 (2H, s), 7.33₃ (2H, s), 7.33₀ (4H, d, J = 2.2 Hz), 7.13 (2H, d, J = 8.6 Hz), 7.06 (2H, s), 7.03 (2H, s), 6.85 (2H, d, J = 8.6 Hz), 6.65 (2H, t, $J_{H-F} = 10.3$ Hz), 6.20 (4H, d, J = 2.2 Hz), 6.19 (2H, t, J = 2.2 Hz), 5.91 (2H, t, J = 2.2 Hz), 5.62 (2H, dd, $J_{H-F} = 8.0$ Hz, $J_{H-F} = 2.0$ Hz), 3.71 (12H, s), 3.19 (12H, s), 2.94 (2H, sept, J = 6.8 Hz), 2.73 (2H, sept, J = 6.8 Hz), 2.59 (2H, sept, J = 6.8 Hz), 1.39₁ (9H, s), 1.38₇ (9H, s), 1.31 (12H, d, J = 6.8 Hz), 1.17 (6H, d, J = 6.8 Hz), 1.06 (6H, d, J = 6.8 Hz), 1.03 (6H, d, J = 6.8 Hz), 0.92 (6H, d, J = 6.8 Hz); ¹³C NMR (126 MHz, CDCl₃) *mixture of diastereomers* δ 176.9, 168.2 (d, $J_{C-F} = 6.0$ Hz), 168.1 (d, $J_{C-F} = 6.0$ Hz), 166.7, 165.1 (dd, $J_{C-F} = 263.1$, 12.7 Hz), 162.8 (dd, $J_{C-F} = 265.5$, 12.7 Hz), 159.8, 159.5, 155.2₈, 155.2₆, 153.9 (d, $J_{C-F} = 6.0$ Hz), 150.7, 150.6, 148.6, 147.9, 147.7, 147.2, 146.7, 144.3 (d, $J_{C-F} = 35.1$ Hz), 124.3 (d, $J_{C-F} = 20.5$ Hz), 124.2 (d, $J_{C-F} = 20.5$ Hz), 121.7 (q, $J_{C-F} = 273.3$ Hz), 121.6₃, 121.6₁, 120.6, 120.5, 114.1 (d, $J_{C-F} = 18.1$ Hz), 106.1, 105.8, 100.4 (t, $J_{C-F} = 26.6$ Hz), 99.6, 99.5, 85.4, 55.4, 54.9, 36.2, 34.3, 30.3_4, 30.2_8, 24.6, 24.5, 24.3, 24.2_4, 24.1_8, 23.9, 50 carbon atoms were not found probably due to overlapping.; ¹⁹F NMR (470 MHz, CDCl₃) *mixture of diastereomers* $\delta -62.8, -100.5, -104.7$, three fluorine atoms were not found probably due to overlapping.; 118 NMR (160 MHz, CDCl₃) *mixture of diastereomers* $\delta -62.8, -100.5, -104.7$, three fluorine atoms were not found probably due to overlapping.; 128 NMR (160 MHz, CDCl₃) *mixture of diastereomers* $\delta -62.8, -100.5, -104.7$, three fluorine atoms were not found probably due to overlapping.; 128 NMR (160 MHz, CDCl₃) *mixture of diastereomers* $\delta -62.8, -100.5, -104.7,$ three fluorine atoms were not found probably due to overlapping.; 140 MHz, CDCl₃) *mixture of diastereomers* $\delta -62.8, -100.5, -104.7,$ three fluorine atoms were not found probably due

2.2 Synthesis and Characterization of α-Substituted Methyl Acrylates

 $\begin{array}{c} \text{Methyl 2-(4-($ *tert*-butyl)benzyl)acrylate 3e: The title compound was prepared from diethyl malonate and 4-*tert* $-butylbenzyl bromide by following the literature procedure. ^{1a} ¹H NMR (500 MHz, CDCl₃) <math>\delta$ 7.31 (2H, d, J = 8.5 Hz), 7.13 (2H, d, J = 8.5 Hz), 6.22 (1H, d, J = 1.4 Hz), 5.47 (1H, q, J = 1.4 Hz), 3.74 (3H, s), 3.60 (2H, brs), 1.30 (9H, s); ¹³C NMR (126 MHz, CDCl₃) δ 167.6, 149.3, 140.3, 135.7, 128.8, 126.3, 125.5, 52.0, 37.6, 34.5, 31.5; IR (film): 2960, 2867, 1719, 1631, 1517, 1440, 1193, 1137, 1110, 947, 813 cm⁻¹; HRMS (ESI) Calcd for C₁₅H₂₀O₂Na⁺ ([M+Na]⁺) 255.1356. Found 255.1355.

Preparation of methyl 5-(tert-butyldimethylsilyloxy)-2-methylenepentanoate 3i

To a solution of methyl 5-hydroxy-2-methylenepentanoate (0.14 g, 1.0 mmol)^{1d} in CH₂Cl₂ (5.0 mL) were added imidazole (0.17 g, 2.5 mmol) and 'BuMe₂SiCl (0.30 g, 2.0 mmol) at 0 °C. After being stirred for 20 min, the mixture was warmed to ambient temperature and stirred for 21 h. The reaction was quenched by adding water and the aqueous phase was extracted with CH₂Cl₂ three times. The combined organic phases were dried over Na₂SO₄, filtered, and concentrated. Purification of the residue was performed by column chromatography on silica gel (H/Et₂O = 100:1 to 10:1 as eluent) to afford methyl 5-(*tert*-butyldimethylsilyloxy)-2-methylenepentanoate **3i** (0.23 g, 0.89 mmol, 89%) as a colorless oil. **Methyl 5-(***tert***-butyldimethylsilyloxy)-2-methylenepentanoate 3i:** ¹H NMR (500 MHz, CDCl₃) δ 6.15 (1H, dt, J = 1.3, 0.5 Hz), 5.55 (1H, q, J = 1.3 Hz), 3.75 (3H, s), 3.63 (2H, t, J = 6.4 Hz), 2.37 (2H, td, J = 7.8, 1.3 Hz), 1.69 (2H, tt, J = 7.8, 6.4 Hz), 0.90 (9H, s), 0.05 (6H, s); ¹³C NMR (126 MHz, CDCl₃) δ 167.9, 140.4, 125.0, 62.5, 51.9, 31.6, 28.4, 26.1, 18.5, -5.2; IR (film): 2950, 2849, 1724, 1477, 1250, 1149, 1096, 1066, 946, 836 cm⁻¹; HRMS (ESI) Calcd for C₁₃H₂₆O₃SiNa⁺ ([M+Na]⁺) 281.1543. Found 281.1541.

Preparation of tert-butyl 3-(2-(methoxycarbonyl)allyl)-1H-indole-1-carboxylate 31

To a solution of methyl 2-((1*H*-indol-3-yl)methyl)acrylate (0.68 g, 3.1 mmol)^{1e} in MeCN (31.0 mL) were added DMAP (47.6 mg, 0.39 mmol), NEt₃ (0.52 mL, 3.8 mmol), and Boc₂O (1.73 mL, 7.5 mmol) at 0 °C. After being stirred for 1.5 h at 0 °C, the reaction mixture was allowed to warm to ambient temperature and stirred for 4 h. The reaction was quenched by adding a saturated aqueous solution of NH₄Cl at 0 °C and the aqueous phase was extracted with CH₂Cl₂ three times. The combined organic phases were dried over Na₂SO₄, filtered, and concentrated. Purification of the residue was performed by column chromatography on silica gel (H/EA = 50:1 to 5:1 as eluent) to afford *tert*-butyl 3-(2-(methoxycarbonyl)allyl)-1*H*-indole-1-carboxylate **31** (0.96 g, 3.0 mmol, 97%) as a colorless sticky oil. *tert*-Butyl **3-**(2-(methoxycarbonyl)allyl)-1*H*-indole-1-carboxylate **31** (0.96 g, 3.0 mmol, 97%) as a colorless sticky oil. *tert*-Butyl **3-**(2-(methoxycarbonyl)allyl)-1*H*-indole-1-carboxylate **31** (0.96 g, 3.0 mmol, 97%) as a colorless sticky oil. *tert*-Butyl **3-**(2-(methoxycarbonyl)allyl)-1*H*-indole-1-carboxylate **31** (0.96 g, 3.0 mmol, 97%) as a colorless sticky oil. *tert*-Butyl **3-**(2-(methoxycarbonyl)allyl)-1*H*-indole-1-carboxylate **31** (0.96 g, 3.0 mmol, 97%) as a colorless sticky oil. *tert*-Butyl **3-**(2-(methoxycarbonyl)allyl)-1*H*-indole-1-carboxylate **31** (0.96 g, 3.0 mmol, 97%) as a colorless sticky oil. *tert*-Butyl **3-**(2-(methoxycarbonyl)allyl)-1*H*-indole-1-carboxylate **31** (0.96 g, 3.0 mmol, 97%) as a colorless sticky oil. *tert*-Butyl **3-**(2-(methoxycarbonyl)allyl)-1*H*-indole-1-carboxylate **31** (0.96 g, 3.0 mmol, 97%) as a colorless sticky oil. *tert*-Butyl **3-**(2-(methoxycarbonyl)allyl)-1*H*-indole-1-carboxylate **31** (0.96 g, 3.0 mmol, 97%) as a colorless sticky oil. *tert*-Butyl **3**(2-(methoxycarbonyl)allyl)-1*H*-indole-1-carboxylate **31** (0.96 g, 3.0 mmol, 97%) as a colorless sticky oil. *tert*-Butyl **3**(2-(methoxycarbonyl)allyl)-1*H*-indole-1-carboxylate **31** (0.96 g, 3.0 mmol, 97%) as

2.3 Asymmetric [3+2] Photocycloaddition Reaction

Representative Procedure for the Asymmetric [3+2] Photocycloaddition Reaction

To a mixture of 1-cyclopropyl-3-(3,5-dimethylphenyl)urea (2) (20.4 mg, 0.10 mmol) and [*rac*-Ir]·1a (13.4 mg, 0.0050 mmol) in CH₂Cl₂ (0.5 mL) was added methyl methacrylate (3a) (50.1 mg, 0.50 mmol) under argon (Ar) atmosphere. The suspension was then subjected to freeze-pump-thaw process (1 cycle) and backfilled with Ar. The reaction mixture was illuminated with blue LEDs (470 nm) at -20 °C for 12 h. After exposing to air, the reaction mixture was concentrated to give the crude residue, which was analyzed by ¹H NMR (500 MHz) to determine the diastereomeric ratio of the product (dr = 15:1). Purification of the residue by column chromatography on silica gel (H/Et₂O = 3:1 to 1:1 as eluent) afforded 4a (25.3 mg, 0.083 mmol, 83%) as a mixture of diastereomers. Enantiomeric excess of the major diastereomer of 4a was determined by HPLC analysis on chiral stationary phase. 4a: HPLC OZ3, H/ⁱPrOH = 10:1, flow rate = 1.0 mL/min, rt, λ = 254 nm, 8.3 min (minor diastereomer), 9.7 min (minor diastereomer), 13.7 min (minor enantiomer of major diastereomer), 24.3 min (major enantiomer of major diastereomer), 24.3 min (major enantiomer of major diastereomer), 24.3 min (major enantiomer of major diastereomer δ 7.67 (1H, br), 7.07 (2H, s), 6.55 (1H, s), 5.71 (1H, brd, J = 8.6 Hz), 4.53 (1H, q, J = 8.6 Hz), 3.63 (3H, s), 2.21 (1H, ddd, J = 13.0, 8.8, 6.8 Hz), 2.20 (6H, s), 2.07 (1H, ddt, J = 16.0, 8.6, 4.4 Hz), 1.74-1.64 (2H, m), 1.59-1.47 (2H, m), 1.13 (3H, s); ¹³C NMR (126 MHz, (CD₃)₂CO)

major diastereomer δ 177.8, 155.5, 141.4, 138.7, 123.9, 116.7, 58.0, 52.1, 51.7, 37.3, 31.8, 21.5, 21.4, 18.1; IR (film): 3324, 2917, 2823, 1727, 1653, 1559, 1437, 1203, 1127, 941, 854 cm⁻¹; HRMS (ESI) Calcd for C₁₇H₂₄O₃N₂Na⁺ ([M+Na]⁺) 327.1679. Found 327.1672.

4c: HPLC IC3, H/PrOH = 10:1, flow rate = 1.0 mL/min, 30 °C, λ = 254 nm, 12.7 min (minor diastereomer), 14.5 min (minor diastereomer), 21.8 min (major enantiomer of major diastereomer), 24.5 min (minor enantiomer of major diastereomer); ¹H NMR (500 MHz, (CD₃)₂CO) major diastereomer δ 7.67 (1H, br), 7.08 (2H, s), 6.56 (1H, s), 5.76 (1H, brd, *J* = 9.4 Hz), 4.55 (1H, dt, *J* = 9.4, 6.7 Hz), 3.64 (3H, s), 2.26 (1H, ddd, *J* = 12.7, 7.8, 4.8 Hz), 2.20 (6H, s), 1.97 (1H, ddt, *J* = 13.2, 9.1, 6.7 Hz), 1.86-1.78 (1H, m), 1.72-1.60 (2H, m), 1.60-1.48 (2H, m), 1.45-1.35 (1H, m), 1.31-1.19 (16H, m), 0.86 (3H, t, *J* = 6.8 Hz); ¹³C NMR (126 MHz, (CD₃)₂CO) major diastereomer δ 177.0, 155.4, 141.4, 138.7, 123.9, 116.7, 57.5, 57.3, 52.1, 33.0, 32.9, 32.6, 32.4, 31.0, 30.3, 30.2, 30.1, 26.1, 23.3, 21.5, 21.4, 14.4, one carbon atom was not found probably due to overlapping.; IR (film): 3329, 2925, 2858, 1727, 1636, 1558, 1450, 1237, 1167, 1043, 833 cm⁻¹; HRMS (ESI) Calcd for C₂₆H₄₂O₃N₂Na⁺ ([M+Na]⁺) 453.3088. Found 453.3109.

4d: HPLC IC3, H/ⁱPrOH = 10:1, flow rate = 1.0 mL/min, 30 °C, λ = 254 nm, 21.5 min (minor diastereomer), 25.7 min (minor diastereomer), 35.5 min (major enantiomer of major diastereomer), 44.1 min (minor enantiomer of major diastereomer); ¹H NMR (500 MHz,

(CD₃)₂CO) major diastereomer δ 7.72 (1H, br), 7.21 (2H, t, *J* = 7.1 Hz), 7.15 (2H, d, *J* = 7.1 Hz), 7.12 (1H, t, *J* = 7.1 Hz), 7.10 (2H, s), 6.57 (1H, s), 5.84 (1H, br), 4.60 (1H, dt, *J* = 9.0, 6.6 Hz), 3.63 (3H, s), 2.58 (1H, ddd, 13.8, 8.3, 5.7 Hz), 2.54 (1H, ddd, 13.8, 8.3, 5.7 Hz), 2.25 (1H, ddd, *J* = 12.7, 7.8, 5.3 Hz), 2.21 (6H, s), 1.98 (1H, ddt, *J* = 13.0, 8.6, 6.6 Hz), 1.92-1.83 (1H, m), 1.69-1.45 (7H, m); ¹³C NMR (126 MHz, (CD₃)₂CO) major diastereomer δ 176.9, 155.6, 143.1, 141.3, 138.8, 129.1, 129.0, 126.4, 124.0, 116.8, 57.6, 57.1, 52.1, 37.1, 33.1, 32.7, 32.4, 28.2, 21.5, 21.4; IR (film): 3301, 2957, 2862, 1725, 1640, 1559, 1448, 1230, 1153, 840 cm⁻¹; HRMS (ESI) Calcd for C₂₅H₃₂O₃N₂Na⁺ ([M+Na]⁺) 431.2305. Found 431.2322.

4e: The title compound was purified by column chromatography on silica gel topped with 4 cm of CHROMATOREX NH-DM-2035 (H/EA = 6:1 to 2:1 as eluent). HPLC IBN3, H/EtOH = 92:8, flow rate = 1.0 mL/min, rt, λ = 254 nm, 6.8 min (minor diastereomer), 9.2 min (major enantiomer of major diastereomer), 15.0 min (minor diastereomer), 16.8 min

(minor enantiomer of major diastereomer); ¹H NMR (500 MHz, (CD₃)₂CO) major diastereomer δ 7.75 (1H, br), 7.27 (2H, d, *J* = 8.3 Hz), 7.12 (2H, s), 7.08 (2H, d, *J* = 8.3 Hz), 6.57 (1H, s), 5.95 (1H, brd, *J* = 9.1 Hz), 4.58 (1H, dt, *J* = 9.1, 7.1 Hz), 3.62 (3H, s), 3.33 (1H, d, *J* = 13.5 Hz), 2.59 (1H, d, *J* = 13.5 Hz), 2.21 (6H, s), 2.16-2.07 (1H, m), 2.05-1.98 (1H, m), 1.82-1.72 (1H, m), 1.72-1.58 (3H, m), 1.27 (9H, s); ¹³C NMR (151 MHz, (CD₃)₂CO) major diastereomer δ 176.2, 155.5, 149.6, 141.4, 138.8, 136.4, 130.3, 125.8, 124.0, 116.8, 58.7, 58.5, 52.0, 37.1, 34.8, 31.7, 31.6, 31.3, 21.5, 20.7; IR (film): 3272, 2965, 1729, 1702, 1634, 1560, 1319, 1244, 1040, 814 cm⁻¹; HRMS (ESI) Calcd for C₂₇H₃₆O₃N₂Na⁺ ([M+Na]⁺) 459.2618. Found 459.2611.

Me Me N H H **4f**: HPLC IC3, H/PrOH = 10:1, flow rate = 1.0 mL/min, 30 °C, λ = 254 nm, 18.1 min (minor diastereomer), 20.9 min (minor diastereomer), 28.3 min (major enantiomer of major diastereomer), 32.5 min (minor enantiomer of major diastereomer); ¹H NMR (500 MHz,

(CD₃)₂CO) major diastereomer δ 7.73 (1H, br), 7.07 (2H, s), 6.56 (1H, s), 5.82 (1H, brd. J = 9.5 Hz), 4.52 (1H, dt, J = 9.5, 6.5 Hz), 3.63 (3H, s), 2.34 (1H, ddd, J = 12.9, 7.6, 5.6 Hz), 2.20 (6H, s), 1.92 (1H, ddt, J = 13.1, 8.9, 6.5 Hz), 1.85 (1H, dd, J = 13.6, 6.6 Hz), 1.71-1.47 (5H, m), 1.40 (1H, dd, J = 13.6, 6.6 Hz), 0.88 (3H, d, J = 6.5 Hz), 0.80 (3H, d, J = 6.5 Hz); ¹³C NMR (126 MHz, (CD₃)₂CO) major diastereomer δ 177.3, 155.6, 141.3, 138.8, 124.0, 116.8, 58.2, 57.1, 52.0, 41.3, 32.4, 32.0, 26.3, 24.6, 23.5, 21.5, 21.3; IR (film): 3324, 2958, 1734, 1701, 1644, 1559, 1457, 1244, 1038, 842 cm⁻¹; HRMS (ESI) Calcd for C₂₀H₃₀O₃N₂Na⁺ ([M+Na]⁺) 369.2149. Found 369.2144.

4g: HPLC IC3, H/ⁱPrOH = 10:1, flow rate = 1.0 mL/min, 30 °C, λ = 254 nm, 16.7 min (minor diastereomer), 19.4 min (minor diastereomer), 29.5 min (major enantiomer of major diastereomer), 34.0 min (minor enantiomer of major diastereomer); ¹H NMR (500 MHz,

(CD₃)₂CO) major diastereomer δ 7.72 (1H, br), 7.07 (2H, s), 6.56 (1H, s), 5.83 (1H, brd, J = 9.3 Hz), 5.77 (1H, ddt, J = 17.2, 10.3, 6.8 Hz), 4.96 (1H, ddt, J = 17.2, 2.3, 1.3 Hz), 4.88 (1H, ddt, J = 10.3, 2.3, 1.3 Hz), 4.56 (1H, dt, J = 9.3, 7.0 Hz), 3.64 (3H, s), 2.26 (1H, ddd, J = 13.0, 8.3, 5.3 Hz), 2.20 (6H, s), 2.01-1.93 (3H, m), 1.84 (1H, td, J = 12.4, 4.2 Hz), 1.72-1.48 (4H, m), 1.46-1.37 (1H, m), 1.37-1.23 (2H, m); ¹³C NMR (126 MHz, (CD₃)₂CO) major diastereomer δ 176.9, 155.6, 141.3, 139.4, 138.7, 124.0, 116.8, 114.9, 57.4, 52.1, 35.0, 32.9, 32.3, 25.5, 21.5, 21.3, two carbon atoms were not found probably due to overlapping.; IR (film): 3345, 2916, 2847, 1728, 1638, 1560, 1456, 1272, 1236, 1193, 1170, 839 cm⁻¹; HRMS (ESI) Calcd for C₂₁H₃₀O₃N₂Na⁺ ([M+Na]⁺) 381.2149. Found 381.2142.

Me H: HPLC IC3, H/ⁱPrOH = 10:1, flow rate = 1.0 mL/min, 30 °C, λ = 254 nm, 18.5 min (minor diastereomer), 22.2 min (minor diastereomer), 30.4 min (minor enantiomer of major diastereomer), 33.8 min (major enantiomer of major diastereomer); ¹H NMR (500 MHz, (CD₃)₂CO) major diastereomer δ 7.73 (1H, br), 7.07 (2H, s), 6.56 (1H, s), 5.88 (1H, brd, J = 8.8 Hz), 4.58 (1H, dt, J

= 8.8, 6.7 Hz), 3.65 (3H, s), 3.58 (1H, dt, J = 10.7, 6.4 Hz), 3.53 (1H, dt, J = 10.7, 6.4 Hz), 2.26 (1H, ddd, J = 13.1,

8.1, 5.1 Hz), 2.20 (6H, s), 2.00 (1H, ddt, J = 12.9, 8.5, 6.7 Hz), 1.92 (1H, td, J = 12.5, 4.3 Hz), 1.83-1.72 (1H, m), 1.72-1.49 (6H, m); ¹³C NMR (126 MHz, (CD₃)₂CO) major diastereomer δ 176.7, 155.6, 141.2, 138.8, 124.0, 116.8, 57.5, 56.9, 52.2, 46.2, 33.0, 32.2, 21.5, 21.4, two carbon atoms were not found probably due to overlapping.; IR (film): 3317, 2952, 2868, 1724, 1641, 1561, 1428, 1276, 1235, 1162, 835 cm⁻¹; HRMS (ESI) Calcd for C₁₉H₂₇O₃N₂³⁵ClNa⁺ ([M+Na]⁺) 389.1602. Found 389.1595.

Me TBSQ CO₂Me 4i: HPLC IBN3, H/PrOH = 10:1, flow rate = 1.0 mL/min, rt, λ = 254 nm, 6.9 min (minor diastereomer), 8.9 min (major enantiomer of major diastereomer), 23.3 min (minor diastereomer), 24.7 min (minor enantiomer of major diastereomer); ¹H NMR (500 MHz, (CD₃)₂CO) major diastereomer δ 7.71 (1H, br), 7.07 (2H, s), 6.55 (1H, s), 5.83 (1H, br), 4.56 (1H, dt, *J* = 9.3, 6.6 Hz), 3.64 (3H, s), 3.63-3.52 (2H, m), 2.27 (1H, ddd, *J* = 13.1, 8.1, 5.4 Hz), 2.20 (6H, s), 1.98 (1H, ddt, *J* = 13.1, 8.3, 6.6 Hz), 1.84 (1H, td, *J* = 10.4, 2.7 Hz), 1.73-1.60 (2H, m), 1.60-1.35 (5H, m), 0.86 (9H, s), 0.02₂ (3H, s), 0.01₅ (3H, s); ¹³C NMR (126 MHz, (CD₃)₂CO) major diastereomer δ 176.9, 155.5, 141.3, 138.7, 123.9, 116.8, 64.0, 57.4₀, 57.3₅, 52.1, 32.8, 32.3, 29.7, 29.1, 26.3, 21.5, 21.3, 18.8, -5.1₀, -5.1₃; IR (film): 3314, 2952, 2857, 1730, 1654, 1560, 1460, 1243, 1194, 1097, 832 cm⁻¹; HRMS (ESI) Calcd for C₂₅H₄₃O₄N₂Si⁺ ([M+H]⁺) 463.2987. Found 463.3006.

4j: The title compound was purified by column chromatography on silica gel topped with 4 cm of CHROMATOREX NH-DM-2035 (H/EA = 6:1 to 2:1 as eluent). HPLC IC3, H/ⁱPrOH = 85:15, flow rate = 1.0 mL/min, 30 °C, λ = 254 nm, 18.1 min (minor diastereomer), 21.1 min

(minor diastereomer), 37.3 min (minor enantiomer of major diastereomer), 42.1 min (major enantiomer of major diastereomer); ¹H NMR (500 MHz, (CD₃)₂CO) major diastereomer δ 7.75 (1H, br), 7.07 (2H, s), 6.56 (1H, s), 5.84 (1H, brd, J = 9.0 Hz), 4.55 (1H, dt, J = 9.0, 6.6 Hz), 3.64 (3H, s), 3.30 (1H, dt, J = 9.4, 6.3 Hz), 3.27 (1H, dt, J = 9.4, 6.3 Hz), 3.21 (3H, s), 2.26 (1H, ddd, J = 12.9, 7.9, 5.4 Hz), 2.20 (6H, s), 1.98 (1H, ddt, J = 13.0, 8.3, 6.6 Hz), 1.88-1.80 (1H, m), 1.72-1.60 (2H, m), 1.60-1.40 (5H, m); ¹³C NMR (126 MHz, (CD₃)₂CO) major diastereomer δ 176.9, 155.6, 141.3, 138.7, 124.0, 116.8, 73.4, 58.3, 57.5, 57.0, 52.1, 32.9, 32.3, 26.3, 21.5, 21.3, one carbon atom was not found probably due to overlapping.; IR (film): 3327, 2944, 2869, 1724, 1641, 1569, 1450, 1278, 1237, 1209, 1117, 839 cm⁻¹; HRMS (ESI) Calcd for C₂₀H₃₀O₄N₂Na⁺ ([M+Na]⁺) 385.2098. Found 385.2094.

4k: HPLC IBN3, H/EtOH = 94:6, flow rate = 1.0 mL/min, rt, λ = 254 nm, 15.4 min (minor diastereomer), 21.6 min (major enantiomer of major diastereomer), 30.6 min (minor enantiomer of major diastereomer), 33.5 min (minor diastereomer); ¹H NMR (500 MHz,

(CD₃)₂CO) major diastereomer δ 7.99 (2H, d, *J* = 7.5 Hz), 7.71 (1H, br), 7.59 (1H, t, *J* = 7.5 Hz), 7.44 (2H, t, *J* = 7.5 Hz), 7.07 (2H, s), 6.55 (1H, s), 5.88 (1H, br), 4.61 (1H, q, *J* = 7.5 Hz), 4.26 (2H, t, *J* = 6.3 Hz), 3.65 (3H, s), 2.32-2.25 (1H, m), 2.19 (6H, s), 2.04-1.97 (2H, m), 1.83-1.73 (1H, m), 1.73-1.50 (6H, m); ¹³C NMR (126 MHz, (CD₃)₂CO) major diastereomer δ 176.8, 166.7, 155.6, 141.2, 138.7, 133.7, 131.4, 130.1, 129.3, 124.0, 116.8, 65.8, 57.4, 57.1, 52.2, 33.0, 32.3, 29.1, 25.6, 21.5, 21.4; IR (film): 3292, 2937, 1719, 1653, 1555, 1452, 1264, 1119, 1070, 1026, 835 cm⁻¹; HRMS (ESI) Calcd for C₂₆H₃₁O₅N₂⁻ ([M–H]⁻) 451.2227. Found 451.2235.

BzO

Boch O_oMe

diastereomer), 48.1 min (minor enantiomer of major diastereomer), 52.5 min (major enantiomer of major diastereomer), 63.8 min (minor diastereomer); ¹H NMR (400 MHz, $(CD_3)_2CO)$ major diastereomer δ 8.11 (1H, brd, J = 7.6 Hz), 7.72 (1H, br), 7.57 (1H, d, J =7.6 Hz), 7.42 (1H, s), 7.29 (1H, t, J = 7.6 Hz), 7.22 (1H, t, J = 7.6 Hz), 7.13 (2H, s), 6.58 (1H, s), 6.00 (1H, brd, J = 9.1 Hz), 4.66 (1H, dt, J = 9.1, 6.8 Hz), 3.60 (3H, s), 3.36 (1H, d, J = 14.6 Hz), 2.87 (1H, d, J = 14.6 Hz), 2.30-2.20 (1H, m), 2.22 (6H, s), 2.10-2.02 (1H, m), 1.88-1.67 (4H, m), 1.66 (9H, s); ¹³C NMR (126 MHz, (CD₃)₂CO) major diastereomer & 176.5, 155.6, 150.2, 141.3, 138.8, 135.9, 132.3, 125.0, 124.9, 124.1, 123.1, 119.8, 118.0, 116.9, 115.8, 84.1, 58.5, 58.3, 52.1, 32.4, 31.8, 28.2, 26.9, 21.5, 21.1; IR (film): 3320, 2982, 1724, 1642, 1614, 1555, 1452, 1364, 1244, 1223, 1150, 1073, 1017, 837 cm⁻¹; HRMS (ESI) Calcd for C₃₀H₃₇O₅N₃Na⁺ ([M+Na]⁺) 542.2625. Found 542.2620.

4m: HPLC OZ3, H/PrOH = 10:1, flow rate = 1.0 mL/min, 30 °C, λ = 254 nm, 11.1 min (minor diastereomer), 12.4 min (minor diastereomer), 19.0 min (minor enantiomer of major diastereomer), 25.7 min (major enantiomer of major diastereomer); ¹H NMR (500 MHz,

4I: HPLC IC3, H/PrOH = 10:1, flow rate = 1.0 mL/min, 30 °C, λ = 254 nm, 23.0 min (minor

 $(CD_3)_2CO$ major diastereomer δ 7.68 (1H, br), 7.07 (2H, s), 6.56 (1H, s), 5.88 (1H, brd, J = 7.6 Hz), 4.29 (1H, quin, J = 7.6 Hz), 3.62 (3H, s), 2.66 (1H, q, J = 7.6 Hz), 2.20 (6H, s), 2.06 (1H, dq, J = 12.8, 7.6 Hz), 1.98 (1H, dq, J = 13.7, 7.6 Hz), 1.82 (1H, dtd, *J* = 13.7, 7.6, 6.7 Hz), 1.76-1.65 (2H, m), 1.54 (1H, dq, *J* = 12.8, 7.6 Hz); ¹³C NMR (126 MHz, (CD₃)₂CO) major diastereomer δ 175.8, 155.7, 141.3, 138.7, 124.0, 116.8, 56.2, 51.9, 51.3, 33.8, 29.2, 23.7, 21.5; IR (film): 3333, 2943, 2866, 1734, 1647, 1612, 1558, 1423, 1284, 1156, 1035, 835 cm⁻¹; HRMS (ESI) Calcd for C₁₆H₂₂O₃N₂Na⁺ ([M+Na]⁺) 313.1523. Found 313.1519.

4n: HPLC IB3, H/EtOH = 97:3, flow rate = 1.0 mL/min, 30 °C, λ = 254 nm, 10.3 min (minor diastereomer), 11.1 min (major enantiomer of major diastereomer), 16.7 min (minor enantiomer of major diastereomer), 22.2 min (minor diastereomer); ¹H NMR (500 MHz,

 $(CD_3)_2CO$ major diastereomer δ 7.74 (1H, br), 7.08 (2H, s), 6.55 (1H, s), 5.69 (1H, brd, J = 8.3 Hz), 4.56 (1H, g, J = 8.3 Hz), 2.19 (6H, s), 2.18 (1H, ddd, J = 13.0, 9.0, 6.0 Hz), 2.04 (1H, ddt, J = 16.0, 8.3, 4.3 Hz), 1.72-1.58 (2H, m), 1.54-1.45 (2H, m), 1.44 (9H, s), 1.11 (3H, s); ¹³C NMR (126 MHz, (CD₃)₂CO) major diastereomer δ 176.6, 155.5, 141.4, 138.7, 123.9, 116.8, 80.2, 57.4, 52.6, 37.1, 32.2, 28.1, 21.4₉, 21.4₅, 18.6; IR (film): 3288, 2969, 2859, 1718, 1696, 1654, 1613, 1539, 1456, 1367, 1247, 1153, 834 cm⁻¹; HRMS (ESI) Calcd for $C_{20}H_{30}O_3N_2Na^+$ ([M+Na]⁺) 369.2149. Found 369.2151.

40: HPLC IC3, H/^{*i*}PrOH = 10:1, flow rate = 1.0 mL/min, 30 °C, λ = 254 nm, 20.6 min (minor diastereomer), 24.7 min (minor diastereomer), 32.1 min (minor enantiomer of major diastereomer), 40.7 min (major enantiomer of major diastereomer); ¹H NMR (500 MHz,

 $(CD_3)_2CO$) major diastereomer δ 7.74 (1H, br), 7.41 (2H, d, J = 7.8 Hz), 7.35 (1H, t, J = 7.8 Hz), 7.28 (2H, t, J = 7.8 Hz), 7.28 Hz), 7.08 (2H, s), 6.56 (1H, s), 5.81 (1H, brd, J = 8.5 Hz), 5.11 (1H, d, J = 12.5 Hz), 5.09 (1H, d, J = 12.5 Hz), 4.62 (1H, q, J = 8.5 Hz), 2.25 (1H, ddd, J = 12.8, 8.8, 6.5 Hz), 2.20 (6H, s), 2.07 (1H, ddt, J = 15.5, 8.5, 4.3 Hz), 1.751.62 (2H, m), 1.61-1.48 (2H, m), 1.16 (3H, s); ¹³C NMR (126 MHz, (CD₃)₂CO) *major diastereomer* δ 177.2, 155.7, 141.3, 138.7, 137.8, 129.2, 128.7, 128.6, 124.0, 116.9, 66.9, 58.1, 51.8, 37.3, 31.8, 21.5, 21.4, 18.0; IR (film): 3336, 2952, 2858, 1719, 1638, 1616, 1558, 1454, 1231, 1149, 857 cm⁻¹; HRMS (ESI) Calcd for C₂₃H₂₈O₃N₂Na⁺ ([M+Na]⁺) 403.1992. Found 403.1989.

2.4 Deprotection and Sulfonylation of 4a

Removal of Urea to Give N- Boc-protected β-amino ester 5

To a solution of diastereomerically-pure cycloadduct 4a (22.8 mg, 0.075 mmol) in THF (0.70 mL) was added a 2 N aqueous solution of NaOH (0.38 mL, 0.75 mmol) at ambient temperature. After being stirred for 12 h in a test tube sealed with a screw cap, the mixture was heated at 70 °C and stirred for another 19 h. The resulting mixture was concentrated in vacuo at 20 °C and then treated with diethylenetriamine (49.0 µL, 0.45 mmol)⁴ at 120 °C for 24 h in a test tube sealed with a screw cap. The reaction mixture was cooled to ambient temperature and diluted with THF (0.55 mL) and H₂O (0.35 mL). Boc₂O (0.37 mL, 1.58 mmol) was added to the solution and the resulting mixture was stirred there for 24 h. The reaction was quenched by addition of a 2 N aqueous solution of NaOH (0.75 mL). The aqueous phase was washed with Et_2O (one time) and then acidified to pH = 1 with a 2 N aqueous solution of KHSO₄. The resulting aqueous phase was extracted with EA (three times). The combined organic phases were washed with brine, dried over Na₂SO₄, and concentrated under reduced pressure after filtration. The crude mixture was passed through a silica gel column ($CH_2Cl_2/MeOH = 100:1$ to 20:1 as eluent) and fractions containing the N-Boc-protected amino acid were concentrated. The obtained material was dissolved in toluene (0.38 mL) and MeOH (0.18 mL). After adding trimethylsilyldiazomethane (ca. 0.6 M in hexane, 0.82 mL, 0.49 mmol), the mixture was stirred for 2 h at ambient temperature and concentrated in vacuo. The crude residue was purified by column chromatography on silica gel (H/EA = 10:1 to 3:1 as eluent) to furnish 5 (10.9 mg, 0.042 mmol, 56% from 4a). Preservation of the enantiomeric excess was confirmed after exchanging the N-protecting group from Boc to 4bromophenylsulfonyl (see below). **5:** ¹H NMR (400 MHz, CDCl₃) δ 4.46 (1H, br), 4.32 (1H, q, J = 7.8 Hz), 3.69 (3H, s), 2.31-2.18 (1H, m), 2.12 (1H, dtd, *J* = 12.9, 7.8, 5.4 Hz), 1.75-1.64 (2H, m), 1.55 (1H, dt, *J* = 12.8, 7.4 Hz), 1.47-1.38 (1H, m), 1.43 (9H, s), 1.12 (3H, s); ¹³C NMR (101 MHz, CDCl₃) δ 177.5, 155.4, 79.4, 58.1, 52.2, 51.0, 36.3, 31.0, 28.5, 20.6, 17.5; IR (film): 2983, 1723, 1698, 1517, 1458, 1364, 1243, 1164, 1055 cm⁻¹; HRMS (ESI) Calcd for $C_{13}H_{23}O_4NNa^+$ ([M+Na]⁺) 280.1519. Found 280.1517; $[\alpha]_D^{24}$ +14.9 (*c* = 10.9, acetone).

Removal of the N-protecting group of 5 and Subsequent Sulfonylation to Give Sulfonamide 6

N-Boc β -amino ester 5 (9.9 mg, 0.038 mmol) was dissolved into a solution of hydrochloric acid in 1,4dioxane (4 M, 0.39 mL) at 0 °C. The solution was allowed to warm to ambient temperature and stirred there for 4 h. After concentration of the reaction mixture, anhydrous CH₂Cl₂ (0.40 mL), 4-BrC₆H₄SO₂Cl (15.6 mg, 0.061 mmol), and diisopropylethylamine (0.13 mL, 0.77 mmol) were added to the residue at 0 °C. The reaction mixture was allowed to warm to ambient temperature and stirred there for 11 h. The reaction was quenched by adding 1 N hydrochloric acid at 0 °C and the aqueous phase was extracted with CH₂Cl₂ three times. The combined organic phases were dried over Na₂SO₄ and filtered. All volatiles were removed under reduced pressure to give the crude residue. Purification of the residue was performed by column chromatography on silica gel (H/EA = 10:1 to 1.5:1 as eluent) to afford 6 (13.2 mg, 0.035 mmol, 91%). Enantiomeric excess of 6 was determined by HPLC analysis on chiral stationary phase. Absolute stereochemistry of **6** was unambiguously determined by X-ray diffraction analysis of its single crystal (see below). 6: HPLC IBN3, H/PrOH = 10:1, flow rate = 1.0 mL/min, rt, $\lambda = 254$ nm, 15.0 min (major enantiomer), 17.2 min (minor enantiomer); ¹H NMR (500 MHz, CDCl₃) δ 7.74 (2H, d, J = 8.5 Hz), 7.65 (2H, d, J = 8.5 Hz), 4.90 (1H, brd, J = 8.1 Hz), 3.86 (1H, dt, J = 9.9, 8.1 Hz), 3.57 (3H, s), 2.03 (1H, ddd, J = 13.8, 10.2, 6.7 Hz), 1.98 (1H, dtd, J = 13.0, 8.1, 4.2 Hz), 1.73-1.63 (1H, m), 1.63-1.54 (2H, m), 1.47 (1H, dtd, J = 13.0, 9.9, 7.9 Hz), 1.16 (3H, s); ¹³C NMR (151 MHz, CDCl₃) δ 176.9, 139.5, 132.4, 129.0, 127.7, 60.1, 52.3, 51.2, 36.2, 31.1, 20.2, 17.7; IR (film): 3244, 2951, 1734, 1576, 1436, 1332, 1263, 1158, 1068, 1009, 825 cm⁻¹; HRMS (ESI) Calcd for $C_{14}H_{18}O_4N^{79}BrSNa^+$ ([M+Na]⁺) 398.0032. Found 398.0051; $[\alpha]_D^{23} + 25.3$ (c = 13.0, acetone).

2.5 Crystallographic Analysis

Recrystallization of 4e: Recrystallization was performed by using a H_2O/DMF solvent system at ambient temperature to afford single crystals of **4e**. The crystallographic data are summarized in Table S1 and the ORTEP diagram is shown in Figure S1.

Crystallographic Structure Determination of 4e: The single crystal, which was obtained by the above procedure, was mounted on MicroMesh. Data of X-ray diffraction were collected at 123 K on a RAPID 100x100 IP-Cu diffractometer with fine-focus sealed tube Cu/K α radiation ($\lambda = 1.54187$ Å). An absorption correction was made using Primary Mu Option. The structure was solved by direct methods and Fourier syntheses, and refined by full-matrix least squares on F^2 by using SHELXL-2014.⁵ All non-hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atom bonded to the nitrogen atom was located from a difference synthesis, and its coordinates and isotropic thermal parameters were refined. The other hydrogen atoms were placed in calculated positions and their isotropic thermal parameters were refined.

Table S1. Crystal data and structure refinement for 4e (CCDC 2051437).

Empirical formula	$C_{27}H_{36}N_2O_3$			
Formula weight	436.58			
Temperature	123(2) K			
Wavelength	1.54187 Å			
Crystal system	Orthorhombic			
Space group	P2(1)2(1)2(1)			
Unit cell dimensions	a = 8.29650(10) Å	$\alpha = 90^{\circ}$.		
	b = 8.9484(2) Å	$\beta = 90^{\circ}$.		
	c = 34.1519(6) Å	$\gamma = 90^{\circ}$.		
Volume	2535.45(8) Å ³	·		
Ζ	4			
Density (calculated)	1.144 Mg/m^3			
Absorption coefficient	0.585 mm^{-1}			
F(000)	944			
Crystal size	1.000000 x 0.300000 x 0.010000 mm ³			
Theta range for data collection	5.110 to 68.196°.			
Index ranges	-9<=h<=9, -10<=k<=10, -41<=l<=40			
Reflections collected	29661			
Independent reflections	4629 [R(int) = 0.0210]			
Completeness to theta = 67.687°	99.9 %			
Absorption correction	Empirical			
Max. and min. transmission	1.0000 and 0.8270			
Refinement method	Full-matrix least-squares on F^2			
Data / restraints / parameters	4629 / 0 / 308			
Goodness-of-fit on F^2	1.058			
Final R indices [I>2sigma(I)]	$R_1 = 0.0301, wR_2 = 0.0797$			
R indices (all data)	$R_1 = 0.0305, wR_2 = 0.0800$			
Absolute structure parameter	0.04(3)			
Extinction coefficient	0			
Largest diff. peak and hole	0.162 and -0.178 e.Å ⁻³	0.162 and -0.178 e.Å ⁻³		

Figure S1. Molecular structure of **4e**. The thermal ellipsoids of non-hydrogen atoms are shown at the 50% probability level. Calculated hydrogen atoms except for those attached to the stereogenic carbon are omitted for clarity. Blue = nitrogen, red = oxygen, gray = carbon.

3. References

(a) A. J. M. Farley, C. Sandford, D. J. Dixon, J. Am. Chem. Soc., 2015, 137, 15992. (b) M.-C. Fu, R. Shang, W.-M. Cheng, Y. Fu, ACS Catal., 2016, 6, 2501. (c) C. Shu, R. S. Mega, B. J. Andreassen, A. Noble, V. K. Aggarwal, Angew. Chem. Int. Ed., 2018, 57, 15430. (d) C. Shu, A. Noble, V. K. Aggarwal, Angew. Chem. Int. Ed., 2018, 57, 15430. (d) C. Shu, A. Noble, V. K. Aggarwal, Angew. Chem. Int. Ed., 2019, 58, 3870. (e) X. Ji, Y. Li, L. Xie, H. Lu, W. Ding, Q. Zhang, Angew. Chem. Int. Ed., 2016, 55, 11845.

2) (a) D. Uraguchi, F. Ueoka, N. Tanaka, T. Kizu, W. Takahashi, T. Ooi, Angew. Chem. Int. Ed., 2020, 59, 11456. (b)

- D. Uraguchi, Y. Kimura, F. Ueoka, T. Ooi, J. Am. Chem. Soc., 2020, 142, 19462.
- 3) S. Rohe, A. O. Morris, T. McCallum, L. Barriault, Angew. Chem. Int. Ed., 2018, 57, 15664.
- 4) M. Noshita, Y. Shimizu, H. Morimoto, T. Ohshima, Org. Lett., 2016, 18, 6062.
- 5) G. M. Sheldrick, Acta Cryst., 2015, C71, 3.

5. Copies of HPLC Traces

4b

4g

4f

4h

合計

· 合計

239145

