Supporting Information

Visible-Light-Mediated Cascade Cyanoalkylsulfonylation/Cyclization of Alkynoates Leading to Coumarins *via* SO₂ Insertion

Pu Chen,^a Zan Chen,^a Bi-Quan Xiong,^a Yun Liang,^b Ke-Wen Tang,^a Jun Xie,^{*a} Yu Liu^{*ab}

^a Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China

^b Key Laboratory of the Assembly and Application of Organic Functional Molecules

of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China.

[phone and fax number: +86073-0864-0122 and E-mail addresses:

lyxtmj_613@163.com (Yu Liu) and xiejun12018014@163.com (Jun Xie)]

List of Contents

1.	General Information	S1
2.	Experimental Section	S1-S3
	2.1 General Procedure for the Synthesis of Substrates	S1
	2.2 Typical Experimental Procedure	S1-S2
	2.3 Table S1: Screening of optimal cyclobutanone O-acyloximes	S2
	2.4 Figure S1: Profile of 3aa with Light on or off over Time	S 3
	2.5 GC-MS analysis of Raw Radical Trapping Reaction Mixtures	S3-S10
	2.6 Electrochemical Studies	S10-11
3.	Reference	S11
4.	¹ H and ¹³ C spectra	S12-S55

1. General Information

Unless otherwise stated, all commercial reagents were used as received. Acetylenic acid (BK, 99%), aldehydes (Innochem, >98%) and phenol (Innochem, >98%) were used without further treatment. All reagents and solvents were commercially available and used without any further purification unless specified. All solvents were dried and distilled according to standard procedures. Flash column chromatography was performed using silica gel (0.25mm, 300-400 mesh). Analytical thin-layer chromatography was performed using glass plates pre-coated with 0.25mm 300-400 mesh silica gel impregnated with a fluorescent indicator (254 nm). All reactions were carried out with magnetic stirring and in dried glassware. Nuclear magnetic resonance (NMR) spectra are recorded in parts per million from internal tetramethylsilane on the δ scale. ¹H NMR, ¹⁹F NMR and ¹³C NMR spectra were recorded in CDCl₃ on a Bruker DRX-400 spectrometer operating at 400 MHz, 376 MHz and 100 MHz, respectively. All chemical shift values are quoted in ppm and coupling constants quated in Hz. The solvent peak was used as a reference value, for ¹H NMR: TMS = 0.00 ppm, for ¹³C NMR: CDCl₃ = 77.00 ppm. The following abbreviations were used to explain multiplicities: s = singlet, d = doublet, dd =doublet of doublet, t = triplet, td = triplet of doublet, q = quartet, m = multiplet, and br = broad. High-resolution mass spectra (HRMS) were obtained on an Agilent mass spectrometer using ESI-TOF (electrospray ionization-time of flight).

2. Experiment Section

2.1 General Procedure for the Synthesis of Substrates

All alkynoates $1^{[1]}$ and cycloketone oxime esters $2^{[2-4]}$ were synthesized according to the known methods.

2.2 Typical Experimental Procedure

To a Schlenk tube were added alkynoates 1 (0.2 mmol, 0.1 M), cycloketone oxime compounds 2 (1.5 equiv), Ir(ppy)₃ (1mol %), K₂S₂O₅ (0.4 mmol, 2 equiv) and MeCN (2 mL) at 60 °C under irradiation of 5 W blue light for 18 h. Until complete consumption of the starting material was observed by TLC and/or GC-MS analysis. After the reaction was finished, the reaction mixture removal of the solvent, the crude product was purified by column chromatography (petroleum ether/ethyl acetate, 3 : 1) to provide the desired products 3. A scaled-up experiment conducted in the presence of 1a (1 mmol), 2a (1.5 mmol, 1.5 equiv), Ir(ppy)₃ (0.01 mmol, 1 mol %), K₂S₂O₅ (2 mmol, 2 equiv) and MeCN (10 mL) at 60 °C under irradiation of 5 W blue light for 72 h gave the target product **3aa** in 68% yield.

H 1a	^h + N O R $R = p-CF_3C_6H_4CO$ 2a-1 , $R = p-NO_2C_6H_4CO$ 2a-2 , $R = p-FC_6H_4CO$ 2a-3 , $R = o-NO_2C_6H_4CO$	(1 mol %) (2 equiv) $^{\circ}C$, 18 h, Ar $^{\circ}LED light$ $^{\circ}LED light$ $^{\circ}C_{3}$, R = C ₆ F ₅ CO $^{\circ}2a-5$, R = C ₆ H ₅ CO $^{\circ}2a-6$, R = CF ₃ CO	CN CN
entry	variation from the st	tandard conditions	yield $(\%)^b$
1	2a	1	81
2^c	2a-1 inste	ad of 2a	50
3	2a-2 inste	ad of 2a	43
4	2a-3 inste	ad of 2a	40
5	2a-4 inste	ad of 2a	63
6	2a-5 inste	ad of 2a	25
7^c	2a-6 inste	ad of 2a	12
^a Reaction cond	itions: 1a (0.2 mmol), 2a	(0.3 mmol, 1.5 equiv), Ir	(ppy) ₃ (1 mol %),
K ₂ S ₂ O ₅ (0.4 mmol,	, 2 equiv) and MeCN (2 mI	L) at 60 °C under irradiation	n of 5 W blue light

	2.3	Table S	51: S	creening of	optimal	cyclo	butanone C)-acyloxi	me
--	-----	---------	-------	-------------	---------	-------	------------	-----------	----

for 18 h. ^b Isolated yield. ^c Most of starting materials were decomposed.

Several other cyclobutanone *O*-acyloximes **2a-1–2a-6** were examined (Table S1). We found that structural modification of the acyl moiety on the oxime had remarkable effect on the reaction. All of them could afford the sulfonylation products and none of them could afford higher yield than that of cyclobutanone oxime 2a. This maybe attribute to the leaving ability and basicity of RCOO-.

2.4 Figure S1: Profile of 3aa with Light on or off over Time

Figure S1. Profile of **3aa** with Light on or off over Time. GC yield using biphenyl as an internal standard.

2.5 GC-MS analysis of Raw Reaction Mixtures in the presence of Radical Inhibitors.

GC-MS Analysis of Raw Reaction Mixture by Using 1,1-diphenylethene as Radical Inhibitor

MS Spectra of the peak at 12.16 min

[MS Spectrum] # of Peaks395 Raw Spectrum 12.160 (scan : 1633) Background No Background Spectrum Base Peakm/z 115.10 (Inten : 1,148,922) Event# 1 m/z Absolute Intensity Relative Intensity 50.05 12848 1.12 82.50 50522 4.40 113.05 12074 1.05 51.00 83.45 81230.71 1.02 55250 4.81 114.15 11681 52.05 13293 1.16 84.65 54890.48 115.10 1148922 100.00 53.05 58190.51 86.05 43950.38 116.10 131602 11.45 54.00 80170.70 87.05 10706 0.93 117.10 14657 1.28 55.05 17750.15 88.05 26411 2.30 118.10 18550.16 56.05 89.05 94796 119.15 788 0.07 58950.51 8.25 57.50 17240.15 90.05 94430.82 120.65 510 0.04 58.50 153 0.01 91.05 497406 43.29 121.55 10540.09 59.50 44 0.00 92.05 40023 3.48 122.60 32920.29 61.00 636 0.06 97180.85 93.65 123.60 83020.72 62.00 73300.64 94.65 47467 22470.20 4.13 125.10 63.00 38052 3.31 95.55 17887 1.56 126.05 17129 1.49 64.00 19087 65180.57 96.00 1.66 127.05 51280 4.46 65.05 62840 5.47 96.95 21970.19 128.05 160662 13.98 66.05 47000.41 98.05 28480.25 129.05 144566 12.58 67.05 15280.13 99.05 29970.26 130.10 20116 1.75 68.55 11720.10 72250.63 131.05 20680.18 100.05 69.50 10962 0.95 101.05 31471 2.74 132.10 258 0.02 70.45 23210.20 102.05 36467 3.17 133.05 441 0.04 71.45 828 0.07 31333 2.73 134.00 103.05 159 0.01 73.00 15320.13 104.05 87270.76 135.00 209 0.02 74.00 87500.76 105.10 47340.41 136.10 166 0.01 75.05 20452 1.78 106.25 25160.22 137.10 26170.23 76.05 56488 4.92 107.25 33150.29 138.05 32240.28 77.05 72828 6.34 108.20 50260.44 139.05 29116 2.53 78.05 19663 1.71 109.15 43480.38 140.00 68630.60 79.05 60340.53 110.15 21040.18 141.05 29125 2.53 80.55 16370.14 111.05 18380.16 142.05 60480.53 81.55 740 0.06 18569 112.05 143.05 51970.45 1.62

144.00	15320.13	3	180.00	15257	1.33	216.05	30060.26	
145.00	879 0.08	3	181.00	22900.20)	217.00	48090.42	
146.00	66 0.01	l	182.10	447 0.04	ŀ	218.00	17178	1.50
146.95	355 0.03	3	183.10	52 0.00)	219.00	16855	1.47
147.90	202 0.02	2	184.10	54 0.00)	220.00	39000.34	
148.95	10040.09)	185.10	94 0.01		221.00	23960.21	
150.00	95800.83	3	186.00	335 0.03	3	221.95	34740.30)
151.00	24630	2.14	186.95	56200.49)	222.95	644 0.06	
152.00	75362	6.56	188.00	71480.62	2	223.90	159 0.01	
153.00	18225	1.59	189.00	91858	8.00	224.90	190 0.02	
154.00	48500.42	2	190.00	63047	5.49	226.00	554 0.05	
155.00	18360.16	5	191.00	171148	14.90	227.00	817 0.07	,
156.05	59630.52	2	192.05	76749	6.68	228.00	25380.22	
157.05	660 0.06	5	193.00	650553	56.62	229.00	11238	0.98
158.10	34 0.00)	194.00	110287	9.60	230.00	67460.59)
159.10	6 0.00)	195.05	91810.80)	231.05	33510.29)
160.00	74 0.01	[196.00	734 0.06	5	232.00	58710.51	
161.00	650 0.06	5	197.00	116 0.01		233.00	11400.10)
162.00	28490.25	5	198.00	201 0.02	2	234.00	121 0.01	
163.00	24354	2.12	199.05	468 0.04	ł	235.00	44 0.00)
164.00	32593	2.84	200.00	44230.38	3	236.00	119 0.01	
165.00	211087	18.37	201.05	52610.46	5	237.00	44 0.00)
166.00	38518	3.35	201.95	42028	3.66	238.00	175 0.02	!
167.00	30881	2.69	203.00	110498	9.62	239.00	159 0.01	
168.00	23508	2.05	204.00	972580	84.65	240.00	684 0.06	
169.00	85140.74	ł	205.00	275674	23.99	240.95	361 0.03	
170.05	81020.71		206.00	172255	14.99	241.90	782 0.07	,
171.05	13870.12	2	207.00	35921	3.13	243.05	762 0.07	,
172.00	151 0.01		208.00	39740.35	5	244.05	32310.28	
173.00	719 0.06	5	209.05	633 0.06	5	245.15	26660.23	
173.95	15720.14	ł	210.00	42 0.00)	246.05	116683	10.16
175.00	35800.31		211.00	342 0.03	3	247.05	677335	58.95
176.00	39802	3.46	211.90	162 0.01		248.05	137102	11.93
177.05	30720	2.67	212.95	961 0.08	3	249.05	13314	1.16
178.00	390034	33.95	214.00	745 0.06	5	249.95	509 0.04	
179.00	110390	9.61	215.00	97690.85	5	251.00	79 0.01	
(<u>x1,000,0</u> JTIC (1.0	00)							
272.00 (7. 5	1.00)							
5.0								
2. 5								
0.0								
11.5	12.0	12.5 13.0	13.5 1	4.0 14.5	15.0 15.5	16.0	16.5 17.0	· · ·

MS Spectra of the peak at 14.90 min

[MS Spectrum] # of Peaks309 Raw Spectrum 14.915 (scan : 2184) Background 14.830 (scan : 2167) Base Peakm/z 178.00 (Inten : 190,125) Event# 1 m/z Absolute Intensity Relative Intensity 50.00 37841.99 82.25 761 0.40 113.05 12330.65 51.05 20779 83.15 114.05 10.93 266 0.14 823 0.43 52.05 41092.16 84.20 80 0.04 115.05 60493.18 53.00 13010.68 85.15 231 0.12 116.10 18921 9.95 54.05 12440.65 86.05 117.10 17760.93 541 0.28 55.00 471 0.25 87.05 15740.83 118.05 270 0.14 125 0.07 56.00 88.05 49552.61 120.10 67 0.04 58.00 116 0.06 89.05 10065 121.05 856 0.45 5.29 59.05 67 0.04 90.05 13230.70 122.30 345 0.18 60.10 235 0.12 91.05 27271.43 123.30 62 0.03 60.95 226 0.12 92.05 397 0.21 124.10 0.05 96 62.00 92.90 125.05 940 0.49 12560.66 272 0.14 63.00 52952.79 94.15 568 0.30 126.05 37711.98 64.00 63763.35 95.10 688 0.36 127.05 25541.34 65.05 20171.06 96.10 12410.65 128.05 29561.55 65.95 15800.83 97.05 11380.60 129.00 925 0.49 67.00 14110.74 98.05 544 0.29 130.00 140 0.07 68.00 99.05 954 0.50 133.05 13130.69 517 0.27 69.05 523 0.28 99.95 581 0.31 134.00 14750.78 69.95 247 0.13 101.05 24101.27 135.10 344 0.18 71.10 264 0.14 102.05 11567 6.08 74 0.04 136.10 72.05 372 0.20 103.05 23261.22 137.10 475 0.25 73.05 217 0.11 785 0.41 138.05 104.00 444 0.23 74.05 23511.24 105.00 12640.66 139.05 34091.79 140.00 75.05 46462.44 106.00 182 0.10 12710.67 14009 76.00 7.37 106.90 205 0.11 141.00 689 0.36 77.05 20546 10.81 107.65 187 0.10 142.00 276 0.15 78.10 24491.29 108.65 38132.01 143.00 103 0.05 79.00 285 0.15 111.00 351 0.18 144.00 182 0.10 81.15 302 0.16 299 0.16 145.05 176 0.09 112.10

140.00	90 0.03		191.00	27961.47		235.90	169	0.09	
147.05	158 0.08		192.00	24681.30		236.90	154	0.08	
148.00	321 0.17		192.95	19201.01		237.90	53	0.03	
149.00	596 0.31		194.00	32801.73		238.90	54	0.03	
150.00	44782.36		195.00	32771.72		239.90	52	0.03	
151.00	13308	7.00	196.00	796 0.42		240.90	43	0.02	
152.00	34565	18.18	196.95	923 0.49		242.00	38	0.02	
153.00	61143.22		197.90	212 0.11		242.95	7671	4.03	
154.00	545 0.29		198.85	252 0.13		243.95	1965	51.03	
155.00	26 0.01		199.90	86 0.05		245.00	1052	20.55	
156.00	78 0.04		202.00	773 0.41		246.05	1253	32	6.59
157.00	50 0.03		202.95	12400.65		247.05	6129	9	32.24
158.00	82 0.04		203.95	22231.17		248.05	1251	7	6.58
159.00	31 0.02		205.05	20461.08		249.05	1712	20.90	
160.00	6 0.00		205.90	773 0.41		250.00	251	0.13	
161.00	74 0.04		206.95	18890.99		251.05	175	0.09	
162.00	573 0.30		207.95	13270.70		253.00	159	0.08	
163.00	28751.51		208.90	12230.64		260.00	35	0.02	
164.00	20931.10		209.95	13740.72		261.00	143	0.08	
165.00	35138	18.48	210.95	34791.83		262.00	49	0.03	
166.00	75363.96		212.00	556 0.29		263.00	70	0.04	
167.05	30016	15.79	213.00	244 0.13		264.00	52	0.03	
168.00	48352.54		214.00	89 0.05		265.00	109	0.06	
169.10	580 0.31		215.00	301 0.16		266.95	375	0.20	
170.00	487 0.26		216.00	193 0.10		269.00	34	0.02	
170.90	287 0.15		216.95	12460.66		270.00	36	0.02	
171.90	31 0.02		218.00	30747	16.17	271.00	85	0.04	
173.90	689 0.36		219.00	76861	40.43	272.00	85	0.04	
175.00	13440.71		220.00	13847	7.28	273.00	11	0.01	
176.00	27156	14.28	221.00	14610.77		274.00	13	0.01	
177.00	24266	12.76	222.00	290 0.15		275.00	39	0.02	
178.00	190125	100.00	223.00	104 0.05		276.00	128	0.07	
179.00	161938	85.17	224.00	98 0.05		277.00	40	0.02	
180.00	73503	38.66	225.00	136 0.07		278.00	44	0.02	
181.00	10536	5.54	226.00	60 0.03		279.05	2671	1.40	
182.00	547 0.29		227.00	637 0.34		279.95	373	0.20	
183.05	249 0.13		228.00	439 0.23		280.95	157	0.08	
184.00	12710.67		228.85	263 0.14		281.95	152	0.08	
185.05	296 0.16		229.80	615 0.32		282.95	288	0.15	
186.00	144 0.08		231.10	257 0.14		285.00	36	0.02	
187.00	156 0.08		232.10	10300.54		287.00	67	0.04	
188.10	23 0.01		233.10	60 0.03		288.00	52	0.03	
189.10	919 0.48		233.90	88 0.05		289.00	50	0.03	
100.05	404 0 21		234 90	166 0.09		292.00	12	0.01	

293.00	12	0.01	308.00	9	0.00	326.90	493	0.26
294.00	39	0.02	310.00	39	0.02	328.00	126	0.07
295.00	3	0.00	311.05	1115	50.59	329.00	87	0.05
297.00	80	0.04	311.95	353	0.19	330.00	4	0.00
298.00	71	0.04	312.90	176	0.09	331.00	1	0.00
299.00	54	0.03	313.90	41	0.02	333.00	3	0.00
300.00	3	0.00	315.90	13	0.01	337.00	26	0.01
301.00	8	0.00	317.90	4	0.00	339.00	78	0.04
302.00	3	0.00	318.90	15	0.01	341.00	446	0.23
303.00	13	0.01	321.90	44	0.02	344.90	3	0.00
305.00	15	0.01	324.90	203	0.11	346.90	3	0.00
307.00	23	0.01	325.90	54	0.03	350.90	8	0.00

GC-MS Analysis of Raw Reaction Mixture by Using TEMPO as Radical Inhibitor

Chemical Formula: C₁₃H₂₄N₂O Exact Mass: 224.1889

MS Spectra of the peak at 9.100 min

[MS Spectrum] # of Peaks388

Raw Spe	ectrum 9.09	95 (scan : 102	0)					
Backgro	und No	Background S	Spectrum					
Base Pea	akm/z 209.0	05 (Inten : 1,8	377,707)					
Event#	1							
m/z Abs	solute Inter	sity Relativ	ve Intensity					
50.00	13160.07	7	89.05	570 0.03	3	128.10	19180.10)
51.05	70210.37	7	90.00	214 0.0	1	129.10	188 0.01	l
52.05	94720.50)	91.05	81930.44	4	130.10	16 0.00)
53.05	56700	3.02	92.15	16470.09	9	131.10	148 0.01	l
54.10	53818	2.87	93.10	15774	0.84	132.10	60 0.00)
55.10	1199618	63.89	94.10	14438	0.77	133.10	438 0.02	2
56.10	821505	43.75	95.10	69423	3.70	134.15	432 0.02	2
57.10	136764	7.28	96.10	67230	3.58	135.10	32920.18	3
58.10	299102	15.93	97.10	96804	5.16	136.05	52570.28	3
59.05	34697	1.85	98.10	65820	3.51	137.15	12840.07	7
60.10	81100.43	3	99.10	87100.40	6	138.10	22182	1.18
61.10	610 0.03	3	100.10	38078	2.03	139.10	11015	0.59
62.15	358 0.02	2	101.10	62583	3.33	140.10	17626	0.94
63.10	27780.15	5	102.10	36300.19	9	141.10	246382	13.12
64.10	10360.06	5	103.10	959 0.05	5	142.10	61534	3.28
65.05	10805	0.58	104.10	188 0.0	1	143.10	51140.27	7
66.05	85480.46	5	105.10	49880.27	7	144.05	283 0.02	2
67.05	99563	5.30	106.05	23640.13	3	145.05	17710.09)
68.10	133164	7.09	107.10	26684	1.42	146.00	218 0.01	l
69.10	934665	49.78	108.15	15288	0.81	147.00	294 0.02	2
70.10	166722	8.88	109.15	558300	29.73	148.10	538 0.03	3
71.10	52911	2.82	110.10	105874	5.64	149.10	10060.05	5
72.10	51567	2.75	111.15	24885	1.33	150.05	18480.10)
73.10	36458	1.94	112.15	14543	0.77	151.05	24360.13	3
74.10	89526	4.77	113.15	13987	0.74	152.05	12210.07	7
75.10	38980.21	l	114.15	59674	3.18	153.05	16340	0.87
76.10	626 0.03	3	115.10	39610.2	1	154.00	19320.10)
77.05	71730.38	3	116.20	559 0.03	3	155.15	13000.07	7
78.10	17510.09)	117.20	126 0.0	1	156.10	265665	14.15
79.10	30446	1.62	118.10	286 0.02	2	157.10	27943	1.49
80.10	11671	0.62	119.15	780 0.04	4	158.05	21490.11	l
81.10	208857	11.12	120.05	663 0.04	4	159.00	116 0.01	l
82.10	148095	7.89	121.10	65930.3	5	160.00	21 0.00)
83.10	677886	36.10	122.10	96740.52	2	161.00	122 0.01	l
84.10	144791	7.71	123.10	258479	13.77	162.00	233 0.01	[
85.10	59068	3.15	124.15	259827	13.84	163.05	359 0.02	2
86.10	263025	14.01	125.10	97364	5.19	164.00	514 0.03	3
87.05	13732	0.73	126.15	67248	3.58	165.00	746 0.04	1
88.10	78200.42	2	127.15	73100.39	9	166.10	527 0.03	3

167.05	810 0.04	188.10	21 0.00	209.05	1877707 100.00
168.05	28390.15	188.90	210 0.01	210.05	261124 13.91
169.15	602 0.03	189.85	700 0.04	211.05	20174 1.07
170.10	156 0.01	190.90	620 0.03	212.15	13120.07
171.10	284 0.02	191.95	320 0.02	213.20	106 0.01
171.90	63 0.00	192.90	583 0.03	214.20	13 0.00
172.90	29590.16	193.90	164 0.01	215.20	60 0.00
173.90	178 0.01	195.05	398 0.02	216.20	24 0.00
174.90	119 0.01	196.00	62 0.00	217.20	11 0.00
176.05	441 0.02	197.00	63 0.00	218.20	31 0.00
177.00	223 0.01	198.00	68 0.00	219.20	47 0.00
178.10	892 0.05	199.00	41 0.00	220.20	29 0.00
179.10	28630.15	200.00	13 0.00	221.20	90 0.00
180.05	578 0.03	201.00	44 0.00	222.20	137 0.01
181.05	12238 0.65	202.00	26 0.00	223.15	645 0.03
182.00	14040.07	203.00	14 0.00	224.10	80145 4.27
183.00	182 0.01	204.00	29 0.00	225.10	11735 0.62
184.15	721 0.04	205.00	66 0.00	226.00	10180.05
185.10	95 0.01	206.00	70 0.00	227.00	126 0.01
186.10	31 0.00	207.00	22500.12	228.00	34 0.00
187.10	24 0.00	208.15	92680.49	229.0	14 0.00

2.6 Electrochemical Studies

1a

Cyclic voltammetry (CV) was taken using a CHI660D potentiostation. CV measurement of 1a was carried out in 0.1 M of Bu₄NPF₆/MeCN at a scan rate of 100 mV/s with the protection of Ar. The working electrode is a glassy carbon, the counter electrode is a Pt wire, and the reference electrode is Ag/AgCl. Hence, $E_{1a} = -1.88$ versus SCE; $E_{2a} = -1.64$ versus SCE; $E_{1/2}(fac$ -Ir(ppy)₃⁺ / fac-Ir(ppy)₃^{*}) = -1.73 versus SCE. These results suggested that **2a** was suitable for SET in the excited state of the *Ir^{III} and **1a** was completely unsuitable for SET in the excited state of the *Ir^{III}.

2 References

 Y. Liu, Q.-L. Wang, C.-S. Zhou, B.-Q. Xiong, P.-L. Zhang, S.-J. Kang, C.-A. Yang, K.-W. Tang, *Tetrahedron Letter.*, 2018, **59**, 2038.

[2] J. Chen, B.-Q. He, P.-Z. Wang, X.-Y.Yu, Q.-Q. Zhao, J.-R. Chen and W.-J. Xiao, Org. Lett. 2019, 21, 4359.

[3] J.-X. Yu, F. Teng, J.-N. Xiang, W. Deng and J.-H. Li, *Org. Lett.* 2019, **21**, 9434.

[4] J.-J. Zhang, X.-D. Hua. Y. Wu, J.-C. Yang and L.-N. Guo, *Chem. Sci.* 2019, 10, 161.

4. Spectra

S12

4-((7-Methoxy-2-oxo-4-phenyl-2*H*-chromen-3-yl)sulfonyl)butanenitrile (3ba)

4-((2-Oxo-4,7-diphenyl-2*H*-chromen-3-yl)sulfonyl)butanenitrile (3da)

4-((7-Fluoro-2-oxo-4-phenyl-2*H*-chromen-3-yl)sulfonyl)butanenitrile (3ea)

S18

4-((7-Acetyl-2-oxo-4-phenyl-2*H*-chromen-3-yl)sulfonyl)butanenitrile (3ha)

4-((2-Oxo-4-phenyl-7-(trifluoromethyl)-2*H*-chromen-3-yl)sulfonyl)butanenitrile

(**3ia**)

--63.352

4-((6-Methoxy-2-oxo-4-phenyl-2*H*-chromen-3-yl)sulfonyl)butanenitrile (3ja)

4-((6-Methyl-2-oxo-4-phenyl-2*H*-chromen-3-yl)sulfonyl)butanenitrile (3ka)

7.572 7.565 7.565 7.561 7.533 7.533 7.533 7.515 7.515 7.515 7.515 7.515 7.515 7.533 7.7333 7.7333 7.726 7.7281 7.726464 7.726464 7.726464 7.72647 7.726477.72646

200

190 180 170 160 150 140 130 120 110

(3.660) 3.644 3.662 3.662 (2.553) (2.553) (2.553) (2.553) (2.553) (2.553) (2.553) (2.553) (2.553) (2.553) (2.553) (2.553) (2.553) (2.553) (2.553) (2.553) (2.553) (2.553) (2.553) (2.553) (2.5

-00. 7.5 1.02-.03-00 7.3 7.2 f1 (ppm) 7.1 7.0 6.9 7.6 7.4 3.03 1.00 2.20 2.09-1 3.00-1 2.06-1 -00. 2.024 10.0 9.5 5.0 f1 (ppm) 1.0 0.5 0.0 9.0 6.0 5.5 4.5 4.0 3.0 1.5 8.5 8.0 7.5 6.5 3.5 2.0 7.0 2.5 ~161.101 ~156.897 ~151.895 [136.454 [135.222 [131.231.686 [129.460 [129.485 [129.385 [129.385 [127.421 [127.421 [127.421 [123.577 [119.545 [116.737 [116.737 -53.404~20.928 -18.679 ~16.189 $\overbrace{77.317}^{77.317}$ Ph O `CN 0 O

90 80

70

60 50 40 30 20 10

100 f1 (ppm)

4-((6-Chloro-2-oxo-4-phenyl-2*H*-chromen-3-yl)sulfonyl)butanenitrile (3la)

4-((6-Bromo-2-oxo-4-phenyl-2*H*-chromen-3-yl)sulfonyl)butanenitrile (3ma)

4-((4-(4-Methoxyphenyl)-2-oxo-2*H*-chromen-3-yl)sulfonyl)butanenitrile (3oa)

4-((2-Oxo-4-(p-tolyl)-2H-chromen-3-yl)sulfonyl)butanenitrile (3pa)

4-((4-(4-Fluorophenyl)-2-oxo-2*H*-chromen-3-yl)sulfonyl)butanenitrile (3qa)

4-((4-(4-Chlorophenyl)-2-oxo-2*H*-chromen-3-yl)sulfonyl)butanenitrile (3ra)

4-(3-((3-Cyanopropyl)sulfonyl)-2-oxo-2*H*-chromen-4-yl)benzonitrile (3sa)

4-((2-Oxo-4-(4-(trifluoromethyl)phenyl)-2H-chromen-3-yl)sulfonyl)butanenitrile

S34

4-((2-Oxo-4-(m-tolyl)-2H-chromen-3-yl)sulfonyl)butanenitrile (3ua)

4-((4-(2-Methoxyphenyl)-2-oxo-2*H*-chromen-3-yl)sulfonyl)butanenitrile (3va)

4-((2-Oxo-4-(o-tolyl)-2H-chromen-3-yl)sulfonyl)butanenitrile (3wa)

4-((4-(3,5-Dimethylphenyl)-2-oxo-2*H*-chromen-3-yl)sulfonyl)butanenitrile (3xa)

4-((2-Oxo-4-pentyl-2*H*-chromen-3-yl)sulfonyl)butanenitrile (3za)

4-((4-Methyl-2-oxo-2*H*-chromen-3-yl)sulfonyl)butanenitrile (3aaa)

3-(Benzyloxy)-4-((2-oxo-4-phenyl-2*H*-chromen-3-yl)sulfonyl)butanenitrile (3ab)

$\begin{array}{c} 7.663\\ 7.7.683\\ 7.7.683\\ 7.7.683\\ 7.7.683\\ 7.7.683\\ 7.7.683\\ 7.7.683\\ 7.7.683\\ 7.7.683\\ 7.7.683\\ 7.7.683\\ 7.7.513$

3-Benzyl-4-((2-oxo-4-phenyl-2*H***-chromen-3-yl)sulfonyl)butanenitrile (3ac)**

4-((2-Oxo-4-phenyl-2*H*-chromen-3-yl)sulfonyl)-3-(p-tolyl)butanenitrile (3ad)

7,665 7,7562 7,7572 7,526 7,720 7,700

3-(4-(Tert-butyl)phenyl)-4-((2-oxo-4-phenyl-2H-chromen-3-

yl)sulfonyl)butanenitrile (3ae)

4-((2-Oxo-4-phenyl-2*H*-chromen-3-yl)sulfonyl)-3-phenylbutanenitrile (3af)

$7.5684 \\ 7.5684 \\ 7.5645 \\ 7.5645 \\ 7.5641 \\ 7.5764 \\ 7.556 \\ 7.556 \\ 7.556 \\ 7.555$

(3ag)

$\begin{array}{c} 7.7.06\\ 7.7.06\\ 7.7.06\\ 7.7.56\\ 7.7.56\\ 7.7.56\\ 7.7.56\\ 7.7.57\\ 7.7.57\\ 7.7.57\\ 7.7.57\\ 7.7.57\\ 7.7.56\\$

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

S49

3-(4-Bromophenyl)-4-((2-oxo-4-phenyl-2*H*-chromen-3-yl)sulfonyl)butanenitrile

(3ai)

$\begin{array}{c} 7.704\\ 7.706\\ 7.7569\\ 7.7569\\ 7.7569\\ 7.757\\ 7.757\\ 7.757\\ 7.757\\ 7.758\\ 7.7558\\ 7.7556\\ 7.7586$

4-(Naphthalen-1-yl)-3-(((2-oxo-4-phenyl-2H-chromen-3-

yl)sulfonyl)methyl)butanenitrile (3aj)

4-((2-Oxo-4-phenyl-2*H*-chromen-3-yl)sulfonyl)-5-phenylpentanenitrile (3am)

Butyl 4-((2-oxo-4-phenyl-2*H*-chromen-3-yl)sulfonyl)butanoate (7)

4-((2-Oxo-4-phenylchroman-3-yl)sulfonyl)butanenitrile (8)