Supporting Information for

Enantioselective Fluorination of 3-Indolinone-2-carboxylates with NFSI Catalyzed by Chiral Bisoxazolines

Swarnayu Banik,^{a,c} Tanmoy Sahoo,^{a,c} B. Sridhar,^b B.V. Subba Reddy*a,c

^aFluoro & Agrochemicals, ^bLaboratory of X-ray Crystallography, CSIR-Indian Institute of Chemical Technology, Hyderabad –500 007, India, ^cAcademy of Scientific and Innovative Research (AcSIR), New Delhi - 110025, India. E-mail: <u>basireddy@iict.res.in</u>; Fax: 91-40-27160512.

Table of contents

2. Experimental procedures and characterization data of compounds......S2-S16

3. Copies of ¹H, ¹³C, ¹⁹F NMR spectra and HPLC chromatogram......S17-S79

1.General information

All reactions were performed in oven-dried round bottom flasks, and the flasks were fitted with rubber septa and the reactions were conducted under a nitrogen atmosphere. Glass syringes were used to transfer solvents. Crude products were purified by column chromatography on silica gel 100-200 mesh. Thin layer chromatography (TLC) plates were visualized by exposure to ultraviolet light at 254 nm, and by exposure to iodine vapours and/or by exposure to methanolic acidic solution of *p*-anisaldehyde followed by heating (<1 min) on a hot plate (approx. 250 °C). Organic solutions were concentrated on rotary evaporator at 35–40 °C. Melting points (MP) were obtained on Buchi B-540. ¹H, ¹³C (proton decoupled) and ¹⁹F NMR spectra were recorded in CDCl₃ using 300, 400 or 500 MHz (¹H), 101 MHz (¹³C) and 376 or 377 MHz (¹⁹F). Chemical shifts (δ) were reported in parts per million (ppm) with respect to TMS as an internal standard. Coupling constants (J) are quoted in hertz (Hz). Mass spectra and HRMS were recorded on mass spectrometer by Electrospray ionization (ESI) and Atmosphericpressure chemical ionization (APCI) techniques. Infrared spectra (IR) were recorded with a thin film of solvated (CHCl₃) sample. Optical rotations were recorded on Perkin Elmer (model- 341) polarimeter. Enantiomeric excesses (ee) were determined by HPLC (Shimadzu) analysis by using DAICEL Chiralpak OD-H, OJ-H etc. columns.

2.(i) Experimental procedures and spectral data of compounds [3(g,h,l,m,o,p), 4(g,h,l,m,o,p)]:

heme-1. Preparation of 4(g,h,l,m,o,p)

Methyl 2-(N-(2-methoxy-2-oxoethyl)cyclopropanecarboxamido)benzoate (3g):

To a stirred solution of **2a** (600 mg, 2.68 mmol, 1 equiv) in 20 mL dry CH_2Cl_2 was added anhydrous pyridine (0.8 mL,8.07 mmol, 3 equiv) at room temperature under nitrogen atmosphere. The resulting solution was stirred at 25 °C for 30 min, thencyclopropanecarbonyl chloride (0.5 mL, 5.38 mmol, 2 equiv) was added dropwise to the above solution at 0°C. After complete addition, the mixture was stirred at ambient temperature for overnight. Upon completion, the mixture was diluted with CH₂Cl₂ (10 mL), washed with 1N HCl (2x50 mL), and the organic layer was dried over Na₂SO₄. Evaporation of the solvent under reduced pressure provided the crude product, which was purified by column chromatography on silica gel using ethyl acetate/*n*-hexane (1/1, v/v) mixture to afford the pure product **3g** (750 mg, 96% yield) as a colourless semi-solid. ¹H NMR (500 MHz, CDCl₃) δ 7.99 (dd, *J* = 7.8, 1.6 Hz, 1H), 7.73 (dd, *J* = 7.9, 1.1 Hz, 1H), 7.61 (td, *J* = 7.7, 1.6 Hz, 1H), 7.47 (td, *J* = 7.6, 1.2 Hz, 1H), 4.98 (d, *J* = 17.4 Hz, 1H), 3.89 (s, 3H), 3.76 – 3.70 (m, 4H), 1.17 (ddd, *J* = 7.9, 4.5, 3.3 Hz, 1H), 1.08 – 0.91 (m, 2H), 0.66 – 0.56 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 173.6, 170.1, 166.1, 142.3, 133.5, 131.7, 131.2, 129.3, 128.6, 52.6, 52.1, 51.4, 12.5, 8.6, 8.5. HRMS (*ESI Orbitrap*) calcd for C₁₅H₁₈O₅N [M+H]⁺:292.1179, Found: 292.1171.

Methyl 2-(N-(2-methoxy-2-oxoethyl)propionamido)benzoate (3h):

To a stirred solution of **2a** (500 mg, 2.24 mmol, 1 equiv) in 10 mL dry CH₂Cl₂ was added anhydrous pyridine (0.67 mL, 6.70 mmol, 3 equiv) at room temperature under nitrogen atmosphere. The resulting solution was stirred at 25 °C for 30 min, thenpropanoyl chloride (0.4mL, 4.5 mmol, 2 equiv) was added dropwise to the above solution at 0°C. After complete addition, the mixture was stirred at ambient temperature for overnight. Upon completion, the mixture was diluted with CH₂Cl₂ (10 mL) and washed with 1N HCl (2x50 mL), and the organic layer was dried over Na₂SO₄. Evaporation of the solvent under reduced pressure provided the crude product, which was purified by column chromatography on silica gel using ethyl acetate/*n*-hexane (1/1, v/v) mixture to afford the pure product **3h** (648 mg, 98.6% yield) as a very light yellow semi-solid. ¹H NMR (500 MHz, CDCl₃) δ 7.99 (dd, *J* = 7.8, 1.4 Hz, 1H), 7.65 (dd, *J* = 7.8, 1.0 Hz, 1H), 7.59 (td, *J* = 7.7, 1.5 Hz, 1H), 7.47 (td, *J* = 7.6, 1.2 Hz, 1H), 4.97 (d, *J* = 17.4 Hz, 1H), 3.89 (s, 3H), 3.74 (s, 3H), 3.68 (d, *J* = 17.4 Hz, 1H), 2.01 (m, 2H), 1.04 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 173.9, 170.0, 165.9, 142.2, 133.5, 131.8, 131.2, 128.8, 52.7, 52.1, 51.1, 29.7, 27.2, 9.2.HRMS (*APCI Orbitrap*) calcd for C₁₄H₁₈O₅N [M+H]⁺: 280.1179, Found: 280.1178

Methyl 1-(cyclopropanecarbonyl)-3-oxoindoline-2-carboxylate (4g):

To a stirred solution of **3g** (980 mg, 3.36 mmol, 1 equiv) in 20 mL dry THF at 0 °C was added a solution of 'BuOK (453 mg, 4.03 mmol, 1.2 equiv in 20 mL dry THF) dropwise under argon atmosphere over 10 min. The resulting solution was allowed to stir at 25 °C for 1 h. The solvent THF was removed under reduced pressure at 40 °C to afford the residue, which was dissolved in 30 mL H₂O/AcOH (5:1) at 0 °C with a rapid stirring and extracted with EtOAc(2x50 mL). The combined extracts were washed with brine solution (100 mL), dried over Na₂SO₄, filtered and concentrated in vacuo. The residue was purified by flash

column chromatography on silica gel (60- 120 mesh) using ethyl acetate/*n*-hexane (3/7, v/v) mixture to afford the pure product **4g** (834 mg, 95.6% yield) as a colourless solid. mp.106°C. ¹H NMR (400 MHz, CDCl₃) δ 8.56 (s, 1H), 7.77 (d, *J* = 7.6 Hz, 1H), 7.72 – 7.67 (m, 1H), 7.23 (t, *J* = 7.7 Hz, 1H), 5.20 (s, 1H), 3.86 (s, 3H), 1.31-1.21 (m, 1H), 1.15 (s, 2H), 0.96 (s, 2H).¹³C NMR (101 MHz, CDCl₃) δ 189.4, 171.5, 165.0, 138.1, 124.7, 124.5, 118.9, 118.8, 118.7, 68.2, 53.7, 14.3, 9.8, 9.1. HRMS (*ESI Orbitrap*) calcd for C₁₄H₁₄NO₄[M+H]⁺: 260.0761, Found: 260.0756.

Methyl 3-oxo-1-propionylindoline-2-carboxylate (4h):

To a stirred solution of **3h** (800 mg, 2.73 mmol, 1 equiv) in 20 mL dry THF at 0 °C was added a solution of 'BuOK (385 mg, 3.4 mmol, 1.2 equiv, in 20 mL dry THF) dropwise under argon atmosphere over 10 min. The resulting solution was allowed to stir at 25 °C for 1 h. THF was removed under reduced pressure at 40 °C to afford the residue, which was dissolved in 30 mL H₂O/AcOH (5:1) at 0 °C with a rapid stirring and extracted with EtOAc(2x50 mL). The combined extracts were washed with brine solution (100 mL), dried over Na₂SO₄, filtered and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel (60- 120 mesh) using ethyl acetate/*n*-hexane (3/7, v/v) mixture to afford the pure product **4h** (680 mg, 95.4% yield) as a colorless solid. mp.130°C, ¹H NMR (500 MHz, CDCl₃) δ 8.62 (s, 1H), 7.74 (d, *J*= 7.1 Hz, 1H), 7.71 – 7.67 (m, 1H), 7.22 (t, *J* = 7.5 Hz, 1H), 5.01 (s, 1H), 3.85 (s, 3H), 2.42 (s, 1H), 2.30 (s, 1H), 1.24 (s, 3H).¹³C NMR (101 MHz, CDCl₃) δ 189.2, 171.7, 164.9, 138.1, 124.7, 124.6, 122.5, 120.4, 118.8, 67.9, 53.8, 29.1, 8.6. HRMS (*ESI Orbitrap*) calcd for C₁₃H₁₄O₄N [M+H]⁺: 248.0917, Found: 248.0912.

Similarly, all other starting materials like **41**,**4m**,**4o** and **4p** were also prepared by following the same processes of **4g** and **4h**:

Methyl 5-bromo-2-(N-(2-methoxy-2-oxoethyl)cyclopropanecarboxamido)benzoate (31):

Yield (702 mg, 95%), pale yellow oil, ¹H NMR (500 MHz, CDCl₃) δ 8.12 (d, J = 2.4 Hz, 1H), 7.72 (dd, J = 8.4, 2.4 Hz, 1H), 7.63 (d, J = 8.4 Hz, 1H), 4.98 (d, J = 17.5 Hz, 1H), 3.89 (s, 3H), 3.74 (s, 3H), 3.70 (d, J = 17.5 Hz, 1H), 1.16 (tt, J = 7.9, 4.6 Hz, 1H), 1.09 – 1.01 (m, 1H), 0.94 (m, 1H), 0.68 – 0.58 (m, 2H).¹³C NMR (101 MHz, CDCl₃) δ 173.4, 170.0, 164.7, 141.3, 136.5, 134.6, 133.0, 130.9, 122.4, 52.9, 52.2, 51.2, 12.5, 9.1, 8.7, 8.6. HRMS (*ESI Orbitrap*) calcd for C₁₅H₁₇O₅NBr [M+H]⁺: 370.0285, Found:370.0273.

Methyl 5-bromo-2-(N-(2-methoxy-2-oxoethyl)propionamido)benzoate (3m):

Yield (653 mg, 92%), pale yellow oil, ¹H NMR (400 MHz, CDCl₃) δ 8.11 (d, J = 2.4 Hz, 1H), 7.71 (dd, J = 8.4, 2.4 Hz, 1H), 7.54 (d, J = 8.4 Hz, 1H), 4.96 (d, J = 17.4 Hz, 1H), 3.89 (s, 3H), 3.73 (s, 3H), 3.64 (d, J = 17.4 Hz, 1H), 2.13 – 1.91 (m, 2H), 1.04 (t, J = 7.4 Hz, 3H).¹³C NMR (101 MHz, CDCl₃) δ 173.6, 170.0, 164.6, 141.2, 136.6, 134.7, 132.9, 130.5, 122.6, 53.0, 52.2, 50.9, 27.4, 9.2. HRMS (*ESI Orbitrap*) calcd for C₁₄H₁₇O₅NBr [M+H]⁺: 358.0285, Found: 358.0280.

Methyl 2-(N-(2-methoxy-2-oxoethyl)cyclopropanecarboxamido)-5-methylbenzoate (30):

Yield (744 mg, 96%), colourless oil, ¹H NMR (500 MHz, CDCl₃) δ 7.79 (d, *J* = 1.6 Hz, 1H), 7.60 (d, *J* = 8.0 Hz, 1H), 7.41 (dd, *J* = 1.5, 0.7 Hz, 1H), 4.97 (d, *J* = 17.4 Hz, 1H), 3.88 (s, 3H), 3.83 – 3.66 (m, 4H), 2.42 (s, 3H), 1.20 (ddd, *J* = 7.9, 4.5, 3.3 Hz, 1H), 1.10 – 0.98 (m, 1H), 0.96 – 0.88 (m, 1H), 0.67 – 0.50 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 173.8, 170.2, 166.3, 139.7, 138.8, 134.1, 132.1, 131.0, 128.8, 52.6, 52.1, 51.4, 21.0, 12.4, 8.5, 8.4. HRMS (*ESI Orbitrap*) calcd for C₁₆H₂₀O₅N [M+H]⁺: 306.1336, Found: 306.1329.

Methyl 2-(N-(2-methoxy-2-oxoethyl)propionamido)-5-methylbenzoate (3p):

Yield (628 mg, 85%), colourless oil, ¹H NMR (500 MHz, CDCl₃) δ 7.79 (s, 1H), 7.51 (d, J = 8.0 Hz, 1H), 7.39 (dd, J = 8.0, 0.4 Hz, 1H), 5.07 – 4.84 (m, 1H), 3.88 (dd, J = 1.9, 0.9 Hz, 3H), 3.73 (dd, J = 2.1, 1.0 Hz, 3H), 3.66 (dd, J = 17.4, 0.8 Hz, 1H), 2.42 (d, J = 0.9 Hz, 3H), 2.15 – 1.81 (m, 2H), 1.03 (tdd, J = 7.4, 2.1, 1.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 174.1, 170.1, 166.0, 139.6, 139.0, 134.2, 132.2, 130.8, 128.3, 52.6, 52.0, 51.1, 27.1, 21.0, 9.2. HRMS (*ESI Orbitrap*) calcd for C₁₅H₂₀O₅N [M+H]⁺: 294.1341, Found: 294.1339.

Methyl 5-bromo-1-(cyclopropanecarbonyl)-3-oxoindoline-2-carboxylate (41):

Yield (413 mg, 90%), pale yellow solid, mp.123°C, ¹H NMR (500 MHz, CDCl₃) δ 8.46 (s,1H), 7.87 (d, J = 1.5 Hz, 1H), 7.76 (dd, J = 8.8, 1.9 Hz, 1H), 5.22 (s, 2H), 3.86 (s, 6H), 1.21(d, J = 6.1 Hz, 1H), 1.14 (s, 2H), 0.97 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 188.0, 172.4,171.4, 164.5, 140.9, 140.5, 127.2, 120.2, 117.5, 68.3, 54.5, 53.9, 10.0, 9.3. HRMS (*ESI*Orbitrap) calcd for C₁₄H₁₃O₄NBr [M+H]⁺: 337.9867, Found: 337.9870.

Methyl 5-bromo-3-oxo-1-propionylindoline-2-carboxylate (4m):

Yield (398 mg, 87%), white solid, mp.151°C, ¹H NMR (500 MHz, CDCl₃) δ 8.55 (s, 1H), 7.86 (s, 1H), 7.78 (d, *J* = 8.2 Hz, 1H), 5.04 (s, 1H), 3.87 (s, 3H), 2.42 (s, 1H), 2.31 (s, 1H), 1.24 (s, 3H).¹³C NMR (101 MHz, CDCl₃) δ 187.8, 171.6, 171.6, 164.4, 140.6, 127.2, 120.3, 120.3, 117.6, 68.0, 54.0, 29.0, 8.6. HRMS (*ESI Orbitrap*) calcd for C₁₃H₁₃O₄NBr [M+H]⁺: 326.0010, Found: 326.0018.

Methyl 1-(cyclopropanecarbonyl)-5-methyl-3-oxoindoline-2-carboxylate (40):

Yield (406 mg, 91%), paleyellow solid, mp.133°C, ¹H NMR (500 MHz, CDCl₃) δ 8.44 (s, 1H), 7.54 (s, 1H), 7.50 (dd, J = 8.5, 1.4 Hz, 1H), 5.19 (s, 1H), 3.84 (s, 3H), 2.38 (s, 3H), 1.24 (dd, J = 3.7, 2.2 Hz, 1H), 1.12 (s, 2H), 0.94 (s, 2H).¹³C NMR (101 MHz, CDCl₃) δ 189.4, 171.2, 165.1, 152.6, 139.2, 134.5, 124.2, 123.1, 118.4, 68.4, 53.6, 20.7, 14.1, 9.7, 8.9. HRMS (*ESI Orbitrap*) calcd for C₁₅H₁₆O₄N [M+H]⁺: 274.1071, Found: 274.1079.

Methyl 5-methyl-3-oxo-1-propionylindoline-2-carboxylate (4p):

Yield (397 mg, 85%), white solid, mp.130°C, ¹H NMR (500 MHz, CDCl₃) δ 8.51 (s, 1H), 7.53 (s, 1H), 7.51 (s, 1H), 5.00 (s, 1H), 3.85 (s, 3H), 2.38 (s, 3H), 2.30 (s, 1H), 1.75 (s, 1H), 1.23 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 189.1, 171.4, 165.0, 152.6, 139.3, 134.7, 124.2, 122.9, 118.5, 68.1, 53.5, 28.9, 20.7, 8.6. HRMS (*ESI Orbitrap*) calcd for C₁₄H₁₆O₄N [M+H]⁺: 262.1074, Found: 262.1078.

2. (ii) Experimental procedures and spectral data of starting materials (3i,4i):

Scheme-2. Preparation of 4i

Methyl 2-(N-(2-methoxy-2-oxoethyl)isobutyramido)benzoate (3i):

To a stirred solution of **2a** (600 mg, 2.69 mmol, 1 equiv) in 10 mL dry CH₂Cl₂ was added anhydrous pyridine (0.8 mL,8.07 mmol, 3 equiv) at room temperature under nitrogen atmosphere. The resulting solution was stirred at 25 °C for 30 min, thenisobutyryl chloride (0.6 mL, 5.38 mmol, 2 eq) was added dropwise to the above solution at 0°C. After complete addition, the reaction mixture was stirred at ambient temperature for overnight. Upon completion, the mixture was diluted with CH₂Cl₂ (10 mL) and washed with 1N HCl (2x50 mL) and the organic layer was dried over Na₂SO₄. Evaporation of the solvent under reduced pressure provided the crude product, which was purified by column chromatography on silica gel using ethyl acetate/*n*-hexane (1/1, v/v) mixture to afford the pure product **3i** (yellow oil, 754mg, 95.6%), ¹H NMR (400 MHz, CDCl₃) δ 8.02 – 7.96 (m, 1H), 7.67 (dd, *J* = 7.9, 1.2 Hz, 1H), 7.61 (td, *J* = 7.6, 1.6 Hz, 1H), 7.48 (td, *J* = 7.6, 1.4 Hz, 1H), 4.94 (d, *J* = 17.3 Hz, 1H), 3.89 (s, 3H), 3.74 (s, 3H), 3.68 (d, *J* = 17.3 Hz, 1H), 2.33 (m, 1H), 1.05 (d, *J* = 6.8 Hz, 3H), 0.98 (d, *J* = 6.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 177.4, 170.0, 166.0, 142.3, 133.5, 131.8, 130.8, 128.9, 128.7, 52.6, 52.1, 51.2, 31.4, 19.7, 18.8. HRMS (*ESI Orbitrap*) calcd for C₁₅H₂₀O₅N [M+H]⁺: 294.1336, Found: 294.1325.

Methyl 1-isobutyryl-3-oxoindoline-2-carboxylate (4i):

To a stirred solution of **3i** (850 mg, 2.90 mmol, 1.0 equiv) in 20 mL dry THF at 0 °C was added a solution of 'BuOK (390 mg, 3.48 mmol, 1.2 equiv, in 20 mL dry THF) dropwise under argon atmosphere over 10 min. The resulting solution was allowed to stir at 25 °C for 1 h. THF was removed under reduced pressure at 40 °C to afford the residue, which was dissolved in 30 mL H₂O/AcOH (5:1) at 0 °C with a rapid stirring and extracted with EtOAc(2x50 mL). The combined extracts were washed with brine solution (100 mL), dried over Na₂SO₄, filtered and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel (60- 120 mesh) using ethyl acetate/*n*-hexane (3/7, v/v) mixture to afford the pure product **4i** (710 mg, 93.8% yield) as a dark green oil, ¹H NMR (500 MHz, CDCl₃) δ 8.67 (s, 1H), 7.77 (d, *J* = 7.0 Hz, 1H), 7.71 (t, *J* = 7.5 Hz, 1H), 7.24 (d, *J* = 7.2 Hz, 1H), 5.06 (s, 1H), 3.86 (s, 3H), 2.50 (s, 1H), 1.23 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 189.1, 175.6, 165.0, 138.1, 124.6, 123.3, 123.2, 119.1, 119.1, 67.9, 53.8, 34.2, 20.0, 18.8. HRMS (*ESI Orbitrap*) calcd for C₁₄H₁₆O₄N [M+H]⁺: 262.1772, Found: 262.1780.

2.(iii) Experimental procedures and spectral data of starting materials (2n,3n,4n):

Scheme-3. Preparation of 4n

Methyl 4-((2-methoxy-2-oxoethyl)amino)-[1,1'-biphenyl]-3-carboxylate (2n):

To a stirred solution of **1n** (500 mg, 2.2 mmol, 1 equiv) in (30 mL) DMF was added methyl bromoacetate (0.3 mL, 3.30 mmol, 1.5 equiv) at room temperature under nitrogen atmosphere for 5 min. The resulting solution was stirred for 12 h at 80 °C. Then the mixture was allowed to stir at 25 °C and poured into ice water (100 mL). The resulting solution was extracted with EtOAc (2x100 mL). The combined extracts were washed with a saturated solution ofNaHCO₃ (2x100 mL), water(3x100 mL) followed by a brine solution (100 mL), dried over Na₂SO₄, filtered and concentrated in vacuo. Purification of the crude product was carried out by flash column chromatography on silica gel (60-120 mesh) using ethyl acetate/*n*-hexane (1/4, v/v) mixture to afford the pure product **2n** (560mg, 85% yield) as a white solid, mp. 127°C,¹H NMR (500 MHz, CDCl₃) δ 8.23 (t, *J* = 4.8 Hz, 1H), 8.21 (d, *J* = 1.8 Hz, 1H), 7.63 (dd, *J* = 8.7, 2.3 Hz, 1H), 7.54 (d, *J* = 8.1 Hz, 3H), 7.40 (t, *J* = 7.7 Hz, 3H), 7.28 (t, *J* = 7.4 Hz, 1H), 6.62 (d, *J* = 8.7 Hz, 1H), 4.07 (d, *J* = 5.4 Hz, 3H), 3.91 (s, 4H), 3.81 (s, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 170.9, 168.8, 149.2, 140.3, 133.3, 130.2, 128.8, 128.7, 126.5, 126.3, 111.7, 111.3, 52.4, 51.8, 45.0. HRMS (*ESI Orbitrap*) calcd for C₁₇H₁₈O₄N [M+H]⁺: 300.1230, Found: 300.1219.

Methyl 4-(*N*-(2-methoxy-2-oxoethyl)acetamido)-[1,1'-biphenyl]-3-carboxylate (3n):

To a stirred solution of **2n** (400 mg, 1.34 mmol, 1 equiv) in 10 mL dry CH₂Cl₂ was added anhydrous pyridine (0.32 mL, 4.01 mmol, 3 equiv) at room temperature under nitrogen atmosphere. The resultant solution was stirred at 25 °C for 30 min, then acetyl chloride (0.2 mL, 2.67 mmol, 2 equiv) was added dropwise to the above solution at 0°C. After complete addition, the reaction mixture was stirred at ambient temperature for overnight. Upon completion, the mixture was diluted with CH₂Cl₂ (10 mL) and washed with 1N HCl (2x50 mL) and the organic layer was dried over Na₂SO₄. Evaporation of the solvent under reduced pressure provided the crude product, which was purified by column chromatography on silica gel using ethyl acetate/*n*-hexane (1/1, v/v) mixture to afford the pure product **3n** (420 mg, 92% yield) as a semi-solid. ¹H NMR (500 MHz, CDCl₃) δ 8.21 (d, *J* = 2.2 Hz, 1H), 7.80 (dd, *J* = 8.2, 2.3 Hz, 1H), 7.71 (d, *J* = 8.2 Hz, 1H), 7.61 (d, *J* = 7.1 Hz, 2H), 7.49 (t, *J* = 7.5 Hz, 2H), 7.45 – 7.38 (m, 1H), 5.00 (d, *J* = 17.4 Hz, 1H), 3.93 (s, 3H), 3.73 (d, *J* = 19.3 Hz, 4H), 1.88 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 170.7, 170.0, 165.9, 142.0, 141.5, 138.9, 131.9, 131.5, 130.4, 129.1, 128.9, 128.4, 127.1, 52.8, 52.2, 51.0, 22.1. HRMS (*ESI Orbitrap*) calcd for C₁₉H₂₀O₅N [M+H]⁺: 342.1336, Found: 342.1327.

Methyl 1-acetyl-3-oxo-5-phenylindoline-2-carboxylate (4n):

To a stirred solution of **3n** (400 mg, 1.17 mmol, 1eq.) in 20 mL dry THF at 0 °C was added a solution of t-BuOK (157mg, 1.4 mmol, 1.2 eq, in 20 mL dry THF) dropwise under argon atmosphere over 10 min. The resulting solution was allowed to stir at 25 °C for 1 h. THF was removed under reduced pressure at 40 °C to afford the residue, which was dissolved in30 mL H₂O/AcOH (5:1) at 0 °C with a rapid stirring and extracted with EtOAc(2x50 mL). The combined extracts were washed with a brine solution (100 mL), dried over Na₂SO₄, filtered and concentrated in vacuo. The residue was purified by a flash column chromatography on silica gel (60- 120 mesh) using ethyl acetate/*n*-hexane (3/7, v/v) mixture to afford the pure

product **4n**(330mg, 91% yield) as a yellow solid, mp. 152°C,¹H NMR (500 MHz, CDCl₃) δ 8.66 (d, J = 7.4 Hz, 1H), 7.94 (d, J = 7.1 Hz, 2H), 7.57 (d, J = 7.3 Hz, 2H), 7.45 (t, J = 7.5 Hz, 2H), 7.38 (t, J = 7.2 Hz, 1H), 5.06 (s, 1H), 3.89 (s, 3H), 2.23 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 188.9, 168.3, 164.8, 153.2, 138.9, 138.1, 137.1, 129.1, 128.0, 126.9, 123.5, 122.4, 119.1, 68.9, 54.0, 23.8. HRMS (*ESI Orbitrap*) calcd for C₁₈H₁₆O₄N [M+H]⁺: 310.1074, Found: 310.1079.

2. (iv) Experimental procedure and characterization data of products:

Enantioselective electrophilic fluorination (4a):

Preparation of racemic compounds:

A flame dried 20 mL screw cap reaction tube with a stir bar was evacuated, and back filled with nitrogen. To this tube was charged with a fluorinating agent *N*-fluorobenzenesulfonimide (NFSI) (54 mg, 0.17 mmol, 0.8 equiv) and 10 mL di-isopropyl ether followed by the addition of substrate 4a(50 mg, 0.22 mmol, 1 equiv) and Potassium carbonate (0.6 equiv). The reaction mixture was stirred for overnight at room temperature and upon consumption of the starting material, the solvent was evaporated to provide the crude product, which was purified by column chromatography using ethyl acetate/*n*-hexane (1/19 to 1/9 v/v) mixture to afford the pure product 5a(43 mg) as a white solid.

Preparation of chiral compounds:

A flame dried 20 mL screw cap reaction tube with a stir bar was evacuated, and back filled with nitrogen. То this tube was charged with a fluorinating agent Nfluorobenzenesulfonimide (NFSI) (54 mg, 0.17 mmol, 0.8 equiv) and 10 mL di-isopropyl ether followed by 10 mol% of Cu(I)-ligand (L1) complex under nitrogen atmosphere. After stirring for 30 min at room temperature, the substrate 4a (50 mg, 0.22 mmol, 1 equiv) was added and themixture was stirred at20°C for 14h. The reaction was monitored by TLC. Upon consumption of the starting material, the solvent was evaporated to provide the crude product, which was purified by column chromatography using ethyl acetate/*n*-hexane (1/19 to 1/9 v/v) mixture to afford the pure product **5a** (40 mg) as a white solid.

Methyl (S)-1-acetyl-2-fluoro-3-oxoindoline-2-carboxylate (5a):

Yield (40 mg, 90%), white solid, mp.118°C, ¹H NMR (400 MHz, CDCl₃) δ 8.52 (s, 1H), 7.80 (dd, J = 7.7, 0.7 Hz, 1H), 7.75 (ddd, J = 8.6, 7.4, 1.4 Hz, 1H), 7.31 (td, J = 7.6, 0.7 Hz, 1H), 3.91 (s, 3H), 2.33 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 186.9 (d, $J_{C-F} = 16.5$ Hz), 168.3, 163.5 (d, $J_{C-F} = 35.8$ Hz), 153.7, 139.1, 125.6, 125.5, 119.6, 118.4, 94.7 (d, $J_{C-F} = 229.9$ Hz), 54.4, 23.8. ¹⁹F NMR (377 MHz, 3>) δ -138.38. IR (thin film): v_{max}/cm^{-1} 1756, 1701, 1582, 1496, 1365, 1174, 1148, 762. HRMS (*ESI Orbitrap*) calcd for C₁₂H₁₁O₄NF [M+H]⁺:252.0667, Found: 252.0666. HPLC analysis (DAICEL Chiralpak OJ-H, *n*-hexane/2-PrOH = 90/10, 1mL/min, 254 nm, minor (23.78 min), major (27.34 min), 95% ee; [α]_D²⁰ +38.4 (c = 0.8, CHCl₃).

Similarly, all other reactions were carried out according to general procedure to provide fluoro compounds **5b-u**:

Methyl (S)-1-acetyl-5-bromo-2-fluoro-3-oxoindoline-2-carboxylate (5b):

Yield (48 mg, 92%),pale yellow solid, mp. 132°C, ¹H NMR (300 MHz, CDCl₃) δ 8.44 (s, 1H), 7.90 (d, J = 1.8 Hz, 1H), 7.83 (dd, J = 8.8, 2.0 Hz, 1H), 3.91 (s, 3H), 2.31 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 185.7 (d, $J_{C-F} = 16.8$ Hz), 168.2, 163.0 (d, $J_{C-F} = 35.8$ Hz), 152.6, 141.5, 128.1, 121.2 119.9, 118.5, 94.6 (d, $J_{C-F} = 231.6$ Hz), 54.5, 23.7. ¹⁹F NMR (377 MHz, 3>) δ -137.95. HRMS (*ESI Orbitrap*) calcd for C₁₂H₁₀O₄NBrF [M+H]⁺: 329.9766, Found: 329.9761. HPLC analysis (DAICEL Chiralpak OJ-H, *n*-hexane/2-PrOH = 90/10, 1mL/min, 254 nm, minor (23.24 min), major (33.15 min), 97% ee; [α]_D²⁰ +40.5 (c = 0.7, CHCl₃).

Methyl (S)-1-acetyl-5-chloro-2-fluoro-3-oxoindoline-2-carboxylate (5c):

Yield (45 mg, 85%), white solid, mp.98°C, ¹H NMR (400 MHz, CDCl₃) δ 8.49 (s, 1H), 7.75(d, J = 2.2 Hz, 1H), 7.69 (dd, J = 8.9, 2.3 Hz, 1H), 3.91 (s, 3H), 2.31 (s, 3H). ¹³C NMR (101MHz, CDCl₃) δ 185.9 (d, $J_{C-F} = 17.0$ Hz), 168.2, 163.1 (d, $J_{C-F} = 35.8$ Hz), 152.2, 138.7,131.3, 125.0, 120.9, 119.6, 94.8 (d, $J_{C-F} = 231.3$ Hz), 54.5, 23.7. ¹⁹F NMR (377 MHz, CDCl₃)δ -137.92. IR (thin film): v_{max}/cm^{-1} 1778, 1712, 1598, 1432, 1338, 1269, 1193, 1124, 1071,770. HRMS (*ESI Orbitrap*) calcd for C₁₂H₁₀O₄NCIF [M+H]⁺:286.0271, Found: 286.0269.

HPLC analysis (DAICEL Chiralpak OJ-H, *n*-hexane/2-PrOH = 90/10, 1mL/min, 254 nm, minor (26.71 min), major (34.71 min), 77% ee; $[\alpha]_D^{20}$ +10.3 (c =0.2, CHCl₃).

Methyl (S)-1-acetyl-2-fluoro-5-methyl-3-oxoindoline-2-carboxylate (5d):

Yield (50 mg, 93%), white solid, mp. 114°C, ¹H NMR (400 MHz, CDCl₃) δ 8.41 (s, 1H), 7.58 (s, 1H), 7.56 (d, J = 8.5 Hz, 1H), 3.89 (s, 3H), 2.40 (s, 3H), 2.30 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 187.0 (d, $J_{C-F} = 16.4$ Hz), 168.1, 163.5 (d, $J_{C-F} = 36.1$ Hz), 140.1, 135.7, 125.3, 119.6, 118.2, 118.1, 95.0 (d, $J_{C-F} = 230.0$ Hz), 54.3, 23.7, 20.7. ¹⁹F NMR (377 MHz, CDCl₃) δ -138.44. IR (thin film): v_{max}/cm^{-1} 1783, 1744, 1705, 1492, 1379, 1329, 1246,1198, 764. HRMS (*ESI Orbitrap*) calcdfor C₁₃H₁₃O₄NF [M+H]⁺: 266.0823, Found: 266.0830. HPLC analysis (DAICEL Chiralpak OJ-H, *n*-hexane/2-PrOH = 90/10, 1mL/min, 254 nm, minor (16.96 min), major (22.72 min), 98% ee; [α]_D²⁰ +40.5 (c = 0.7, CHCl₃).

Methyl (S)-1-acetyl-2-fluoro-3-oxo-2,3-dihydro-1*H*-benzo[*f*]indole-2-carboxylate (5e):

Yield (47 mg, 88%),pale yellow solid, mp. 156°C, ¹H NMR (300 MHz, CDCl₃) δ 8.85 (s, 1H), 8.40 (s, 1H), 7.93 (t, *J* = 9.2 Hz, 2H), 7.67 (t, *J* = 7.4 Hz, 1H), 7.52 (t, *J* = 7.5 Hz, 1H), 3.91 (s, 3H), 2.39 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 187.2 (d, *J*_{*C-F*} = 17.1 Hz), 168.9, 163.7 (d, *J*_{*C-F*} = 36.8 Hz), 145.4, 139.2, 131.0, 130.6, 130.3, 128.8, 128.3, 126.7, 119.4, 115.0, 95.4 (d, *J*_{*C-F*} = 230.1 Hz), 54.4, 23.9. ¹⁹F NMR (377 MHz, CDCl₃) δ -135.86. IR (thin film): v_{max}/cm⁻¹ 1775, 1701, 1624, 1378, 1315, 1160, 760. HRMS (*ESI Orbitrap*) calcd for C₁₆H₁₃O₄NF [M+H]⁺: 302.0823, Found: 302.0836. HPLC analysis (DAICEL Chiralpak OD-H, *n*-hexane/2-PrOH = 90/10, 1mL/min, 254 nm, minor (11.73 min), major (12.62 min), 85% ee; [α]_D²⁰ +50.6 (*c* =0.8, CHCl₃).

Methyl (*S*)-6-acetyl-5-fluoro-4-oxo-5,6-dihydro-4*H*-thieno[2,3-*b*]pyrrole-5-carboxylate (5f):

Yield (48 mg, 89%), white solid, mp. 138°C, ¹H NMR (300 MHz, CDCl₃) δ 7.03 (dd, J = 14.8, 5.5 Hz, 2H), 3.93 (s, 3H), 2.28 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 178.0 (d, $J_{C-F} = 17.3$ Hz), 170.3, 164.8, 162.5 (d, $J_{C-F} = 34.8$ Hz), 125.0, 123.1, 117.9, 98.7 (d, $J_{C-F} = 236.9$ Hz), 54.5, 21.3. ¹⁹F NMR (377 MHz, CDCl₃) δ -138.78. IR (thin film): v_{max}/cm^{-1} 1777, 1729, 1697, 1346, 1284, 1187, 756. HRMS (*ESI Orbitrap*) calcd for C₁₀H₉O₄NFS [M+H]⁺: 258.0231, Found: 258.0232. HPLC analysis (DAICEL Chiralpak OD-H, *n*-hexane/2- PrOH =

92/8, 1mL/min, 254 nm, minor (12.41 min), major (15.47 min), 83% ee; $[\alpha]_D^{20}$ +74.3 (*c* =0.8, CHCl₃).

Methyl (S)-1-(cyclopropanecarbonyl)-2-fluoro-3-oxoindoline-2-carboxylate (5g):

Yield (51 mg, 95%), white solid, mp.141°C, ¹H NMR (500 MHz, CDCl₃) δ 8.45 (d, J = 8.4 Hz, 1H), 7.80 (dd, J = 7.6, 0.6 Hz, 1H), 7.76 – 7.70 (m, 1H), 7.32 – 7.26 (m, 1H), 3.88 (s, 3H), 1.99 – 1.78 (m, 1H), 1.46 – 1.34 (m, 1H), 1.07 – 0.97 (m, 2H), 0.97 – 0.90 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 187.1 (d, $J_{C-F} = 17.2$ Hz), 172.1 (d, $J_{C-F} = 2.6$ Hz), 163.5 (d, $J_{C-F} = 36.3$ Hz), 154.1, 139.0, 125.6, 125.3, 119.5, 118.4, 94.8 (d, $J_{C-F} = 228.2$ Hz), 54.1, 14.0 (d, $J_{C-F} = 4.5$ Hz), 10.8, 9.3. ¹⁹F NMR (376 MHz, CDCl₃) δ -136.56. IR (thin film): v_{max}/cm^{-1} 1778, 1742, 1697, 1406, 1292, 1100, 760. HRMS (*ESI Orbitrap*) calcd for C₁₄H₁₃O₄NF [M+H]⁺: 278.0823, Found: 278.0831. HPLC analysis (DAICEL Chiralpak OJ-H, *n*-hexane/2-PrOH = 95/5, 0.8mL/min, 254 nm, minor (25.49 min), major (33.34 min), 93% ee; $[\alpha]_D^{20}$ +21.2 (c = 0.7, CHCl₃).

Methyl (S)-2-fluoro-3-oxo-1-propionylindoline-2-carboxylate (5h):

Yield (44 mg, 82%), white solid, mp.106°C, ¹H NMR (400 MHz, CDCl₃) δ 8.44 (s, 1H), 7.77 (d, J = 7.7 Hz, 1H), 7.72 (t, J = 7.9 Hz, 1H), 7.26 (t, J = 7.5 Hz, 1H), 3.87 (s, 3H), 2.66 (dq, J = 14.7, 7.2 Hz, 1H), 2.34 (dd, J = 15.3, 7.1 Hz, 1H), 1.21 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 187.1 (d, $J_{C-F} = 16.6$ Hz), 172.2 (d, $J_{C-F} = 2.1$ Hz), 163.5 (d, $J_{C-F} = 35.7$ Hz), 153.9, 139.1, 125.8, 125.4, 119.6, 118.2, 94.6 (d, $J_{C-F} = 229.7$ Hz), 54.3, 29.1, 8.7. ¹⁹F NMR (376 MHz, CDCl₃) δ -138.20. IR (thin film): v_{max}/cm^{-1} 1783, 1744, 1469, 1374, 1292, 1185, 762. HRMS (*ESI Orbitrap*) calcd for C₁₃H₁₃O₄NF [M+H]⁺: 266.0846, Found: 266.0853. HPLC analysis (DAICEL Chiralpak OJ-H, *n*-hexane/2- PrOH = 90/10, 1mL/min, 254 nm, minor (14.27 min), major (22.45 min), 93% ee; [α]_D²⁰ +11.8 (c = 1.0, CHCl₃).

Methyl (S)-2-fluoro-1-isobutyryl-3-oxoindoline-2-carboxylate (5i):

Yield (31 mg, 58%), colourless liquid, ¹H NMR (500 MHz, CDCl₃) δ 8.51 (s, 1H), 7.80 (dd, J = 7.6, 0.6 Hz, 1H), 7.78 – 7.72 (m, 1H), 7.30 (t, J = 7.5 Hz, 1H), 3.89 (s, 3H), 2.76 (s, 1H), 1.28 (d, J = 6.5 Hz, 3H), 1.16 (d, J = 6.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 187.0 (d, $J_{C-F} = 16.7$ Hz), 176.6, 163.6 (d, $J_{C-F} = 35.5$ Hz), 154.0, 139.1, 125.7, 125.5, 119.9, 118.6, 94.7 (d, $J_{C-F} = 229.7$ Hz), 54.3, 34.6 (d, $J_{C-F} = 1.7$ Hz), 20.5, 18.6. ¹⁹F NMR (376 MHz, CDCl₃) δ -137.54. HRMS (*ESI Orbitrap*) calcd for C₁₄H₁₅O₄NF [M+H]⁺= 280.0980, Found:

280.0973. HPLC analysis (DAICEL Chiralpak OJ-H, n-hexane/2- PrOH = 90/10, 1mL/min, 254 nm, minor (9.63 min), major (10.94 min), 59% ee; $[\alpha]_D^{20}$ +1.8 (*c* =1.9, CHCl₃).

Methyl (S)-1-acetyl-2-fluoro-7-methyl-3-oxoindoline-2-carboxylate (5j):

Yield (36 mg, 67%),light pink solid, mp.116°C, ¹H NMR (500 MHz, CDCl₃) δ 7.66 (d, J = 7.6 Hz, 1H), 7.58 (d, J = 7.4 Hz, 1H), 7.28 (d, J = 7.5 Hz, 1H), 3.90 (s, 1H), 2.31 (d, J = 0.7 Hz, 1H), 2.29 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 187.8 (d, J = 17.3 Hz), 168.0, 163.8 (d, J = 36.2 Hz), 153.0, 141.6, 129.8, 126.2, 123.3, 121.9, 95.7 (d, J = 230.7 Hz), 54.3, 24.0 (d, J = 2.4 Hz), 21.2.¹⁹F NMR (377 MHz, CDCl₃) δ -136.29.HRMS (*ESI Orbitrap*) calcd for C₁₃H₁₃O₄NF [M+H]⁺: 266.0823, Found: 266.0827. HPLC analysis (DAICEL Chiralpak OJ-H, *n*-hexane/2-PrOH = 90/10, 1mL/min, 254 nm, minor (20.79 min), major (25.05 min), 91% ee; [α]_D²⁰+36.2 (*c*=1.2, CHCl₃).

Ethyl (S)-1-acetyl-2-fluoro-3-oxoindoline-2-carboxylate (5k):

Yield (32 mg, 60%),pale yellow liquid, ¹H NMR (500 MHz, CDCl₃) δ 8.52 (s, 1H), 7.80 (d, *J* = 7.7 Hz, 1H), 7.75 (ddd, *J* = 8.6, 7.4, 1.4 Hz, 1H), 7.31 (td, *J* = 7.7, 0.7 Hz, 1H), 4.46 – 4.28 (m, 2H), 2.33 (s, 3H), 1.31 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 187.1 (d, *J*_{C-F} = 16.6 Hz), 168.3 (d, *J*_{C-F} = 1.0 Hz), 163.0 (d, *J*_{C-F} = 35.4 Hz), 139.0, 129.2, 128.0, 125.7, 125.5, 119.6, 118.3, 94.7 (d, *J*_{C-F} = 230.3 Hz), 64.1, 23.8, 14.0. ¹⁹F NMR (376 MHz, CDCl₃) δ -138.35. HRMS (*ESI Orbitrap*) Exact mass calcd for C₁₃H₁₃O₄NF [M+H]⁺: 266.0828, Found: 266.0822. HPLC analysis (DAICEL Chiralpak OJ-H, *n*-hexane/2-PrOH = 90/10, 1mL/min, 254 nm, minor (12.29 min), major (14.88 min), 84% ee, [α]_D²⁰+23.5 (*c*=1.1, CHCl₃).

Methyl (*S*)-5-bromo-1-(cyclopropanecarbonyl)-2-fluoro-3-oxoindoline-2-carboxylate (5l):

Yield (50 mg, 95%), white solid, mp.135°C, ¹H NMR (500 MHz, CDCl₃) δ 8.37 (d, J = 8.9 Hz, 1H), 7.90 (d, J = 2.1 Hz, 1H), 7.80 (dd, J = 8.9, 2.2 Hz, 1H), 3.88 (s, 3H), 1.86 (qdd, J = 7.8, 4.6, 1.3 Hz, 1H), 1.40 (ddt, J = 9.2, 7.0, 4.0 Hz, 1H), 1.08 – 0.97 (m, 2H), 0.97 – 0.91 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 186.0 (d, $J_{C-F} = 17.3$ Hz), 172.0 (d, $J_{C-F} = 2.7$ Hz), 163.1 (d, $J_{C-F} = 36.2$ Hz), 152.9, 141.4, 128.0, 121.1, 120.0,118.3, 94.7 (d, $J_{C-F} = 229.5$ Hz), 54.3, 13.9 (d, $J_{C-F} = 4.6$ Hz), 11.0, 9.5.¹⁹F NMR (377 MHz, CDCl₃) δ -136.09. HRMS (*ESI Orbitrap*) calcd for C₁₄H₁₂O₄NBrF [M+H]⁺: 358.0285, Found: 358.0280. HPLC analysis

(DAICEL Chiralpak OJ-H, *n*-hexane/2- PrOH = 93/7, 0.8 mL/min, 254 nm, minor (18.44 min), major (29.97 min), 99% ee; $[\alpha]_D^{20}$ -13.4 (*c* =1.8, CHCl₃).

Methyl (S)-5-bromo-2-fluoro-3-oxo-1-propionylindoline-2-carboxylate (5m):

Yield (46 mg, 87%) white solid, mp.128°C, ¹H NMR (500 MHz, CDCl₃) δ 8.42 (s, 1H), 7.90 (d, J = 2.1 Hz, 1H), 7.82 (dd, J = 8.9, 2.2 Hz, 1H), 3.90 (s, 3H), 2.66 (dq, J = 21.9, 7.2 Hz, 1H), 2.33 (dd, J = 16.3, 7.4 Hz, 1H), 1.23 (t, J = 7.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 185.9 (d, $J_{C-F} = 16.7$ Hz), 172.1, 163.1 (d, $J_{C-F} = 35.7$ Hz), 152.8, 141.5, 128.1, 121.2, 119.9, 118.4, 94.5 (d, $J_{C-F} = 230.8$ Hz), 54.5, 29.0, 8.7. ¹⁹F NMR (377 MHz, CDCl₃) δ -137.67. IR (thin film): v_{max}/cm^{-1} 1783, 1748, 1711, 1464, 1371, 1301, 1185, 1118, 771. HRMS (*ESI Orbitrap*) calcd for C₁₃H₁₂O₄NBrF [M+H]⁺: 344.1298, Found: 344.1304. HPLC analysis DAICEL Chiralpak OJ-H, *n*-hexane/2-PrOH = 90/10, 1 mL/min, 254 nm, minor (12.67 min), major (20.32 min), 95% ee; $[\alpha]_D^{20}$ -1.0 (c = 0.3, CHCl₃).

Methyl (S)-1-acetyl-2-fluoro-3-oxo-5-phenylindoline-2-carboxylate (5n)

Yield (42 mg, 79%),pale yellow solid, mp.168°C, ¹H NMR (500 MHz, CDCl₃) δ 8.59 (s, 1H), 7.99 (s, 1H), 7.97 (d, J = 2.1 Hz, 1H), 7.58 (dd, J = 8.0, 0.9 Hz, 2H), 7.51 – 7.45 (m, 2H), 7.43 – 7.37 (m, 1H), 3.92 (s, 3H), 2.34 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 187.0 (d, J_{C-F} = 16.6 Hz), 168.2, 163.4 (d, $J_{C-F} = 35.8$ Hz), 152.9, 139.0, 138.5, 137.9, 129.2, 128.2, 126.9, 123.5, 120.2, 120.1, 118.6, 118.5, 95.1 (d, $J_{C-F} = 229.9$ Hz), 54.4, 23.8. ¹⁹F NMR (377 MHz, CDCl₃) δ -138.08. IR (thin film): v_{max}/cm^{-1} 1779, 1745, 1712, 1476, 1378, 1324, 1179, 1124, 1073, 772. HRMS (*ESI Orbitrap*) calcd for C₁₈H₁₅FNO₄ [M+H]⁺: 328.0982, Found: 328.0977. HPLC analysis DAICEL Chiralpak OJ-H, *n*-hexane/2-PrOH = 90/10, 1 mL/min, 254 nm, minor (43.11 min), major (58.35 min), 92% ee; [α]_D²⁰ -4.0 (*c* =0.3, CHCl₃).

Methyl (*S*)-1-(cyclopropanecarbonyl)-2-fluoro-5-methyl-3-oxoindoline-2-carboxylate (50):

Yield (48 mg, 90%),pale yellow solid, mp.98°C, ¹H NMR (500 MHz, CDCl₃) δ 8.33 (d, J = 8.4 Hz, 1H), 7.58 (s, 1H), 7.54 (dd, J = 8.5, 1.6 Hz, 1H), 3.87 (s, 3H), 2.40 (s, 3H), 1.94 – 1.82 (m, 1H), 1.50 – 1.33 (m, 1H), 1.09 – 0.97 (m, 2H), 0.95 – 0.84 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 187.2 (d, $J_{C-F} =$ 17.0 Hz), 171.9 (d, $J_{C-F} =$ 2.6 Hz), 163.6 (d, $J_{C-F} =$ 36.4 Hz), 152.3, 140.0, 135.5, 125.3, 119.6, 118.2, 95.0 (d, $J_{C-F} =$ 228.0 Hz), 54.1, 20.7, 13.9 (d, $J_{C-F} =$ 4.3 Hz),10.6, 9.2. ¹⁹F NMR (377 MHz, CDCl₃) δ -136.64. IR (thin film): v_{max}/cm^{-1} 1781, 1744, 1698, 1489, 1443, 1407, 1312, 1191, 1095, 776. HRMS (*ESI Orbitrap*) Exact mass

calcd for C₁₅H₁₅O₄NF [M+H]⁺: 292.0967, Found: 292.0962. HPLC analysis DAICEL Chiralpak OJ-H, *n*-hexane/2- PrOH = 90/10, 1 mL/min, 254 nm, minor (13.24 min), major (17.22 min), 92% ee; $[\alpha]_D^{20}$ +14.8 (*c* =0.3, CHCl₃).

Methyl (S)-2-fluoro-5-methyl-3-oxo-1-propionylindoline-2-carboxylate (5p):

Yield (46 mg, 86%), white solid, mp.88°C, ¹H NMR (500 MHz, CDCl₃) δ 8.38 (s, 1H), 7.58 (s, 1H), 7.56 (d, J = 8.5 Hz, 1H), 3.89 (s, 3H), 2.67 (dq, J = 14.5, 7.1 Hz, 1H), 2.40 (s, 3H), 2.35 (s, 1H), 1.23 (t, J = 7.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 187.1 (d, $J_{C-F} = 16.6$ Hz), 172.0 (d, $J_{C-F} = 2.2$ Hz), 163.6 (d, $J_{C-F} = 35.7$ Hz), 152.1, 140.1, 135.5, 125.4, 119.7, 118.0, 94.9 (d, $J_{C-F} = 229.6$ Hz), 54.2, 29.4 (d, J = 75.1 Hz), 20.7, 8.7. ¹⁹F NMR (377 MHz, CDCl₃) δ -138.20. IR (thin film): v_{max}/cm^{-1} 1782, 1744, 1706, 1489, 1376, 1302, 1194, 1117, 1068, 768. HRMS (*ESI Orbitrap*) calcd for C₁₄H₁₅O₄NF [M+H]⁺: 280.0972, Found: 280.0977. HPLC analysis DAICEL Chiralpak OJ-H, *n*-hexane/2-PrOH = 90/10, 1 mL/min, 254 nm, minor (12.11 min), major (19.53 min), 95% ee; [α]_D²⁰+10.0 (c =0.3, CHCl₃).

Methyl (*R*)-1-benzoyl-2-fluoro-3-oxoindoline-2-carboxylate (5u):

Yield (32 mg, 60%), yellowish white solid, mp. 159°C, ¹H NMR (500 MHz, CDCl₃) δ 7.81 (dd, *J* = 7.7, 0.6 Hz, 1H), 7.78 (s, 1H), 7.70 – 7.65 (m, 1H), 7.64 (dd, *J* = 7.2, 1.0 Hz, 2H), 7.61 – 7.57 (m, 1H), 7.49 (t, *J* = 7.7 Hz, 2H), 7.33 – 7.28 (m, 1H), 3.59 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 187.3 (d, *J*_{C-F} = 18.7 Hz), 169.0, 162.5 (d, *J*_{C-F} = 34.1 Hz), 153.8, 138.4, 133.9, 132.3, 128.7, 128.3 (d, *J*_{C-F} = 1.7 Hz), 125.9, 125.7, 120.3, 118.5, 94.8 (d, *J*_{C-F} = 230.6 Hz), 53.8. ¹⁹F NMR (377 MHz, CDCl₃) δ -131.10. HRMS (*ESI Orbitrap*) calcd for C₁₇H₁₂O₄NF [M+H]⁺: 314.0823, Found: 314.0828, HPLC analysis DAICEL Chiralpak OD-H, *n*-hexane/2-PrOH = 90/10, 1 mL/min, 254 nm, major (13.78 min), minor (23.82 min), 58% ee; [α]_D²⁰ +22.9 (*c* =0.6, CHCl₃).

Enantioselective electrophilic fluorination of methyl 2-oxoindoline-3-carboxylate (6)

A flame dried 20 mL screw cap reaction tube with a stir bar was evacuated, and back filled with tube charged а nitrogen. То this was with fluorinating agent Nfluorobenzenesulfonimide (NFSI) (66 mg, 0.21 mmol, 0.8 equiv) and 10 mL di-isopropyl ether followed by 10 mol% of Cu(I)-ligand (L1) complex under nitrogen atmosphere. After stirring for 30 min at room temperature, the substrate 6 (50 mg, 0.26 mmol, 1 equiv) was added and themixture was stirred at 20°C for 14h. The reaction was monitored by TLC. Upon consumption of the starting material, the solvent was evaporated to provide the crude product, which was purified by column chromatography using ethyl acetate/*n*-hexane (1/19 to 1/9 v/v) mixture to afford the pure product 7 (36 mg) as a white solid.

Methyl (R)-3-fluoro-2-oxoindoline-3-carboxylate (7):

Yield (36 mg, 66%), orange white solid, mp. 132°C, ¹H NMR (400 MHz, CDCl₃) δ 8.41 (s, 1H), 7.40 (t, *J* = 7.0 Hz, 2H), 7.11 (t, *J* = 7.6 Hz, 1H), 6.97 (d, *J* = 8.1 Hz, 1H), 3.82 (s, 3H).¹³C NMR (101 MHz, CDCl₃) δ 170.4 (d, *J*_{C-F} = 21.1 Hz), 165.6 (d, *J*_{C-F} = 31.6 Hz), 142.3 (d, *J*_{C-F} = 5.3 Hz), 132.6 (d, *J*_{C-F} = 2.9 Hz), 125.3, 123.8 (d, *J*_{C-F} = 2.4 Hz), 123.3 (d, *J*_{C-F} = 19.4 Hz), 111.2, 90.4 (d, *J*_{C-F} = 202.3 Hz), 53.6. ¹⁹F NMR (471 MHz, CDCl₃) δ -164.40. HRMS (*ESI Orbitrap*) calcd for C₁₀H₉O₃NF [M+H]⁺: 210.0490, Found: 210.0485. HPLC analysis DAICEL Chiralpak OD-H, *n*-hexane/2-PrOH = 88/12, 1 mL/min, 254 nm, minor (7.83 min), major (9.76 min), 59% ee; [α]_D²⁰ +34.2 (*c* =0.5, CHCl₃).

3.¹H & ¹³C NMR spectra of starting materials: <u>¹H NMR spectrum of 3g</u>:

¹³C NMR spectrum of **3g**:

¹H NMR spectrum of **3h**:

¹³C NMR spectrum of **3h**:

¹H NMR spectrum of 4g:

¹³C NMR spectrum of **4g**:

¹H NMR spectrum of **4h**:

¹³C NMR spectrum of **4h**:

¹H NMR spectrum of **3**I:

¹³C NMR spectrum of **3**I:

¹H NMR spectrum of **3m**:

¹³C NMR spectrum of **3m**:

¹H NMR spectrum of **30**:

¹³C NMR spectrum of **30**:

¹H NMR spectrum of **3p**:

¹³C NMR spectrum of **3p**:

¹H NMR spectrum of **4**I:

¹³C NMR spectrum of **4**I:

¹H NMR spectrum of **4m**:

¹³C NMR spectrum of **4m**:

¹H NMR spectrum of **40**:

¹³C NMR spectrum of **40**:

¹H NMR spectrum of **4p**:

¹³C NMR spectrum of **4p**:

¹H NMR spectrum of **3i**:

¹³C NMR spectrum of **3i**:

¹³C NMR spectrum of **4i**:

¹H NMR spectrum of **2n**:

¹³C NMR spectrum of **2n**:

¹H NMR spectrum of **3n**:

 $\frac{13C \text{ NMR spectrum of } 3n}{13C \text{ NMR spectrum of } 3n}$

¹H NMR spectrum of **4n**:

¹³C NMR spectrum of **4n**:

¹H, ¹³C, ¹⁹F NMR spectra and HPLC chromatograms of final fluorinated products (5a-5p):

¹H NMR spectrum of **5a**:

¹³C NMR spectrum of **5a**:

¹⁹F NMR spectrum of **5a**:

HPLC chromatogram of 5a-racemic:

¹H NMR spectrum of **5b**:

¹³C NMR spectrum of **5b**:

¹⁹F NMR spectrum of **5b**:

HPLC chromatogram of **5b**-racemic:

HPLC chromatogram of 5b-chiral:

¹H NMR spectrum of 5c:

¹³C NMR spectrum of **5c**:

¹⁹F NMR spectrum of **5c**:

HPLC chromatogram of 5c-racemic:

HPLC chromatogram of 5c-chiral:

¹H NMR spectrum of **5d**:

¹³C NMR spectrum of **5d**:

¹⁹F NMR spectrum of **5d**:

HPLC chromatogram of 5d-racemic:

HPLC chromatogram of 5d-chiral:

¹H NMR spectrum of **5e**:

¹³C NMR spectrum of **5e**:

¹⁹F NMR spectrum of **5e**:

HPLC chromatogram of 5e-racemic:

HPLC chromatogram of 5e-chiral:

¹H NMR spectrum of **5**f:

¹³C NMR spectrum of **5**f:

¹⁹F NMR spectrum of **5f**:

HPLC chromatogram of 5f-racemic:

HPLC chromatogram of 5f-chiral:

¹H NMR spectrum of **5g**:

¹³C NMR spectrum of **5g**:

HPLC chromatogram of 5g-racemic:

HPLC chromatogram of 5g-chiral:

¹H NMR spectrumof **5h**:

¹³C NMR spectrum of **5h**:

¹⁹F NMR spectrumof **5h**:

HPLC chromatogram of **5h**-racemic:

HPLC chromatogram of 5h-chiral:

¹H NMR spectrum of **5**i:

¹³C NMR spectrum of **5**i:

¹⁹F NMR spectrum of **5**i:

HPLC chromatogram of 5i-racemic:

HPLC chromatogram of 5i-chiral:

¹H NMR spectrum of **5**j:

¹³C NMR spectrum of **5**j:

¹⁹F NMR spectrum of **5**j:

HPLC chromatogram of **5**j-racemic:

HPLC chromatogram of 5j-chiral:

¹H NMR spectrum of **5**k:

¹³C NMR spectrum of **5**k:

HPLC chromatogram of 5k-racemic:

HPLC chromatogram of 5k- chiral:

¹H NMR spectrum of **5**I:

¹³C NMR spectrum of **5**l:

¹⁹F NMR spectrum of **5**I:

HPLC chromatogram of 51-racemic:

HPLC chromatogram of 51-chiral:

¹H NMR spectrum of 5m:

¹³C NMR spectrum of **5m**:

¹⁹F NMR spectrum of **5m**:

HPLC chromatogram of 5m-racemic:

HPLC chromatogram of 5m-chiral:

¹H NMR spectrum of **5n**:

¹³C NMR spectrum of **5n**:

¹⁹F NMR spectrum of **5n**:

HPLC chromatogram of **5n**-racemic:

HPLC chromatogram of 5n-chiral:

¹H NMR spectrum of **50**:

¹³C NMR spectrum of **50**:

¹⁹F NMR spectrum of **50**:

HPLC chromatogram of 50-racemic:

HPLC chromatogram of 50-chiral:

¹H NMR spectrum of **5**p:

¹³C NMR spectrum of **5p**:

¹⁹F NMR spectrum of **5**p:

HPLC chromatogram of **5p**-racemic:

HPLC chromatogram of **5p**-chiral:

¹H NMR spectrum of **5u**:

¹³C NMR spectrum of **5u**:

¹⁹F NMR spectrum of **5u**:

HPLC chromatogram of **5u**-racemic:

			FCaklau	c	
Detector A	Ch1 254nm				
Peak#	Ret. Time	Area	Height	Area %	Height %
1	13.742	51582060	1194835	49.930	60.437
2	23.645	51726345	782154	50.070	39.563
Total	1.5568.0	103308405	1976989	100.000	100.000

etector A	Ch1 254nm				
Peak#	Ret. Time	Area	Height	Area %	Height %
1	13.779	9171247	211142	78.800	84.970
2	23.817	2467362	37349	21.200	15.030
Total		11638608	248492	100.000	100.000

Gram scale reaction:

HPLC chromatogram of **5a**-racemic (1g batch):

1 Det.A Ch1/254nm

PeakTable

Detector A Ch1 254nm							
Peak#	Ret. Time	Area	Height	Area %	Height %		
1	25.200	921474	23693	49.035	52.422		
2	29.296	957738	21504	50.965	47.578		
Total		1879212	45197	100.000	100.000		

HPLC chromatogram of 5a-chiral (1g batch):

Ch1 254nm				
Ret. Time	Area	Height	Area %	Height %
26.563	184409	2274	7.186	8.430
31.153	2381814	24701	92.814	91.570
	2566223	26975	100.000	100.000
	Ch1 254nm Ret. Time 26.563 31.153	Ch1 254nm Ret. Time Area 26.563 184409 31.153 2381814 2566223	Ch1 254nm Ret. Time Area Height 26.563 184409 2274 31.153 2381814 24701 2566223 26975	Ch1 254nm Ret. Time Area Height Area % 26.563 184409 2274 7.186 31.153 2381814 24701 92.814 2566223 26975 100.000

¹H NMR spectrum of 7:

¹³C NMR spectrum of 7:

¹⁹F NMR spectrum of 7:

PeakTable

L	Detector A Ch1 254nm							
	Peak#	Ret. Time	Area	Height	Area %	Height %		
	1	7.800	4808938	209108	50.236	52.838		
	2	9.759	4763817	186642	49.764	47.162		
Γ	Total		9572755	395750	100.000	100.000		

HPLC chromatogram of 7-chiral:

1	Det.A	Cn1/254nm	

Detector A Ch1 254nm					
Peak#	Ret. Time	Area	Height	Area %	Height %
1	7.827	2182246	92774	20.549	22.050
2	9.765	8437217	327974	79.451	77.950
Total		10619463	420748	100.000	100.000

4. X-ray Crystallography.

X-ray data for compound **5d** was collected at room temperature on a Bruker D8 QUEST instrument with an I μ S Mo microsource ($\lambda = 0.7107$ A) and a PHOTON-100 detector. The raw data frames were reduced and corrected for absorption effects using the Bruker Apex 3 software suite programs [1]. The structure was solved using intrinsic phasing method [2] and further refined with the SHELXL [2] program and expanded using Fourier techniques. Anisotropic displacement parameters were included for all non-hydrogen atoms. All C bound H atoms were positioned geometrically and treated as riding on their parent C atoms [C-H = 0.93-0.97 Å, and U_{iso}(H) = $1.5U_{eq}(C)$ for methyl H or $1.2U_{eq}(C)$ for other H atoms].

Crystal structure determination of 5d

Crystal Data for C₁₃H₁₂NO₄F (M =265.24 g/mol): orthorhombic, space group P2₁2₁2₁ (no. 19), a = 7.7100(7) Å, b = 9.8223(10) Å, c = 16.1672(13) Å, V = 1224.34(19) Å³, Z = 4, T = 294.15 K, μ (MoK α) = 0.117 mm⁻¹, *Dcalc* = 1.439 g/cm³, 11447 reflections measured (4.852° $\leq 2\Theta \leq 61.062°$), 3688 unique ($R_{int} = 0.0475$, $R_{sigma} = 0.0565$) which were used in all calculations. The final R_1 was 0.0473 (I >2 σ (I)) and wR_2 was 0.1287 (all data). CCDC 2047903 contains supplementary Crystallographic data for the structure of **5d**. These data can be obtained free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html [or from the Cambridge Crystallographic Data Centre (CCDC), 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44(0) 1223 336 033; email: deposit@ccdc.cam.ac.uk].

- 1. Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.
- 2. Sheldrick G. M. (2015) ActaCrystallography C71: 3-8.