Supplementary Information

Pairing Multicomponent Stators with Aromatic

Rotators for New Emissive Molecular Rotors

Ma. Carmen García-González, Jorge Espinosa-Rocha, Lizbeth A. Rodríguez-Cortés, Yoarhy A. Amador-Sánchez, Luis D. Miranda* and Braulio Rodríguez-Molina*

brodriguez@iquimica.unam.mx

CONTENTS

Photophysical properties	S2-S11
Solution NMR spectra	S12-S25
MS spectra	

Aggregation-Induced Enhanced Emission (AIEE) Experiments.

Figure S 1. Fluorescence experiments of **10a** (4 x 10⁻⁶ M) performed on different THF/water fractions (f_w).

Figure S 2. Absorption spectra of 10b in different THF/water mixtures (4 x 10⁻⁶ M).

Figure S 3. Absorption spectra of **10c** with different THF/water mixtures (4 x 10⁻⁶ M).

Figure S 4. Absorption spectra of 10d with different THF/water mixtures (4 x 10⁻⁶ M).

Figure S 5. Absorption spectra of **10e** with different THF/water mixtures (4×10^{-6} M).

Figure S 6. Fluorescence experiments of **10b** carried out in different THF/water mixtures (4 x 10⁻⁶ M). Insert: Emission spectra corresponding to the addition of large fractions of water (f_w); 70% (λ_{em} = 409 nm), 80% (λ_{em} = 410 nm) 90% and 99.6% (λ_{em} = 416 nm).

Figure S 7. Fluorescence experiments of **10e** carried out in different THF/water mixtures (4 x 10⁻⁶ M). Insert: Emission spectra corresponding to the addition of large fractions of water (f_w); 80% (λ_{em} = 571 nm), 90% and 99.6% (λ_{em} = 582 nm).

Figure S 8. Solvent effect on the absorption of **10c** (4 x 10⁻⁶ M): hexane, 1,4-dioxane, toluene, ether, chloroform, tetrahydrofuran (THF), acetone, methanol (MeOH), acetonitrile (ACN), dimethyl formamide (DMF) and dimethyl sulfoxide (DMSO).

Figure S 9. Solvent effect on the absorption of **10e** (4 x 10⁻⁶ M): hexane, 1,4-dioxane, toluene, ether, chloroform, tetrahydrofuran (THF), acetone, methanol (MeOH), acetonitrile (ACN), dimethyl formamide (DMF) and dimethyl sulfoxide (DMSO).

Figure S 10. Photophysical properties of **10c** (4 x 10⁻⁶ M): hexane, 1,4-dioxane, toluene, ether, chloroform, tetrahydrofuran (THF), acetone, methanol (MeOH), acetonitrile (ACN), dimethyl formamide (DMF) and dimethyl sulfoxide (DMSO).

Figure S 11. Photophysical properties of **10e** (4 x 10⁻⁶ M): hexane, 1,4-dioxane, toluene, ether, chloroform, tetrahydrofuran (THF), acetone, methanol (MeOH), acetonitrile (ACN), dimethyl formamide (DMF) and dimethyl sulfoxide (DMSO).

Figure S 12. Emission spectra of 10c (4 x 10⁻⁶ M), in mixed solvents of methanol/glycerol.

Solution NMR spectra

Figure S 13. ¹H NMR of compound 9a in CDCl₃ at 300 MHz.

Figure S 14. ^{13}C NMR of compound 9a in CDCl3 at 75 MHz.

Figure S 15. ¹*H NMR of compound 9b in CDCI*₃ at 300 *MHz.*

Figure S 16. ^{13}C NMR of compound 9b in CDCl3 at 75 MHz

Figure S 17. ¹H NMR of **rotor 10a** in CDCl₃ at 300 MHz

Figure S 18. ¹³C NMR of rotor 10a in CDCl₃ at 75 MHz.

Figure S 19. ¹H NMR of **rotor 10b** in CDCl₃ at 300 MHz.

S18

Figure S 20. ¹³C NMR of 10b in CDCl₃ at 75 MHz.

Figure S 21. ¹H NMR of **rotor 10c** in CDCl₃ at 300 MHz.

S20

Figure S 22. ¹³C NMR of rotor 10c in CDCl₃ at 75 MHz.

Figure S 23. ¹H NMR of **rotor 10d** in CDCl₃ at 400 MHz.

Figure S 24. ¹³C NMR of rotor 10d in CDCI₃ at 100 MHz.

Figure S 25. ¹H NMR of rotor 10e in CDCl₃ at 300 MHz.

Figure S 26. ¹³C NMR of rotor 10e in CDCl₃ at 75 MHz.

MS spectra

In all cases, the experimental isotopic distributions are consistent with the calculated ones.

Figure S 27. High resolution FAB-MS spectra of **rotor 10a**.

Figure S 28. High resolution FAB-MS spectra of rotor 10b.

Figure S 30. High resolution FAB-MS spectra of rotor 10d.

Figure S 31. High resolution FAB-MS spectra of rotor 10e.