Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2021

Dicarbofunctionalization of Unactivated Alkenes by Palladium-Catalyzed Domino Heck/Intermolecular Direct Hetero Arylation with Heteroarenes

Km Ishu, Dharmendra Kumar, Naveen Kumar Maurya, Suman Yadav, Dhananjay Chaudhary, Malleswara Rao Kuram*

Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India.

Academy of Scientific and Innovative Research, New Delhi, 110001, India.

Table contents

1. Optimization of reaction conditions	S 1
2. Deuterium Kinetic isotope Experiment	S2
2. Spectra	S4

1. Optimization of the Reaction Conditions:

entry	catalyst	ligand	base	additive	solvent	time	Yield (%)
1 <i>a</i>	[Pd(allyl)Cl] ₂	BINAP	Cs ₂ CO ₃	PivOH	THF	44 h	52
2^a	[Pd(allyl)Cl] ₂	dppp	Cs ₂ CO ₃	PivOH	THF	44 h	28
3 <i>a</i>	[Pd(allyl)Cl] ₂	Jonphos	Cs ₂ CO ₃	PivOH	THF	44 h	21
4 ^{<i>a</i>}	[Pd(allyl)Cl] ₂	CycloJohnPhos	Cs ₂ CO ₃	PivOH	THF	44 h	61
5 ^{<i>a</i>}	[Pd(allyl)Cl] ₂	PPh ₃	Cs ₂ CO ₃	PivOH	THF	44 h	20
6 ^{<i>b</i>}	[Pd(allyl)Cl] ₂	CycloJohnPhos	CsOAc	PivOH	THF	44 h	10
7 ^b	[Pd(allyl)Cl] ₂	CycloJohnPhos	CsOPiv	PivOH	THF	44 h	11

8^b	[Pd(allyl)Cl] ₂	CycloJohnPhos	K <i>t</i> OBu	PivOH	THF	44 h	n.d.
9 ^b	Pd(OAc) ₂	CycloJohnPhos	Cs_2CO_3	PivOH	THF	44 h	26
10^b	Pd(PPh ₃) ₂ Cl ₂	CycloJohnPhos	Cs_2CO_3	PivOH	THF	44 h	17
11 ^b	Pd2(dba) ₂	CycloJohnPhos	Cs_2CO_3	PivOH	THF	44 h	36
12 ^b	[Pd(allyl)Cl] ₂	CycloJohnPhos	Cs_2CO_3	PivOH	CH ₃ CN	44 h	21
13 ^b	[Pd(allyl)Cl] ₂	CycloJohnPhos	Cs_2CO_3	PivOH	Toluene	44 h	29
14 ^b	[Pd(allyl)Cl] ₂	CycloJohnPhos	Cs_2CO_3	PivOH	Dioxane	44 h	11
15 ^b	[Pd(allyl)Cl] ₂	CycloJohnPhos	Cs_2CO_3	PivOH	DMF	44 h	n.d.
16 ^c	[Pd(allyl)Cl] ₂	CycloJohnPhos	Cs_2CO_3	PTSA.H ₂ O	THF	44 h	trace
17 ^c	[Pd(allyl)Cl] ₂	CycloJohnPhos	Cs_2CO_3	<i>p</i> -nitro	THF	44 h	trace
18 ^{c,d}	[Pd(allyl)Cl] ₂	CycloJohnPhos	Cs_2CO_3	PivOH	THF	23 h	83
19 ^{c,d,e}	[Pd(allyl)Cl] ₂	CycloJohnPhos	Cs_2CO_3	PivOH	THF	41 h	87
20 ^{c,d,e}	Pd(allyl)Cl] ₂	CycloJohnPhos	Cs_2CO_3	PivOH	THF	23 h	63
21 ^{<i>c,d,f</i>}	Pd(allyl)Cl] ₂	CycloJohnPhos	Cs_2CO_3	PivOH	THF	24 h	9
$22^{c,d,g}$	[Pd(allyl)Cl] ₂	CycloJohnPhos	Cs ₂ CO ₃	PivOH	THF	24 h	42

^{*a*} Reaction conditions: **1a** (1.5 equiv), **2a** (1.0 equiv, 0.06 mmol), catalyst (5 mol%), ligand (5 mol%), PivOH (30 mol%) and base (1.5 equiv) in THF (1 mL) at 80 °C under N₂ for 24 – 44h, ¹HNMR yield using 3,4,5-trichloropyridine as internal standard. n.d. = not detected. ^{*b*}ligand (10 mol%). ^{*c*} CycloJohnPhos (20 mol%), ^{*d*}**1a** (2.0 equiv), ^{*e*}PivOH (1.0 equiv), ^{*f*}60 °C, ^{*g*}70 °C.

2. Deuterium Kinetic Isotope Experiment:

General Procedure for control experiment: 2a-[D1] was submitted to the standard conditions for 1 h and no loss of deuterium in 2a-[D1] was observed by ¹H NMR.

General procedure for KIE experiments: Two sets of reactions were carried out in parallel under the same conditions. In each case **1a** (2.0 equiv) was allowed to react with **2a** (1.0 equiv, 0.06 mmol) and **2a-[D1]** (1.0 equiv, 0.06 mmol) respectively, under standard condition. The conversion of the crude reaction mixture was measured carefully at regular time intervals (at 3 h) by ¹H NMR using 3,4,5-trichloropyridine as an internal standard to compare the initial rates.

Figure S-2 ¹³C NMR (100 MHz, CDCl₃) spectrum of compound 3aa

Figure S-4 ¹H NMR (400 MHz, CDCl₃) spectrum of compound 3ba

Figure S-6 HRMS spectrum of compound 3ba

Figure S-8 ¹³C NMR (100 MHz, CDCl₃) spectrum of compound 3ca

Figure S-10 ¹H NMR (400 MHz, CDCl₃) spectrum of compound 3da

Figure S-12 HRMS spectrum of compound 3da

Figure S-14 ¹³C NMR (100 MHz, CDCI₃) spectrum of compound 3ea

Figure S-16 HRMS spectrum of compound 3ea

S12

Figure S-19 HRMS spectrum of compound 3fa

Figure S-20 ¹H NMR (400 MHz, CDCl₃) spectrum of compound 3ga

Figure S-21 ¹³C NMR (100 MHz, CDCI₃) spectrum of compound 3ga

Data File:

Sample ID:

Vial:

Acquisition Date:

HRMS20I210CT17

10/21/20 11:52:02 AM

Original Data Path: Sample Name:

Run Time(min):

Injection Volume(µl):

D:\INTERNAL NEW\2020\OCT 2020

 $0.00 \\ 1.00$

HRMS20I210CT17 #11-23 RT: 0.11-0.21 AV: 13 SB: 1 0.01 NL: 3.62E6 T: FTMS + c ESI Full ms [100.00-750.00]

KIY-01-270

CStk1-01:17

Figure S-22 HRMS spectrum of compound 3ga

Figure S-23 ¹H NMR (400 MHz, CDCl₃) spectrum of compound 3ia

Figure S-24 ¹³C NMR (100 MHz, CDCl₃) spectrum of compound 3ia

Figure S-26 ¹H NMR (400 MHz, CDCl₃) spectrum of compound 3ka

Figure S-27 ¹³C NMR (100 MHz, CDCl₃) spectrum of compound 3ka

SAIF [HRMS Report]

Data File: HRMS20I02NOV20 Original Data Path: D:\INTERNAL NEW\2020\NOV 2020 Sample ID: MDK-B025 Sample Name: Acquisition Date: Run Time(min): 0.00 11/02/20 11:55:54 AM Vial: Injection Volume(µl): CStk1-01:20 1.00

HRMS20I02NOV20 #13-26 RT: 0.11-0.21 AV: 14 SB: 1 0.01 NL: 2.51E6 T: FTMS + p ESI Full ms [100.00-1000.00]

Figure S-28 HRMS spectrum of compound 3ka

Figure S-30 ¹³C NMR (100 MHz, CDCl₃) spectrum of compound 3la

Figure S-31 HRMS spectrum of compound 3Ia

Figure S-32 ¹H NMR (400 MHz, CDCl₃) spectrum of compound 3ma

Figure S-34 HRMS spectrum of compound 3ma

Figure S-35 ¹H NMR (400 MHz, CDCl₃) spectrum of compound 3na

Figure S-36 ¹³C NMR (100 MHz, CDCl₃) spectrum of compound 3na

Figure S-37 HRMS spectrum of compound 3na

Figure S-38 ¹H NMR (400 MHz, CDCl₃) spectrum of compound 3oa

Data File:	HRMS20I03DEC37	Original Data Path:	D:\INTERNAL NEW\2020\DEC 2020
Sample ID:	KIY-01-350	Sample Name:	2020
Acquisition Date:	12/03/20 01:44:28 PM	Run Time(min):	0.00
Vial:	CStk1-01:37	Injection Volume(µl):	1.00

HRMS20103DEC37 #30-62 RT: 0.25-0.50 AV: 33 SB: 1 0.01 NL: 6.16E6 T: FTMS + c ESI Full ms [100.00-750.00]

Figure S-40 HRMS spectrum of compound 3oa

S24

Figure S-43 HRMS spectrum of compound 3ab

Figure S-44 ¹H NMR (400 MHz, CDCl₃) spectrum of compound 3ac

Figure S-46 HRMS spectrum of compound 3ac

Figure S-48 ¹³C NMR (100 MHz, CDCl₃) spectrum of compound 3ad

Figure S-50 HRMS spectrum of compound 3ad

174.1021

200

150

307.1899

300

274.2735

250

382.2029

346.1320

350

397.2391

m/z

450

400

450.0463 508.0988

500

20-

15-

10

 647.2924

650

721.5052

750

700

590.4247

600

550

Figure S-52 ¹³C NMR (100 MHz, CDCI₃) spectrum of compound 3ae

Figure S-54 ¹H NMR (400 MHz, CDCl₃) spectrum of compound 3af

Figure S-56 HRMS spectrum of compound 3af

Figure S-57 ¹H NMR (400 MHz, CDCl₃) spectrum of compound 3ag

Figure S-58 ¹³C NMR (100 MHz, CDCI₃) spectrum of compound 3ag

Figure S-59 HRMS spectrum of compound 3ag

Figure S-60 ¹H NMR (400 MHz, CDCl₃) spectrum of compound 3ah

Figure S-62 ¹⁹F NMR (376 MHz, CDCI₃) spectrum of compound 3ah

Figure S-63 HRMS spectrum of compound 3ah

Figure S-64 ¹H NMR (400 MHz, CDCl₃) spectrum of compound 3ai

Figure S-66 ¹⁹F NMR (376 MHz, CDCl₃) spectrum of compound 3ai

Figure S-68 ¹H NMR (400 MHz, CDCl₃) spectrum of compound 3aj

Figure S-69 ¹³C NMR (100 MHz, CDCl₃) spectrum of compound 3aj

HRMS20I28SEP04 #12-25 RT: 0.11-0.21 AV: 14 SB: 1 0.01 NL: 1.10E7 T: FTMS + c ESI Full ms [100.00-750.00]

Figure S-70 HRMS spectrum of compound 3aj

Figure S-72 ¹³C NMR (100 MHz, CDCl₃) spectrum of compound 3al

Figure S-76 HRMS spectrum of compound 3kc

Figure S-77 ¹H NMR (400 MHz, CDCl₃) spectrum of compound 3kd

Figure S-78 ¹³C NMR (100 MHz, CDCl₃) spectrum of compound 3kd

Figure S-80 HRMS spectrum of compound 3kd

Figure S-81 ¹H NMR (400 MHz, CDCl₃) spectrum of compound 3ki

Figure S-82 ¹³C NMR (100 MHz, CDCl₃) spectrum of compound 3ki

Figure S-84 HRMS spectrum of compound 3ki

Figure S-86 ¹³C NMR (100 MHz, CDCl₃) spectrum of compound 3km

Figure S-88 ¹H NMR (400 MHz, CDCl₃) spectrum of compound 3kn

Figure S-90 HRMS spectrum of compound 3kn

Figure S-94 ¹H NMR (400 MHz, CDCI₃) spectrum of compound 3am

Figure S-95 ¹³C NMR (100 MHz, CDCl₃) spectrum of compound 3am

Figure S-96 HRMS spectrum of compound 3am

Figure S-98 ¹³C NMR (100 MHZ, CDCI₃) spectrum of compound 3ap

Figure S-99 HRMS spectrum of compound 3ap

Figure S-100 ¹H NMR (400 MHZ, CDCl₃) spectrum of compound 3aq

Figure S-102 HRMS spectrum of compound 3aq

Figure S-104 ¹³C NMR (100 MHZ, CDCI₃) spectrum of compound 4

Figure S-106 ¹H NMR (400 MHz, CDCl₃) spectrum of compound 5

Figure S-108 HRMS spectrum of compound 5

Data File:

Sample ID:

Vial:

Figure S-110 ¹³C NMR (100 MHz, CDCl₃) spectrum of compound 6

Figure S-112 ¹H NMR (400 MHz, CDCl₃) spectrum of compound 2a-[D1]

Data File:

HRMS24I20NOV14

Original Data Path:

Sample ID: Acquisition Date: Vial: KIY-01-337 11/24/20 03:35:10 PM CStk1-01:14 Sample Name: Run Time(min): Injection Volume(µl): D:\INTERNAL NEW\2020\NOV 2020

0.00 1.00

HRMS24I20NOV14 #29-62 RT: 0.25-0.50 AV: 34 SB: 1 0.01 NL: 7.56E6 T: FTMS + c ESI Full ms [100.00-750.00]

Figure S-114 HRMS spectrum of compound 2a-[D1]