Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2021

# **Supporting Information**

# Oxidative Alkylalkynylation of Terminal Alkenes Enabled by Alkyl Aldehyde Decarbonylation and 1,2-Alkynyl Migration

Jia-Jia Zhang,†<sup>a</sup> De Chen,†<sup>a</sup> Yi-Qun Qin,<sup>a</sup> Wei Deng,\*<sup>a</sup> Yon*g-Yue Luo,\*<sup>b</sup> Jian-Na*n Xiang\*,<sup>a</sup>

<sup>a</sup>Advanced Catalytic Engineer Research Center of Education, College of Chemistry and Chemical Engineering , Hunan University, Changsha 410082, P. R. China. Email: jnxiang@hnu.edu.cn; weideng@hnu.edu.cn.

<sup>b</sup>Agricultural Product Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 610059, China. Email: lyy6226@hotmail.com

<sup>†</sup> These authors contributed equally to this work.

## **List of Contents**

| (A) General Information | <b>S2-S5</b> |
|-------------------------|--------------|
| (B) Analytical Data     | S5-S13       |
| (C) Spectra             | S14-S36      |
| (D) References          | 837          |

#### (A) General Information

For column chromatography, silica gel (300-400 mesh) was employed.high-resolution mass spectra (HRMS) were obtained from a JEOL JMS-700 instrument (ESI) or Thermo Scientific LTQ-Orbitrap XL (MALDI). Melting points are uncorrected. Nuclear magnetic resonance (NMR) spectra were recorded on a Bruker Avance 400 spectrometer at ambient temperature. Chemical shifts for 1H NMR spectra are reported in parts per million (ppm) from tetramethylsilane with the solvent resonance as the internal standard (chloroform:  $\delta$  7.26 ppm). Chemical shifts for <sup>13</sup>C NMR spectra are reported in parts per million (ppm) from tetramethylsilane with the solvent as the internal standard (CDCl<sub>3</sub>:  $\delta$  77.00 ppm). Data are reported as following: chemical shift, multiplicity (s = singlet, d = doublet, dd = doublet of doublets, t = triplet, q = quartet, m = multiplet), coupling constant (Hz), and integration.

#### (a) General procedure for synthesis of compounds 1:<sup>1,2</sup>



A mixture of Pd(PPh<sub>3</sub>)Cl<sub>2</sub> (2 mol%, 0.2 mmol), CuI (4 mol%, 0.4 mmol), Et<sub>3</sub>N (1.5 equiv, 15 mmol) and terminal alkyne (1.0 equiv, 10 mmol) , dissolving in 20 mL anhydrous tetrahydrofuran (THF), were stirred for 15 minutes at room temperature under nitrogen conditions. Then, acyl chloride II (1.2 equiv, 12 mmol) was added to the reaction vial by dropwise and stirred for overnight. The reaction process was determined by TLC until the starting material consumed completely.The resulting mixture was extracted with 50 mL H<sub>2</sub>O and ethyl acetate ( $2 \times 40$  mL).. The organic phase was concentrated to a bottle and was dried over Na<sub>2</sub>SO<sub>4</sub>. Then, the mixture was filtrated and the colature was evaporated on a rotary evaporator. The crude product

was purified by chromatography on silica gel with petroleum ether/ethyl acetate (100:1) as the eluent to afford compound III.

Compound III was dissolved in 10 mL THF,After that, 20 mL (0.5 mol/L) isopropenylmagnesium bromide solution IV was added to the flask by dropwise at - 10°C and stirred for 10mins under nitrogen conditions. Then, the mixture was moved to room temperature for another 6 hours. The resulting mixture was stirred until TLC indicated complete consumption of the starting material III. Subsequently, the mixture was quenched by saturated ammonium chloride solution at -10°C and extracted with 20 mL ethyl acetate for three times at room temperature. The organic phase was concentrated and evaporated on a rotary evaporator. The crude product was purified by chromatography on silica gel with petroleum ether/ethyl acetate (50:1) as the eluent to afford compound 1.

(b) The synthesis of compounds 3:



Example for the synthesis of 3aa:

Under nitrogen, pivalaldehyde (0.6 mmol, 3.0 equivalents, 51.7 mg) was added to the pressure tube. Then, 1,4-enyne 1a (0.2 mmol, 1.0 equivalent, 49.6 mg) was dissolved in 2.0 mL of benzotrifluoride, and the mixture was added to a test tube. Subsequently, di-*tert*-butyl peroxide (DTBP) (0.6 mmol, 3.0 equivalents, 87.7 mg) was added to the reaction system. The container was sealed and the mixture was stirred with heating at 120 °C(oil bath temperature) for 20 hours until complete consumption was monitored by TLC analysis for 1a. Thereafter, the solvent was removed in vacuo, and the residue was purified by silica gel column chromatography using a mixture of petroleum ether dissolving agents to obtain product 3aa as a colorless oil.

#### (c) Screening of optimal reaction conditions

#### Table 1. Screening of optimal reaction conditions<sup>a</sup>



| Entry | Variations in Reaction Conditions        | Yield <sup>c</sup> (%) |
|-------|------------------------------------------|------------------------|
| 1     | none                                     | 76                     |
| 2     | without DTBP                             | 0                      |
| 3     | DTBP (2 equiv)                           | 75                     |
| 4     | DTBP (4 equiv)                           | 73                     |
| 5     | TBHP instead of DTBP                     | trace                  |
| 6     | TBPB instead of DTBP                     | 65                     |
| 7     | DCP instead of DTBP                      | 66                     |
| 8     | $H_2O_2$ (30% in water) instead of DTBP  | trace                  |
| 9     | $K_2S_2O_8$ instead of DTBP              | 0                      |
| 10    | PhCl instead of PhCF <sub>3</sub>        | 72                     |
| 11    | benzene instead of PhCF <sub>3</sub>     | 70                     |
| 12    | toluene instead of PhCF <sub>3</sub>     | 45                     |
| 13    | EtOAc instead of PhCF <sub>3</sub>       | 37                     |
| 14    | MeCN instead of PhCF <sub>3</sub>        | trace                  |
| 15    | 1,4-dioxane instead of PhCF <sub>3</sub> | 0                      |
| 16    | at 80 °C                                 | 0                      |
| 17    | at 100 °C                                | 37                     |
| 18    | at 140 °C                                | 75                     |
| 19    | air atmosphere instead of $N_2$          | 20                     |
| 20    | 12 h instead of 20 h                     | 70                     |

<sup>*a*</sup>Reaction conditions: **1a** (0.6 mmol, 1.0 equiv.), **2a** (1.8 mmol, 3.0 equiv.), oxidant (1.8 mmol, 3.0 equiv.) and solvent (6 mL) under a  $N_2$  atmosphere for 20 h and all reactions were carried out at 120°C in an oil bath unless otherwise noted. <sup>*b*</sup>TBHP: *tert*-butyl hydroperoxide 70% in water, DTBP: di-*tert*-butyl peroxide 98%. <sup>c</sup>Isolated yield.

#### (d) Control experiments (Scheme 1)

#### Scheme 1. Control experiments.



#### (B) Analytical data

#### 2,4,4-trimethyl-1-phenyl-2-(phenylethynyl)pentan-1-one (3aa):

colorless oil (231.4 mg, 76% yield). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.20 (d, J = 7.99 Hz, 2H), 7.52 (t, J = 6.84 Hz, 1H), 7.43 (t, J = 7.46 Hz, 2H), 7.33-7.28 (m, 5H), 2.50 (d, J = 14.28 Hz, 1H), 1.72 (s, 3H), 1.69 (d, J = 14.49 Hz, 1H), 1.09 (s, 9H); <sup>13</sup>C NMR

(101 MHz, CDCl<sub>3</sub>)  $\delta$  201.57, 136.68, 131.95, 130.94, 129.52, 128.25, 127.96, 127.69, 123.47, 93.68, 87.19, 51.69, 45.91, 31.97, 31.25, 30.10. HRMS *m/z* (ESI) calcd for C<sub>22</sub>H<sub>24</sub>O [M+H]<sup>+</sup> 304.3550, found 304.3547.

#### 2,4,4-trimethyl-1-phenyl-2-(p-tolylethynyl)pentan-1-one (3ba):



14.93Hz, 1H), 1.09 (s, 9H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  201.68, 138.01, 136.71, 131.90, 130.82, 129.55, 129.00, 127.66, 120.44, 92.91, 87.25, 51.70, 45.90, 31.96, 31.25, 30.11, 21.40. HRMS *m*/*z* (ESI) calcd for C<sub>23</sub>H<sub>26</sub>O [M+H]<sup>+</sup> 318.3640, found 318.3642.

#### 2-((4-(tert-butyl)phenyl)ethynyl)-2,4,4-trimethyl-1-phenylpentan-1-one (3ca):



colorless oil (237.9 mg, 66% yield). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.20 (d, *J* = 7.75 Hz, 2H), 7.49 (t, *J* = 6.88 Hz, 1H), 7.41 (t, *J* = 7.64 Hz, 2H), 7.30 (t, *J* = 6.05 Hz, 2H), 7.25 (d, *J* = 8.28 Hz, 2H), 2.48 (d, *J* = 14.01 Hz, 1H), 1.70 (s, 3H), 1.66 (d, *J* = 14.40Hz,

1H), 1.29 (s, 9H), 1.07 (s, 9H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 201.69, 151.18, 136.70, 131.90, 130.66, 129.55, 127.67, 125.24, 120.49, 92.93, 87.23, 51.67, 45.88,

34.69, 31.96, 31.26, 31.14, 30.16. HRMS m/z (ESI) calcd for C<sub>26</sub>H<sub>32</sub>O [M+H]<sup>+</sup> 360.3970, found 360.3992.

#### 2-((4-chlorophenyl)ethynyl)-2,4,4-trimethyl-1-phenylpentan-1-one (3da):

colorless oil (254.2 mg, 75% yield). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.15 (d, J = 8.18 Hz, 2H), 7.50 (t, J = 6.32 Hz, 1H), 7.41 (t, J = 6.88 Hz, 2H), 7.25-7.20 (m, 4H), 2.49 (d, J = 14.23 Hz, 1H), 1.70 (s, 3H), 1.66 (s, 1H), 1.06 (s, 9H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  201.30, 136.60, 133.99, 132.15, 132.01, 129.43, 128.59, 127.71, 121.87, 94.74, 86.16, 51.65, 45.92, 31.96, 31.22, 30.01. HRMS *m/z* (ESI) calcd for C<sub>22</sub>H<sub>23</sub>ClO [M+H]<sup>+</sup> 339.0746, found 339.0742.

#### 2-((4-fluorophenyl)ethynyl)-2,4,4-trimethyl-1-phenylpentan-1-one (3ea):



m/z (ESI) calcd for C<sub>22</sub>H<sub>23</sub>FO [M+H]<sup>+</sup> 322.2619, found 322.2631.

# 2,4,4-trimethyl-1-phenyl-2-((4-(trifluoromethyl)phenyl)ethynyl)pentan-1-one (3fa):



colorless oil (305.4 mg, 82% yield). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.16 (d, *J* = 8.07 Hz, 2H), 7.53 (t, *J* = 7.75 Hz, 3H), 7.46- 7.39 (m, 4H), 2.53 (d, *J* =14.24 Hz, 1H), 1.74 (s, 3H) 1.69 (s, 1H), 1.09 (s, 9H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 201.10, 136.59, S7

132.09, 131.20, 129.78(q,  $J_{C-F}$  = 32.73 Hz,  $J_{C-F}$  = 65.47 Hz), 129.39, 129.38(q,  $J_{C-F}$  = 213.33 Hz,  $J_{C-F} = 360.04$  Hz), 127.77, 125.22(q,  $J_{C-F} = 3.65$  Hz,  $J_{C-F} = 7.48$  Hz), 122.54, 96.45, 86.10, 51.69, 45.99, 31.98, 31.22, 29.97. HRMS m/z (ESI) calcd for C<sub>23</sub>H<sub>23</sub>F<sub>3</sub>O [M+H]<sup>+</sup> 372.3590, found 372.3576.

#### 2-((3-chlorophenyl)ethynyl)-2,4,4-trimethyl-1-phenylpentan-1-one (3ga):



(ESI) calcd for  $C_{22}H_{23}ClO [M+H]^+ 339.0746$ , found 339.0745.

#### 2-((3-bromophenyl)ethynyl)-2,4,4-trimethyl-1-phenylpentan-1-one (3ha):



colorless oil (305.7mg, 80% yield). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.15 (d, J = 7.59 Hz,2H), 7.52 (t, J = 6.98 Hz, 1H), 7.41 (q, 4H), 7.21 (d, J = 7.74 Hz, 1H), 7.12 (t, J = 7.89Hz, 1H), 2.49 (d, J = 14.20 Hz, 1H), 1.70 (s, 3H), 1.66 (s, 1H), 1.06 (s, 9H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) & 201.16, 136.56, 133.67, 132.05, 131.14, 129.69, 129.53, 129.39, 127.75, 125.36, 122.10, 95.20, 85.80, 51.66, 45.91, 31.95, 31.23, 30.01.

#### HRMS m/z (ESI) calcd for C<sub>22</sub>H<sub>23</sub>BrO [M+H]<sup>+</sup> 383.4011, found 383.4012.

#### 2-((2-chlorophenyl)ethynyl)-2,4,4-trimethyl-1-phenylpentan-1-one (3ia):



colorless oil (247.4 mg, 73% yield). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.26 (d, J = 8.01 Hz, 2H), 7.51 (t, J = 7.21 Hz, 1H), 7.42 (t, J = 7.15 Hz, 2H), 7.37-7.32 (m, 2H), 7.22-7.14 (m, 2H), 2.52 (d, *J* = 14.25 Hz, 1H), 1.77 (s, 3H), 1.73 (d, *J* = 14.61Hz, 1H), 1.10(s, **S**8

9H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 200.90, 136.35, 135.73, 132.90, 132.06, 129.72, 129.20, 128.92, 127.75, 126.30, 123.22, 98.66, 84.32, 51.77, 46.17, 32.01, 31.31, 30.01. HRMS *m/z* (ESI) calcd for C<sub>22</sub>H<sub>23</sub>ClO [M+H]<sup>+</sup> 339.0746, found 339.0745.

#### 2,4,4-trimethyl-2-(phenylethynyl)-1-(p-tolyl)pentan-1-one (3ka):



colorless oil (194.8 mg, 61% yield). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.15 (d, *J* =7.91 Hz, 2H), 7.32 (d, *J* =5.05 Hz, 2H), 7.27 (s, 3H), 7.21 (d, *J* =7.81 Hz, 2H), 2.47 (d, *J* =14.22 Hz, 1H), 2.38 (s, 3H), 1.69 (s, 3H), 1.65 (s, 1H), 1.07 (s, 9H); <sup>13</sup>C

NMR (101 MHz, CDCl<sub>3</sub>) δ 200.69, 142.67, 133.75, 130.95, 129.82, 128.40, 128.24, 127.90, 123.55, 93.89, 86.94, 51.71, 45.76, 32.00, 31.25, 29.97, 21.55. HRMS *m/z* (ESI) calcd for C<sub>23</sub>H<sub>26</sub>O [M+H]<sup>+</sup> 318.3640, found 318.3641.

#### 1-(4-chlorophenyl)-2,4,4-trimethyl-2-(phenylethynyl)pentan-1-one (3la):



colorless oil (237.2 mg, 70% yield). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.19 (d, *J* =8.33 Hz, 2H), 7.41 (d, *J* = 8.33 Hz, 2H), 7.31 (s, 5H), 2.46 (d, *J* =14.30 Hz, 1H), 1.71 (s, 3H), 1.67 (s, 1H), 1.08 (s, 9H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 200.10, 138.40, 134.76, 131.09, 130.94, 128.34, 128.14, 128.02,

123.22, 93.31, 87.43, 51.69, 45.87, 32.00, 31.23, 29.92. HRMS *m/z* (ESI) calcd for C<sub>22</sub>H<sub>23</sub>ClO [M+H]<sup>+</sup> 339.0746, found 339.0740.

#### 1-(4-fluorophenyl)-2,4,4-trimethyl-2-(phenylethynyl)pentan-1-one (3ma):



CDCl<sub>3</sub>)  $\delta$  199.69, 164.93(d,  $J_{C-F} = 253.73$  Hz), 132.64(d,  $J_{C-F} = 3.21$  Hz), 132.28(d,

 $J_{C-F} = 8.91$  Hz), 130.93, 128.32, 128.10, 123.26, 114.78(d,  $J_{C-F} = 21.64$  Hz), 93.48, 87.36, 51.68, 45.78, 31.99, 31.22, 29.92. HRMS *m*/*z* (ESI) calcd for C<sub>22</sub>H<sub>23</sub>FO [M+H]<sup>+</sup> 322.2619, found 322.2630.

#### 2,4,4-trimethyl-2-(phenylethynyl)-1-(m-tolyl)pentan-1-one (3na):



128.24, 127.92, 127.49, 126.70, 123.54, 93.83, 87.14, 51.70, 45.91, 31.95, 31.26, 30.26, 21.43. HRMS *m*/*z* (ESI) calcd for  $C_{23}H_{26}O$  [M+H]<sup>+</sup>318.3640, found 318.3639.

1-(3-bromophenyl)-2,4,4-trimethyl-2-(phenylethynyl)pentan-1-one (3oa):



colorless oil (275.8 mg, 72% yield). <sup>1</sup>H NMR (400 MHz,
CDCl<sub>3</sub>) δ 8.42 (s, 1H), 8.13 (d, J = 7.79 Hz, 1H), 7.65 (d, J = 7.83 Hz, 1H), 7.38 (d, J = 4.55 Hz, 2H), 7.32 (d, J = 7.79 Hz, 4H), 2.50 (d, J = 14.29 Hz, 1H), 1.73 (s, 3H), 1.68 (s, 1H),

1.11 (s, 9H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 200.11, 138.31, 134.79, 132.49, 130.95, 129.32, 128.27, 128.12, 128.01, 123.09, 121.78, 93.03, 87.67, 51.59, 45.90, 31.89, 31.21, 30.18. HRMS *m/z* (ESI) calcd for C<sub>22</sub>H<sub>23</sub>BrO [M+H]<sup>+</sup> 383.4011, found 383.4020.

#### 2,4,4-trimethyl-2-(phenylethynyl)-1-(o-tolyl)pentan-1-one (3pa):



1.67 (d, J = 14.36 Hz, 1H), 1.63 (s, 3H), 1.12 (s, 9H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$ 205.46, 138.14, 136.58, 131.09, 130.91, 129.93, 128.21, 127.96, 127.87, 124.10, 123.50, 93.08, 87.24, 50.70, 47.50, 31.88, 31.27, 29.87, 20.39. HRMS *m/z* (ESI) calcd for C<sub>23</sub>H<sub>26</sub>O [M+H]<sup>+</sup> 318.3640, found 318.3639.

#### 1-(2-chlorophenyl)-2,4,4-trimethyl-2-(phenylethynyl)pentan-1-one (3qa):



1.67 (s, 3H), 1.14 (s, 9H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  203.49, 138.85, 130.98, 130.84, 130.55, 130.07, 128.58, 128.27, 128.03, 125.49, 123.31, 92.19, 87.19, 50.08, 48.05, 31.98, 31.30, 28.98. HRMS *m*/*z* (ESI) calcd for C<sub>22</sub>H<sub>23</sub>ClO [M+H]<sup>+</sup> 339.0746, found 339.0738.

#### 1-(3,5-dichlorophenyl)-2,4,4-trimethyl-2-(phenylethynyl)pentan-1-one (3ra):



NMR (101 MHz, CDCl<sub>3</sub>) δ 199.10, 138.96, 134.58, 131.68, 130.95, 128.35, 128.30, 127.95, 122.89, 92.57, 88.11, 51.59, 46.04, 31.90, 31.21, 30.26. HRMS *m/z* (ESI) calcd for C<sub>22</sub>H<sub>22</sub>Cl<sub>2</sub>O [M+H]<sup>+</sup> 373.2560, found 373.2546.

#### 1-cyclohexyl-2,4,4-trimethyl-2-(phenylethynyl)pentan-1-one (3sa):



J = 6.91 Hz, 1H), 1.84 (t, J = 15.89 Hz, 3H), 1.69 (t, J = 11.79 Hz, 1H), 1.53-1.45 (m, 2H), 1.41 (s, 3H), 1.36-1.27 (m, 4H), 1.02 (s, 9H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  213.78, 131.08, 128.35, 127.93, 123.61, 92.79, 85.68, 51.16, 48.30, 46.81, 31.45, 31.00, 30.34, 30.04, 29.27, 26.00, 25.84, 25.57. HRMS *m/z* (ESI) calcd for C<sub>22</sub>H<sub>30</sub>O [M+H]<sup>+</sup> 310.4815, found 318.4808.

#### 2-(cyclohexylmethyl)-2-methyl-1,4-diphenylbut-3-yn-1-one (3ab)<sup>1</sup>:



1.30-1.13 (m, 3H), 1.08-0.95 (m, 2H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 200.26, 136.12, 132.21, 131.20, 129.61, 128.23, 127.97, 127.85, 123.39, 92.94, 86.08, 46.99, 46.28, 35.31, 34.64, 34.52, 26.94, 26.42, 26.37, 26.24. The analytical data are in accordance with those reported in the literature.<sup>1</sup>

#### 2,4-dimethyl-1-phenyl-2-(phenylethynyl)pentan-1-one (3ac):



colorless oil (180.1 mg, 62% yield). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.29 (d, J = 7.56 Hz, 2H), 7.55 (t, J = 7.13 Hz, 1H), 7.46 (t, J = 7.49 Hz, 2H), 7.36 (d, J = 2.88 Hz, 2H), 7.32 (s, 3H), 2.25-2.19 (m, 1H), 2.06-1.96 (m, 1H), 1.77- 1.73 (m, 1H), 2.06-1.96 (m, 2H), 12C NDP (101

1H), 1.70 (s, 3H), 1.05 (d, J = 6.62 Hz, 3H),0.98 (d, J = 6.62 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  200.41, 136.16, 132.22, 131.19, 129.60, 128.23, 127.99, 127.86, S12

123.34, 92.88, 86.23, 48.29, 46.42, 26.95, 25.90, 24.17, 23.88. HRMS m/z (ESI) calcd for C<sub>21</sub>H<sub>22</sub>O [M+H]<sup>+</sup> 290.2860, found 290.2846.

#### 2,4-dimethyl-1-phenyl-2-(phenylethynyl)heptan-1-one (3ad):



colorless oil (197.4 mg, 62% yield). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.28 (d, J = 7.51 Hz, 2H), 7.52 (t, J = 7.25 Hz, 1H), 7.44 (t, J = 7.48 Hz, 2H), 7.34 (s, 2H), 7.29 (s, 3H), 2.29-2.24 (m, 1H), 2.17-2.11 (m, 1H), 1.87-1.75 (m, 2H), (s, 3H), 1.65, 1.47-1.19 (m, 5H), 1.03 (d, J = 6.49 Hz)1.67

1H), 0.95-0.85 (m, 5H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 199.42, 199.28, 135.18, 135.15, 131.21, 131.20, 130.18, 130.17, 128.61, 128.60, 127.23, 127.23, 126.97, 126.86, 126.83, 122.37, 122.35, 91.99, 91.89, 85.32, 85.14, 46.00, 45.60, 45.54, 45.42, 39.65, 39.46, 29.34, 29.11, 25.99, 25.74, 20.18, 20.11, 18.99, 13.28, 13.21. HRMS m/z (ESI) calcd for C<sub>23</sub>H<sub>26</sub>O [M+H]<sup>+</sup> 318.3040, found 318.3046.

#### 2-ethyl-2-methyl-1,4-diphenylbut-3-yn-1-one (3ae):



129.58, 128.23, 128.04, 127.94, 123.27, 92.38, 86.07, 47.11, 33.22, 25.23, 9.37. HRMS m/z (ESI) calcd for C<sub>19</sub>H<sub>18</sub>O [M+H]<sup>+</sup>262.3162, found 290.3170.

#### 2-methyl-1-phenyl-2-(phenylethynyl)octan-1-one (3af):



colorless oil (78.7 mg, 37% yield). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.30 (d, J = 7.59Hz, 2H), 7.53 (t, J = 7.32 Hz, 1H), S13

7.44 (t, J = 7.54 Hz, 2H), 7.36 (s, 2H), 7.30 (s, 3H), 2.17- 2.10 (m, 1H), 1.85-1.79 (m, 1H), 1.64 (s, 3H), 1.59-1.53 (m, 1H), 1.46- 1.29 (m, 7H), 0.87 (t, J = 5.69 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  199.90, 135.97, 132.32, 131.30, 129.57, 128.22, 128.01, 127.92, 123.29, 92.69, 85.93, 46.68, 40.30, 31.60, 29.51, 25.78, 24.90, 22.56, 14.03. HRMS *m*/*z* (ESI) calcd for C<sub>23</sub>H<sub>26</sub>O [M+H]<sup>+</sup> 318.3040, found 318.3043.

(D) Spectra

#### 2,4,4-trimethyl-1-phenyl-2-(phenylethynyl)pentan-1-one (3aa):



<sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>)







2-((4-(tert-butyl)phenyl)ethynyl)-2,4,4-trimethyl-1-phenylpentan-1-one (3ca):





2-((4-chlorophenyl)ethynyl)-2,4,4-trimethyl-1-phenylpentan-1-one (3da):



2-((4-fluorophenyl)ethynyl)-2,4,4-trimethyl-1-phenylpentan-1-one (3ea): S18



2,4,4-trimethyl-1-phenyl-2-((4-(trifluoromethyl)phenyl)ethynyl)pentan-1-one (3fa):



<sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>)



2-((3-chlorophenyl)ethynyl)-2,4,4-trimethyl-1-phenylpentan-1-one (3ga):



<sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>)



2-((3-bromophenyl)ethynyl)-2,4,4-trimethyl-1-phenylpentan-1-one (3ha):





2-((2-chlorophenyl)ethynyl)-2,4,4-trimethyl-1-phenylpentan-1-one (3ia):



<sup>13</sup>C-NMR (101 MHz, CDCl<sub>3</sub>)

### 2,4,4-trimethyl-2-(phenylethynyl)-1-(p-tolyl)pentan-1-one (3ka):



S25







1-(4-fluorophenyl)-2,4,4-trimethyl-2-(phenylethynyl)pentan-1-one (3ma):



# 2,4,4-trimethyl-2-(phenylethynyl)-1-(m-tolyl)pentan-1-one (3na):

<sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>)



1-(3-bromophenyl)-2,4,4-trimethyl-2-(phenylethynyl)pentan-1-one (3oa):





2,4,4-trimethyl-2-(phenylethynyl)-1-(o-tolyl)pentan-1-one (3pa):





1-(2-chlorophenyl)-2,4,4-trimethyl-2-(phenylethynyl)pentan-1-one (3qa):



1-(3,5-dichlorophenyl)-2,4,4-trimethyl-2-(phenylethynyl)pentan-1-one (3ra): S32





1-cyclohexyl-2,4,4-trimethyl-2-(phenylethynyl)pentan-1-one (3sa):





# 2-(cyclohexylmethyl)-2-methyl-1,4-diphenylbut-3-yn-1-one (3ab):



# 2,4-dimethyl-1-phenyl-2-(phenylethynyl)pentan-1-one (3ac):

<sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>)



## 2,4-dimethyl-1-phenyl-2-(phenylethynyl)heptan-1-one (3ad):





2-ethyl-2-methyl-1,4-diphenylbut-3-yn-1-one (3ae):





2-methyl-1-phenyl-2-(phenylethynyl)octan-1-one (3af):

8, 314 8, 296 7, 550 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7, 551 7,





(D) References

S40

[1] Q. Zhao, X. S. Ji, Y. Y. Gao, W. J. Hao, K. Y. Zhang, S. J. Tu and B. Jiang, Merging
" Anti-Baldwin" 3- Exo-Dig Cyclization with 1,2-Alkynyl Migration for Radical
Alkylalkynylation of Unactivated Olefins, *Org. Lett.*, 2018, **20**, 3596-3600.

[2] M. Li, X. Y. Zhu, Y. F. Qiu, Y. P. Han, Y. Xia, C. T. Wang, X. S. Li, W. X. Wei and Y.
M. Liang, Metal - Free Promoted CF<sub>2</sub>/CF<sub>3</sub> -Difunctionalization of Unactivated Alkenes, *Adv. Synth. Catal.*, 2019, **361**, 2945-2950.