Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2021

Amidino substituted 2-aminophenols: Biologically important building blocks for the amidino-functionalization of 2-substituted benzoxazoles

Lucija Ptiček,¹ Lucija Hok,² Petra Grbčić,³ Filip Topić,⁴ Mario Cetina,¹ Kari Rissanen,⁴ Sandra Kraljević Pavelić,⁵ Robert Vianello,²* Livio Racané¹*

¹ Department of Applied Chemistry, Faculty of Textile Technology, University of Zagreb, Prilaz baruna Filipovića 28a, 10000 Zagreb, Croatia. Email: livio.racane@ttf.unizg.hr (L.R.)

² Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia. Email: robert.vianello@irb.hr (R.V.)

³ Department of Biotechnology, Centre for high-throughput technologies, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia

⁴ University of Jyvaskyla, Department of Chemistry, P.O. Box 35, 40014 Jyväskylä, Finland

⁵ Faculty of Health Studies, University of Rijeka, Viktora Cara Emina 5, 51000 Rijeka, Croatia

TABLE OF CONTENTS:	Page
I. Synthetic procedures and analyses	S2-S13
II. Single crystal X-ray diffraction	
• Figures S1–S6; Tables S1–S2; Experimental X-ray details	S14–S23
III. Computational analysis	
Computational details; Figures S7–S8	S24–S26
• Cartesian coordinates, total Gibbs free energies and the number of imaginary	
frequencies for all computed systems	S27–S62
IV. Cell culturing and MTT proliferation assay	S63
V. ¹ H and ¹³ C NMR spectra	S64–S128
VI. References	S129–S130

ELECTRONIC SUPPLEMENTARY INFORMATION

I. Synthetic procedures and analyses of the compounds 2a-2d, 3a-3c and 10a-10l

General information

Melting points were determined by means of Original Kofler Mikroheitztisch apparatus (Reichert, Wien). ¹H NMR and ¹³C NMR spectra were recorded with the Bruker Avance DPX-300 or Bruker AV-600 using TMS as internal standard. Chemical shifts are reported in parts per million (ppm) relative to TMS. UPLC-MS spectra were recorded with Agilent 1290 Infiniti II/6120 Quadrupole LC/MS spectrometers using electrospray ionization (ESI). Elemental analyses for carbon, hydrogen and nitrogen were performed on Perkin-Elmer 2400 elemental analyser. Analyses are indicated as symbols of elements, and analytical results obtained are within 0.4 % of the theoretical value.

Synthesis of amidino substituted 2-aminophenols

4-Hydroxy-3-nitrobenzonitrile (2a)

A mixture of fuming nitric acid (7.0 ml, 170 mmol) and glacial acetic acid (12.5 ml) was added dropwise to the solution of 4-hydroxybenzonitrile **1a** (12.5 g, 105 mmol) in glacial acetic acid (50 ml) at 50 - 60 °C. Reaction mixture was stirred for 30 min at 50 °C then poured into ice – water mixture. The resulting precipitate was filtered, washed with cold water and dried at room temperature giving 16.4 g (95 %) of pure compound **2a** as pale yellow solid; mp = 140 - 144 °C (mp = 142 - 145 °C).^{S1} UPLC (230 nm): 99.7 area %; MS (ESI) *m/z*: 163.2 (M-H⁺) ¹H NMR (300 MHz, DMSO-*d*₆) (δ ppm): 12.32 (bs, 1H, –OH), 8.43 (d, 1H, *J* = 2.1 Hz, Ar–*H*), 7.95 (dd, 1H, *J* = 8.7 Hz, *J* = 2.1 Hz, Ar–*H*), 7.26 (d, 1H, *J* = 8.7 Hz, Ar–*H*).

3-Hydroxy-4-nitrobenzonitrile (2b), **3-hydroxy-2-nitrobenzonitrile** (2c) and **5-hydroxy-2-nitrobenzonitrile** (2d)

A mixture of fuming nitric acid (2.6 ml, 62.3 mmol) and glacial acetic acid (4.8 ml) was added dropwise to the solution of 3-hydroxybenzonitrile (5.0 g, 42.0 mmol) in glacial acetic acid (20 ml) at 30 – 35 °C. The reaction mixture was stirred for 2 h at 35 °C and then poured into ice – water mixture. The resulting precipitate was filtered, washed with cold water and dried at room temperature overnight giving the mixture of isomers **2b**, **2c** and **2d**. Crystallization from toluene gave 1.6 g (23 %) of pure isomer **2d** as pale yellow solid; mp = 195 – 202 °C (mp = 201 °C).^{S2} UPLC (230 nm): 98.2 area %; MS (ESI) *m/z*: 163.2 (M-H⁺) ¹H NMR (300 MHz, DMSO-*d*₆) (δ ppm): 11.73 (bs, 1H, –OH), 8.39 (d, 1H, *J* = 9.1 Hz, Ar–*H*), 7.23 (d, 1H, *J* = 2.7 Hz, Ar–*H*), 7.43 (dd, 1H, *J* = 9.1 Hz, *J* = 2.7 Hz, Ar–*H*). Evaporation of toluene filtrate under reduced pressure and chromatography on silica gel using toluene/EtOAc (97:3) gave pure isomers **2b** and **2c**. Yield of pure isomer **2b** was 1.6 g (23 %) as pale yellow solid; mp = 114 – 119 °C (mp = 121 °C).^{S3} UPLC (230 nm): 97.0 area %; MS (ESI) *m/z*: 163.2 (M-H⁺). ¹H NMR (300 MHz, DMSO-*d*₆) (δ ppm): 11.80 (bs, 1H, –OH), 8.01 (d, 1H, *J* = 8.4 Hz, Ar–*H*), 7.51 (d, 1H, *J* = 1.6 Hz, Ar–*H*), 7.43 (dd, 1H, J = 8.4 Hz, J = 1.6 Hz, Ar–*H*). Yield of pure isomer **2c** was 1.4 g (21 %) as pale yellow solid; mp = 135 – 138 °C. UPLC (230 nm): 98.1 area %; MS (ESI) *m/z*: 163.2 (M-H⁺). ¹H NMR (300 MHz, DMSO-*d*₆) (δ ppm): 11.91 (bs, 1H, –O*H*), 7.65 (dd, 1H, J = 8.5 Hz, J = 7.8 Hz, Ar–*H*), 7.53 (dd, 1H, J = 7.8 Hz, J = 1.2 Hz, Ar–*H*), 7.47 (dd, 1H, J = 8.5 Hz, J = 1.2 Hz, Ar–*H*). ¹³C NMR (150 MHz, DMSO-*d*₆) (δ ppm): 151.1, 138.9, 133.7, 124.5, 124.1, 114.5, 106.2. Analysis calcd for C₇H₄N₂O₃ (164.12): C, 51.23; H, 2.46; N, 17.07. Found: C, 51.41; H, 2.40; *N*, *16.98*.

General procedure for the preparation of 2-aminophenols (3a-3c)

A mixture of 2-nitrophenoles (2a-2c) and a solution of tin(II) chloride dihydrate (4 equiv.) dissolved in water : concd HCl 1:1 mixture was heated under reflux for 20 minutes and then poured into ice. The reaction mixture was neutralized with sodium hydroxide solution, extracted with diethyl ether and dried over MgSO₄. Evaporation of solvent gave pure amines.

3-Amino-4-hydroxybenzonitrile (3a) Using 4-hydroxy-3-nitrobenzonitrile **2a** (9.8 g, 60 mmol) and 140 ml of solution of tin(II) chloride dihydrate (54.2 g, 240 mmol) gave 7.2 g (90 %) of pure compound **3a** as white solid; mp = 145 - 148 °C (mp = 153 - 156 °C).¹ UPLC (230 nm): 98.3 %; MS (ESI) *m/z*: 135.2 (M+H⁺). ¹H NMR (600 MHz, DMSO-*d*₆) (δ ppm): 9.75 (bs, 1H, –OH), 6.99 (dd, 1H, *J* = 8.1 Hz, *J* = 1.8 Hz, Ar–H), 6.63 (d, 1H, *J* = 8.1 Hz, Ar–H), 5.54 (s, 2H, –NH₂).

4-Amino-3-hydroxybenzonitrile (3b) Using 3-hydroxy-4-nitrobenzonitrile **2b** (6.0 g, 36 mmol) and 120 ml of solution of tin(II) chloride dihydrate (32.8 g, 146 mmol) gave 4.54 g (94 %) of pure compound **3b** as bright yellow solid; mp = 141 - 145 °C (mp = 149 - 150 °C).³ UPLC (230 nm): 98.0 area %; MS (ESI) *m/z*: 135.2 (M+H⁺). ¹H NMR (300 MHz, DMSO-*d*₆) (δ ppm): 10.17 (bs, 1H, –OH), 6.87 – 6.82 (m, 2H, Ar–H), 6.74 (d, 1H, *J* = 8.0 Hz, Ar–H), 4.97 (bs, 2H, –NH₂).

2-Amino-3-hydroxybenzonitrile (**3c**) Using 3-hydroxy-2-nitrobenzonitrile **2c** (2.50 g, 15 mmol) and 50 ml of solution of tin(II) chloride dihydrate (13.8 g, 61 mmol) gave 2.0 g (97 %) of pure compound **3c** as bright yellow solid; mp = 149 – 150 °C. UPLC (230 nm): 99.7 area %; MS (ESI) *m/z*: 135.2 (M+H⁺). ¹H NMR (300 MHz, DMSO-*d*₆) (δ ppm): 9.90 (bs, 1H, –OH), 6.86 (d, 2H, *J* = 7.8 Hz, Ar–*H*), 6.48 (dd, 1H, *J* = 7.8 Hz, Ar–*H*), 5.36 (s, 2H, –NH₂). ¹³C NMR (75 MHz, DMSO-*d*₆) (δ ppm): 144.4, 141.1, 122.2, 118.2, 117.5, 116.6, 93.8. Analysis calcd for C₇H₆N₂O (134.14): C, 62.68; H, 4.51; N, 20.88. Found: C, 62.64; H, 4.59; N, 20.91. The crystals suitable for X-ray analysis were obtained by slow evaporation from ethyl-acetate.

General procedure for carboximidates (5a-6c)

A solution of the corresponding nitrile **3a** or **3b** in dry alcohol was saturated with dry gaseous HCl at 10 - 15 °C. The flask was stoppered and obtained suspension stirred at room temperature for 5 days (TLC-control). From the reaction mixture the excess of HCl was removed with a stream of N₂ and poured into dry diethyl-ether (500 ml). Resulting precipitate was filtered, washed with dry diethyl-ether and dried under reduced pressure over KOH.

Methyl-(3-amino-4-hydroxyphenyl) carboximidate dihydrochloride (5a). Using general procedure nitrile 3a (3.97 g, 29.6 mmol) and dry methanol (50 ml) gave 6.35 g (89%) of crude imidate salt 5a, as very hygroscopic white solid salt which was immediately used in II step of Pinner reaction without purification and characterisation for the preparations of amidines 8c' and 8d'.

2-Methoxyethyl-(3-amino-4-hydroxyphenyl) carboximidate dihydrochloride (5b). Using general procedure nitrile **3a** (5.14 g 38.3 mmol) and dry 2-metoxyethanol (70 ml) gave 11.06 g (100%) of crude imidate salt **5b** as hygroscopic white solid. ¹H NMR (300 MHz, DMSO-*d*₆) (δ ppm): 11.81 (bs, 2H, $-C=NH_2^+$), 7.88 (dd, 1H, J = 8.7 Hz, J = 1.8 Hz, Ar–*H*), 7.80 (d, 1H, J = 1.8 Hz, Ar–*H*), 7.19 (d, 1H, J = 8.7 Hz, J = 4.1 Hz, CH₃OCH₂CH₂O–), 3.78 (t, 2H, J = 4.1 Hz, CH₃OCH₂CH₂O–), 3.36 (s, 3H, CH₃O–). The crude imidate salt was used in II step of Pinner reaction without purification within 2 days for the preparations of amidines **8b** and **8d**.

2-(2-Ethoxyethoxy)ethyl-(3-amino-4-hydroxyphenyl) carboximidate dihydrochloride (5c). Using general procedure nitrile **3a** (5.00 g, 37.3 mmol) and dry 2-(2-ethoxyethoxy)ethanol (60 ml) gave 11.87 g (93%) of crude imidate salt **5c**, as hygroscopic white solid. ¹H NMR (600 MHz, DMSO-*d*₆) (δ ppm): 11.81 (bs, 2H, $-C=NH_2^+$), 7.91 (d, 1H, J = 8.7 Hz, Ar–*H*), 7.85 (s, 1H, Ar–*H*), 7.22 (d, 1H, J = 8.7 Hz, Ar–*H*), 4.70 (t, 2H, J = 4.1 Hz, $-OCH_2CH_2O_-$), 3.87 (t, 2H, J = 4.1 Hz, $-OCH_2CH_2O_-$), 3.64 (t, 2H, J = 4.7 Hz, $-OCH_2CH_2O_-$), 3.51 (t, 2H, J = 4.7 Hz, $-OCH_2CH_2O_-$), 3.42 (q, 2H, J = 6.9 Hz, $CH_3CH_2O_-$), 1.07 (s, 3H, $CH_3CH_2O_-$). The crude imidate salt was used in II step of Pinner reaction without purification within 3 days for the preparations of amidines **8a**, **8a'** and **8b'**

Methyl-(4-amino-3-hydroxyphenyl) carboximidate dihydrochloride (6a). Using general procedure nitrile **3b** (2.00 g, 14.9 mmol) and dry methanol (20 ml) gave crude imidate salt **4ba** as orange viscous liquid which was immediately used in II step of Pinner reaction without purification and characterisation for the preparations of amidine **8i'**.

2-Methoxyethyl-(4-amino-3-hydroxyphenyl) carboximidate dihydrochloride (6b). Using general procedure nitrile **3b** (5.00 g, 37.3 mmol) and dry 2-metoxyethanol (80 ml) gave 10.30 g (98%) of crude imidate salt **6b** as hygroscopic white solid. ¹H NMR (300 MHz, DMSO-*d*₆) (δ ppm): 11.38 (bs, 1H, $-C=NH_2^+$), 10.73 (bs, 1H, $-C=NH_2^+$), 8.08-7.07 (bs, 4H, $-OH + -NH_3^+$), 7.62 (dd, 1H, J = 8.5 Hz, J =

2.1 Hz, Ar–*H*), 7.41 (d, 1H, J = 2.1 Hz, Ar–*H*), 6.85 (d, 1H, J = 8.5 Hz, Ar–*H*), 4.66 (t, 2H, J = 4.1 Hz, CH₃OCH₂CH₂O–), 3.76 (t, 2H, J = 4.1 Hz, CH₃OCH₂CH₂O–), 3.35 (s, 3H, CH₃O–). The crude imidate salt was used in II step of Pinner reaction without purification within 2 days for the preparations of amidines **8g**, **8g'**, and **8j**.

2-(2-Ethoxyethoxy)ethyl-(4-amino-3-hydroxyphenyl) carboximidate dihydrochloride (6c). Using general procedure nitrile **3b** (3.47 g, 25.8 mmol) and dry 2-(2-ethoxyethoxy)ethanol (50 ml) gave crude imidate salt **6c** as pale red viscous liquid which was immediately used in II step of Pinner reaction without purification and characterisation for the preparations of amidine **8h**

2-Amino-4-amidiniumphenolate hemihydrochloride hydrate (8a). A suspension of imidate salt **5c** (4.44 g, 13.0 mmol) in absolute ethanol (50 ml) was cooled to 10 °C and saturated with ammonia. The flask was stoppered and the reaction mixture was stirred at room temperature for 2 days. From the reaction mixture the excess of NH₃ was removed with a stream of N₂ and cooled overnight in refrigerator. The resulting precipitate was filtered and crystallized from water (charcoal) giving 1.08 g (44%) of beige solid; mp = 148-152 °C. UPLC (230 nm): 100 area %; MS (ESI) *m/z*: 152.1 (M+H⁺). ¹H NMR (600 MHz, DMSO-*d*₆) (δ ppm): 7.23 (bs, 4H, -C(NH₂)₂⁺), 6.99 (dd, 1H, *J* = 8.3 Hz, *J* = 2.5 Hz, Ar–*H*), 6.96 (d, 1H, *J* = 2.5 Hz, Ar–*H*), 6.55 (d, 1H, *J* = 8.3 Hz, Ar–*H*), 4.68 (bs, 2H, –NH₂). ¹³C NMR (150 MHz, DMSO-*d*₆) (δ ppm): 165.2, 157.6, 138.2, 119.1, 113.9, 112.2, 110.9. Analysis calcd for C₇H₉N₃O x 0.5 HCl x H₂O (187.41): C, 44.86; H, 6.81; N, 22.42. Found: C, 44.91; H, 6.73; N, 22.41. The crystals suitable for X-ray analysis were obtained by slow evaporation from methanol.

2-Amino-4-amidiniumphenolate dihydrate (8a'). A suspension of imidate salt **5c** (3.14 g, 9.2 mmol) in absolute ethanol (40 ml) was cooled to 10 °C and saturated with ammonia. The flask was stoppered and the reaction mixture was stirred at room temperature for 2 days. From the reaction mixture the excess of NH₃ was removed with a stream of N₂ at room temperature, resulting in a precipitation of ammonium chloride which was separated by filtration. The ethanol filtrate was concentred, and the residue suspended in water (10 ml), and basified to pH 10-11 with a 2.5 M NaOH. The resulting crude product was filtered and crystallized from water giving 0.86 g (64%) of beige crystals suitable for X-ray analysis; mp = 155-158 °C. UPLC (230 nm): 100 area %; MS (ESI) m/z: 152.1 (M+H⁺). ¹H NMR (300 MHz, DMSO-*d*₆) (δ ppm): 7.01 (dd, 1H, *J* = 8.5 Hz, *J* = 2.6 Hz, Ar–*H*), 6.83 (d, 1H, *J* = 2.6 Hz, Ar–*H*), 6.11 (d, 1H, *J* = 8.5 Hz, *A* = 4.6 Hz, Ar–*H*), 6.83 (d, 1H, *J* = 2.6 Hz, Ar–*H*), 6.11 (d, 1H, *J* = 8.5 Hz, 113.9, 110.5. Analysis calcd for C₇H₉N₃O x 2 H₂O (187.20): C, 44.91; H, 7.00; N, 22.45. Found: C, 45.06; H, 6.96; N, 22.66.

2-Amino-4-(4,5-dihydro-1H-imidazol-3-ium-2-yl)phenolate hemihydrochloride dihydrate (8b). A suspension of imidate salt **5b** (4.25 g, 15.0 mmol) in absolute ethanol (50 ml) under nitrogen, ethylenediamine (5.0 ml, 75 mmol) was added and reaction mixture was heated under reflux for 4h. After cooling overnight, the resulting precipitate was filtered and crystallized from ethanol giving 1.41 g (41%) of beige crystals suitable for X-ray analysis; mp = 150 – 153 °C. UPLC (230 nm): 99.8 area %; MS (ESI) *m/z*: 178.1 (M+H⁺) calculated for free base 177.09. ¹H NMR (600 MHz, DMSO-*d*₆) (δ ppm): 7.06 (s, 1H, Ar–*H*), 6.93 (d, 1H, *J* = 7.4 Hz, Ar–*H*), 6.62 (d, 1H, *J* = 7.4 Hz, Ar–*H*), 4.65 (s, 2H, –N*H*₂), 3.63 (s, 4H, –C*H*₂C*H*₂–). ¹³C NMR (150 MHz, D₂O) (δ ppm): 165.9, 161.6, 137.8, 123.2, 117.5, 115.0, 108.1, 44.6. Analysis calcd for C₉H₁₁N₃O x 0.5 HCl x 2 H₂O (231.46): C, 46.70; H, 6.75; N, 18.15. Found: C, 46.63; H, 6.81; N, 18.22.

2-Amino-4-(4,5-dihydro-1*H***-imidazolium-2-yl)phenolate hydrate (8b').** A suspension of imidate salt **5c** (5.66 g, 16.6 mmol) in absolute ethanol (60 ml) under nitrogen, ethylene-diamine (5.6 ml, 84 mmol) was added and reaction mixture was heated under reflux for 4h. After cooling overnight, the resulting precipitate was filtered, and air dried. The crude product was suspended in water (20 ml), and basified to pH 10-11 with a 2.5 M NaOH. The resulting solid was filtered and washed with cold ethanol giving 2.54 g (78%) of beige solid; mp = 153-158 °C. UPLC (230 nm): 100 area %; MS (ESI) *m/z*: 178.1 (M+H⁺). ¹H NMR (300 MHz, DMSO-*d*₆) (δ ppm): 7.07 (d, 1H, *J* = 2.1 Hz, Ar–*H*), 6.87 (dd, 1H, *J* = 8.1 Hz, *J* = 2.1 Hz, Ar–*H*), 6.56 (d, 1H, *J* = 8.1 Hz, Ar–*H*), 4.55 (s, 2H, –NH₂), 3.54 (s, 4H, –CH₂CH₂–). ¹³C NMR (75 MHz, DMSO-*d*₆) (δ ppm): 164.6, 151.4, 137.0, 117.7, 116.5, 113.7, 112.3, 47.9. Analysis calcd for C₉H₁₁N₃O x H₂O (195.10): C, 55.37; H, 6.71; N, 21.52. Found: C, 55.28; H, 6.76; N, 21.61. The crystals suitable for X-ray analysis were obtained by slow evaporation from water.

2-Amino-4-(3,4,5,6-tetrahydropyrimidinium-2-yl)phenolate hydrate (8c'). A suspension of imidate salt **5a** (1.90 g, 14.5 mmol) in absolute ethanol (35 ml) under nitrogen, 1,3-propanediamine (5.0 ml, 60 mmol) was added and reaction mixture was heated under reflux for 4 h. The reaction mixture was cooled, resulting in a precipitation of 1,3-propanediamine dihydrochloride which was separated by filtration. The ethanol filtrate was concentred and the residue dissolved in water. The solution was basified to pH 10-11 with a 2.5 M NaOH and the resulting solid, filtered and washed with cold ethanol giving 2.28 g (75%) of beige solid; mp = 218 – 223 °C. UPLC (230 nm): 100 area %; MS (ESI) *m/z*: 192.2 (M+H⁺). ¹H NMR (600 MHz, DMSO-*d*₆) (δ ppm): 6.84 – 6.79 (m, 2H, Ar–*H*), 6.24 (d, 1H, *J* = 8.0 Hz, Ar–*H*), 4,33 (bs, 2H, $-NH_2$), 3.32 (t, 4H, *J* = 5.5 Hz, $-CH_2CH_2CH_2-$), 1.79 (m, 2H, $-CH_2CH_2CH_2-$). ¹³C NMR (75 MHz, D₂O) (δ ppm): 162.8, 160.1, 138.1, 121.2, 117.8, 113.6, 113.0, 39.3, 18.8. Analysis calcd for C₁₀H₁₃N₃O x H₂O (209.24): C, 57.40; H, 7.23; N, 20.08. Found: C, 57.37; H, 7.31; N, 20.10. The crystals suitable for X-ray analysis were obtained by slow evaporation from water.

2-Amino-4-(*N***-isopropylamidino**)**phenol hydrochloride ethanol solvate (8d).** A suspension of imidate salt **5b** (5.5 g, 19.4 mmol) in absolute ethanol (30 mL) under nitrogen, *i*-propylamine (4.1 ml, 47.7 mmol) was added and reaction mixture was heated under reflux for 2 h. After cooling overnight, the resulting precipitate was filtered, and crystallized from ethanol giving 2.45 g (46%) of pale yellow crystals suitable

for X-ray analysis; mp = 247 - 250 °C. UPLC (230 nm): 100 area %; MS (ESI) *m/z*: 194.2 (M+H⁺) calcd for free base 193.12. ¹H NMR (300 MHz, DMSO-*d*₆) (δ ppm): 10.25 (bs, 1H, –OH), 9.16 – 8.76 (m, 3H, –C(NH₂)⁺NH–), 6.89 (d, 1H, *J* = 2.0 Hz, Ar–*H*), 6.86 (d, 1H, *J* = 8.2 Hz, Ar–*H*), 6.81 (dd, 1H, *J* = 8.2 Hz, *J* = 2.0 Hz, Ar–*H*), 4.98 (bs, 2H, –NH₂), 4.02 (m, 1H, *J* = 6.4 Hz, –CH(CH₃)₂), 1.23 (d, 6H, *J* = 6.4 Hz, –CH(CH₃)₂). ¹³C NMR (150 MHz, DMSO-*d*₆) (δ ppm): 162.2, 148.7, 137.1, 119.9, 116.9, 113.8, 112.8, 44.6, 21.3. Analysis calcd for C₁₀H₁₅N₃O x HCl x C₂H₅OH (275.77): C, 55.27; H, 7.58; N, 16.63. Found: C, 55.44; H, 7.49; N, 16.57.

2-Amino-4-(*N*-isopropylamidinium)phenolate (8d'). A suspension of imidate salt **5a** (6.0 g, 25.1 mmol) in absolute ethanol (30 mL) under nitrogen, *i*-propylamine (5.0 ml, 61.1 mmol) was added and reaction mixture was heated under reflux for 2 h. After cooling overnight, the resulting precipitate was filtered, and washed with cold ethanol. The crude product was suspended in cold water (3 ml) and basified to pH 10-11 with a 2.5 M NaOH. After cooling overnight, the resulting precipitate was filtered giving 2.48 g (51%) of pale yellow solid; mp = 232 – 234 °C. UPLC (230 nm): 98.7 area %; MS (ESI) *m/z*: 194.2 (M+H⁺). ¹H NMR (300 MHz, DMSO-*d*₆) (δ ppm): 6.82-6.78 (m, 2H, Ar–*H*), 6.38 (d, 1H, *J* = 8.8 Hz, Ar–*H*), 4.50 (bs, 2H, –N*H*₂), 3.91 (m, 1H, *J* = 6.4 Hz, –C*H*(CH₃)₂). ¹³C NMR (75 MHz, DMSO-*d*₆) (δ ppm): 162.2, 148.7, 137.1, 119.9, 116.9, 113.8, 112.8, 44.6, 21.3. Analysis calcd for C₁₀H₁₅N₃O (193.25): C, 62.15; H, 7.82; N, 21.74. Found: C, 62.20; H, 7.77; N, 21.74.

2-Amino-4-(4,5,6,7-tetrahydro-1*H***-1,3-diazepinium-2-yl)phenolate (8e').** A suspension of imidate salt **5b** (2.6 g, 9.2 mmol) in absolute ethanol (60 mL) under nitrogen, 1,4-butanediamine (4.8 ml, 47.8 mmol) was added and reaction mixture was heated under reflux for 4 h. After cooling overnight, the resulting precipitate was filtered and washed with cold ethanol. The crude product obtained was suspended in cold water (10 ml) and basified to pH 10-11 with a 2.5 M NaOH. After cooling overnight, the resulting precipitate was filtered giving 1.19 g (61%) of beige solid; mp > 300 °C. UPLC (230 nm): 100 area %; MS (ESI) *m/z*: 206.2 (M+H⁺). ¹H NMR (300 MHz, DMSO-*d*₆) (δ ppm): 8.25 (bs, 2H, $-C(NH-)_2^+$), 6.85 (dd, 1H, *J* = 8.5 Hz, *J* = 2.4 Hz, Ar–*H*), 6.68 (d, 1H, *J* = 2.4 Hz, Ar–*H*), 6.13 (d, 1H, *J* = 8.5 Hz, Ar–*H*), 4.33 (bs, 2H, $-NH_2$), 3.35 (bs, 4H, $-CH_2CH_2CH_2CH_2-$), 1.68 (bs, 4H, $-CH_2CH_2CH_2CH_2-$). Analysis calcd for C₁₁H₁₅N₃O (205.26): C, 64.37; H, 7.37; N, 20.47. Found: C, 64.33; H, 7.46; N, 20.40

2-Aminium-4-(4,5,6,7-tetrahydro-1*H***-1,3-diazepinium-2-yl)phenol dimethanesulphonate hydrate (8e).** A solution of phenolate **8e'** (0.43 g, 2.1 mmol) in ethanol (5 ml) methanesulfonic acid (0.300 ml, 4.7 mmol) was added. After cooling overnight, the resulting precipitate was filtered giving 0.48 g (55%) of yellow crystals suitable for X-ray analysis; mp = 176 - 181 °C. UPLC (230 nm): 100 area %; MS (ESI) *m/z*: 206.4 (M+H⁺) calcd for free base 205.12. ¹H NMR (300 MHz, DMSO-*d*₆) (δ ppm): 11.56 (bs, 1H, -OH), 9.47 (s, 2H, -C(NH-)₂⁺), 7.53 (s, 1H, Ar-H), 7.46 (d, 1H, *J* = 8.4 Hz, Ar-H), 7.10 (d, 1H, *J* = 8.4

Hz, Ar–*H*), 5.53 (bs, 3H, $-NH_3^+$), 3.63 (s, 4H, $-CH_2CH_2CH_2CH_2-$), 2.38 (s, 6H, $CH_3SO_3^-$), 1.93 (s, 4H, $-CH_2CH_2CH_2CH_2-$). ¹³C NMR (75 MHz, DMSO-*d*₆) (δ ppm): 164.1, 154.3, 128.1, 122.9, 120.5, 115.7, 43.7, 39.7, 25.5. Analysis calcd for C₁₁H₁₅N₃O x 2 CH₃SO₃H x H₂O (415.48): C, 37.58; H, 6.06; N, 10.11. Found: C, 37.77; H, 5.98; N, 10.03.

2,2'-Bis(3-amino-4-phenolate)butane-1,4-diimidamide (8f'). A suspension of imidate salt **5b** (3.1 g, 10.8 mmol) in absolute ethanol (100 ml) under nitrogen, 1,4-butanediamine (2.7 mL, 26.9 mmol) was added and reaction mixture was heated under reflux for 4 h. After cooling overnight, the resulting precipitate was filtered and washed with cold ethanol. The crude product was suspended in cold water (5 ml) and basified to pH 10-11 with a 2.5 M NaOH. After cooling overnight, the resulting precipitate was filtered giving 0.85 g (22%) of yellow solid; mp = 173 – 178 °C. UPLC (230 nm): 100 area %; MS (ESI) *m/z*: 357.2 (M+H⁺). ¹H NMR (600 MHz, DMSO-*d*₆) (δ ppm): 6.88 (d, 2H, *J* = 2.3 Hz, Ar–*H*), 6.83 (dd, 2H, *J* = 8.2 Hz, *J* = 2.3 Hz, Ar–*H*), 6.58 (d, 2H, *J* = 8.2 Hz, Ar–*H*), 4.70 (bs, 6H, –N*H*–, –N*H*₂), 3.35 (m, 4H, –C*H*₂CH₂CH₂CH₂CH₂–), 1.66 (m, 4H, –CH₂CH₂CH₂CH₂–). ¹³C NMR (75 MHz, DMSO-*d*₆) (δ ppm): 162.7, 153.3, 137.7, 117.7, 116.9, 113.7, 111.6, 42.0, 25.2. Analysis calcd for C₁₈H₂₄N₆O₂ (356.42): C, 60.66; H, 6.79; N, 23.58. Found: C, 60.70; H, 6.70; N, 23.64.

2-Amino-5-amidinophenol dihydrochloride (8g). A suspension of imidate salt **6b** (2.30 g, 8.1 mmol) in absolute ethanol (35 ml) was cooled to 10 °C and saturated with ammonia. The flask was stoppered and the reaction mixture was stirred at room temperature for 2 days. From the reaction mixture the excess of NH₃ was removed with a stream of N₂ at room temperature, resulting in a precipitation of ammonium chloride which was separated by filtration. The ethanol filtrate was saturated with dry gaseous HCl and resulting precipitate filtered and crystallized from ethanol giving 1.30 g (72%) of colourless crystals suitable for X-ray analysis; mp = 191 – 194 °C. UPLC (230 nm): 100 area %; MS (ESI) *m/z*: 152.1 (M+H⁺) calculated for free base 151.07. ¹H NMR (300 MHz, DMSO-*d*₆) (δ ppm): 10.39 (bs, 1H, –O*H*), 9.04 (s, 2H, –C(N*H*₂)₂⁺), 8.87 (s, 2H, –C(N*H*₂)₂⁺), 7.26 – 7.18 (m, 2H, Ar–*H*), 7.02 (d, 1H, *J* = 8.0 Hz, Ar–*H*), 6.19 (bs, 3H, –N*H*₃⁺). ¹³C NMR (75 MHz, DMSO-*d*₆) (δ ppm): 165.4, 147.5, 133.3, 121.6, 120.1, 119.1, 114.7. Analysis calcd for C₇H₉N₃O x 2 HCl (224.09): C, 37.52; H, 4.95; N, 18.75. Found: C, 37.41; H, 5.08; N, 18.72.

2-Amino-5-(4,5-dihydro-1*H***-imidazol-2-yl)phenol hydrochloride dihydrate (8h).** A solution of imidate salt **6c** prepared from nitrile **3b** (3.47 g, 25.8 mmol) in absolute ethanol (50 ml) under nitrogen, ethylene-diamine (4.3 ml, 65 mmol) was added and reaction mixture was heated under reflux for 4 h. After cooling overnight, the resulting precipitate was filtered, and crystallized from water giving 3.88 g (60%) of pale yellow solid; mp = 198 – 202 °C. UPLC (230 nm): 99.4 area %; MS (ESI) *m/z*: 178.1 (M+H⁺) calculated for free base 177.09. ¹H NMR (300 MHz, DMSO-*d*₆) (δ ppm): 9.87 (bs, 3H, –OH + –C(NH–)₂⁺), 7.33 (dd, 1H, *J* = 8.3 Hz, *J* = 2.0 Hz, Ar–*H*), 7.21 (d, 1H, *J* = 2.0 Hz, Ar–*H*), 6.68 (d, 1H, *J*

= 8.3 Hz, Ar–*H*), 5.90 (s, 2H, $-NH_2$), 3.86 (s, 4H, $-CH_2CH_2$ –). ¹³C NMR (75 MHz, DMSO-*d*₆) (δ ppm): 164.7, 144.5, 143.0, 122.6, 113.9, 112.6, 107.5, 43.8. Analysis calcd for C₉H₁₁N₃O x HCl x 2 H₂O (249.69): C, 43.29; H, 6.46; N, 16.83. Found: C, 43.31; H, 6.28; N, 16.78. The crystals suitable for X-ray analysis were obtained by slow evaporation from water.

2-Amino-5-(4,5-dihydro-1*H***-imidazolium-2-yl)phenolate hydrate (8h').** A suspension of imidate salt **6b** (3.4 g, 12.0 mmol) in absolute ethanol (30 mL) under nitrogen, ethylene-diamine (2.0 ml, 30 mmol) was added and reaction mixture was heated under reflux for 4 h. After cooling overnight, the resulting precipitate was filtered, suspended in water (15 ml) and basified to pH 10-11 with a 2.5 M NaOH and cooled overnight. The resulting precipitate was filtered giving 1.73 g (81%) of beige solid; mp = 191 – 194 °C. UPLC (230 nm): 100 area %; MS (ESI) *m/z*: 178.1 (M+H⁺). ¹H NMR (300 MHz, DMSO-*d*₆) (δ ppm): 7.72 (bs, 2H, $-C(NH-)_2^+$), 7.18 (d, 1H, *J* = 1.6 Hz, Ar–*H*), 7.00 (dd, 1H, *J* = 8.0 Hz, *J* = 1.6 Hz, Ar–*H*), 6.53 (d, 1H, *J* = 8.0 Hz, Ar–*H*), 4.89 (s, 2H, $-NH_2$), 3.50 (s, 4H, $-CH_2CH_2-$). ¹³C NMR (150 MHz, DMSO-*d*₆) (δ ppm): 164.2, 143.3, 139.3, 119.1, 118.5, 113.3, 112.7, 49.4. Analysis calcd for C₉H₁₁N₃O (177.20): C, 55.37; H, 6.71; N, 21.52. Found: C, 55.54; H, 6.58; N, 21.48.

2-Amino-5-(3,4,5,6-tetrahydropyrimidinium-2-yl)phenolate (8i'). A solution of imidate salt **6a** prepared from nitrile **3b** (2.00 g, 14.9 mmol) in absolute ethanol (50 ml) under nitrogen, 1,3-propanediamine (5.0 mL, 60 mmol) was added and reaction mixture was heated under reflux for 4 h. The reaction mixture was cooled, resulting in a precipitation of 1,3-propanediamine dihydrochloride which was separated by filtration. The ethanol filtrate was concentred, the residue dissolved in water and basified to pH 10-11 with a 2.5 M NaOH. The resulting precipitate filtered and washed with cold ethanol giving 2.13 g (75%) of beige solid; mp = 218 – 223 °C. UPLC (254 nm): 100 area %; MS (ESI) *m/z*: 192.1 (M+H⁺). ¹H NMR (600 MHz, DMSO-*d*₆) (δ ppm): 9.49 (bs, 2H, –C(N*H*–)₂⁺), 6.82 – 6.76 (m, 2H, Ar–*H*), 6.23 (d, 1H, *J* = 7.8 Hz, Ar–*H*), 4.31 (bs, 2H, –N*H*₂), 3.31 (t, 4H, *J* = 5.7 Hz, –C*H*₂–), 1.91 (m, 2H, –C*H*₂–). ¹³C NMR (150 MHz, DMSO-*d*₆) (δ ppm): 158.8, 143.3, 142.7, 120.1, 114.3, 112.8, 112.7, 38.6, 18.3. Analysis calcd for C₁₀H₁₃N₃O (191.23): C, 62.81; H, 6.85; N, 21.97. Found: C, 62.92; H, 6.80; N, 21.91.

2-Amino-5-(*N*-isopropylamidino)phenol hydrochloride (8j). A suspension of imidate salt 6b (2.5 g, 8.9 mmol) in absolute ethanol (25 ml) under nitrogen, *i*-propylamine (2.0 ml, 23.3 mmol) was added and reaction mixture was heated under reflux for 2 h. After cooling overnight, the resulting precipitate was filtered, washed with cold ethanol giving 1.2 g (59%) of pale yellow solid; mp = 145 – 148 °C. UPLC (230 nm): 99.5 area %; MS (ESI) *m/z*: 194.2 (M+H⁺) calcd for free base 193.12. ¹H NMR (600 MHz, DMSO-*d*₆) δ /ppm: 10.95 (bs, 1H, –OH), 9.43 – 9.05 (m, 3H, –C(NH₂)⁺NH–), 7.29 – 7.27 (m, 2H, Ar–H), 7.13 (dd, 1H, *J* = 8.1 Hz, *J* = 1.9 Hz, Ar–H) 5.69 (bs, 2H, –NH₂), 4.09 (m, 1H, *J* = 6.5 Hz, –CH(CH₃)₂). ¹³C NMR (150 MHz, DMSO-*d*₆) (δ ppm): 161.4, 148.1, 130.8,

124.3, 120.1, 119.8, 115.0, 44.9, 21.3. Analysis calcd for C₁₀H₁₅N₃O x HCl (229.71): C, 52.29; H, 7.02; N, 18.29. Found: C, 52.38; H, 6.98; N, 18.14.

General procedure for the preparation of amidino-substituted 2-arylbenzoxazoles (10a-10l)

A mixture of amidino-substituted 2-aminophenol **8a'-8c'**, **8g** and **8h'** (0.5 mmol) and benzoic acid (**7a**), 1-naphthoic acid (**7b**) or 2-naphthoic acid (**7c**) (0.5 mmol) in polyphosphoric acid (10-12 g) was gradually heated to 160 °C until the mixture became homogenous and then at 180 °C for 2 h. The reaction mixture was poured in water (150 mL), cooled and made alkaline with 20 % NaOH. The obtained free base was filtered, washed with water and dried under vacuum over KOH. To a mixture of crude base in ethanol (5 ml) methanesulfonic acid (35 μ L, 0.55 mmol) was added and stirred at room temperature for 1-2 h, diethyl ether (10 ml) was added, and then cooled overnight. The resulting precipitate was filtered and purified by crystallization.

5-Amidinium-2-phenylbenzoxazole methansulfonate (10a) Using zwitterion **8a'** (94 mg), acid **9a** (61 mg) and crystallization from ethanol/diethyl ether gave 93 mg (56 %) of white solid; mp = 268 - 271 °C. UPLC (254 nm): 100 area %; MS (ESI) *m/z*: 238.2 (M+H⁺) calcd for free base 237.09. ¹H NMR (300 MHz, DMSO-*d*₆) (δ ppm): 9.41 (s, 2H, $-C(NH_2)_2^+$), 9.13 (s, 2H, $-C(NH_2)_2^+$), 8.32 (s, 1H, Ar–*H*), 8.26 (d, 2H, *J* = 6.5 Hz, Ar–*H*), 8.08 (d, 1H, *J* = 8.2 Hz, Ar–*H*), 7.89 (d, 1H, *J* = 8.2 Hz, Ar–*H*), 7.71 – 7.67 (m, 3H, Ar–*H*), 2.33 (s, 3H, CH₃SO₃⁻). ¹³C NMR (150 MHz, DMSO-*d*₆) (δ ppm): 165.3, 164.2, 153.2, 141.6, 132.7, 129.5, 127.6, 125.8, 125.7, 125.0, 120.3, 111.7, 39.8. Analysis calcd for C₁₅H₁₅N₃O₄S (333.36): C, 54.04; H, 4.54; N, 12.60. Found: C, 54.12; H, 4.52; N, 12.57.

6-Amidinium-2-phenylbenzoxazole methansulfonate dihydrate (10b) Using hydrochloride **8g** (112 mg), acid **9a** (61 mg) and crystallization from ethanol gave 102 mg (55 %) of beige solid; mp = 276 – 280 °C. UPLC (254 nm): 98.1 area %; MS (ESI) *m/z*: 238.2 (M+H⁺) calcd for free base 237.09. ¹H NMR (300 MHz, DMSO-*d*₆) (δ ppm): 9.38 (bs, 4H, $-C(NH_2)_2^+$), 8.34 – 8.12 (m, 3H, Ar–*H*), 8.00 (bs, 1H, Ar–*H*), 7.86 (bs, 1H, Ar–*H*), 7.66 (bs, 3H, Ar–*H*), 2.33 (s, 3H, CH₃SO₃⁻). ¹³C NMR (150 MHz, DMSO-*d*₆) (δ ppm): 165.1, 164.8, 149.7, 145.5, 132.8, 129.5, 127.7, 125.6, 125.1, 125.1, 120.1, 111.3, 39.8. Analysis calcd for C₁₅H₁₅N₃O₄S x 2 H₂O (369.39): C, 48.77; H, 5.18; N, 11.38. Found: C, 48.65; H, 5.22; N, 11.41.

5-(4,5-Dihydro-1*H***-imidazolium-2-yl)-2-phenylbenzoxazole methansulfonate (10c)** Using zwitterion **8b'** (98 mg), acid **9a** (61 mg) and crystallization from ethanol gave 100 mg (56 %) of white solid; mp = 167 - 170 °C. UPLC (254 nm): 99.7 area %; MS (ESI) *m/z*: 264.2 (M+H⁺) calcd for free base 263.11. ¹H NMR (300 MHz, DMSO-*d*₆) (δ ppm): 10.56 (bs, 2H, $-C(NH-)_2^+$), 8.43 (d, 1H, *J* = 1.4 Hz, Ar–*H*), 8.28 (dd, 2H, *J* = 7.2 Hz, *J* = 1.4 Hz, Ar–*H*), 8.11 (d, 1H, *J* = 8.4 Hz, Ar–*H*), 7.99 (dd, 1H, *J* = 8.4 Hz, *J* = 1.6

Hz, Ar–*H*), 7.73 (t, 1H, J = 7.2 Hz, Ar–*H*), 7.68 (t, 2H, J = 1.4 Hz, Ar–*H*), 7.75 – 7.63 (m, 3H, Ar–*H*), 4.07 (s, 4H, –CH₂CH₂–), 2.32 (s, 3H, CH₃SO₃⁻). ¹³C NMR (150 MHz, DMSO-*d*₆) (δ ppm): 165.6, 164.6, 149.9, 146.3, 133.0, 129.5, 127.9, 125.5, 125.4, 120.6, 118.7, 111.5, 44.5, 39.7. Analysis calcd for C₁₇H₁₇N₃O₄S (359.40): C, 56.81; H, 4.77; N, 11.69. Found: C, 56.88; H, 4.61; N, 11.77.

6-(**4**,**5**-Dihydro-1*H*-imidazolium-2-yl)-2-phenylbenzoxazole methansulfonate (10d) Using zwitterion **8h'** (89 mg), acid **9a** (61 mg) and crystallization from ethanol gave 83 mg (46 %) of beige solid; mp = 223 – 225 °C. UPLC (254 nm): 98.1 area %; MS (ESI) *m/z*: 264.2 (M+H⁺) calcd for free base 263.11. ¹H NMR (600 MHz, DMSO-*d*₆) (δ ppm): 10.58 (bs, 2H, $-C(NH-)_2^+$), 8.42 (d, 1H, *J* = 1.6 Hz, Ar–*H*), 8.28 (dd, 2H, *J* = 7.2 Hz, *J* = 1.4 Hz, Ar–*H*), 8.11 (d, 1H, *J* = 8.4 Hz, Ar–*H*), 7.99 (dd, 1H, *J* = 8.4 Hz, *J* = 1.6 Hz, Ar–*H*), 7.75 – 7.65 (m, 3H, Ar–*H*), 4.07 (s, 4H, $-CH_2CH_2-$), 2.32 (s, 3H, $CH_3SO_3^-$). ¹³C NMR (150 MHz, DMSO-*d*₆) (δ ppm): 165.6, 164.6, 149.9, 146.3, 133.0, 129.5, 127.9, 125.5, 125.4, 120.6, 118.7, 111.5, 44.5, 39.7. Analysis calcd for C₁₇H₁₇N₃O₄S (359.40): C, 56.81; H, 4.77; N, 11.69. Found: C, 56.91; H, 4.75; N, 11.64.

5-Amidinium-2-(naphthalene-1-yl)benzoxazole methansulfonate (10e) Using zwitterion **8a'** (94 mg), acid **9b** (86 mg) and crystallization from ethanol gave 65 mg (34 %) of orange solid; mp = 273 – 277 °C. UPLC (254 nm): 98.5 area %; MS (ESI) *m/z*: 288.2 (M+H⁺) calcd for free base 287.11. ¹H NMR (300 MHz, DMSO-*d*₆) (δ ppm): 9.44 (s, 2H, $-C(NH_2)_2^+$), 9.41 (s, 1H, Ar–*H*), 9.14 (s, 2H, $-C(NH_2)_2^+$), 8.52 (dd, 1H, *J* = 7.4 Hz, *J* = 1.0 Hz, Ar–*H*), 8.45 (d, 1H, *J* = 1.6 Hz, Ar–*H*), 8.30 (d, 1H, *J* = 8.2 Hz, Ar–*H*), 8.14 (d, 2H, *J* = 8.7 Hz, Ar–*H*), 7.94 (dd, 1H, *J* = 8.7 Hz, *J* = 1.6 Hz, Ar–*H*), 7.85 – 7.67 (m, 3H, Ar–*H*), 2.38 (s, 3H, *CH*₃SO₃⁻). ¹³C NMR (150 MHz, DMSO-*d*₆) (δ ppm): 165.3, 163.8, 152.6, 141.7, 133.6, 133.4, 130.0, 129.8, 129.0, 128.3, 126.8, 126.0, 125.4, 125.4, 124.9, 121.7, 120.5, 111.6, 39.8. Analysis calcd for C₁₉H₁₇N₃O₄S (383.42): C, 59.52; H, 4.47; N, 10.96. Found: C, 59.50; H, 4.58; N, 10.90.

6-Amidinium-2-(naphthalene-1-yl)benzoxazole methansulfonate (10f) Using hydrochloride **8g** (112 mg), acid **9b** (86 mg) and crystallization from ethanol gave 73 mg (38 %) of white solid; mp = 265 – 268 °C. UPLC (254 nm): 99.3 area %; MS (ESI) *m/z*: 288.2 (M+H⁺) calcd for free base 287.11. ¹H NMR (300 MHz, DMSO-*d*₆) (δ ppm): 9.45 (bs, 2H, $-C(NH_2)^+$), 9.42 (s, 1H, Ar–*H*), 9.17 (bs, 2H, $-C(NH_2)^+$), 8.53 (d, 1H, *J* = 7.1 Hz, Ar–*H*), 8.38 (s, 1H, Ar–*H*), 8.31 (d, 1H, *J* = 8.4 Hz, Ar–*H*), 8.20 – 8.11 (m, 2H, Ar–*H*), 7.91 (dd, 1H, *J* = 8.4 Hz, *J* = 1.4 Hz, Ar–*H*), 7.86 – 7.67 (m, 3H, Ar–*H*), 2.35 (s, 3H, CH₃SO₃⁻). ¹³C NMR (75 MHz, DMSO-*d*₆) (δ ppm): 165.1, 164.9, 149.0, 145.8, 133.6, 130.2, 129.8, 129.1, 128.4, 126.9, 125.5, 125.4, 125.2, 125.1, 121.7, 120.3, 111.4, 39.8. Analysis calcd for C₁₉H₁₇N₃O₄S (383.42): C, 59.52; H, 4.47; N, 10.96. Found: C, 59.43; H, 4.55; N, 10.99.

6-(4,5-Dihydro-1*H***-imidazolium-2-yl)-2-(naphthalene-1-yl)benzoxazole methansulfonate (10g)** Using zwitterion **8h'** (89 mg), acid **9b** (86 mg) and crystallization from ethanol gave 84 mg (41 %) of white

solid; mp = 248 – 252 °C. UPLC (254 nm): 100 area %; MS (ESI) *m/z*: 314.2 (M+H⁺) calcd for free base 313.12. ¹H NMR (600 MHz, DMSO-*d*₆) (δ ppm): 10.62 (s, 2H, $-C(NH-)_2^+$), 9.43 (d, 1H, *J* = 8.6 Hz, Ar–*H*), 8.55 (dd, 1H, *J* = 7.3 Hz, *J* = 0.9 Hz, Ar–*H*), 8.47 (d, 1H, *J* = 1.7 Hz, Ar–*H*), 8.31 (d, 1H, *J* = 8.2 Hz, Ar–*H*), 8.22 (d, 1H, *J* = 8.4 Hz, Ar–*H*), 8.14 (d, 1H, *J* = 8.2 Hz, Ar–*H*), 8.03 (dd, 1H, *J* = 8.4 Hz, *J* = 1.7 Hz, Ar–*H*), 7.73 – 7.70 (m, 3H, Ar–*H*), 4.09 (s, 4H, $-CH_2CH_2-$), 2.33 (s, 3H, $CH_3SO_3^-$). ¹³C NMR (150 MHz, DMSO-*d*₆) (δ ppm): 165.2, 164.6, 149.1, 146.3, 133.7, 133.6, 130.3, 129.8, 129.1, 128.4, 126.8, 125.4, 121.5, 120.7, 118.9, 111.4, 44.5, 39.8. Analysis calcd for C₂₁H₁₉N₃O₄S (409.46): C, 61.60; H, 4.68; N, 10.26. Found: C, 61.66; H, 4.61; N, 10.24.

6-(3,4,5,6-Tetrahydropyrimidinium-2-yl)-2-(naphthalene-1-yl)benzoxazole methansulfonate (10h) Using zwitterion **8c'** (105 mg), acid **9b** (86 mg) and crystallization from ethanol gave 74 mg (35 %) of beige solid; mp = 277 – 282 °C. UPLC (254 nm): 99.9 area %; MS (ESI) *m/z*: 328.1 (M+H⁺) calcd for free base 327.14. ¹H NMR (300 MHz, DMSO-*d*₆) (δ ppm): 10.05 (bs, 2H, $-C(NH-)_2^+$), 9.44 (d, 1H, *J* = 8.7 Hz, Ar–*H*), 8.53 (dd, 1H, *J* = 7.4 Hz, *J* = 1.0 Hz, Ar–*H*), 8.31 (d, 1H, *J* = 8.2 Hz, Ar–*H*), 8.27 (d, 1H, *J* = 1.3 Hz, Ar–*H*), 8.19 (d, 1H, *J* = 8.3 Hz, Ar–*H*), 8.15 (d, 1H, *J* = 8.2 Hz, Ar–*H*), 7.85 – 7.68 (m, 3H, Ar–*H*), 3.56 (m, 4H, $-CH_2CH_2CH_2-$), 2.30 (s, 3H, $CH_3SO_3^-$), 2.04 (m, 2H, $-CH_2CH_2CH_2-$). ¹³C NMR (150 MHz, DMSO-*d*₆) (δ ppm): 164.6, 159.0, 149.0, 145.2, 133.6, 133.5, 130.1, 129.8, 129.0, 128.4, 126.8, 125.7, 125.4, 124.6, 121.7, 120.5, 110.9, 39.7, 38.9, 17.7. Analysis calcd for C₂₂H₂₁N₃O₄S (423.48): C, 62.40; H, 5.00; N, 9.92. Found: C, 62.45; H, 4.92; N, 9.98.

5-Amidinium-2-(naphthalene-2-yl)benzoxazole methansulfonate dihydrate (10i) Using zwitterion **8a'** (94 mg), acid **9c** (86 mg) and crystallization from water/acetone gave 86 mg (41 %) of beige solid; mp = 250 - 254 °C. UPLC (254 nm): 96.5 area %; MS (ESI) *m/z*: 288.2 (M+H⁺) calcd for free base 287.11. ¹H NMR (300 MHz, DMSO-*d*₆) (δ ppm): 9.42 - 9.20 (m, 4H, $-C(NH_2)_2^+$), 8.88 (s, 1H, Ar–*H*), 8.33 - 8.05 (m, 6H, Ar–*H*), 7.91 (bs, 1H, Ar–*H*), 7.68 (bs, 2H, Ar–*H*), 2.36 (s, 3H, CH₃SO₃⁻). ¹³C NMR (75 MHz, DMSO-*d*₆) (δ ppm): 165.3, 164.4, 153.3, 141.8, 134.6, 132.5, 129.2, 129.1, 128.6, 128.5, 127.9, 127.4, 125.8, 125.1, 123.6, 123.0, 120.3, 111.6. Analysis calcd for C₁₉H₁₇N₃O₄S x 2H₂O (419.45): C, 54.41; H, 5.05; N, 10.02. Found: C, 54.36; H, 5.12; N, 10.01.

6-Amidinium-2-(naphthalene-2-yl)benzoxazole methansulfonate dihydrate (**10j**) Using hydrochloride **8g** (112 mg), acid **9c** (86 mg) and crystallization from water/acetone gave 96 mg (46 %) of pale yellow solid; mp = 276 - 281 °C. UPLC (254 nm): 96.5 area %; MS (ESI) *m/z*: 288.2 (M+H⁺) calcd for free base 287.11. ¹H NMR (300 MHz, DMSO-*d*₆) (δ ppm): 9.43 - 9.22 (m, 4H, $-C(NH_2)_2^+$), 8.91 (s, 1H, Ar–*H*), 8.33 - 8.16 (m, 4H, Ar–*H*), 8.07 (bs, 2H, Ar–*H*), 7.89 (d, 1H, *J* = 7.1 Hz, Ar–*H*), 7.69 (bs, 2H, Ar–*H*), 2.37 (s, 3H, *CH*₃SO₃⁻). ¹³C NMR (75 MHz, DMSO-*d*₆) (δ ppm): 165.4, 165.1, 149.8, 145.8, 134.7, 132.5, 129.3, 129.2, 128.7, 127.9, 127.4, 125.2, 125.0, 123.6, 122.9, 120.1, 111.4. Analysis calcd for C₁₉H₁₇N₃O₄S x 2H₂O (419.45): C, 54.41; H, 5.05; N, 10.02. Found: C, 54.32; H, 5.18; N, 9.97.

6-(4,5-Dihydro-1*H***-imidazolium-2-yl)-2-(naphthalene-2-yl)benzoxazole methansulfonate (10k)** Using zwitterion **8h'** (89 mg), acid **9c** (86 mg) and crystallization from water/acetone gave 104 mg (51 %) of pale yellow solid; mp = 272 – 276 °C. UPLC (254 nm): 97.3 area %; MS (ESI) *m/z*: 314.2 (M+H⁺) calcd for free base 313.12. ¹H NMR (600 MHz, DMSO-*d*₆) (δ ppm): 10.62 (s, 2H, $-C(NH-)_2^+$), 8.92 (s, 1H, Ar–*H*), 8.41 (d, 1H, *J* = 1.3 Hz, Ar–*H*), 8.29 (dd, 1H, *J* = 8.6 Hz, *J* = 1.6 Hz, Ar–*H*), 8.23 (d, 1 H, *J* = 8.0 Hz, Ar–*H*), 8.18 (d, 1H, *J* = 8.6 Hz, Ar–*H*), 8.12 (d, 1H, *J* = 8.4 Hz, Ar–*H*), 8.07 (d, 1H, *J* = 8.0 Hz, Ar–*H*), 8.00 (dd, 1H, *J* = 8.4 Hz, *J* = 1.6 Hz, Ar–*H*), 7.73 – 7.67 (m, 2H, Ar–*H*), 4.08 (s, 4H, $-CH_2CH_2-$), 2.36 (s, 3H, $CH_3SO_3^-$). ¹³C NMR (150 MHz, DMSO-*d*₆) (δ ppm): 165.7, 164.5, 149.9, 146.4, 134.7, 132.4, 129.2, 128.8, 128.7, 127.9, 127.4, 125.5, 123.6, 122.7, 120.5, 118.7, 111.4, 44.5, 39.7. Analysis calcd for C₂₁H₁₉N₃O₄S (409.46): C, 61.60; H, 4.68; N, 10.26. Found: C, 61.56; H, 4.76; N, 10.28.

6-(3,4,5,6-Tetrahydropyrimidinium-2-yl)-2-(naphthalene-2-yl)benzoxazole methansulfonate (10l) Using zwitterion **8c'** (105 mg), acid **9c** (86 mg) and crystallization from water/acetone gave 123 mg (58 %) of pale yellow solid; mp = 246 - 251 °C. UPLC (254 nm): 100 area %; MS (ESI) *m/z*: 328.1 (M+H⁺) calcd for free base 327.14. ¹H NMR (300 MHz, DMSO-*d*₆) (δ ppm): 10.04 (bs, 2H, $-C(NH-)_2^+$), 8.92 (s, 1H, Ar–*H*), 8.31 (dd, 1H, *J* = 8.6 Hz, *J* = 1.6 Hz, Ar–*H*), 8.24 (d, 1H, *J* = 8.6 Hz, Ar–*H*), 8.19 (d, 1H, *J* = 8.8 Hz, Ar–*H*), 8.11 – 8.06 (m, 2H, Ar–*H*), 7.79 (dd, 1H, *J* = 8.4 Hz, *J* = 1.6 Hz, Ar–*H*), 7.75 – 7.65 (m, 2H, Ar–*H*), 3.56 (bs, 4H, $-CH_2CH_2CH_2-$), 2.30 (s, 3H, $CH_3SO_3^-$), 2.07 – 2.00 (m, 2H, $-CH_2CH_2CH_2-$). ¹³C NMR (150 MHz, DMSO-*d*₆) (δ ppm): 165.2, 158.9, 149.8, 145.3, 134.6, 132.5, 129.2, 129.1, 128.6, 127.9, 127.4, 125.5, 124.7, 123.6, 123.0, 120.2, 110.9, 39.7, 38.9, 17.7. Analysis calcd for C₂₂H₂₁N₃O₄S (423.48): C, 62.40; H, 5.00; N, 9.92. Found: C, 62.48; H, 5.01; N, 9.89.

Figure S1. Molecular structure of **3c**, with atom numbering scheme. Displacement ellipsoids for nonhydrogen atoms are drawn at the 40 % probability level.

Compound	C7 N2	C7 N3	C1–O1 (4-Am) ^a /	C2–N1 (4-Am) ^a /
	C7-112	07-113	C2–O1 $(5-Am)^{b}$	C1–N1 $(5-Am)^{b}$
8a I ^a	1.314(3)	1.309(2)	1.335(2)	1.407(2)
	1.317(3)	1.320(3)	1.328(2)	1.407(2)
8a II ^a	1.323(3)	1.312(3)	1.338(2)	1.409(2)
	1 323(3)	1 318(3)	1 339(2)	1 411(2)
8a' ^a	1.325(6)	1.315(5)	1.325(4)	1.417(5)
8b ^a	1.322(3)	1.318(3)	1.339(2)	1.409(2)
	1 319(4)	1 325(4)	1 323(4)	1 407(4)
8b' ^{a,c}	1.323(5)	1.324(5)	1.319(5)	1.401(5)
8c' ^a	1.322(3)	1.321(3)	1.305(3)	1.407(3)
8d ^a	1.3160(18)	1.3211(18)	1.3551(17)	1.4107(18)
8e ^a	1.313(3)	1.316(3)	1.347(2)	1.461(3)
8 g ^b	1.314(3)	1.304(3)	1.361(3)	1.459(3)
8h ^{b,c}	1.319(2)	1.327(2)	1.371(2)	1.364(2)

Table S1 Selected bond lengths for 4- and 5-amidino-substituted aminophenols

^a 4-amidino-substituted 2-aminophenols; ^b 5-amidino-substituted 2-aminophenols; ^c bond lengths are given only for major disorder components

Data for compound **8a** were collected at 295 K and due to disorder present in structure, new data collection was done at 223 K. Two data collections revealed two temperature-dependent polymorphic forms of this compound, monoclinic designated as **8a I** (295 K) and triclinic designated as **8a II** (223 K). In **8a I** (Figure 1a), the negatively charged oxygen atom O1 and a symmetry related atom of a neighbouring molecule share the same proton located on the inversion centre, thus forming a cationic dimer. However, in the structure **8a II** the bridging proton is located on a general position, with the cationic dimers comprising two symmetry independent halves (Figure S2). Furthermore, the asymmetric unit of the salt solvate form **I** contains one cationic dimer, one chloride anion and two water molecules, while the asymmetric unit of form **II** contains twice the number of respective species. Accordingly, while the form **8a I** was refined in a monoclinic space group $P2_1/c$, the structure **8a II** was refined in triclinic space group $P\overline{1}$, with a unit cell doubled along the *a* axis relative to that of **8a I**.

Figure S2. Molecular structure of **8a II**, showing (a) two cationic dimers and two chlorides in the asymmetric unit, and (b) atom numbering scheme of one cationic dimer. Displacement ellipsoids for non-hydrogen atoms are drawn at the 40 % probability level. Water molecules are omitted for clarity.

In **8b**, again, the dimeric cations are formed by two zwitterionic molecules bridged by a proton, with **8b** crystallizing as a hemihydrochloride monohydrate (Figure S3). However, the proton in the cationic dimer of **8b** lies on a crystallographic two-fold axis.

Figure S3. Molecular structure of **8b**, with atom numbering scheme. Displacement ellipsoids for nonhydrogen atoms are drawn at the 50 % probability level. Only one cationic dimer and chloride anion are shown. Water molecules are omitted for clarity.

Structures **8d** and **8h** contain one ethanol molecule or two water molecules, respectively, in the asymmetric unit. The C1–N1 bond in the structure of 5-amidino-substituted derivative **8h** (Figure S4) is significantly shorter (*ca*. 0.05 Å) than the C–NH₂ bond in the previously described 4-amidino-substituted structures.

Figure S4. Molecular structure of **8h**, with atom numbering scheme. Displacement ellipsoids for nonhydrogen atoms are drawn at the 40 % probability level. Only major components of disordered atoms are presented. Solvent molecules are omitted for clarity.

Compound **8c'** crystallized as monohydrate, **8a'** as dihydrate, while compound **8b'** crystallized with three independent molecules and *ca*. 14.2 water molecules in the asymmetric unit (Figure S5).

Figure S5. Molecular structures of (a) 8b' and (b) 8c', with atom numbering schemes. Displacement ellipsoids for non-hydrogen atoms are drawn at the 40 % probability level. Only the major disorder component of one of the symmetry-independent molecules in 8b' is presented. Water molecules are omitted for clarity.

Isolation of 5-amidino-substituted derivative **8g** from ethanol solution with an excess of hydrogen chloride yielded a dihydrochloride. X-ray crystallographic study confirmed that this structure consists of one dication and two chlorides (Figure S6a). Besides the amidinium moiety, the amine N1 atom is also protonated, while the charge is balanced by two chloride anions. The C2–O1 bond distance in this salt structure is typical for a phenol C–O bond and corresponds to that observed in **8d**. On the other hand, the C1–N1 bond is 0.1 Å longer than the equivalent one in the 5-substituted amidino derivative **8h**, as expected for a C–NH₃⁺ bond. Finally, another example of a dication with two anions is the structure of 4-amidino-substituted derivative **8e** in which amidinium moiety is a part of an 1,3-diazepinium ring (Figure S6b). Its asymmetric unit contains one dication, two methanesulfonate anions and one water molecule. The C2–N1 and phenol C–O bond lengths agree with the corresponding ones in **8g**. The two C–N bonds of the amidinium moieties are of equal length in both the **8e** and the **8g**, as observed in all other structures.

Figure S6. Molecular structures of (a) 8g and (b) 8e with atom numbering schemes. Displacement ellipsoids for non-hydrogen atoms are drawn at the 40 and 30 % probability level for 8g and 8e, respectively. Water molecule in 8e is omitted for clarity.

Experimental X-Ray details

Suitable single crystals for X-ray analysis were obtained by slow evaporation from water (8a', 8b' and 8h), methanol (8a I, 8a II and 8c'), ethanol (8d, 8g and 8e) and ethyl acetate (3c) solutions, and from ethanol/water mixture (8b). Data for 3c, 8a', 8d and 8h were collected at 170 K on a Bruker-Nonius Kappa Apex II diffractometer using graphite- monochromatized MoK_a radiation ($\lambda = 0.71073$ Å). COLLECT^{S4} software was used for the data collection and DENZO-SMN^{S5} for the data processing. The intensities were corrected for absorption using the multi-scan absorption correction method.^{S6} Data for **8a** I, 8c', 8g and 8e were collected at 295 K on Oxford Diffraction Xcalibur2 diffractometer with a Sapphire 3 CCD detector using graphite-monochromatized MoK_a radiation ($\lambda = 0.71073$ Å). The CrysAlisPro^{S7} program was used for the data collection and processing. The intensities were corrected for absorption using the multi-scan absorption correction method.^{S7} Data for all other structures were collected on an Agilent SuperNova Dual diffractometer with Atlas detector (at 223 K for 8a II, and at 123 K for 8b and **8b'**) using mirror-monochromatized CuK_a radiation ($\lambda = 1.54184$ Å). The intensities were corrected for absorption using the multi-scan absorption correction method for 8b', while analytical absorption correction method was applied for **8a II** and **8b**.^{S7} The structures were solved using direct methods with SIR-97,⁵⁸ SIR-2004,⁵⁹ SIR-2014^{S10} and SHELXS-97,⁵¹¹ or by dual-space algorithm using SHELXT,⁵¹² and refined by full-matrix least-squares calculations based on F^2 using SHELXL^{S13} program integrated in the $Olex2^{S14}$ or $WinGX^{S15}$ program package.

Hydrogen atoms attached to the nitrogen atoms N1-N3 and water oxygen atoms in **8a I** and **8c'** were found in the difference Fourier map, and subsequently refined using riding or rigid model, or a rotating group. The exception is hydrogen H1 atom in **8a I** (attached to O1 atom), which is fixed by crystallographic symmetry to lie on a special position. Hydrogen atoms attached to the nitrogen atoms N1-N3 and oxygen atom O1 in **8e** and **8g**, as well as to water oxygen atoms in **8e** were also found in the difference Fourier map, and subsequently refined using riding or rigid model, or a rotating group.

In **3c**, **8a II**, **8a'**, **8b**, **8b'** and **8d** hydrogen atoms bound to oxygen or nitrogen atoms were found in the difference Fourier map and subsequently refined using riding or rigid model, or a rotating group. In zwitterionic structures **8a II** and **8b**, hydrogen atoms half-way between the pairs of phenoxide oxygen atoms were found in the difference Fourier map. In **8b**, both $O^-\cdots H^+\cdots O^-$ hydrogen atoms were located on the special positions, an inversion centre and a two-fold axis, respectively, and could therefore be refined freely. On the other hand, the $O^-\cdots H^+\cdots O^-$ hydrogen atoms in **8a II** were restrained to lie half-way between the phenoxide oxygen atoms. In **8b'**, hydrogen atoms belonging to the minor disorder components of the water molecules could not be located and were omitted. All other hydrogen atoms were included in calculated positions, with *SHELXL*^{S13} defaults. Chloride ion in **8a I**, was disordered over two sites and have been refined with fixed occupancy ratio of 0.42 and 0.16 for Cl1 and Cl2, respectively (Cl2 atom lies on special, while Cl1 on general position), while water oxygen atom has been refined with fixed occupancy ratio of 55/45 %.

The structure of 8a II was found to be twinned by pseudomerohedry, with a two-fold rotation around the reciprocal cell axis c^* as the twin operator. This was accounted for in the refinement, with the twin operator defined as $[-1 \ 0 \ 0 \ -1 \ 0 \ -1 \ 0 \ 1]$ and the batch scale factor refining to 0.2186(11). Extensive disorder was encountered in the structure of 8b', with all three molecules of 8b' and 6 out of 14 water molecules in the asymmetric unit fully disordered, resulting in a non-stoichiometric hydrate. Disorder of the molecules 8b' was modelled with all three symmetrically independent molecules split over two components each, with occupancies refining to 0.902(5)/0.098(5) for the molecule 8b'-A, and 0.825(5)/0.175(5) for molecules 8b'-B and 8b'-C, whose disorders are correlated. Similarly, 5 out of 14 water molecules were modelled as split over two components each, while one was modelled as split over three components - one major and a hydrogen-bonded dimer of water molecules as a minor component, with the relative occupancies freely refined in all cases. Geometries of the molecules 8b'-A/B/C, namely the 1,2 and 1,3 interatomic distances, were restrained to be the same. Amidino and aminophenol rings were restrained to be flat, respectively. Rigid bond and proximity restraints were applied to the anisotropic displacement parameters (ADPs) in 8b'-A/B/C. Similarly, proximity restraints were applied to the ADPs of all the water molecules, while in two cases, the major and minor components of the disordered water molecules were constrained to have identical ADPs. The orientations of some hydrogen bond donor moieties and water molecules were adjusted using soft restraints to ensure a chemically plausible hydrogen bond network.

Disorder of the aminophenol ring was observed in the structure of **8h**, with the phenolic hydroxy group scrambled over the positions 1 and 3, i.e., over the two positions *ortho* to the amino and *meta* to the amidino group. A minor component of the hydroxy group was introduced at position 3, and the geometries (i.e. 1,2 and 1,3 distances) of the two possible orientations of the aminophenol ring restrained to be the same. Rigid bond restraints were applied to the aminophenol ring and both disorder components, and the ADPs of the oxygen atoms belonging to the two disorder components were constrained to be the same. The occupancies of the two disorder components refined to 0.948(3)/0.052(3). Soft restraints were used to adjust the orientations of the hydrogen bond donor moieties, to ensure a chemically plausible hydrogen bond network.

In the structure of **8d**, an ethanol solvate, the ethanol molecule was found to be disordered over two positions. Geometries, i.e. 1,2 and 1,3 distances of the two components were restrained to be the same, rigid bond and proximity restraints were applied to their ADPs, and their relative occupancies refined to 0.744(5)/0.256(5).

PLATON^{S16} and Mercury^{S17} programs were used for structure analysis and drawing preparation. Details of crystal data, data collection, and refinement parameters are given in Table S2. CCDC 2060884-2060894 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures.

	3c	8a I	8a II	8b	8h	8d
CCDC Number	2060884	2060885	2060886	2060888	2060894	2060891
Formula	$C_7H_6N_2O$	$C_{14}H_{23}ClN_6O_4$	$C_{14}H_{23}ClN_6O_4$	$C_{18}H_{31}ClN_6O_6$	$C_9H_{16}ClN_3O_3$	$C_{12}H_{22}ClN_3O_2$
Formula weight	134.14	374.83	374.83	462.94	249.70	275.77
<i>T</i> / K	170	295	223	123	170	170
Crystal system	monoclinic	monoclinic	triclinic	monoclinic	triclinic	monoclinic
Space group	$P2_{1}/c$	$P2_{1}/c$	$P\overline{1}$	<i>I</i> 2/ <i>a</i>	$P\overline{1}$	$P2_{1}/n$
Unit cell dimensions						
<i>a</i> / Å	3.79610(10)	4.3443(4)	8.5903(2)	20.1831(3)	6.7656(2)	8.96920(10)
b / Å	7.4931(3)	14.5191(9)	14.7776(4)	7.18245(12)	9.4132(2)	18.2082(2)
<i>c</i> / Å	22.9246(9)	15.9472(15)	15.1797(4)	30.4640(5)	10.2539(2)	9.20580(10)
α / °	90	90	87.837(2)	90	108.3092(11)	90
β/°	99.5201(13)	113.446(11)	73.679(2)	102.6637(17)	96.7180(11)	106.4436(7)
γ / \circ	90	90	82.100(2)	90	102.1891(10)	90
$V/ \text{\AA}^3$	643.10(4)	922.83(15)	1831.77(8)	4308.76(12)	594.05(2)	1441.93(3)
Ζ	4	2	4	8	2	4
$D_{\text{calc.}}$ / g cm ⁻³	1.385	1.349	1.359	1.427	1.396	1.270
Absorption coef. μ / mm^{-1}	0.097	0.239	2.133	1.994	0.319	0.265
θ range for data collection/ °	2.864 - 27.333	4.409 - 25.239	3.019 - 76.510	4.813 - 74.334	2.572 - 27.377	2.564 - 28.037
Collected reflections No.	1431	3508	14914	7054	11385	27245
Independent refl. No. / $R_{\text{Int.}}$	1431 / 0.0	1661 / 0.0259	7457 / 0.0252	4185 / 0.0170	2641 / 0.0414	3461 / 0.0579
Reflections No. $I \ge 2\sigma(I)$	1196	1235	7125	3694	2227	2973
Data ^a /Restraints/Parameters	1431 / 0 / 96	1661 / 0 / 149	7457 / 6 / 484	4185 / 0 / 301	2641 / 73 / 160	3461 / 69 / 191
Goodness-of-fit on F^2 , S	1.121	1.028	1.042	1.050	1.043	1.025
$R[I \ge 2\sigma(I)] / R$ [all data]	0.0574 / 0.0688	0.0440 / 0.0635	0.0445 / 0.0460	0.0620 / 0.0664	0.0404 / 0.0497	0.0400 / 0.0485
$wR [I \ge 2\sigma(I)] / wR [all data]$	0.1432 / 0.1530	0.0975 / 0.1095	0.1209 / 0.1231	0.1830 / 0.1899	0.0979 / 0.1038	0.0936 / 0.0977
Max./min. el. density / e $Å^{-3}$	0.220 / -0.203	0.172 / -0.177	0.683 / -0.488	1.240 / -0.681	0.243 / -0.229	0.260 / -0.191

Table S2 X-ray crystallographic data for structures described in this paper.

^{*a*} Equal to independent reflections.

Table S2 Continued

	8a'	8b'	8c'	8g	8e
CCDC Number	2060887	2060889	2060890	2060893	2060892
Formula	$C_7H_{13}N_3O_3$	$C_9H_{19.669}N_3O_{5.73}$	$C_{10}H_{15}N_3O_2$	$C_7H_{11}Cl_2N_3O$	$C_{13}H_{25}N_{3}O_{8}S_{2} \\$
Formula weight	187.20	261.70	209.25	224.09	415.48
<i>T</i> / K	170	123	295	295	295
Crystal system	monoclinic	monoclinic	orthorhombic	monoclinic	triclinic
Space group	$P2_1$	$P2_{1}/c$	$P2_{1}2_{1}2_{1}$	$P2_{1}/c$	$P\overline{1}$
Unit cell dimensions					
<i>a</i> / Å	10.1400(8)	14.7267(7)	6.5770(2)	4.4199(3)	9.3183(7)
b / Å	4.0229(4)	36.3350(18)	10.7154(3)	11.7058(6)	9.8382(7)
<i>c</i> / Å	10.8744(12)	7.3619(4)	15.0191(4)	20.2357(15)	11.2711(8)
α / °	90	90	90	90	78.160(6)
eta / °	98.890(7)	90.269(4)	90	93.014(6)	78.258(6)
$\gamma/^{\circ}$	90	90	90	90	73.277(6)
$V/\text{\AA}^3$	438.26(7)	3939.3(3)	1058.47(5)	1045.52(12)	956.96(13)
Ζ	2	12	4	4	2
$D_{\text{calc.}}$ / g cm ⁻³	1.419	1.324	1.313	1.424	1.442
Absorption coef. μ / mm^{-1}	0.112	0.940	0.094	0.587	0.324
θ range for data collection / °	1.895 - 28.025	3.864 - 74.349	4.494 - 25.224	4.394 - 25.250	4.397 - 25.249
Collected reflections No.	2959	23933	9382	1892	6996
Independent refl. No. / $R_{\text{Int.}}$	1918 / 0.0551	7808 / 0.0495	1899 / 0.0248	1892 / 0.0	3446 / 0.0191
Reflections No. $I \ge 2\sigma(I)$	1340	5659	1812	1596	2964
Data ^a /Restraints/Parameters	1918 / 1 / 127	7808 / 2744 /	1899 / 0 / 146	1892 / 0 / 129	3446 / 0 / 250
Goodness-of-fit on F^2 , S	1.058	0.956	1.052	1.066	1.040
$R[I \ge 2\sigma(I)] / R$ [all data]	0.0630 / 0.0998	0.0889 / 0.1146	0.0417 / 0.0435	0.0376 / 0.0472	0.0425 / 0.0505
$wR [I \ge 2\sigma(I)] / wR [all data]$	0.1466 / 0.1688	0.2339 / 0.2503	0.1072 / 0.1090	0.0908 / 0.0967	0.1101 / 0.1160
Max./min. el. density / e $Å^{-3}$	0.305 / -0.287	0.545 / -0.302	0.415 / -0.219	0.281 / -0.193	0.354 / -0.320

^{*a*} Equal to independent reflections.

III. Computational Analysis

Computational Details

All molecular geometries were optimized using a very efficient M06–2X/6–31+G(d) model, which was designed to provide highly accurate thermodynamic and kinetic parameters for various organic systems. To account for the solvent effects, during geometry optimization, we included the implicit SMD solvation model corresponding to pure solvents. Thermal corrections were extracted from the corresponding frequency calculations, so that all of the presented results correspond to differences in the Gibbs free energies at room temperature and normal pressure. The choice of such computational setup was prompted by its success in reproducing various features of different organic, ^{S18,S19} organometallic^{S20,S21} and enzymatic systems, ^{S22,S23} being particularly accurate for relative trends among similar reactants, which is the focus here. All transition state structures were located using the scan procedure, employing both 1D and 2D scans, the latter specifically utilized to exclude the possibility for concerted mechanisms. Apart from the visualization of the obtained negative frequencies, the validity of all transition state structures was validated by performing IRC calculations in both directions and identifying the matching reactant and product structures connected by the inspected transition state. All of the calculations were performed using the Gaussian 16 software.

For the molecular dynamics simulations, investigated dications were parameterized through RESP charges at the HF/6–31G(d) level to be consistent with the employed GAFF force field. These were solvated in a 40 Å rectangular box, which allowed for 950 molecules of MeOH and 490 molecules of 2-methoxymethanol, calculated to match experimental solvent densities. All systems were neutralized by two Cl⁻ anions, whose position was maintained fixed at the opposite edges of the simulation boxes. These were submitted to geometry optimization in the AMBER 16 program^{S25} by employing periodic boundary conditions in all directions. Optimized systems were gradually heated from 0 to 300 K and equilibrated during 30 ps using NVT conditions, followed by productive and unconstrained MD simulations of 300 ns by employing a time step of 2 fs at a constant pressure (1 atm) and temperature (300 K), the latter held constant using a Langevin thermostat with a collision frequency of 1 ps⁻¹. The nonbonded interactions were truncated at 11.0 Å, all in line with our earlier reports on similar systems.^{S26}

In 2-methoxyethanol

Figure S7. Geometries of reactive complexes for dications $3a^{++}-3c^{++}$ in methanol (top) and 2methoxyethanol (bottom) preceding the nucleophilic attack of the solvent –OH group onto the Catom of the substrate cyano moiety.

Figure S8. Radial distribution function (RDF) of distances between the hydroxyl O-atom in methanol (in black) and 2-methoxyethanol (in red) solutions, and the reactive cyano C-atom in dicationic $3a^{++}$ (top) and $3c^{++}$ (bottom), as obtained from the MD simulations in explicit solvents.

System:	N≡C-√ X H−O CH ₃
Name of the output file:	01.log
Description:	SP1 in Figure 5 ($X = NH_2$) in methanol
Total Gibbs Free Energy, M06–2X/6–31+G(d) (in a.u.):	-570,46660
Number of imaginary frequencies:	0

Center	Ato	mic /	Atomic	Coordinate	es (Angstroms)
Number	N	umber	Туре	X Y	Z
1	6	0	-0.194693	-1.380656	-1.009028
2	1	0	-0.784244	-1.955853	-1.715450
3	6	0	1.121564	-1.032869	-1.300601
4	6	0	1.865549	-0.284783	-0.395158
5	6	0	1.318546	0.131934	0.838199
6	6	0	0.002638	-0.218017	1.126012
7	6	0	-0.745440	-0.967603	0.206236
8	1	0	1.579792	-1.337429	-2.238300
9	8	0	3.153266	0.094258	-0.621314
10	7	0	2.079879	0.935819	1.681421
11	1	0	-0.445552	0.102379	2.062778
12	6	0	-2.113514	-1.280753	0.505041
13	7	0	-3.220770	-1.532873	0.739700
14	1	0	1.773001	0.925673	2.649320
15	1	0	3.081442	0.782356	1.610016
16	1	0	3.468191	-0.249437	-1.475105
17	8	0	-2.196881	1.988062	-0.027063
18	1	0	-3.121230	2.210560	-0.218413
19	6	0	-1.483229	1.922057	-1.257949
20	1	0	-0.444656	1.682278	-1.015974
21	1	0	-1.887606	1.140920	-1.912341
22	1	0	-1.512503	2.883509	-1.783877

System:	NEC H O CH ₃
Name of the output file:	02.log
Description:	TS1 in Figure 5 ($X = NH_2$) in methanol
Total Gibbs Free Energy, M06–2X/6–31+G(d) (in a.u.):	-570,37903
Number of imaginary frequencies:	$1 (1871 i \text{ cm}^{-1})$

Center	Atomi	c	Atomic	Coordinate	s (Angstroms)
Number	Num	ber	Iype	X Y	Z
1	6	0	-0.183164	-1.676000	0.170606
2	1	0	0.324341	-2.624560	0.316877
3	6	0	-1.564764	-1.584835	0.319194
4	6	0	-2.209155	-0.366792	0.135757
5	6	0	-1.488298	0.792210	-0.213869
6	6	0	-0.105546	0.691800	-0.356769
7	6	0	0.546377	-0.532763	-0.165714
8	1	0	-2.152461	-2.460313	0.584639
9	8	0	-3.557148	-0.206737	0.275203
10	7	0	-2.163312	2.006447	-0.333459
11	1	0	0.460266	1.578095	-0.632506
12	6	0	1.991377	-0.669297	-0.349893
13	7	0	2.872980	-1.492764	-0.567516
14	1	0	-1.673636	2.692724	-0.899682
15	1	0	-3.131129	1.914967	-0.628085
16	1	0	-3.977005	-1.053472	0.504611
17	8	0	2.789151	0.718669	-0.266318
18	1	0	3.515721	-0.215842	-0.449807
19	6	0	2.868658	1.341579	1.029767
20	1	0	1.929979	1.860521	1.232288
21	1	0	3.057315	0.582486	1.796286
22	1	0	3.689990	2.058751	0.996647

System:	H O C C H ₃ OH X
Name of the output file:	03.log
Description:	SP2 in Figure 5 ($X = NH_2$) in methanol
Total Gibbs Free Energy, M06–2X/6–31+G(d) (in a.u.):	-570,46647
Number of imaginary frequencies:	0

Center	Atom	ic A	tomic	Coordinate	s (Angstroms)
Number	Nun	iber	Iype	X Y	Z
1	6	0	0.011015	-1.570379	0.284773
2	1	0	0.591784	-2.460894	0.504638
3	6	0	-1.374275	-1.575481	0.447295
4	6	0	-2.113641	-0.433740	0.165427
5	6	0	-1.488135	0.742276	-0.292895
6	6	0	-0.102117	0.737600	-0.438433
7	6	0	0.648661	-0.410005	-0.153812
8	1	0	-1.890459	-2.466587	0.796885
9	8	0	-3.472095	-0.369075	0.301500
10	7	0	-2.259214	1.883165	-0.517910
11	1	0	0.388358	1.637159	-0.804530
12	6	0	2.117216	-0.410994	-0.372239
13	7	0	2.705970	-1.389127	-0.933670
14	1	0	-1.822600	2.553640	-1.143364
15	1	0	-3.213888	1.687250	-0.804767
16	1	0	-3.822721	-1.226426	0.597284
17	8	0	2.819304	0.701291	-0.009209
18	1	0	3.714603	-1.210836	-0.964542
19	6	0	2.461320	1.374434	1.208977
20	1	0	1.648325	2.084976	1.046980
21	1	0	2.182502	0.652131	1.980923
22	1	0	3.358868	1.911328	1.518661

System:	N≣C H−O
	CH ₃
Name of the output file:	04.log
Description:	SP1 in Figure 5 ($X = NH_3^+$) in methanol
Total Gibbs Free Energy, M06–2X/6–31+G(d) (in a.u.):	-570,89081
Number of imaginary frequencies:	0

Center	Atomic	Α	tomic	Coordinate	s (Angstroms)
Number	Numb	er	Туре	X Y	Z
1	6	0	-0 159675	-1 649370	-0 592625
2	1	0	-0 739366	-2 426039	-1.081866
3	6	Ő	1 1 5 2 7 1 6	-1 416535	-0 979191
4	6	Ő	1 890128	-0.413930	-0.347606
5	6	Ő	1.287269	0.345457	0.660976
6	6	Õ	-0.014383	0.128692	1.060419
7	6	Õ	-0.742513	-0.883646	0.425079
8	1	0	1.616398	-2.004682	-1.765805
9	8	0	3.170027	-0.111558	-0.635071
10	7	0	2.097684	1.389354	1.283127
11	1	0	-0.460775	0.734376	1.844028
12	6	0	-2.113859	-1.099096	0.788845
13	7	0	-3.223606	-1.273213	1.071890
14	1	0	1.578553	1.871744	2.029183
15	1	0	2.957105	1.004622	1.703434
16	1	0	3.530192	-0.709206	-1.314823
17	8	0	-2.164874	1.933242	-0.404190
18	1	0	-3.120134	2.101007	-0.420314
19	6	0	-1.784698	1.367906	-1.654637
20	1	0	-0.703262	1.208652	-1.623148
21	1	0	-2.282037	0.405784	-1.827286
22	1	0	-2.018614	2.047066	-2.482501
23	1	0	2.392262	2.103350	0.600509

System:	
Name of the output file:	05.log
Description:	TS1 in Figure 5 ($X = NH_3^+$) in methanol
Total Gibbs Free Energy, M06–2X/6–31+G(d) (in a.u.):	-570,80566
Number of imaginary frequencies:	$1 (1843 i \text{ cm}^{-1})$

Center	Atom	ic 4	Atomic	Coordinates (Angstrom		
Number	Nun	nber	Туре	X Y	Z	
			0.122126	1 (9(0)(5	0.172015	
1	0	0	-0.133130	-1.080905	0.1/3815	
2	I	0	0.396046	-2.624896	0.314/15	
3	6	0	-1.512025	-1.645007	0.325082	
4	6	0	-2.189527	-0.438797	0.142244	
5	6	0	-1.459032	0.702878	-0.190677	
6	6	0	-0.085188	0.676738	-0.340278	
7	6	0	0.588798	-0.533107	-0.156489	
8	1	0	-2.073942	-2.537619	0.585052	
9	8	0	-3.524918	-0.285520	0.264742	
10	7	0	-2.210442	1.942219	-0.382559	
11	1	0	0.448932	1.583501	-0.612027	
12	6	0	2.037292	-0.646612	-0.344987	
13	7	0	2.911020	-1.476354	-0.574693	
14	1	0	-1.584870	2.732773	-0.589681	
15	1	0	-2.879276	1.864952	-1.162955	
16	1	0	-3.951718	-1.126418	0.508262	
17	8	0	2.806124	0.729824	-0.275410	
18	1	0	3.554060	-0.178410	-0.474447	
19	6	0	2.903127	1.358472	1.020887	
20	1	0	1,956991	1.854311	1.244535	
21	1	Ő	3.131068	0.604213	1.780493	
22	1	Ő	3.704948	2.094831	0.960311	
23	1	0	-2.757793	2.191675	0.454269	

System:	H N C C H ₃ C H
Name of the output file:	06.log
Description:	SP2 in Figure 5 ($X = NH_3^+$) in methanol
Total Gibbs Free Energy, M06–2X/6–31+G(d) (in a.u.):	-570,89454
Number of imaginary frequencies:	0

Center	Atom	nic A	tomic	Coordinates (Angstrom		
Number	Nui	nber	Туре	X Y	Z	
1	6	0	0.013691	-1.604338	0.239257	
2	1	0	0.599548	-2.500406	0.420380	
3	6	0	-1.366444	-1.644068	0.395719	
4	6	0	-2.117856	-0.492656	0.161002	
5	6	0	-1.458887	0.676490	-0.222171	
6	6	0	-0.086267	0.730179	-0.370267	
7	6	0	0.664822	-0.426116	-0.141342	
8	1	0	-1.871521	-2.557261	0.697905	
9	8	0	-3.462193	-0.413386	0.275103	
10	7	0	-2.288084	1.854228	-0.470493	
11	1	0	0.389673	1.658309	-0.679460	
12	6	0	2.134222	-0.418459	-0.356902	
13	7	0	2.749398	-1.451731	-0.761892	
14	1	0	-1.717106	2.663641	-0.747272	
15	1	0	-2.972036	1.688210	-1.223614	
16	1	0	-3.843636	-1.268319	0.543077	
17	8	0	2.777230	0.775926	-0.179631	
18	1	0	3.751344	-1.250277	-0.833163	
19	6	0	2.673883	1.368719	1.125341	
20	1	0	1.642840	1.639828	1.366893	
21	1	0	3.064471	0.676628	1.877762	
22	1	0	3.291086	2.266468	1.092197	
23	1	0	-2.827138	2.126869	0.364395	

System:	
Name of the output file:	07.log
Description:	SP1 in Figure 6 for 3a in methanol
Total Gibbs Free Energy, M06–2X/6–31+G(d) (in a.u.):	-571,27450
Number of imaginary frequencies:	0

Center	Atomic	Ā	Atomic	Coordinates (Angstroms)		
Number	Numb	er	Type	X Y	Ž	
1	6	0	0.148313	-1.618455	0.488642	
2	1	0	0.764937	-2.402907	0.915461	
3	6	0	-1.168033	-1.468363	0.884662	
4	6	0	-1.945835	-0.449181	0.324796	
5	6	0	-1.381481	0.412392	-0.630943	
6	6	0	-0.075119	0.292255	-1.036091	
7	6	0	0.685950	-0.742187	-0.468859	
8	1	0	-1.608472	-2.131232	1.622961	
9	8	0	-3.224823	-0.219764	0.629874	
10	7	0	-2.245635	1.448972	-1.183218	
11	1	0	0.352445	0.974444	-1.765564	
12	6	0	2.044717	-0.868399	-0.831725	
13	7	0	3.146062	-1.000569	-1.119793	
14	1	0	-1.759308	1.990360	-1.911937	
15	1	0	-3.094439	1.046324	-1.609734	
16	1	0	-3.567380	-0.865193	1.275867	
17	1	0	-2.559237	2.112818	-0.458845	
18	1	0	4.124804	-1.103458	-1.375401	
19	8	0	2.293015	1.623452	0.529659	
20	1	0	3.250969	1.746235	0.621419	
21	6	0	1.762503	1.245331	1.796795	
22	1	0	0.675800	1.190266	1.689614	
23	1	0	2.141112	0.265297	2.112580	
24	1	0	2.004151	1.988370	2.564730	

System:	
Name of the output file:	08.log
Description:	TS1 in Figure 6 for 3a in methanol
Total Gibbs Free Energy, M06–2X/6–31+G(d) (in a.u.):	-571,26182
Number of imaginary frequencies:	$1 (331 i \text{ cm}^{-1})$

Center Number	Atomi	c .	Atomic Type	Coordinate X V	s (Angstroms)
			1 ypc	A 1	<i>L</i>
1	6	0	0.352033	-1.719749	0.138260
2	1	0	-0.134363	-2.684498	0.244401
3	6	0	1.726325	-1.617842	0.264105
4	6	0	2.342201	-0.371517	0.123116
5	6	0	1.555310	0.755925	-0.149155
6	6	0	0.186460	0.680650	-0.270574
7	6	0	-0.417761	-0.573326	-0.121683
8	1	0	2.333271	-2.493862	0.472210
9	8	0	3.660464	-0.161797	0.226486
10	7	0	2.249645	2.030430	-0.305776
11	1	0	-0.399727	1.568121	-0.485138
12	6	0	-1.831327	-0.772723	-0.274902
13	7	0	-2.717171	-1.477168	-0.582733
14	1	0	1.587168	2.798599	-0.481581
15	1	0	2.794346	2.275413	0.534889
16	1	0	4.140610	-0.988924	0.415958
17	1	0	2.913160	2.006978	-1.094873
18	1	0	-3.717078	-1.658665	-0.591314
19	8	0	-2.519410	0.995961	0.382401
20	1	0	-2.235797	1.096640	1.310191
21	6	0	-3.950900	1.022353	0.316952
22	1	0	-4.222171	0.943166	-0.736666
23	1	0	-4.381887	0.193984	0.887153
24	1	0	-4.307317	1.974278	0.716526

System:	H H H H R H H H H H H H H H H H H H H H
Name of the output file:	09.log
Description:	SP2 in Figure 6 for 3a in methanol
Total Gibbs Free Energy, M06–2X/6–31+G(d) (in a.u.):	-571,27424
Number of imaginary frequencies:	0

Center	Atomi	c	Atomic	Coordinates (Angstrom		
Number	Num	ber	Туре	X Y	Z	
1	6	0	-0.074146	-1.642362	0.204983	
2	1	0	0.481829	-2.558171	0.384456	
3	6	0	-1.450722	-1.646137	0.365501	
4	6	0	-2.171409	-0.468648	0.154709	
5	6	0	-1.484166	0.691431	-0.215282	
6	6	0	-0.115051	0.712019	-0.378406	
7	6	0	0.601766	-0.472321	-0.166885	
8	1	0	-1.977523	-2.548975	0.659887	
9	8	0	-3.503940	-0.353102	0.283800	
10	7	0	-2.284667	1.894414	-0.424476	
11	1	0	0.380598	1.633790	-0.673916	
12	6	0	2.055115	-0.516074	-0.356011	
13	7	0	2.885266	-1.409966	-0.614746	
14	1	0	-1.697648	2.699836	-0.679543	
15	1	0	-2.976791	1.765983	-1.177933	
16	1	0	-3.911061	-1.195955	0.554287	
17	1	0	-2.813336	2.152630	0.422264	
18	1	0	2.447673	-2.322201	-0.767458	
19	8	0	2.646241	0.810412	-0.231722	
20	1	0	3.521612	0.810432	-0.690837	
21	6	0	2.773536	1.355835	1.149782	
22	1	0	1.761685	1.444789	1.536102	
23	1	0	3.385039	0.659528	1.721605	
24	1	0	3.245785	2.326238	1.018667	

System:	H H C N N N N N N N N N N N N N
Name of the output file:	10.log
Description:	TS2 in Figure 6 for 3a in methanol
Total Gibbs Free Energy, M06–2X/6–31+G(d) (in a.u.):	-571,24529
Number of imaginary frequencies:	$1 (1869i \text{ cm}^{-1})$

Center	Atomi	c 1	Atomic	Coordinate	s (Angstroms)
Number	Num	lber	Туре	X Y	Z
1	6	0	-0.094656	-1.633967	0.206443
2	1	0	0.472619	-2.545877	0.370535
3	6	0	-1.470569	-1.649465	0.355676
4	6	0	-2.197017	-0.472254	0.152309
5	6	0	-1.518201	0.701529	-0.199074
6	6	0	-0.149056	0.738749	-0.339529
7	6	0	0.570917	-0.446224	-0.134619
8	1	0	-1.995582	-2.559221	0.630943
9	8	0	-3.528211	-0.369630	0.267560
10	7	0	-2.331492	1.893507	-0.415642
11	1	0	0.346490	1.664130	-0.624880
12	6	0	2.005713	-0.468379	-0.312048
13	7	0	2.884288	-1.343322	-0.579354
14	1	0	-1.754914	2.699094	-0.693534
15	1	0	-3.032572	1.746127	-1.157648
16	1	0	-3.934922	-1.219656	0.516976
17	1	0	-2.850885	2.162048	0.433783
18	1	0	2.656449	-2.310409	-0.814990
19	8	0	2.788931	0.701633	-0.235506
20	1	0	3.630845	-0.167137	-0.475391
21	6	0	2.840035	1.432572	1.037321
22	1	0	1.887106	1.940517	1.175161
23	1	0	3.046372	0.721434	1.838142
24	1	0	3.650663	2.146267	0.910552
System:	⊕ H H−N O R ⊕ NH ₃ ⊕				
--	--				
Name of the output file:	11.log				
Description:	SP3 in Figure 6 for 3a in methanol				
Total Gibbs Free Energy, M06–2X/6–31+G(d) (in a.u.):	-571,32931				
Number of imaginary frequencies:	0				

Center	Atomi	c.	Atomic	Coordinates (Angstrom		
Number	Num	ber	Туре	X Y	Z	
1	6	0	0.036277	-1.566904	0.348813	
2	1	0	0.635368	-2.437796	0.599643	
3	6	0	-1.341360	-1.625156	0.495046	
4	6	0	-2.115385	-0.506199	0.184444	
5	6	0	-1.481568	0.659140	-0.263167	
6	6	0	-0.112806	0.739264	-0.398118	
7	6	0	0.655970	-0.389035	-0.088942	
8	1	0	-1.828767	-2.529062	0.848186	
9	8	0	-3.453840	-0.456965	0.278388	
10	7	0	-2.334758	1.797278	-0.591292	
11	1	0	0.340789	1.653333	-0.771622	
12	6	0	2.113982	-0.358297	-0.269165	
13	7	0	2.728824	-1.359580	-0.833180	
14	1	0	-1.780703	2.602995	-0.912175	
15	1	0	-3.006993	1.566801	-1.338919	
16	1	0	-3.820951	-1.304241	0.590926	
17	1	0	-2.888401	2.106666	0.221631	
18	1	0	2.210261	-2.127252	-1.251768	
19	8	0	2.872044	0.633325	0.091115	
20	1	0	3.745289	-1.362810	-0.905759	
21	6	0	2.442354	1.656533	1.024287	
22	1	0	2.071000	2.512226	0.461211	
23	1	0	1.688475	1.262672	1.705915	
24	1	0	3.345753	1.925629	1.568821	

System:		
Name of the output file:	12.log	
Description:	SP1 in Figure 6 for 3b in methanol	
Total Gibbs Free Energy, M06–2X/6–31+G(d) (in a.u.):	-571,27032	
Number of imaginary frequencies:	0	

Center	Atom	nic A	tomic	Coordinates (Angstron		
Number	Nur	nber	Туре	X Y	Z	
			0.020227	0.241(00	1.042455	
1	6	0	-0.020227	-0.241698	-1.042455	
2	1	0	0.472410	-0.862933	-1.783844	
3	6	0	-1.352814	-0.452211	-0.714102	
4	6	0	-1.945268	0.361337	0.259170	
5	6	0	-1.261122	1.370109	0.913917	
6	6	0	0.074356	1.595739	0.598144	
7	6	0	0.662154	0.782614	-0.376186	
8	8	0	-2.137327	-1.399082	-1.262225	
9	7	0	-3.346220	0.092590	0.564761	
10	1	0	-1.761949	1.973246	1.665419	
11	1	0	0.644074	2.374624	1.092374	
12	6	0	2.038299	0.987234	-0.683241	
13	7	0	3.135926	1.197877	-0.926083	
14	1	0	4.118332	1.358745	-1.138888	
15	8	0	2.390063	-1.587256	0.341760	
16	1	0	3.354554	-1.666798	0.408815	
17	6	0	1.855269	-1.440118	1.654292	
18	1	0	0.766901	-1.406713	1.556745	
19	1	0	2.126705	-2.289676	2.290459	
20	1	0	2.201591	-0.511622	2.124612	
21	1	0	-1.645526	-1.947262	-1.900342	
22	1	0	-3.698236	0.711073	1.308157	
23	1	0	-3.946980	0.228187	-0.263443	
24	1	0	-3.485582	-0.881472	0.875674	

System:		
Name of the output file:	13.log	
Description:	TS1 in Figure 6 for 3b in methanol	
Total Gibbs Free Energy, M06–2X/6–31+G(d) (in a.u.):	-571,25835	
Number of imaginary frequencies:	$1 (324i \text{ cm}^{-1})$	

Center Number	Atomi Num	ic iber	Atomic Type	Coordinate X Y	es (Angstroms) Z
1	6	0	-0.149624	-0.704798	-0.307479
2	1	0	0.459752	-1.571486	-0.538023
3	6	0	-1.528623	-0.834142	-0.189545
4	6	0	-2.291842	0.298408	0.106387
5	6	0	-1.728066	1.550964	0.275074
6	6	0	-0.350721	1.695574	0.151976
7	6	0	0.416445	0.559307	-0.131860
8	8	0	-2.200801	-1.993851	-0.335377
9	7	0	-3.732382	0.105495	0.236011
10	1	0	-2.357380	2.406938	0.500759
11	1	0	0.120021	2.664476	0.277372
12	6	0	1.838120	0.781266	-0.280418
13	7	0	2.717949	1.489808	-0.577300
14	1	0	3.706682	1.718403	-0.634201
15	8	0	2.544997	-0.992165	0.386225
16	1	0	2.245739	-1.110558	1.306871
17	6	0	3.976865	-0.985530	0.346336
18	1	0	4.264834	-0.909215	-0.703117
19	1	0	4.379208	-0.141827	0.915291
20	1	0	4.349618	-1.924836	0.760770
21	1	0	-1.596970	-2.731813	-0.536708
22	1	0	-4.215409	0.993909	0.426747
23	1	0	-4.142964	-0.295910	-0.621407
24	1	0	-3.960994	-0.543365	1.005055

System:	H O H \mathcal{O}_{\oplus} R $\mathcal{O}_{\mathbb{R}}$
Name of the output file:	14.log
Description:	SP2 in Figure 6 for 3b in methanol
Total Gibbs Free Energy, M06–2X/6–31+G(d) (in a.u.):	-571,27219
Number of imaginary frequencies:	0

Center	Atomi	c /	Atomic	Coordinates (Angstrom		
Number	Num	ber	Туре	X Y	Z	
1	6	0	0.077090	0.746054	-0.413416	
2	1	0	-0.446380	1.642872	-0.734899	
3	6	0	1.460050	0.779965	-0.264871	
4	6	0	2.124426	-0.378939	0.142082	
5	6	0	1.452984	-1.561793	0.397411	
6	6	0	0.071710	-1.602480	0.244026	
7	6	0	-0.603621	-0.448858	-0.162365	
8	8	0	2.228206	1.867218	-0.489639	
9	7	0	3.575488	-0.295974	0.285704	
10	1	0	2.005315	-2.440766	0.717689	
11	1	0	-0.471657	-2.518285	0.452292	
12	6	0	-2.062412	-0.525198	-0.363641	
13	7	0	-2.848923	-1.438324	-0.677702	
14	1	0	-2.369919	-2.324079	-0.861338	
15	8	0	-2.699158	0.768216	-0.193387	
16	1	0	-3.591037	0.742883	-0.619733	
17	6	0	-2.785496	1.303197	1.195384	
18	1	0	-3.320485	2.243764	1.092029	
19	1	0	-3.323693	0.571792	1.796295	
20	1	0	-1.761752	1.453359	1.527596	
21	1	0	1.692308	2.628099	-0.776417	
22	1	0	3.968365	-1.167300	0.668243	
23	1	0	4.038590	-0.117908	-0.618158	
24	1	0	3.853619	0.470495	0.916934	

System:	H O N N N N N N N N N N N N N N N N N N
Name of the output file:	15.log
Description:	TS2 in Figure 6 for 3b in methanol
Total Gibbs Free Energy, M06–2X/6–31+G(d) (in a.u.):	-571,24179
Number of imaginary frequencies:	$1 (1857 i \text{ cm}^{-1})$

Center	Atomi	c .	Atomic	Coordinates (Angstrom		
Number	Num	ber	Туре	X Y	Z	
1	6	0	-0.387091	1.114101	0.104317	
2	1	0	-0.092025	2.140376	0.306159	
3	6	0	-1.727893	0.756564	0.171158	
4	6	0	-2.083334	-0.571586	-0.082229	
5	6	0	-1.150742	-1.544232	-0.395663	
6	6	0	0.194566	-1.194823	-0.459277	
7	6	0	0.558804	0.131323	-0.207680	
8	8	0	-2.737309	1.599702	0.470253	
9	7	0	-3.503973	-0.895731	0.000191	
10	1	0	-1.471103	-2.563955	-0.588725	
11	1	0	0.938493	-1.939390	-0.722275	
12	6	0	1.954210	0.537070	-0.306923	
13	7	0	2.570856	1.622174	-0.519746	
14	1	0	2.100201	2.499909	-0.746444	
15	8	0	3.015470	-0.381493	-0.216875	
16	1	0	3.603075	0.693297	-0.400981	
17	6	0	3.215358	-1.122103	1.036027	
18	1	0	2.436753	-1.878898	1.110910	
19	1	0	4.196805	-1.577790	0.928712	
20	1	0	3.184837	-0.414673	1.865864	
21	1	0	-3.676896	-1.890230	-0.200323	
22	1	0	-3.886899	-0.696567	0.936983	
23	1	0	-4.059156	-0.343359	-0.671496	
24	1	0	-2.410814	2.502626	0.633080	

System:	⊕ H H−N O R ⊕ NH ₃ ⊕
Name of the output file:	16.log
Description:	SP3 in Figure 6 for 3b in methanol
Total Gibbs Free Energy, M06–2X/6–31+G(d) (in a.u.):	-571,32709
Number of imaginary frequencies:	0

Center	Atomi	с.	Atomic	Coordinates (Angstrom		
Number	Num	ber	Туре	X Y	Z	
1	6	0	0.076896	0.756745	-0.500034	
2	1	0	-0.402901	1.633730	-0.926675	
3	6	0	1.460136	0.727022	-0.360485	
4	6	0	2.057927	-0.414451	0.181285	
5	6	0	1.325557	-1.524457	0.559659	
6	6	0	-0.057859	-1.511750	0.397899	
7	6	0	-0.661755	-0.366433	-0.122011	
8	8	0	2.288709	1.731650	-0.713651	
9	7	0	3.511031	-0.393671	0.321720	
10	1	0	1.830638	-2.391616	0.975729	
11	1	0	-0.652297	-2.370137	0.693796	
12	6	0	-2.131472	-0.345381	-0.296534	
13	7	0	-2.721057	-1.282538	-0.977025	
14	1	0	-2.179826	-2.001195	-1.452032	
15	8	0	-2.893173	0.581200	0.193720	
16	1	0	-3.736540	-1.293264	-1.070761	
17	6	0	-2.410576	1.525040	1.186464	
18	1	0	-3.308593	1.844937	1.711079	
19	1	0	-1.720896	1.030856	1.870866	
20	1	0	-1.943109	2.368602	0.680027	
21	1	0	1.797247	2.488100	-1.082126	
22	1	0	3.861814	-1.255299	0.762594	
23	1	0	3.979624	-0.301881	-0.592386	
24	1	0	3.827599	0.399825	0.899015	

System:	H - O R
Name of the output file:	17.log
Description:	SP1 in Figure 6 for 3c in methanol
Total Gibbs Free Energy, M06–2X/6–31+G(d) (in a.u.):	-571,26682
Number of imaginary frequencies:	0

Center	Atomic		Atomic	Coordinate	s (Angstroms)
Number	Numb	er	Type	X Y	Ž
1	6	0	0.690473	1.926194	0.536778
2	1	0	0.262527	2.883513	0.812844
3	6	0	1.984009	1.568534	0.909058
4	6	0	2.515373	0.340466	0.540926
5	6	0	1.760816	-0.569147	-0.212039
6	6	0	0.467315	-0.232330	-0.586870
7	6	0	-0.060125	1.012464	-0.210700
8	1	0	2.583716	2.259357	1.491894
9	1	0	3.525642	0.064793	0.831257
10	8	0	2.206321	-1.778191	-0.605860
11	7	0	-0.326444	-1.203181	-1.316932
12	6	0	-1.375360	1.395080	-0.590943
13	7	0	-2.412132	1.761891	-0.904748
14	1	0	-3.352552	2.065852	-1.152558
15	8	0	-2.333532	-1.005339	0.475575
16	1	0	-3.223623	-1.334343	0.267221
17	6	0	-1.929779	-1.507357	1.755800
18	1	0	-0.935213	-1.100207	1.953902
19	1	0	-2.620606	-1.167510	2.532307
20	1	0	-1.883556	-2.600350	1.748662
21	1	0	-0.550678	-0.892169	-2.274598
22	1	0	0.184158	-2.094894	-1.399517
23	1	0	-1.226041	-1.378815	-0.790176
24	1	0	3.107604	-1.951379	-0.279262

System:	H−N≡C−√NH ₃ H−O R
Name of the output file:	18.log
Description:	TS1 in Figure 6 for 3c in methanol
Total Gibbs Free Energy, M06–2X/6–31+G(d) (in a.u.):	-571,25277
Number of imaginary frequencies:	$1 (364 i \text{ cm}^{-1})$

Center Number	Atomi Num	c iber	Atomic Type	Coordinate X Y	s (Angstroms) Z
			0.007570	1.002050	0.10(11(
I	6	0	0.287570	1.883859	0.106446
2	1	0	-0.364629	2.749558	0.148532
3	6	0	1.632156	1.968362	0.466944
4	6	0	2.454278	0.852905	0.409394
5	6	0	1.943328	-0.379231	-0.015981
6	6	0	0.602543	-0.477921	-0.367826
7	6	0	-0.220830	0.652704	-0.311539
8	1	0	2.038954	2.918458	0.796891
9	1	0	3.502681	0.918189	0.687488
10	8	0	2.674638	-1.508112	-0.114270
11	7	0	0.113100	-1.775300	-0.814404
12	6	0	-1.614209	0.629441	-0.688657
13	7	0	-2.486046	1.133335	-1.296442
14	1	0	-3.497344	1.097682	-1.419535
15	8	0	-2.213562	-0.905004	0.386319
16	1	0	-3.122759	-1.113190	0.095741
17	6	0	-2.196538	-0.668620	1.812017
18	1	0	-1.150153	-0.571203	2.103840
19	1	0	-2.749053	0.244123	2.046423
20	1	0	-2.641701	-1.530428	2.311733
21	1	0	-0.082550	-1.787004	-1.827737
22	1	Ő	0.819074	-2.505150	-0.632946
23	1	Ő	-0 760674	-2.033498	-0 322739
24	1	0	3.600371	-1.357846	0.147048

System:	H N H H O R N H S R
Name of the output file:	19.log
Description:	SP2 in Figure 6 for 3c in methanol
Total Gibbs Free Energy, M06–2X/6–31+G(d) (in a.u.):	-571,26328
Number of imaginary frequencies:	0

Center	Atom	ic	Atomic	Coordinate	s (Angstroms)
Number	Nun	nber	Туре	X Y	Z
1		0	-0 240075	1 830618	0 131960
2	1	Ő	0.444622	2.670882	0.190492
3	6	0	-1.597305	1.995142	0.406150
4	6	0	-2.469314	0.917054	0.349853
5	6	0	-1.987398	-0.350157	0.011452
6	6	0	-0.632653	-0.516996	-0.264040
7	6	0	0.248996	0.567974	-0.203216
8	1	0	-1.976411	2.976266	0.673168
9	1	0	-3.527592	1.038171	0.564111
10	8	0	-2.758087	-1.456853	-0.076959
11	7	0	-0.198614	-1.865322	-0.630922
12	6	0	1.689435	0.445637	-0.502152
13	7	0	2.487516	1.133844	-1.162152
14	1	0	2.022275	1.917746	-1.630280
15	8	0	2.272390	-0.734899	0.113537
16	1	0	3.144233	-0.930147	-0.311799
17	6	0	2.402339	-0.713380	1.602845
18	1	0	1.385851	-0.701100	1.989053
19	1	0	2.920223	-1.638262	1.843612
20	1	0	2.970888	0.176845	1.867681
21	1	0	0.249451	-2.359702	0.156804
22	1	0	-1.014758	-2.430402	-0.912477
23	1	0	0.460555	-1.872510	-1.422271
24	1	0	-3.700227	-1.248776	0.053699

System:	H O H O R O H O NH ₃ (P)
Name of the output file:	20.log
Description:	TS2 in Figure 6 for 3c in methanol
Total Gibbs Free Energy, M06–2X/6–31+G(d) (in a.u.):	-571,23201
Number of imaginary frequencies:	$1 (1866 i \text{ cm}^{-1})$

Center	Atomi	2	Atomic	Coordinate	s (Angstroms)
Number	Num	ber	Туре	X Y	Z
1	6	0	-0.293827	1.834100	0.155685
2	1	0	0.385240	2.678054	0.221510
3	6	0	-1.656450	1.989312	0.406193
4	6	0	-2.517563	0.903811	0.338458
5	6	0	-2.023163	-0.363562	0.013056
6	6	0	-0.663321	-0.525476	-0.233070
7	6	0	0.206297	0.569632	-0.159160
8	1	0	-2.048355	2.969043	0.658833
9	1	0	-3.580904	1.019169	0.529954
10	8	0	-2.787882	-1.471339	-0.091379
11	7	0	-0.216438	-1.866857	-0.605604
12	6	0	1.638101	0.452544	-0.418649
13	7	0	2.498885	1.147969	-1.027319
14	1	0	2.260614	1.977040	-1.575994
15	8	0	2.402012	-0.643177	0.022842
16	1	0	3.242552	0.056250	-0.565336
17	6	0	2.522693	-0.866258	1.473756
18	1	0	1.542655	-1.168214	1.844077
19	1	0	3.248250	-1.670446	1.567077
20	1	0	2.870284	0.057920	1.936733
21	1	0	0.238832	-2.361380	0.178413
22	1	0	-1.029221	-2.439326	-0.883332
23	1	0	0.437530	-1.868536	-1.401398
24	1	0	-3.734255	-1.265848	0.010614

System:	H H H N C N H ₃ (R) (R) (R) (R) (R) (R) (R) (R) (R) (R)
Name of the output file:	21.log
Description:	SP3 in Figure 6 for 3c in methanol
Total Gibbs Free Energy, M06–2X/6–31+G(d) (in a.u.):	-571,31600
Number of imaginary frequencies:	0

Center	Atom	ic A	tomic	Coordinates (Angstro		
Number	Nun	nber	Туре	X Y	Z	
1	6	0	0.145472	1.806582	0.281098	
2	1	0	-0.565272	2.614957	0.419425	
3	6	0	1.507107	2.002995	0.512339	
4	6	0	2.412874	0.964349	0.351636	
5	6	0	1.961111	-0.296143	-0.047938	
6	6	0	0.602621	-0.497207	-0.279708	
7	6	0	-0.309198	0.546663	-0.107446	
8	1	0	1.862224	2.980226	0.822927	
9	1	0	3.474880	1.111825	0.527836	
10	8	0	2.758332	-1.367932	-0.241043	
11	7	0	0.219947	-1.839437	-0.717783	
12	6	0	-1.765185	0.371834	-0.322203	
13	7	0	-2.379936	1.117818	-1.188670	
14	1	0	-1.863036	1.763832	-1.781990	
15	8	0	-2.483217	-0.501540	0.309624	
16	1	0	-3.391739	1.048895	-1.302866	
17	6	0	-2.031055	-1.186533	1.508279	
18	1	0	-1.092199	-0.768473	1.871283	
19	1	0	-2.822339	-1.037414	2.241216	
20	1	0	-1.939893	-2.244105	1.259962	
21	1	0	-0.686814	-1.882092	-1.205250	
22	1	0	0.922971	-2.212979	-1.375103	
23	1	0	0.179560	-2.504118	0.072309	
24	1	0	3.698179	-1.138682	-0.129577	

System:	
Name of the output file:	22.log
Description:	SP1 in Figure 6 for 3a in 2-methoxyethanol
Total Gibbs Free Energy, M06–2X/6–31+G(d) (in a.u.):	-724,97943
Number of imaginary frequencies:	0

Center	Atomic	;	Atomic	Coordinate	s (Angstroms)
Number	Numb	ber	Туре	X Y	Z
1	6	0	-0.725846	-1.833537	-1.082691
2	1	0	-1.448982	-2.189019	-1.809498
3	6	0	0.627950	-1.902880	-1.349590
4	6	0	1.546337	-1.423356	-0.407035
5	6	0	1.081095	-0.877429	0.799972
6	6	0	-0.258205	-0.811999	1.099220
7	6	0	-1.162696	-1.294497	0.140451
8	1	0	0.991235	-2.317794	-2.284746
9	8	0	2.871316	-1.441501	-0.566416
10	7	0	2.078533	-0.355433	1.725964
11	1	0	-0.600411	-0.392612	2.041563
12	6	0	-2.547725	-1.194473	0.398837
13	7	0	-3.671310	-1.130506	0.614554
14	1	0	1.637414	0.102686	2.535551
15	1	0	2.693966	-1.100167	2.087627
16	1	0	3.127164	-1.829807	-1.424477
17	1	0	2.689162	0.343272	1.275963
18	1	0	-4.668857	-1.062337	0.799573
19	8	0	-2.441886	1.527612	-0.733291
20	1	0	-3.315905	1.830528	-0.442267
21	6	0	-1.450775	2.132794	0.088132
22	6	0	-0.130408	2.016855	-0.649594
23	1	0	-1.688243	3.186140	0.276443
24	1	0	-1.384684	1.621405	1.058549
25	8	0	0.919381	2.248170	0.270532
26	1	0	-0.031709	1.014543	-1.095989
27	1	0	-0.086674	2.751779	-1.466495
28	6	0	2.173927	2.314953	-0.381854
29	1	0	2.932335	2.512267	0.380296
30	1	0	2.399995	1.369145	-0.898737
31	1	0	2.191232	3.128701	-1.118671

System:	$H = N \equiv C = V$ $H = N = C$ $H = O$ R $H = O$ R
Name of the output file:	23.log
Description:	TS1 in Figure 6 for 3a in 2-methoxyethanol
Total Gibbs Free Energy, M06–2X/6–31+G(d) (in a.u.):	-724,96746
Number of imaginary frequencies:	$1 (296i \text{ cm}^{-1})$

Center	Atom	ic A	tomic	Coordinates (Angstro		
Number	Nur	nber	Туре	X Y	Z	
1	6	0	1.948328	-1.742817	-0.315873	
2	1	0	1.760139	-2.802018	-0.462008	
3	6	0	3.239520	-1.251791	-0.396431	
4	6	0	3.470879	0.114148	-0.215285	
5	6	0	2.388482	0.963146	0.051868	
6	6	0	1.096891	0.496583	0.146122	
7	6	0	0.879050	-0.873989	-0.039469	
8	1	0	4.075879	-1.913383	-0.601456	
9	8	0	4.675293	0.694839	-0.277706	
10	7	0	2.686168	2.381420	0.227924	
11	1	0	0.275785	1.176423	0.346572	
12	6	0	-0.436449	-1.456317	-0.024361	
13	7	0	-1.131165	-2.313132	-0.442025	
14	1	0	1.830035	2.926884	0.399730	
15	1	0	3.318661	2.544203	1.026135	
16	1	0	5.372928	0.046972	-0.488797	
17	1	0	3.145853	2.782785	-0.603757	
18	1	0	-2.038831	-2.759240	-0.336938	
19	8	0	-1.330452	-0.285725	1.255514	
20	1	0	-1.039672	-0.593532	2.135756	
21	6	0	-2.764237	-0.327320	1.170789	
22	6	0	-3.169127	0.575647	0.023119	
23	1	0	-3.102939	-1.356612	1.003403	
24	1	0	-3.174500	0.025801	2.119772	
25	8	0	-4.560246	0.431261	-0.140711	
26	1	0	-2.910064	1.619616	0.253878	
27	1	0	-2.640376	0.285570	-0.899378	
28	6	0	-5.059089	1.245641	-1.187163	
29	1	0	-6.135006	1.071823	-1.247299	
30	1	0	-4.872327	2.307487	-0.978601	
31	1	0	-4.592817	0.978623	-2.144970	

System:	H H H Θ R \oplus R
Name of the output file:	24.log
Description:	SP2 in Figure 6 for 3a in 2-methoxyethanol
Total Gibbs Free Energy, M06–2X/6–31+G(d) (in a.u.):	-724,98242
Number of imaginary frequencies:	0

Center	Atomic	;	Atomic	Coordinates (Angstrom	
Number	Numł	ber	Туре	X Y	Z
	6		0 757469	1 606655	0.022720
1	0	0	0.737408	-1.080033	0.033729
2	1	0	0.209790	-2.0214//	-0.0416/9
3	6	0	2.001087	-1.027709	-0.439730
-	6	0	2.774800	-0.433209	0.226826
5	6	0	2.101034	0.082113	0.230820
7	6	0	0.161477	0.563208	0.719780
8	1	0	2 533030	2 /00113	0.010927
9	8	0	4 033721	-0.253907	-0.782157
10	7	0	2 046782	1 012532	0.202008
10	1	0	0.413248	1.524816	1 151/132
12	6	0	-1 202219	-0.611230	1 153/01
12	7	0	-1 779292	-0.084633	2 125275
14	1	0	3 250217	2 212640	-0.645856
15	1	0	2 408269	2.212040	0 704935
16	1	0	4 388096	-1.064460	-1 190817
17	1	0	3 800858	1 795150	0.858710
18	1	0	-1 140294	0 480081	2 691036
19	8	0	-2.048592	-1 530786	0 403377
20	1	Ő	-2.862132	-1 707948	0.938173
21	6	Ő	-2.415552	-1.206735	-1.022874
22	6	0	-3.007968	0.170147	-1.093449
23	1	0	-1.484576	-1.310968	-1.579046
24	1	Ő	-3.119373	-1.996108	-1.281796
25	8	0	-1.970007	1.100188	-0.879837
26	1	0	-3.460653	0.297212	-2.087318
27	1	0	-3.799411	0.281313	-0.337017
28	6	0	-2.451828	2.381167	-0.510520
29	1	0	-1.583615	3.035949	-0.413886
30	1	0	-3.123840	2.783573	-1.279331
31	1	0	-2.985801	2.331860	0.447861

System:	H H C NH ₃ \oplus NH ₃
Name of the output file:	25.log
Description:	TS2 in Figure 6 for 3a in 2-methoxyethanol
Total Gibbs Free Energy, M06–2X/6–31+G(d) (in a.u.):	-724,95472
Number of imaginary frequencies:	$1 (1815 i \text{ cm}^{-1})$

Center	Atomic	;	Atomic	Coordinates (Angstr		
Number	Numł	ber	Туре	X Y	Z	
	(0 (50275	1 (00701	0.020210	
1	0	0	0.030273	-1.008/81	-0.028518	
2	1	0	1 0 4 9 7 0 6	-2.46/908	-0.120010	
3	6	0	2 760251	-1.04/310	0.376100	
4	6	0	2.709331	-0.327034	0.250854	
5	6	0	2.200370	0.017309	0.239834	
7	6	0	0.982882	0.071294	0.750007	
8	1	0	0.104494	-0.433430	0.000109	
0	1 Q	0	4.033854	0.457086	0.817624	
10	7	0	3 172236	1 758007	0.381/024	
10	1	0	0.612337	1.756907	1 231441	
12	6	0	1 183502	0.407021	1.124861	
12	7	0	-1.705/07	0.240831	2 028334	
14	1	0	3 516278	2 075381	-0 538015	
15	1	0	2 709072	2 562203	0.828483	
16	1	0	4 299416	-1 285189	-1 259003	
17	1	0	4.003152	1 528338	0.946683	
18	1	0	-1 330398	0.902918	2 650113	
19	8	Ő	-2 180372	-1 321278	0.712683	
20	1	Ő	-2 758812	-0.677678	1 587713	
21	6	Ő	-2.698307	-1 287944	-0.675256	
22	6	0	-3 124773	0 111420	-1 025420	
23	1	Ő	-1 896424	-1 657097	-1 316652	
24	1	Ő	-3.529167	-1.991974	-0.654939	
25	8	0	-1.954933	0.899974	-1.089496	
26	1	0	-3.649195	0.094487	-1.990458	
27	1	0	-3.815928	0.500110	-0.261839	
28	6	0	-2.205661	2.283785	-0.917679	
29	1	0	-1.249197	2.799243	-1.025378	
30	1	0	-2.903938	2.653250	-1.679364	
31	1	0	-2.621848	2.480117	0.080055	

System:	⊕ H H−N C O R ⊕ OH NH ₃ ⊕
Name of the output file:	26.log
Description:	SP3 in Figure 6 for 3a in 2-methoxyethanol
Total Gibbs Free Energy, M06–2X/6–31+G(d) (in a.u.):	-725,04235
Number of imaginary frequencies:	0

Center	Atomi		Atomic	Coordinate	es (Angstroms)	
Number	Num	ber	Туре	X Y	Z	
1	6		1 204265	1 402240	0.200888	
2	1	0	-1.204203	2 250271	0.209888	
2	6	0	-0.547520	1 570010	0.318203	
3	6	0	-2.300212	-1.370010	0.399633	
4	6	0	-3.424037	0.760885	0.237447	
5	6	0	-2.679506	0.709883	-0.003029	
07	6	0	-1.520415	0.931083	-0.231400	
0	0	0	-0.009323	-0.14/204	-0.110/1/	
0	1	0	-2.9///80	-2.342039	0.032430	
9	8	0	-4./3001/	-0.530962	0.401501	
10	1	0	-5.810220	1.88/301	-0.210/49	
11	I	0	-1.1/393/	1.943217	-0.524009	
12	6	0	0.782457	-0.021386	-0.305/64	
13	/	0	1.396893	1.122432	-0.39/502	
14	1	0	-3.318527	2.756820	-0.458807	
15	l	0	-4.511349	1.708451	-0.945884	
16	1	0	-5.055162	-1.433923	0.617126	
17	1	0	-4.331620	2.066679	0.660522	
18	1	0	0.890969	1.998476	-0.308007	
19	8	0	1.421264	-1.154870	-0.377477	
20	1	0	2.429487	1.178862	-0.418636	
21	6	0	2.804905	-1.267635	-0.821161	
22	6	0	3.830648	-0.772831	0.174015	
23	1	0	2.915929	-2.340549	-0.970185	
24	1	0	2.896650	-0.753557	-1.783981	
25	8	0	4.058108	0.612386	-0.033184	
26	1	0	3.494681	-0.962139	1.203121	
27	1	0	4.764201	-1.324515	0.003194	
28	6	0	4.900205	1.184006	0.958518	
29	1	0	5.029579	2.236285	0.701156	
30	1	0	4.440735	1.097436	1.950705	
31	1	0	5.876020	0.683986	0.961296	

System:	$H = N \equiv C \xrightarrow{H = 0} NH_3 \oplus H = 0$
Name of the output file:	27.log
Description:	SP1 in Figure 6 for 3b in 2-methoxyethanol
Total Gibbs Free Energy, M06–2X/6–31+G(d) (in a.u.):	-724,97758
Number of imaginary frequencies:	0

Center	Aton	nic At	omic	Coordinate	s (Angstroms)
Number	Nu	mber	Type	X Y	Ž
1	6	0	-1.212361	0.997295	0.740274
2	1	0	-1.000398	2.021099	1.033790
3	6	0	-2.423113	0.669770	0.141979
4	6	0	-2.658329	-0.661255	-0.215759
5	6	0	-1.732961	-1.668443	-0.005271
6	6	0	-0.511433	-1.357801	0.580788
7	6	0	-0.280074	-0.027619	0.940659
8	8	0	-3.408835	1.545776	-0.127011
9	7	0	-3.943864	-0.951124	-0.843157
10	1	0	-1.961915	-2.687950	-0.301997
11	1	0	0.244211	-2.115297	0.745603
12	6	0	0.964522	0.338515	1.537262
13	7	0	1.907052	0.691616	2.080915
14	1	0	2.773982	0.966993	2.534967
15	8	0	2.644648	-1.615173	0.399358
16	1	0	2.678393	-2.580501	0.493371
17	6	0	3.064788	-1.279995	-0.921429
18	6	0	3.103415	0.220687	-1.051755
19	1	0	4.068832	-1.676086	-1.116496
20	1	0	2.371019	-1.698876	-1.662755
21	8	0	1.782218	0.729339	-1.008416
22	1	0	3.699541	0.655935	-0.233058
23	1	0	3.578213	0.493491	-2.005542
24	6	0	1.757295	2.141835	-1.086543
25	1	0	0.710497	2.454435	-1.064569
26	1	0	2.293139	2.592283	-0.238052
27	1	0	2.217582	2.490086	-2.021051
28	1	0	-4.051368	-1.956942	-1.034742
29	1	0	-4.734383	-0.661242	-0.247048
30	1	0	-4.049249	-0.451548	-1.739744
31	1	0	-3.155152	2.453205	0.120336

System:	⊕ H−N≡C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Name of the output file:	28.log
Description:	TS1 in Figure 6 for 3b in 2-methoxyethanol
Total Gibbs Free Energy, M06–2X/6–31+G(d) (in a.u.):	-724,96632
Number of imaginary frequencies:	$1 (334 i \text{ cm}^{-1})$

Center	Atom	ic A	Atomic	Coordinates (Angstro		
Number	Nun	nber	Туре	X Y	Z	
1	6	0	-0.925953	0.821616	0.732127	
2	1	Õ	-0.524177	1.763315	1.095204	
3	6	Õ	-2.209904	0.770044	0.203791	
4	6	Õ	-2.699418	-0.456079	-0.253936	
5	6	Õ	-1.949598	-1.617765	-0.205990	
6	6	0	-0.659603	-1.575580	0.314417	
7	6	Õ	-0.169120	-0.354723	0.777044	
8	8	0	-3.034921	1.830177	0.095334	
9	7	0	-4.053105	-0.461316	-0.801677	
10	1	0	-2.368365	-2.551884	-0.568892	
11	1	0	-0.066919	-2.480551	0.361355	
12	6	0	1.139981	-0.209121	1.380807	
13	7	0	1.795896	0.338937	2.188599	
14	1	0	2.758694	0.423587	2.506081	
15	8	0	2.303051	-1.496235	0.412137	
16	1	0	2.123164	-2.427468	0.639550	
17	6	0	2.472016	-1.351268	-1.013524	
18	6	0	2.939136	0.057712	-1.263858	
19	1	0	3.226455	-2.070838	-1.342685	
20	1	0	1.522442	-1.551008	-1.522535	
21	8	0	1.879947	0.931218	-0.918329	
22	1	0	3.823539	0.270282	-0.645216	
23	1	0	3.212059	0.178891	-2.321025	
24	6	0	2.313290	2.263053	-0.716223	
25	1	0	1.428446	2.864473	-0.496180	
26	1	0	3.014805	2.320045	0.127747	
27	1	0	2.802860	2.657802	-1.616351	
28	1	0	-4.375381	-1.418894	-0.998378	
29	1	0	-4.729745	-0.034665	-0.151147	
30	1	0	-4.110105	0.071647	-1.683421	
31	1	0	-2.626894	2.633315	0.466378	

System:	H H H \oplus R \oplus \oplus \oplus \oplus \oplus \oplus \oplus \oplus \oplus \oplus
Name of the output file:	29.log
Description:	SP2 in Figure 6 for 3b in 2-methoxyethanol
Total Gibbs Free Energy, M06–2X/6–31+G(d) (in a.u.):	-724,97997
Number of imaginary frequencies:	0

Center	Atomic		Atomic	Coordinates (Angstro	
Number	Numl	ber	Туре	X Y	Z
				0.704204	0.000005
1	6	0	-0.825500	0./04394	0.683285
2	I	0	-0.32/686	1.588268	1.0/5/26
3	6	0	-2.139970	0.791250	0.239424
4	6	0	-2.752271	-0.352767	-0.279639
5	6	0	-2.094774	-1.565760	-0.368313
6	6	0	-0.775725	-1.655850	0.068687
7	6	0	-0.158992	-0.519628	0.596061
8	8	0	-2.887951	1.914440	0.261632
9	7	0	-4.136184	-0.216807	-0.727413
10	1	0	-2.607112	-2.433937	-0.772905
11	1	0	-0.250883	-2.603613	0.012908
12	6	0	1.213262	-0.590694	1.130014
13	7	0	1.789905	-0.073361	2.105318
14	1	0	1.161614	0.519583	2.654665
15	8	0	2.036944	-1.538522	0.395979
16	1	0	2.847704	-1.723911	0.932611
17	6	0	2.409342	-1.245391	-1.036484
18	6	0	3.031137	0.117594	-1.120295
19	1	0	3.092802	-2.055507	-1.285448
20	1	0	1.473657	-1.333360	-1.587399
21	8	0	2.010241	1.065773	-0.900962
22	1	0	3.830413	0.215113	-0.370573
23	1	0	3.477368	0.232599	-2.118156
24	6	0	2.505453	2.320147	-0.463078
25	1	0	1.650029	2,993887	-0.385346
26	1	0	2.990048	2.222730	0.517762
27	1	0	3.224045	2,730730	-1.183617
28	1	Ő	-4.766685	0.026916	0.051348
29	1	0	-4.239228	0.526423	-1.434437
30	1	0	-4.484732	-1.089845	-1.146700
31	1	0	-2.393035	2.661812	0.643063

System:	H H C NH ₃ H R
Name of the output file:	30.log
Description:	TS2 in Figure 6 for 3b in 2-methoxyethanol
Total Gibbs Free Energy, M06–2X/6–31+G(d) (in a.u.):	-724,95165
Number of imaginary frequencies:	$1 (1823 i \text{ cm}^{-1})$

Center	Atomic		Atomic	Coordinates (Angstro	
Number	Num	ber	Туре	X Y	Z
	6	0	0.010044	0.718402	0 728163
2	1	0	-0./91792	1 611275	1 178826
3	6	0	2 233027	0.730023	0.280861
1	6	0	-2.255927	-0.427189	-0.302616
5	6	0	-2.750577	-0.427107	-0.461904
6	6	0	-0.686660	-1.594602	-0.026554
7	6	0	-0.162143	-0.445991	0.568798
8	8	0	-3.064447	1 780730	0.363029
9	7	0	-/ 1/2629	-0.376058	-0.741021
10	1	0	-2 454952	-2.457051	-0.919/65
11	1	0	-0.090144	-2.494909	-0.130965
12	6	0	1 201/137	-0.454236	1.086631
13	7	Ő	1 820095	0.129962	2 025403
14	1	0	1 366496	0.774352	2.623403
15	8	Ő	2 170932	-1 370967	0.632409
16	1	Ő	2 767934	-0 781642	1 539220
17	6	Ő	2.707934	-1 303807	-0.760306
18	6	Ő	3 125762	0.097729	-1.061409
19	1	Ő	3 481981	-2.029827	-0 778945
20	1	Ő	1 846989	-1 627406	-1 399306
21	8	Ő	1.974429	0.916546	-1.052625
22	1	Õ	3.847996	0.433757	-0.302379
23	1	Õ	3.619705	0.112958	-2.042170
24	6	Õ	2.260595	2.279291	-0.787217
25	1	0	1.317588	2.825200	-0.855623
26	1	Õ	2.683996	2.395864	0.220011
27	1	0	2.966175	2.681732	-1.524846
28	1	0	-4.788585	-0.178823	0.043610
29	1	0	-4.303218	0.363338	-1.443500
30	1	0	-4.440686	-1.268635	-1.162728
31	1	0	-2.623061	2.549569	0.783864

System:	⊕ H H−N C O R ⊕ NH ₃ ⊕
Name of the output file:	31.log
Description:	SP3 in Figure 6 for 3b in 2-methoxyethanol
Total Gibbs Free Energy, M06–2X/6–31+G(d) (in a.u.):	-725,04054
Number of imaginary frequencies:	0

Center	Atomi	c	Atomic	Coordinate	es (Angstroms)
Number	Num	ber	Туре	X Y	Z
	6		1 510208	0.081504	0.261604
2	1	0	1.310296	1 030326	0.301004
2	6	0	1.149230	-1.939320	0.120725
3	6	0	2.073220	0.413037	0.142750
4	6	0	2 515670	1 402716	-0.290008
5	6	0	2.515070	1.493/10	-0.499796
7	6	0	0.650000	0.106110	-0.2/4930
0	0	0	2 800020	1 701116	0.144209
0	0 7	0	3.800039	-1./91110	0.525802
9	/	0	4./92223	0.526760	-0.509182
10	1	0	2.925507	2.442150	-0.8345/5
11	I	0	0.480123	2.180132	-0.438/1/
12	6	0	-0./99/08	-0.032910	0.355140
13	/	0	-1.408658	-1.1/8234	0.284904
14	l	0	-0.891868	-2.020541	0.044613
15	8	0	-1.419044	1.081554	0.602410
16	1	0	-2.439562	-1.247530	0.316125
17	6	0	-2.817227	1.140005	1.014390
18	6	0	-3.805432	0.804783	-0.080323
19	1	0	-2.939716	0.486770	1.884765
20	1	0	-2.928025	2.179336	1.318674
21	8	0	-4.060264	-0.590641	-0.074186
22	1	0	-4.738088	1.346697	0.123367
23	1	0	-3.421256	1.126288	-1.058612
24	6	0	-4.842958	-1.006845	-1.184842
25	1	0	-5.012550	-2.078875	-1.074221
26	1	0	-5.805526	-0.481626	-1.189317
27	1	0	-4.313359	-0.809233	-2.125063
28	1	0	5.052019	1.483041	-0.788030
29	1	0	5.328044	0.295364	0.340850
30	1	0	5.119153	-0.112017	-1.249743
31	1	0	3.393848	-2.622368	0.627387

System:	
Name of the output file:	32.log
Description:	SP1 in Figure 6 for 3c in 2-methoxyethanol
Total Gibbs Free Energy, M06–2X/6–31+G(d) (in a.u.):	-724,97925
Number of imaginary frequencies:	0

Center	Aton	nic At	omic	Coordinate	s (Angstroms)
Number	Nu	mber	Туре	X Y	Z
1			2 (45002	0.2220(1	0.705/04
1	0	0	-2.645002	-0.222961	-0./95694
2	I	0	-3.443384	0.396385	-1.189242
3	6	0	-2.466801	-1.53/66/	-1.21/090
4	6	0	-1.441543	-2.316188	-0.69/195
5	6	0	-0.563181	-1./89561	0.25/801
6	6	0	-0.723031	-0.477798	0.689706
7	6	0	-1.762838	0.297675	0.158449
8	1	0	-3.138326	-1.958303	-1.957864
9	1	0	-1.303329	-3.343441	-1.024083
10	8	0	0.456724	-2.471647	0.813022
11	7	0	0.262066	0.015141	1.633812
12	6	0	-1.971527	1.643199	0.563401
13	7	0	-2.213534	2.713149	0.887517
14	1	0	-2.398599	3.679567	1.149790
15	8	0	0.550731	2.065440	-0.288080
16	1	0	1.007037	2.896152	-0.073579
17	6	0	1.182851	1.471692	-1.420993
18	6	0	2.538815	0.906823	-1.068326
19	1	0	0.517061	0.667617	-1.754536
20	1	0	1.285737	2.198092	-2.234775
21	8	0	2.353108	-0.098063	-0.079414
22	1	Ő	3 007639	0 465620	-1 958236
23	1	Ő	3 198491	1 693581	-0.673860
24	6	Ő	3 570769	-0.682035	0.363121
25	1	Ő	3 318595	-1 414070	1 133042
26	1	0	1 073888	-1 185081	-0.470636
20	1	0	4.075000	0.083070	0.784461
20	1	0	1 1 2 1 5 0 5	0.120564	1 117500
20	1	0	0.022764	0.150504	2 064278
27	1	0	0.022/04	0.913/4/	2.004270
50 21	1	0	0.4062//	-0.002//1	2.390023
51	1	0	0.493113	-3.3830/3	0.4/0413

System:	
Name of the output file:	33.log
Description:	TS1 in Figure 6 for 3c in 2-methoxyethanol
Total Gibbs Free Energy, M06–2X/6–31+G(d) (in a.u.):	-724,96576
Number of imaginary frequencies:	$1 (310i \text{ cm}^{-1})$

Center	Atom	ic /	Atomic	Coordinate	s (Angstroms)
Number	Nun	nber	Туре	X Y	Z
1	6	0	-2.409548	0.841494	-0.746012
2	1	0	-2.764782	1.803564	-1.098947
3	6	0	-2.999705	-0.348367	-1.167445
4	6	0	-2.524912	-1.571492	-0.717531
5	6	0	-1.444472	-1.625549	0.169401
6	6	0	-0.853684	-0.445234	0.608563
7	6	0	-1.333235	0.785115	0.143139
8	1	0	-3.835900	-0.317793	-1.858119
9	1	0	-2.980568	-2.501137	-1.047337
10	8	0	-0.919282	-2.771530	0.649938
11	7	0	0.270388	-0.571897	1.523588
12	6	0	-0.769309	2.054491	0.537135
13	7	0	-0.970127	3.148066	0.924382
14	1	0	-0.501505	4.041336	1.065980
15	8	0	1.111187	1.688327	0.215592
16	1	0	1.636301	2.430126	0.575054
17	6	0	1.589815	1.324185	-1.102652
18	6	0	2.774253	0.402810	-0.960865
19	1	0	0.758948	0.813418	-1.597534
20	1	0	1.849596	2.226049	-1.660935
21	8	0	2.334996	-0.769469	-0.291237
22	1	0	3.158011	0.145970	-1.957100
23	1	0	3.576199	0.884943	-0.384666
24	6	0	3.393815	-1.679990	-0.015561
25	1	0	2.953176	-2.540462	0.491350
26	1	0	3.865001	-2.005395	-0.949847
27	1	0	4.144222	-1.211104	0.632096
28	1	0	1.175712	-0.611460	0.981554
29	1	0	0.331264	0.198437	2.200767
30	1	0	0.188733	-1.445346	2.064390
31	1	0	-1.409555	-3.547733	0.324127

System:	H N H H Θ R Θ H H H H H H H H H H H H H H H H H H H
Name of the output file:	34.log
Description:	SP2 in Figure 6 for 3c in 2-methoxyethanol
Total Gibbs Free Energy, M06–2X/6–31+G(d) (in a.u.):	-724,97553
Number of imaginary frequencies:	0

Center	Atomic		Atomic	Coordinate	s (Angstroms)
Number	Numb	er	Туре	X Y	Z
1	6	0	-2 145441	1 265625	-0.682209
2	1	0	-2 235280	2 302621	-0.991141
3	6	0	-3 071753	0.311815	-1 101592
4	6	Ő	-2.941482	-1 017390	-0 724137
5	6	0	-1.875693	-1.409441	0.089880
6	6	0	-0.948208	-0.460203	0.513147
7	6	0	-1.076122	0.878287	0.125353
8	1	0	-3.900358	0.609654	-1.735824
9	1	0	-3.658406	-1.766334	-1.049823
10	8	0	-1.675367	-2.675799	0.516044
11	7	0	0.136464	-0.927374	1.373298
12	6	0	-0.124675	1.922973	0.549492
13	7	0	-0.254909	3.066828	1.016083
14	1	0	-1.236347	3.309025	1.181791
15	8	0	1.259544	1.492881	0.394592
16	1	0	1.853397	2.116789	0.885007
17	6	0	1.795538	1.213278	-0.992490
18	6	0	2.900635	0.214379	-0.835310
19	1	0	0.942102	0.816129	-1.542551
20	1	0	2.123438	2.172394	-1.391516
21	8	0	2.338921	-0.994653	-0.364098
22	1	0	3.358537	0.071028	-1.823627
23	1	0	3.670389	0.580147	-0.141787
24	6	0	3.320763	-2.004904	-0.145302
25	1	0	2.791744	-2.892275	0.205750
26	1	0	3.840921	-2.232672	-1.082236
27	1	0	4.043708	-1.677794	0.610596
28	1	0	1.039248	-1.008844	0.842538
29	1	0	0.290595	-0.314908	2.186892
30	1	0	-0.087847	-1.862344	1.744984
31	1	0	-2.392884	-3.264738	0.221986

System:	H O H O R O H O H S O H S O H S O H S O H S O H S O H S O H S S S S	
Name of the output file:	35.log	
Description:	TS2 in Figure 6 for 3c in 2-methoxyethanol	
Total Gibbs Free Energy, M06–2X/6–31+G(d) (in a.u.):	-724,94651	
Number of imaginary frequencies:	$1 (1848i \text{ cm}^{-1})$	

Center	Atomi	c /	Atomic	Coordinates (Angstroms)		
Number	Num	ber	Туре	X Y	Z	
	6		2 220486	1 271061	0 501572	
2	1	0	2.239480	2 432522	0.72/333	
2	6	0	2.302344	0.402251	0.724333	
3	6	0	3 150068	0.498231	-0.872098	
-	6	0	2 020803	1 360000	-0.010272	
6	6	0	-1.006338	-0.503751	0.412762	
7	6	0	1 105881	0.865823	0.412702	
8	1	0	-1.103881	0.803823	-1 376885	
9	1	0	-3 951957	-1 547095	-0.898295	
10	8	0	1 85/110	2 671542	0.347050	
10	7	0	0 125445	-1.077127	1 13/256	
12	6	0	-0.041597	1 797370	0.490897	
12	7	0	0.025941	2 968595	0.957721	
14	1	0	-0.792657	3 490265	1 278462	
15	8	0	1 319639	1 448364	0.371962	
16	1	0	1 375317	2 596665	0.823125	
17	6	0	1.875628	1 163096	-0.980537	
18	6	Ő	3 011344	0.203303	-0 790433	
19	1	Ő	1 064743	0.730215	-1 571339	
20	1	Ő	2 193110	2 120407	-1 394899	
20	8	Ő	2 466549	-1 032716	-0.363120	
22	1	Ő	3 529358	0.080879	-1 750433	
23	1	Ő	3 723899	0.585295	-0.047360	
24	6	ŏ	3 464177	-1 987104	-0.011688	
25	1	Ő	2.942968	-2.895731	0 294296	
26	1	ŏ	4 100283	-2.201454	-0.877507	
27	1	Ő	4 077392	-1 612349	0.815858	
28	1	Ő	1 020601	-1 073321	0.575661	
29	1	Ő	0.305624	-0.590314	2.024235	
30	1	ő	-0.080187	-2.059893	1.370346	
31	1	0	-2.627354	-3.205252	0.092011	

System:	⊕ H H−N O NH ₃ ⊕	
Name of the output file:	36.log	
Description:	SP3 in Figure 6 for 3c in 2-methoxyethanol	
Total Gibbs Free Energy, M06–2X/6–31+G(d) (in a.u.):	-725,03396	
Number of imaginary frequencies:	0	

Center	Atomi	c.	Atomic	Coordinates (Angstroms)		
Number	Num	ber	Туре	X Y	Z	
	6	0	2 024082	1 20/27/	0 506416	
2	1	0	2.034082	2 451650	0.842331	
3	6	0	3.067307	0.557050	1 010263	
1	6	0	-3.056202	-0 796348	-0.713342	
5	6	0	-2.005285	-1 335593	0.033298	
6	6	0	-0.969992	-0.505595	0.456783	
7	6	0	-0.979698	0.852065	0.133365	
8	1	Ő	-3 889835	0.968995	-1 594895	
9	1	Ő	-3 860988	-1 449725	-1 039036	
10	8	0	-1 917753	-2 634232	0 390579	
11	7	Ő	0.095401	-1 098714	1 259776	
12	6	Ő	0.136615	1 740796	0 545138	
13	7	Ő	-0.054760	2 629127	1 469707	
14	1	Ő	-0.949227	2.688667	1 953097	
15	8	Ő	1 325851	1 665945	0.035178	
16	1	Ő	0.687524	3 280634	1 729300	
17	6	Ő	1.608271	1.001066	-1.236755	
18	6	Ő	2.809201	0.120794	-1.039012	
19	1	Ő	0.733963	0.432310	-1.561049	
20	1	0	1.821143	1.803035	-1.944780	
21	8	0	2.441143	-0.961711	-0.202062	
22	1	0	3.130416	-0.251507	-2.020515	
23	1	0	3.633546	0.685431	-0.584212	
24	6	0	3.530261	-1.826345	0.102542	
25	1	0	3.141675	-2.618141	0.745370	
26	1	0	3.933266	-2.263970	-0.817765	
27	1	0	4.319264	-1.275694	0.627464	
28	1	0	1.027887	-1.069056	0.769649	
29	1	0	0.195284	-0.636643	2.175391	
30	1	0	-0.120383	-2.089260	1.449167	
31	1	0	-2.679852	-3.143275	0.061185	

IV. Cell culturing and MTT proliferation assay

The cell lines HeLa (cervical carcinoma), SW620 (colorectal carcinoma), HepG2 (hepatocellular carcinoma) and CFPAC-1 (pancreatic adenocarcinoma, metastatic) were obtained from ATCC (American Type Culture Collection) and cultured as monolayers in Dulbecco's modified Eagle medium (DMEM) supplemented with 10 % foetal bovine serum (FBS), 2 mM L-glutamine, 100 U/ml penicillin and 100 µg/ml streptomycin in a humidified atmosphere with 5 % CO₂ at 37 °C. The panel cell lines were inoculated onto a series of standard 96-well microtiter plates on day 0, at 3000 cells per well. Test compounds were then added in five 10-fold dilutions (0.01 to 100 μ M) followed by a 72-hour incubation. Working dilutions were freshly prepared on the day of testing in the growth medium. The solvent (DMSO) was also tested for eventual inhibitory activity by adjusting its concentration to be the same as in the working concentrations (DMSO concentration never exceeded 0.1 %). After 72 hours of incubation, the cell growth rate was evaluated by performing the MTT assay according to the manufacturer's instructions. The absorbance was measured at 570 nm (TECAN SUNRISE Microtiter plate reader, Männedorf, Switzerland), and transformed into a cell percentage growth (PG) using the formulas proposed by National Institutes of Health (NIH) and described previously.⁸²⁷ The IC₅₀ values for each compound were calculated from dose-response curves using linear regression analysis by fitting the mean test concentrations that give PG values above and below the reference value. Each test point was performed in quadruplicate in three individual experiments.

V. ¹H and ¹³C NMR spectra

Figure S9. ¹H NMR spectrum (300 MHz, DMSO-*d*₆) of 4-hydroxy-3-nitrobenzonitrile (**2a**)

Figure S10. ¹H NMR spectrum (300 MHz, DMSO-*d*₆) of 3-hydroxy-4-nitrobenzonitrile (**2b**)

Figure S11. ¹H NMR spectrum (300 MHz, DMSO-*d*₆) of 3-hydroxy-2-nitrobenzonitrile (**2c**)

Figure S12. ¹³C NMR spectrum (150 MHz, DMSO-*d*₆) of 3-hydroxy-2-nitrobenzonitrile (**2c**)

Figure S13. ¹H NMR spectrum (300 MHz, DMSO-*d*₆) of 5-hydroxy-2-nitrobenzonitrile (**2d**)

Figure S14. ¹H NMR spectrum (600 MHz, DMSO-*d*₆) of 4-amino-3-hydroxybenzonitrile (**3a**)

Figure S15. ¹H NMR spectrum (300 MHz, DMSO-*d*₆) of 3-amino-4-hydroxybenzonitrile (**3b**)

Figure S16. ¹H NMR spectrum (300 MHz, DMSO-*d*₆) of 2-amino-3-hydroxybenzonitrile (**3c**)

Figure S17. ¹³C NMR spectrum (75 MHz, DMSO-*d*₆) of 2-amino-3-hydroxybenzonitrile (**3c**)

Figure S18. ¹H NMR spectrum (300 MHz, DMSO-*d*₆) of 2-methoxyethyl-(3-amino-4-hydroxyphenyl) carboximidate dihydrochloride (**5b**)

Figure S19. ¹H NMR spectrum (600 MHz, DMSO-*d*₆) of 2-(2-ethoxyethoxy)ethyl-(3-amino-4-hydroxyphenyl) carboximidate dihydrochloride (5c)

Figure S20. ¹H NMR spectrum (300 MHz, DMSO-*d*₆) of 2-methoxyethyl-(4-amino-3-hydroxyphenyl) carboximidate dihydrochloride (**6b**)

Figure S21. ¹H NMR spectrum (600 MHz, DMSO-*d*₆) of 2-amino-4-amidiniumphenolate hemihydrochloride 8a

Figure S22. ¹³C NMR spectrum (150 MHz, DMSO-*d*₆) of 2-amino-4-amidiniumphenolate hemihydrochloride 8a

Figure S23. ¹H NMR spectrum (300 MHz, DMSO-*d*₆) of 2-amino-4-amidiniumphenolate 8a'

Figure S24. ¹³C NMR spectrum (75 MHz, D₂O) of 2-amino-4-amidiniumphenolate 8a'

Figure S25. ¹H NMR spectrum (600 MHz, DMSO-*d*₆) of 2-amino-4-(4,5-dihydro-1*H*-imidazol-3-ium-2-yl)phenolate hemihydrochloride dihydrate **8b**

Figure S26. ¹³C NMR (150 MHz, D₂O) of 2-amino-4-(4,5-dihydro-1*H*-imidazol-3-ium-2-yl)phenolate hemihydrochloride dihydrate 8b

Figure S27. ¹H NMR spectrum (300 MHz, DMSO-*d*₆) of 2-amino-4-(4,5-dihydro-1*H*-imidazolium-2-yl)phenolate hydrate 8b'

Figure S28. ¹³C NMR spectrum (75 MHz, DMSO-*d*₆) of 2-amino-4-(4,5-dihydro-1*H*-imidazolium-2-yl)phenolate hydrate 8b'

Figure S29. ¹H NMR spectrum (600 MHz, DMSO-*d*₆) of 2-amino-4-(3,4,5,6-tetrahydropyrimidinium-2-yl)phenolate 8c'

Figure S30. ¹³C NMR spectrum (75 MHz, D₂O) of 2-amino-4-(3,4,5,6-tetrahydropyrimidinium-2-yl)phenolate 8c'

Figure S31. ¹H NMR spectrum (300 MHz, DMSO-*d*₆) of 2-amino-4-(*N*-isopropylamidino)phenol hydrochloride ethanol solvate 8d

Figure S32. ¹³C NMR spectrum (150 MHz, DMSO-*d*₆) of 2-amino-4-(*N*-isopropylamidino)phenol hydrochloride 8d

Figure S33. ¹H NMR spectrum (300 MHz, DMSO-*d*₆) of 2-amino-4-(*N*-isopropylamidinium)phenolate 8d'

Figure S34. ¹³C NMR spectrum (75 MHz, DMSO-*d*₆) of 2-amino-4-(*N*-isopropylamidinium)phenolate 8d'

Figure S35. ¹H NMR spectrum (300 MHz, DMSO-*d*₆) of 2-amino-4-(4,5,6,7-tetrahydro-1*H*-1,3-diazepinium-2-yl)phenolate (8e')

Figure S36. ¹H NMR spectrum (300 MHz, DMSO-*d*₆) of 2-amino-4-(4,5,6,7-tetrahydro-1*H*-1,3-diazepinium-2-yl)phenolate dimethanesulphonate dihydrate (8e)

Figure S37. ¹³C NMR spectrum (75 MHz, DMSO-*d*₆) of 2-amino-4-(4,5,6,7-tetrahydro-1*H*-1,3-diazepinium-2-yl)phenolate dimethanesulphonate hydrate (8e)

Figure S38. ¹H NMR spectrum (600 MHz, DMSO-*d*₆) of 2,2'-bis(3-amino-4-phenolate)butane-1,4-diimidamide (8f')

Figure S39. ¹³C NMR spectrum (75 MHz, DMSO-*d*₆) of 2,2'-bis(3-amino-4-phenolate)butane-1,4-diimidamide (8f')

Figure S40. ¹H NMR spectrum (300 MHz, DMSO-*d*₆) of 2-amino-5-amidinophenol dihydrochloride 8g

Figure S41. ¹³C NMR spectrum (75 MHz, DMSO-*d*₆) of 2-amino-5-amidinophenol dihydrochloride 8g

Figure S42. ¹H NMR spectrum (300 MHz, DMSO-*d*₆) of 2-amino-5-(4,5-dihydro-1*H*-imidazol-2-yl)phenol hydrochloride dihydrate 8h

Figure S43. ¹³C NMR spectrum (75 MHz, DMSO-*d*₆) of 2-amino-5-(4,5-dihydro-1*H*-imidazol-2-yl)phenol hydrochloride dihydrate 8h

Figure S44. ¹H NMR spectrum (300 MHz, DMSO-*d*₆) of 2-amino-5-(4,5-dihydro-1*H*-imidazolium-2-yl)phenolate 8h'

Figure S45. ¹³C NMR spectrum (150 MHz, DMSO-*d*₆) of 2-amino-5-(4,5-dihydro-1*H*-imidazolium-2-yl)phenolate 8h'

Figure S46. ¹H NMR spectrum (600 MHz, DMSO-*d*₆) of 2-amino-5-(3,4,5,6-tetrahydropyrimidinium-2-yl)phenolate 8i'

Figure S47. ¹³C NMR spectrum of 2-amino-5-(3,4,5,6-tetrahydropyrimidinium-2-yl)phenolate 8i'

Figure S48. ¹H NMR spectrum (600 MHz, DMSO-*d*₆) of 2-amino-5-(*N*-isopropylamidino)phenol hydrochloride 8j

Figure S49. ¹³C NMR spectrum (150 MHz, DMSO-*d*₆) of 2-amino-5-(*N*-isopropylamidino)phenol hydrochloride 8j

Figure S50. ¹H NMR spectrum (300 MHz, DMSO-*d*₆) of 5-amidinium-2-phenylbenzoxazole methansulfonate (**10a**)

Figure S51. ¹³C NMR spectrum (150 MHz, DMSO-*d*₆) of 5-amidinium-2-phenylbenzoxazole methansulfonate (10a)

Figure S52. ¹H NMR spectrum (300 MHz, DMSO-*d*₆) of 6-amidinium-2-phenylbenzoxazole methansulfonate dihydrate (**10b**)

Figure S53. ¹³C NMR spectrum (150 MHz, DMSO-*d*₆) of 6-amidinium-2-phenylbenzoxazole methansulfonate dihydrate (10b)

Figure S54. ¹H NMR spectrum (300 MHz, DMSO-*d*₆) of 5-(4,5-dihydro-1*H*-imidazolium-2-yl)-2-phenylbenzoxazole methansulfonate (10c)

Figure S55. ¹³C NMR spectrum (150 MHz, DMSO-*d*₆) of 5-(4,5-dihydro-1*H*-imidazolium-2-yl)-2-phenylbenzoxazole methansulfonate (10c)

Figure S56. ¹H NMR spectrum (600 MHz, DMSO-*d*₆) of 6-(4,5-dihydro-1*H*-imidazolium-2-yl)-2-phenylbenzoxazole methansulfonate (10d)

Figure S57. ¹³C NMR spectrum (150 MHz, DMSO-*d*₆) of 6-(4,5-dihydro-1*H*-imidazolium-2-yl)-2-phenylbenzoxazole methansulfonate (10d)

Figure S58. ¹H NMR spectrum (300 MHz, DMSO-*d*₆) of 5-amidinium-2-(naphthalene-1-yl)benzoxazole methansulfonate (10e)

Figure S59. ¹³C NMR spectrum (150 MHz, DMSO-*d*₆) of 5-amidinium-2-(naphthalene-1-yl)benzoxazole methansulfonate (**10e**)

Figure S60. ¹H NMR spectrum (300 MHz, DMSO-*d*₆) of 6-amidinium-2-(naphthalene-1-yl)benzoxazole methansulfonate (10f)

Figure S61. ¹³C NMR spectrum (75 MHz, DMSO-*d*₆) of 6-amidinium-2-(naphthalene-1-yl)benzoxazole methansulfonate (10f)

Figure S62. ¹H NMR spectrum (600 MHz, DMSO-*d*₆) of 6-(4,5-dihydro-1*H*-imidazolium-2-yl)-2-(naphthalene-1-yl)benzoxazole methansulfonate (10g)

Figure S63. ¹³C NMR spectrum (150 MHz, DMSO-*d*₆) of 6-(4,5-dihydro-1*H*-imidazolium-2-yl)-2-(naphthalene-1-yl)benzoxazole methansulfonate (10g)

Figure S64. ¹H NMR spectrum (300 MHz, DMSO-*d*₆) of 6-(3,4,5,6-tetrahydropyrimidinium-2-yl)-2-(naphthalene-1-yl)benzoxazole methansulfonate (10h)

Figure S65. ¹³C NMR spectrum (150 MHz, DMSO-*d*₆) of 6-(3,4,5,6-tetrahydropyrimidinium-2-yl)-2-(naphthalene-1-yl)benzoxazole methansulfonate (10h)

Figure S66. ¹H NMR spectrum (300 MHz, DMSO-*d*₆) of 5-amidinium-2-(naphthalene-2-yl)benzoxazole methansulfonate dihydrate (10i)

Figure S67. ¹³C NMR spectrum (75 MHz, DMSO-*d*₆) of 5-amidinium-2-(naphthalene-2-yl)benzoxazole methansulfonate dihydrate (10i)

Figure S68. ¹H NMR spectrum (300 MHz, DMSO-*d*₆) of 6-amidinium-2-(naphthalene-2-yl)benzoxazole methansulfonate dihydrate (**10j**)

Figure S69. ¹³C NMR spectrum (75 MHz, DMSO-*d*₆) of 6-amidinium-2-(naphthalene-2-yl)benzoxazole methansulfonate dihydrate (**10j**)

Figure S70. ¹H NMR spectrum (600 MHz, DMSO-*d*₆) of 6-(4,5-dihydro-1*H*-imidazolium-2-yl)-2-(naphthalene-2-yl)benzoxazole methansulfonate (**10k**)

Figure S71. ¹³C NMR spectrum (150 MHz, DMSO-*d*₆) of 6-(4,5-dihydro-1*H*-imidazolium-2-yl)-2-(naphthalene-2-yl)benzoxazole methansulfonate (10k)

Figure S72. ¹H NMR spectrum (600 MHz, DMSO-*d*₆) of 6-(3,4,5,6-tetrahydropyrimidinium-2-yl)-2-(naphthalene-2-yl)benzoxazole methansulfonate (10l)

Figure S73. ¹³C NMR spectrum (150 MHz, DMSO-*d*₆) of 6-(3,4,5,6-tetrahydropyrimidinium-2-yl)-2-(naphthalene-2-yl)benzoxazole methansulfonate (10l)

VI. References

- S1 R. Lok, R. E. Leone and A. J. Williams, J. Org. Chem., 1996, 61, 3289–3297.
- S2 G. Thomas, R. Ulbricht and L. V. Tilo, *Tetrahedron Lett.*, 1968, 1029-1032.
- K. v. Auwers, E. Murbe, K. Sauerwein, G. Deines and J. Schornstein, *Forschr. Chem. Phys. Phys. Chem.*, 1924, 18, 37-77.
- S4 R. W. W. Hooft, *COLLECT;* Nonius BV, Delft, The Netherlands, 1998.
- S5 Z. Otwinowski and W. Minor, Processing of X-ray Diffraction Data Collected in Oscillation
 Mode. In Methods in Enzymology, Vol. 276: Macromolecular Crystallography, Part A; C.
 W. Carter Jr. and R. M. Sweet Eds.; Academic Press: New York, 1997.
- S6 L. Krause, R. Herbst-Irmer, G. M. Sheldrick and D. Stalke, J. Appl. Cryst. 48, 2015, 3–10.
- S7 Rigaku Oxford Diffraction. CrysAlis PRO. Rigaku Corporation, Yarnton, Oxfordshire, England, UK, 2013–2015
- A. Altomare, M. C. Burla, M. Camalli, G. L. Cascarano, C. Giacovazzo, A. Guagliardi, A.
 G. G. Moliterni, G. Polidori and R. Spagna, *J. Appl. Cryst.* 32, 1999, 115–119.
- M. C. Burla, R. Caliandro, M. Camalli, B. Carrozzini, G. L. Cascarano, L. De Caro, C. Giacovazzo, G. Polidori and R. Spagna, *J. Appl. Cryst.*, 2005, 38, 381–388.
- M. C. Burla, R. Caliandro, B. Carrozzini, G. L. Cascarano, C. Cuocci, C. Giacovazzo, M. Mallamo, A. Mazzone and G. Polidori, *J. Appl. Cryst.*, 2015, 48, 306–309.
- S11 G. M. Sheldrick, Acta Cryst., 2008, A64, 112–122.
- S12 G. M. Sheldrick, Acta Cryst., 2015, A71, 3–8.
- S13 G. M. Sheldrick, Acta Cryst., 2015, C71, 3-8.
- S14 O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. Appl. Cryst., 2009, 42, 339–341.
- S15 L. J. Farrugia, J. Appl. Cryst., 2012, 45, 849–854.
- S16 A. L. Spek, Acta Cryst., 2009, D65, 148–155.
- S17 C. F. Macrae, I. Sovago, S. J. Cottrell, P. T. A. Galek, P. McCabe, E. Pidcock, M. Platings,
 G. P. Shields, J. S. Stevens, M. Towler and P. A. Wood, *J. Appl. Cryst.*, 2020, 53, 226–235.
- S18 M. Cindrić, I. Sović, M. Mioč, L. Hok, I. Boček, P. Roškarić, K. Butković, I. Martin-Kleiner, K. Starčević, R. Vianello, M. Kralj and M. Hranjec, *Antioxidants*, 2019, 8, 477.
- S19 I. Picek, R. Vianello, P. Šket, J. Plavec and B. Foretić, J. Org. Chem., 2015, 80, 2165–2173.
- S20 S. Roca, L. Hok, R. Vianello, M. Borovina, M. Đaković, Lj. Karanović, D. Vikić-Topić, Z. Popović, *CrystEngComm*, 2020, 22, 7962–7974.
- S21 N. Pantalon Juraj, G. I. Miletić, B. Perić, Z. Popović, N. Smrečki, R. Vianello and S. I. Kirin, *Inorg. Chem.*, 2019, 58, 16445–16457.
- S22 T. Tandarić and R. Vianello, ACS Chem. Neurosci., 2019, 10, 3532–3542.

- S23 A. Maršavelski and R. Vianello, *Chem-Eur. J.*, 2017, **23**, 2915–2925.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, *Gaussian 16, Revision C.01*, Gaussian, Inc., Wallingford, CT, 2016.
- D. A. Case, R. M. Betz, D. S. Cerutti, T. E. Cheatham, III, T. A. Darden, R. E. Duke, T. J. Giese, H. Gohlke, A. W. Goetz, N. Homeyer, S. Izadi, P. Janowski, J. Kaus, A. Kovalenko, T. S. Lee, S. LeGrand, P. Li, C. Lin, T. Luchko, R. Luo, B. Madej, D. Mermelstein, K. M. Merz, G. Monard, H. Nguyen, H. T. Nguyen, I. Omelyan, A. Onufriev, D. R. Roe, A. Roitberg, C. Sagui, C. L. Simmerling, W. M. Botello-Smith, J. Swails, R. C. Walker, J. Wang, R. M. Wolf, X. Wu, L. Xiao and P. A. Kollman, *AMBER 2016*, University of California, San Francisco, 2016.
- S26 H. Rimac, T. Tandarić, R. Vianello and M. Bojić, Int. J. Mol. Sci., 2020, 21, 5740.
- S27 T. Gazivoda, S. Raić-Malić, V. Krištafor, D. Makuc, J. Plavec, S. Bratulic, S. Kraljević Pavelić, K. Pavelić, L. Naesens, G. Andrei, R. Snoeck, J. Balzarini and M. Mintas, *Bioorg. Med. Chem.*, 2008, 16, 5624–5634.