Direct C-H aminocarbonylation of N-heteroarenes with isocyanides

under transition metal-free conditions

Zhong Zhou,^a Huihui Ji,^a Qing Li,^a Qian Zhang*^{a,b} and Dong Li*^{a,b}

^aHubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China ^bCollaborative Innovation Center of Green Light-weight Materials and Processing, Hubei University of

Technology, Wuhan 430068, China

Supplementary Information

Content

Experimental section	
Instrumentation and chemicals	S2
Experimental procedures	S2
Characterization Data	S2-S6
Copies of ¹ H and ¹³ C NMR spectra	S7–S38

Experimental Section

Instrumentation and chemicals

¹H NMR, ¹³C NMR spectra were recorded on a Bruker DPX-400 spectrometer with CDCl₃ as the solvent and TMS as an internal standard, operating at 400 MHz for ¹H NMR and 100 MHz for ¹³C NMR. Melting points were measured by SGW X-4A microscopic apparatus. The X-ray crystallography was measured on Bruker D8 VENTURE PHOTON instrument. HRMS-ESI were measured by Q Exactive LC/HRMS spectrometer. An Agilent 7890A-5975C GC/MS spectrometer was used for isotopic labeling analysis.

Eethyl acetate and hexane were used for column chromatography without further purification. All solvents and chemicals were obtained from commercial sources and used as received unless otherwise noted. Benzyl and phenyl isocyanides was synthesized according to known methods¹ and the others were obtained from commercial sources.

Experimental procedures

General procedure for the direct C-H aminocarbonylation of N-heteroarenes.

Heteroarenes (1, 0.2 mmol), isocyanide (2, 0.6mmol), and Na₂S₂O₈ (2 equiv) were added into a vial containing a stirring bar and sealed with a Teflo*N*-lined cap. Then CH₃CN (2 mL) was introduced. The resulting mixture was stirred at 120 °C for 24 h. After reaction, the mixture was added into H₂O (25 mL) and extracted with dichloromethane (10 mL) for three times. The combined organic layer was dried over anhydrous MgSO₄ and filtered. After removal of the solvent *in vacuo*, column chromatography (ethyl acetate/hexane) of the residue afforded the pure product.

Characterization Data

N-(tert-butyl)isoquinoline-1-carboxamide (3a)

White solid, mp 99–101 °C; ¹H NMR (400 MHz, CDCl₃): δ 9.58–9.55 (m, 1H), 8.40 (d, J = 5.56 Hz, 1H), 8.09 (s, 1H), 7.81–7.78 (m, 1H), 7.73 (d, J = 5.52 Hz, 1H), 7.69–7.61 (m, 2H), 1.54 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 164.4, 154.8, 149.8, 148.2, 138.3, 128.7, 127.9, 127.5, 122.9, 119.4, 79.1, 69.1, 43.5, 34.4, 25.9. HRMS–ESI(m/z): calcd for C₁₄H₁₇N₂O (M+H⁺): 229.1335, found:: 229.1339.

N-(tert-butyl)-3-methylisoquinoline-1-carboxamide (3b)

Colorless oil; ¹H NMR (400 MHz, CDCl₃): δ 9.56 (d, J = 8.77 Hz, 1H), 8.22 (s, 1H), 7.72 (d, J = 8.15 Hz, 1H), 7.63 (t, J = 6.86 Hz, 1H), 7.58 (s, 1H), 7.55 (d, J = 5.43 Hz, 1H), 2.68 (s, 3H), 1.54 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 166.5, 159.9, 148.6, 143.2, 135.8, 127.9, 127.6, 126.4, 121.2, 119.1, 52.7, 28.9, 25.3. HRMS–ESI(m/z): calcd for C₁₅H₁₉N₂O (M+H⁺): 243.1492, found:: 243.1495.

N-(tert-butyl)-6-methylisoquinoline-1-carboxamide (3c)

Colorless oil; ¹H NMR (400 MHz, CDCl₃): δ 9.47 (d, J = 8.89 Hz, 1H), 8.36 (d, J = 5.53 Hz, 1H), 8.12 (s, 1H), 7.65 (d, J = 5.52 Hz, 1H), 7.56 (s, 1H), 7.47 (dd, J = 8.91 Hz, J = 1.65 Hz, 1H), 2.52 (s, 3H), 1.54 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 165.7, 148.9, 140.7, 140.0, 137.8, 130.8, 127.7, 125.6, 125.3, 123.5, 51.1, 28.8, 21.9. HRMS–ESI(m/z): calcd for C₁₅H₁₉N₂O (M+H⁺): 243.1492, found:: 242.1494.

N-(tert-butyl)-4-chloroisoquinoline-1-carboxamide (3d)

White solid, mp 57–59 °C; ¹H NMR (400 MHz, CDCl₃): δ 9.65 (d, J = 8.71 Hz, 1H), 8.48 (S, 1H), 8.25 (d, J = 8.46 Hz, 1H), 7.98 (S, 1H), 7.85–7.80 (m, 1H), 7.75–7.70 (m, 1H), 1.54 (S, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 164.9, 147.9, 138.9, 134.6, 131.4, 131.3, 129.2, 128.5, 127.7, 123.3, 51.3, 28.7. HRMS–ESI(m/z): calcd for C₁₄H₁₆ClN₂O (M+H⁺): 263.0946, found:: 263.0943.

N-(tert-butyl)-5-chloroisoquinoline-1-carboxamide (3e)

Yellow solid, mp 69–71 °C; ¹H NMR (400 MHz, CDCl₃): δ 9.58 (d, J = 8.77 Hz, 1H), 8.54 (d, J = 5.78 Hz, 1H), 8.21 (dd, J = 5.78 Hz, 1H), 8.09 (S, 1H), 7.79 (dd, J = 7.46 Hz, J = 0.92 Hz, 1H), 7.57 (dd, J = 8.73 Hz, J = 7.52 Hz, 1H), 1.54 (S, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 165.1, 149.6, 141.1, 135.2, 130.9, 130.5, 128.2, 127.8, 127.2, 120.3, 51.3, 28.7. HRMS–ESI(m/z): calcd for C₁₄H₁₆ClN₂O (M+H⁺): 263.0946, found:: 263.0947.

4-bromo-N-(tert-butyl)isoquinoline-1-carboxamide (3f)

Yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 9.60 (d, J = 8.66 Hz, 1H), 8.60 (s, 1H), 8.18 (d, J = 8.43 Hz, 1H), 7.97 (s, 1H), 7.85–7.75 (m, 1H), 7.75–7.67 (m, 1H), 1.53 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 164.9, 148.6, 141.8, 135.9, 131.7, 129.2, 128.5, 128.0, 126.0, 122.9, 51.3, 28.7. HRMS–ESI(m/z): calcd for C₁₄H₁₆BrN₂O (M+H⁺): 307.0441, found: 307.0438.

5-bromo-N-(tert-butyl)isoquinoline-1-carboxamide (3g)

Yellow solid, mp 87–89 °C; ¹H NMR (400 MHz, CDCl₃): δ 9.61 (d, J = 8.74 Hz, 1H), 8.52 (d, J = 5.80 Hz, 1H), 8.16 (d, J = 6.58 Hz, 1H), 8.08 (s, 1H), 7.98 (d, J = 8.38 Hz, 1H), 7.56–7.42 (m, 1H), 1.54 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 165.0, 149.7, 141.3, 136.4, 134.3, 128.6, 128.0, 127.8, 122.9, 121.5, 51.3, 28.7. HRMS–ESI(m/z): calcd for C₁₄H₁₆BrN₂O (M+H⁺):307.0441, found: 307.0437.

7-bromo-N-(tert-butyl)isoquinoline-1-carboxamide (3h)

Yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 9.92 (m, 1H), 8.45 (d, J = 5.50 Hz, 1H), 8.18 (S, 1H), 7.78 (dd, J = 8.77 Hz, J = 1.95 Hz, 1H), 7.74 (d, J = 5.42 Hz, 1H), 7.70 (d, J = 8.77 Hz, 1H), 1.54 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 165.0, 147.8, 140.3, 135.9, 134.0, 130.3, 128.3, 127.7, 123.9, 122.8, 51.2, 28.8. HRMS–ESI(m/z): calcd for C₁₄H₁₆BrN₂O (M+H⁺): 307.0441, found: 307.0443.

N-(tert-butyl)phenanthridine-6-carboxamide (3i)

Yellow solid, mp 106–108 °C; ¹H NMR (400 MHz, CDCl₃): δ 9.59 (d, J = 8.39 Hz, 1H), 8.60 (d, J = 8.28 Hz, 1H), 8.54 (d, J = 7.91 Hz, 1H), 8.15 (d, J = 7.78 Hz, 1H), 8.07 (s, 1H), 7.84 (t, J = 7.62 Hz, 1H), 7.72 (t, J = 8.20 Hz, 3H), 1.60 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 165.6, 150.4, 141.8, 133.8, 130.8, 130.4, 129.2, 128.7, 128.2, 127.8, 125.4, 124.3, 122.1, 121.7, 51.3, 28.8. HRMS–ESI(m/z): calcd for C₁₈H₁₉N₂O (M+H⁺): 279.1492, found: 279.1496.

N-(tert-butyl)-4-methylpicolinamide (3j)

Pale green oil; ¹H NMR (400 MHz, CDCl3) δ ppm 8.36 (d, *J* =4.92 Hz, 1H), 8.00–7.99 (m, 2H), 7.22–7.18 (m, 1H), 2.40 (s, 3H), 1.48 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 162.7, 149.6, 147.8, 146.6, 125.6, 121.6, 49.8, 27.7, 20.1.

HRMS–ESI (m/z): calcd for $C_{11}H_{17}N_2O(M+H^+)$: 193.1335, found: 193.1338.

*N-(tert-*butyl)-2-methoxyisonicotinamide (3k)

White solid, mp 129–131 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.79 (s, 1H), 7.75 (dd, J = 7.29 Hz, J = 0.90 Hz, 1H), 7.68 (dd, J = 8.12 Hz, J = 7.34 Hz, 1H), 6.84 (dd, J = 8.16 Hz, J = 0.92 Hz, 1H), 3.93 (s, 3H), 1.46 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 162.3, 161.5, 147.1, 138.7, 113.9, 112.7, 52.2, 49.7, 27.7. HRMS–ESI(m/z): calcd for C₁₁H₁₇N₂O₂ (M+H⁺): 209.1285, found: 209.1289.

*N-(tert-*butyl)-4-cyanopicolinamide (3l)

Colorless oil; ¹H NMR (400 MHz, CDCl₃): δ 8.69 (dd, J = 4.94 Hz, J = 0.85 Hz, 1H), 8.38 (dd, J = 1.49 Hz, J = 0.93 Hz, 1H), 7.86 (s, 1H), 7.63 (dd, J = 4.94 Hz, J = 1.58 Hz, 1H), 1.47 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 161.3, 152.2, 148.7, 127.2, 123.7, 122.0, 116.1, 51.3, 28.6. HRMS–ESI(m/z): calcd for C₁₁H₁₄N₃O (M+H⁺): 204.1131, found: 204.1136.

*N-(tert-*butyl)-2,6-dimethylisonicotinamide (3m)

Colorless oil; ¹H NMR (400 MHz, CDCl₃): δ 7.17 (s, 2H), 6.01 (s, 1H), 2.52 (s, 3H), 1.43 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 165.6, 158.7, 143.7, 117.4, 52.0, 28.7, 24.5. HRMS–ESI(m/z): calcd for C₁₂H₁₉N₂O (M+H⁺): 207.1492, found: 207.1493.

N,2,6-tri-tert-butylisonicotinamide (3n)

White solid, mp 139–141 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.31 (s, 2H), 5.96 (s, 1H), 1.47 (s, 9H), 1.35 (s, 18H); ¹³C NMR (100 MHz, CDCl₃): δ 168.7, 166.8, 143.5, 112.6, 51.9, 37.8, 30.1, 28.8. HRMS–ESI(m/z): calcd for C₁₈H₃₁N₂O (M+H⁺): 291.2431, found: 291.2432.

4-bromo-N-(tert-butyl)-6-methylpicolinamide (30)

White solid, mp 81–83 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.13 (s, 1H), 7.93 (s, 1H), 7.41 (s, 1H), 2.53 (s, 3H), 1.47 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 162.3, 158.2, 151.2, 134.4, 128.5, 122.5, 51.0, 28.7, 24.0. HRMS–ESI(m/z): calcd for C₁₁H₁₆BrN₂O (M+H⁺): 271.0441, found: 271.0445.

*N-(tert-*butyl)-2-methylquinoline-4-carboxamide (3p)

White solid, mp 123–125 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.07 (dd, J = 8.35 Hz, J = 0.78 Hz, 1H), 8.00 (d, J = 8.46 Hz, 1H), 7.72–7.66 (m, 1H), 7.56–7.48 (m, 1H), 7.21 (s, 1H), 5.98 (s, 1H), 2.69 (s, 3H), 1.54 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 167.0, 158.6, 148.2, 143.4, 129.9, 128.9, 126.6, 124.9, 122.7, 119.0, 52.6, 28.9, 25.2. HRMS–ESI(m/z): calcd for C₁₅H₁₉N₂O (M+H⁺): 243.1492, found: 243.1496.

*N-(tert-*butyl)-2,6-dimethylquinoline-4-carboxamide (3q)

White solid, mp 158–160 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.86 (d, J = 8.59 Hz, 1H), 7.76 (s, 1H), 7.48 (d, J = 8.59 Hz, 1H), 7.05 (s, 1H), 6.22 (s, 1H), 2.59 (s, 3H), 2.48 (s, 3H), 1.55 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 167.2, 157.4, 146.7, 142.7, 136.4, 132.0, 128.4, 123.8, 122.6, 118.8, 52.5, 28.9, 25.0, 21.8. HRMS–ESI(m/z): calcd for

 $C_{16}H_{21}N_2O(M+H^+)$: 257.1648, found: 257.1652.

*N-(tert-*butyl)-2-phenylquinoline-4-carboxamide (3r)

White solid, mp 169–171 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.16–7.97 (m, 4H), 7.78–7.63 (m, 2H), 7.49 (d, *J* = 7.19 Hz, 4H), 6.21 (s, 1H), 1.55 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 167.1, 156.7, 148.5, 143.9, 138.8, 130.0, 129.9, 129.7, 128.9, 127.5, 127.1, 124.9, 123.3, 116.1, 52.6, 28.9. HRMS–ESI(m/z): calcd for C₂₀H₂₁N₂O (M+H⁺): 305.1648, found: 305.1644.

4-bromo-N-(tert-butyl)quinoline-2-carboxamid (3s)

White solid, mp 48–50 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.57 (s, 1H), 8.21 (d, J = 7.58 Hz, 1H), 8.09 (d, J = 6.84 Hz, 2H), 7.78 (d, J = 6.38 Hz, 1H), 7.69 (d, J = 6.74 Hz, 1H), 1.54 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 162.4, 150.4, 146.9, 135.6, 130.8, 130.0, 129.0, 128.6, 126.9, 122.7, 51.2, 28.8. HRMS–ESI(m/z): calcd for C₁₄H₁₆BrN₂O (M+H⁺): 307.0441, found: 307.0438.

N-(tert-butyl)benzo[d]thiazole-2-carboxamide (3ta)

Yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 8.07–8.00 (m, 1H), 7.98–7.91 (m, 1H), 7.55–7.50 (m, 1H), 7.48–7.43 (m, 1H), 7.33 (s, 1H), 1.52 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 164.5, 158.0, 151.8, 136.1, 125.7, 125.5, 123.0, 121.4, 51.0, 27.7. HRMS–ESI(m/z): calcd for C₁₂H₁₅N₂OS (M+H⁺): 235.0900, found: 235.0903.

N-(2,4,4-trimethylpenta*N*-2-yl)isoquinoline-1-carboxamide (4a)

Colourless oil; ¹H NMR (400 MHz, CDCl₃): δ 9.62 (dd, J = 8.45 Hz, J = 0.86 Hz, 1H), 8.43 (d, J = 5.52 Hz, 1H), 8.24 (s, 1H), 7.82 (d, J = 7.58 Hz, 1H), 7.76 (d, J = 5.43 Hz, 1H), 7.72–7.62 (m, 2H), 1.93 (s, 2H), 1.60 (s, 6H), 1.06 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 164.1, 148.2, 139.0, 136.4, 129.3, 127.3, 127.0, 125.9, 125.7, 122.9, 53.8, 50.7, 30.5, 28.2. HRMS–ESI(m/z): calcd for C₁₈H₂₅N₂O (M+H⁺): 285.1961, found: 285.1963.

N-cyclohexylisoquinoline-1-carboxamide (4b)

White solid, mp 118–120 °C; ¹H NMR (400 MHz, CDCl₃): δ 9.60 (d, J = 8.29 Hz, 1H), 8.44 (d, J = 5.52 Hz, 1H), 8.10 (d, J = 7.12 Hz, 1H), 7.85–7.80 (m, 1H), 7.77 (d, J = 5.49 Hz, 1H), 7.73–7.63 (m, 2H), 4.08–3.95 (m, 1H), 2.07 (dd, J = 12.01 Hz, J = 2.77 Hz, 2H), 1.87–1.73 (m, 2H), 1.65 (dd, J = 10.15 Hz, J = 6.34 Hz, 1H), 1.54–1.43 (m, 2H), 1.42–1.30 (m, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 165.2, 148.7, 140.2, 137.4, 130.4, 128.5, 128.0, 127.1, 126.8, 124.2, 48.3, 33.1, 25.7, 25.0. HRMS–ESI(m/z): calcd for C₁₆H₁₉N₂O (M+H⁺): 255.1492, found: 255.1496.

N-benzylisoquinoline-1-carboxamide (4c)

White solid, mp 85–87 °C; ¹H NMR (400 MHz, CDCl₃): δ 9.61 (d, J = 8.27 Hz, 1H), 8.62 (s, 1H), 8.42 (d, J = 5.53 Hz, 1H), 7.83 (d, J = 7.66 Hz, 1H), 7.79 (d, J = 5.57 Hz, 1H), 7.75–7.65 (m, 2H), 7.41 (d, J = 7.43 Hz, 2H), 7.34 (t, J = 7.45 Hz, 2H), 7.27 (m, 1H), 4.71 (d, J = 6.02 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 164.7, 146.9, 138.8, 137.3, 136.4, 129.7, 127.7, 127.6, 126.8, 126.4, 126.0, 125.8, 123.5, 42.5. HRMS–ESI(m/z): calcd for C₁₇H₁₅N₂O (M+H⁺): 263.1179, found: 263.1182.

N-phenylisoquinoline-1-carboxamide (4d)

White solid, mp 119–120 °C; ¹H NMR (400 MHz, CDCl₃): δ 10.36 (s, 1H), 9.81–9.67 (m, 1H), 8.53 (d, J = 5.49 Hz, 1H), 7.95–7.80 (m, 4H), 7.77–7.71 (m, 2H), 7.47–7.37 (m, 2H), 7.21–7.13 (m, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 162.6, 146.5, 138.9, 137.0, 136.6, 129.6, 128.3, 128.0, 127.9, 126.8, 126.3, 125.9, 123.2, 118.8, 118.7. HRMS–ESI(m/z): calcd for C₁₆H₁₃N₂O (M+H⁺): 249.1022, found: 249.1019.

4-cyano-N-(2,4,4-trimethylpentaN-2-yl)picolinamide (5a)

Yellow solid, mp 48–50 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.70 (d, J = 3.90 Hz, 1H), 8.39 (s, 1H), 7.97 (s, 1H), 7.63 (d, J = 3.17 Hz, 1H), 1.84 (s, 2H), 1.53 (s, 6H), 1.01 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 161.0, 152.3, 148.8, 127.2, 123.7, 122.0, 116.1, 55.1, 51.9, 31.7, 31.5, 29.0. HRMS–ESI(m/z): calcd for C₁₅H₂₂N₃O (M+H⁺): 260.1757, found: 260.1762.

4-cyano-N-cyclohexylpicolinamide (5b)

Yellow solid, mp 56–58 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.73 (dd, J = 4.94 Hz, J = 0.84 Hz, 1H), 8.42 (dd, J = 1.49 Hz, J = 0.92 Hz, 1H), 7.84 (d, J = 6.74 Hz, 1H), 7.65 (dd, J = 4.93 Hz, J = 1.58 Hz, 1H), 4.10–3.86 (m, 1H), 2.00 (dd, J = 12.34 Hz, J = 3.31 Hz, 2H), 1.89–1.71 (m, 2H), 1.69–1.61 (m, 1H), 1.48–1.37 (m, 2H), 1.36–1.27 (m, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 160.3, 150.6, 147..9, 126.3, 123.1, 120.9, 115.0, 47.4, 31.9, 24.5, 23.7. HRMS–ESI(m/z): calcd for C₁₃H₁₆N₃O (M+H⁺): 230.1288, found: 230.1291.

ethyl (4-cyanopicolinoyl)glycinate (5c)

White solid, mp 123–125 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.79 (d, J = 4.92 Hz, 1H), 8.42 (s, 1H), 8.38 (s, 1H), 7.69 (dd, J = 1.54 Hz, J = 4.93 Hz, 1H), 4.42–4.18 (m, 4H), 1.32 (t, J = 7.10 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 169.4, 162.6, 150.7, 149.3, 127.8, 124.2, 122.1, 115.9, 61.8, 41.5, 14.2. HRMS–ESI(m/z): calcd for C₁₁H₁₂N₃O₃ (M+H⁺): 234.0873, found: 234.0871.

References:

[1] S. Ghorai and D. Lee, Org. Lett. 2019, 21, 7390–7393.

Copies of ¹H and ¹³C NMR spectra

*N-(tert-*butyl)isoquinoline-1-carboxamide (3a)

N-(tert-butyl)-6-methylisoquinoline-1-carboxamide (3c)

S9

4-bromo-N-(tert-butyl)isoquinoline-1-carboxamide (3f)

N-(tert-butyl)phenanthridine-6-carboxamide (3i)

*N-(tert-*butyl)-4-methylpicolinamide (3j)

N-(tert-butyl)-2-methoxyisonicotinamide (3k)

S17

N-(tert-butyl)-4-cyanopicolinamide (3l)

*N-(tert-*butyl)-2,6-dimethylisonicotinamide (3m)

N,2,6-tri-*tert*-butylisonicotinamide (3n)

4-bromo-N-(tert-butyl)-6-methylpicolinamide (30)

*N-(tert-*butyl)-2-methylquinoline-4-carboxamide (3p)

N-(tert-butyl)-2,6-dimethylquinoline-4-carboxamide (3q)

*N-(tert-*butyl)-2-phenylquinoline-4-carboxamide (3r)

4-bromo-N-(tert-butyl)quinoline-2-carboxamid (3s)

*N-(tert-*butyl)benzo[d]thiazole-2-carboxamide (3t)

N-(2,4,4-trimethylpenta*N*-2-yl)isoquinoline-1-carboxamide (4a)

N-cyclohexylisoquinoline-1-carboxamide (4b)

N-benzylisoquinoline-1-carboxamide (4c)

N-phenylisoquinoline-1-carboxamide (4d)

4-cyano-*N*-cyclohexylpicolinamide (5b)

ethyl (4-cyanopicolinoyl)glycinate (5c)

