Supporting Information for

5-(Diarylimino)- and 5-(Sulfoximido)dibenzothiophenium Triflates:

Synthesis and Application as Electrophilic Aminating Reagents.

Zhen Li,^{a‡} Gonela Vijaykumar,^{a‡} Xiangdong Li,^a Christopher Golz,^a and Manuel Alcarazo^a*

^{a.} Institut für Organische und Biomolekulare Chemie

Georg-August-Universität Göttingen

Tammannstr 2, 37073 Göttingen, Germany

^t These authors contributed equally.

Contents

1	Ger	neral information	3	
2	Synthetic Procedure			
2.1 General Procedure (GP1) for the synthesis of salts 1a , 1b and 1c		General Procedure (GP1) for the synthesis of salts 1a, 1b and 1c	3	
	2.2	Characterization of products 1a, 1b and 1c	4	
	2.3	General Procedure (GP2) for the synthesis of sulfonium salts 3a-3f	4	
	2.4	General Procedure (GP3) for the transfer-reaction with thiols	8	
	2.5	General Procedure (GP4) for the transfer-reaction with sodium sulfinate salts	14	
	2.6	General Procedures (GP5) for the synthesis of hydrazones 12 from aldehydes	17	
	2.7	General Procedure (GP6) for the imination of aldehyde hydrazones 12	18	
	2.9	General Procedure (GP7) for the benzylic C–H sulfoximination	19	
	2.10	Preparation of substrates 15	20	
	2.11	Characterization of products 16	20	
	2.12	EPR studies	32	
3	Ster	rn-Volmer Fluorescence Quenching Studies	32	
	3.1	Stern-Volmer Quenching Studies with 3a	32	
	3.2	Stern-Volmer Quenching Studies with 1a	34	
4	Cyclic voltammetry measurements			
	4.1	Measurements of 3a , 3d-f	36	
	4.2	Measurements of 1a, 1b, 1c	38	
5	Det	termination of the quantum yield of the transformation	40	
6	Lig	ht on/off experiment	40	
7	NM	NMR spectra42		
8	Dif	ferential scanning calorimetry (DSC)	. 126	

9 DFT calculation supplement	
10 Single crystal X-ray diffraction analysis supplement	140
Compound 6j	161
Compound 13b	
Compound 16b	165
Compound 16h	167
Compound 16i	169
Compound 161	171
Compound 16ae	173
Compound 16ag	175
11 References	177

1 General information

Unless otherwise noted, all experiments were carried out in dried glassware under an atmosphere of nitrogen using standard Schlenk techniques. All dry solvents were obtained from a solvent purification system MBSPS7 from M. Braun. All NMR spectra were recorded on Bruker AV600, and AV400; ¹H and ¹³C chemical shifts (δ) are given in ppm relative to TMS, using the solvent signals as references and converting the chemical shifts to the TMS scale. Coupling constants (*J*) are given in Hz. All high-resolution mass spectra were obtained on Finnigan MAT 95 (70 eV, EI), Finnigan LCQ (ESI) and APEX IV 7T FTICR, Bruker Daltonic (HRMS). IR spectra were recorded on a JASCO FT/IR-4100 spectrometer at room temperature; the stretching frequencies are reported in wavenumbers (cm⁻¹). Column chromatography was performed on Merck 60 (40-63 μm) silica gel. Thin-layer chromatographic analysis (TLC) analysis was performed using POLYGRAM® SIL G/UV254 TLC plates from Macherey-Nagel and compounds were visualized with a UV light at 254 nm. All commercially available compounds (Acros, ABCR, Alfa Aesar, Aldrich, Fluorochem, TCI) were used as received unless otherwise stated.

2 Synthetic Procedure

2.1 General Procedure (GP1) for the synthesis of salts 1a, 1b and 1c

Triflic anhydride (1.0 equiv.) was added dropwise to a stirred solution of dibenzothiophene-S-oxide in dry DCM (0.1 M) at a temperature between -60 °C and -50 °C. After stirring the resulting mixture for an additional 1 hour, pyridine (1.0 equiv.) and the respective sulfonimines ^[1] (1.0 equiv.) were consequently added dropwise, and the reaction mixture was further stirred at -50 °C for an additional 6 h. Then, the cooling system was removed, and the formed solution was allowed reaching room temperature. The aqueous K₂CO₃ solution was added, and the organic phase was separated and dried with anhydrous MgSO₄. The solvent was filtered and evaporated in vacuo, the residue was washed three times with dry Et₂O and finally dried under vacuum.

2.2 Characterization of products 1a, 1b and 1c

5-[(Oxodiphenyl- λ^6 -sulfaneylidene)amino]-5*H*-dibenzo[*b*,*d*]thiophen-5-ium Trifluoromethanesulfonate (1a):

Sulfonium salt **1a** was obtained as a beige solid in 83% yield. ¹H NMR (400 MHz, CD₃CN) $\delta = 8.15 - 8.06$ (m, 2H), 8.04 - 7.95 (m, 6H), 7.89 - 7.77 (m, 4H), 7.74 - 7.55 (m, 6H) ppm. ¹³C NMR (101 MHz, CD₃CN) $\delta = 138.6$, 136.6, 135.8, 135.2, 133.6, 131.2, 130.6, 128.7, 128.0, 124.0, 121.2 (d, J = 321.0 Hz) ppm. IR (neat): 3566, 3088, 1709, 1577, 1448, 1362, 1258, 1224, 1152, 1088, 1029, 1005, 969, 758, 738, 707, 685, 637, 613, 589, 573, 541, 518, 422 cm⁻¹.

HRMS calculated m/z for C₂₄H₁₈NOS₂⁺ [M–OTf]⁺: 400.0824, found (ESI) 400.0831.

$5-{[Methyl(oxo)(phenyl)-\lambda^6-sulfaneylidene]amino}-5H-dibenzo[b,d]thiophen-5-ium Trifluoromethanesulfonate (1b):$

Sulfonium salt **1b** was obtained as a beige solid in 86% yield. ¹H NMR (400 MHz, CD₃CN) $\delta = 8.11$ (dd, J = 7.7, 15.5Hz, 2H), 8.02 - 7.84 (m, 6H), 7.84 - 7.66 (m, 4H), 7.56 (t, J = 7.8 Hz, 1H), 3.68 (s, 3H) ppm. ¹³C NMR (101 MHz, CD₃CN) $\delta = 138.4$, 138.3, 136.0, 135.6, 135.1, 135.0, 134.2, 133.4, 131.1, 131.0, 130.5, 128.5, 128.4, 128.0, 124.0, 123.9, 121.2 (d, J = 321.0 Hz), 45.0 ppm. **IR** (neat): 3566, 3009, 2919, 1707, 1448, 1258, 1225, 1154, 1089, 1029, 1004, 984, 757, 707, 685,

637, 573, 517, 416 cm⁻¹. **HRMS** calculated m/z for C₁₉H₁₆NOS₂⁺ [M–OTf]⁺: 338.0668, found (ESI) 338.0669.

$5-{(5-Oxido-5\lambda^4-dibenzo[b,d]thiophen-5-ylidene)amino}-5H-dibenzo[b,d]thiophen-5-ium Trifluoromethanesulfonate (1c):$

Sulfonium salt **1c** was obtained as a beige solid in 81% yield. ¹H NMR (400 MHz, CD₃CN) δ = 7.90 – 7.69 (m, 12H), 7.59 – 7.43 (m, 4H) ppm. ¹³C NMR (101 MHz, CD₃CN) δ = 138.3, 137.1, 135.2, 133.4, 132.8, 131.8, 131.3, 131.2, 128.4, 124.3, 123.8, 123.4, 121.2 (d, *J* = 320.9 Hz) ppm. **IR** (neat): 3566, 3087, 1577, 1482, 1449, 1258, 1225, 1155, 1064, 1030, 983, 759, 707, 637, 573, 554, 518, 479, 418 cm⁻¹. **HRMS** calculated *m*/*z* for C₂₄H₁₆NOS₂⁺ [M–OTf]⁺:

398.0668, found (ESI) 398.0668.

2.3 General Procedure (GP2) for the synthesis of sulfonium salts 3a-3f

Triflic acid anhydride (370 μ L, 621 mg, 2.2 mmol, 1.1 equiv.) was slowly added at -50 °C to a stirred suspension of respective dibenzothiophene-*S*-oxide (2.0 mmol, 1.0 equiv.) in dry dichloromethane (8 mL/mmol). The reaction mixture was stirred for 30 min at the indicated temperature, then pyridine (177 μ L, 174 mg, 2.2 mmol, 1.1 equiv.) and respective benzophenone imine (2.2 mmol, 1.1 equiv.) were added as a solution in dichloromethane (1 mL/mmol). After this, the reaction mixture was slowly warmed to -15 °C and stirred for another 6 h at this temperature. Then the reaction mixture was washed with aq. K₂CO₃ and extracted with dichloromethane. The

solvent was evaporated *in vacuo*, the residue was washed with dry Et_2O (2 × 10 mL) and dried *in vacuo* affording the desired product.

5-[(Diphenylmethylene)amino]-5*H***-dibenzo**[*b*,*d*]**thiophen-5-ium Trifluoromethanesulfonate** (3a):

Compound **3a** was obtained from dibenzothiophene-*S*-oxide (0.40 g, 2.0 mmol, 1.0 equiv.) and benzophenone imine (369 µL, 399 mg, 2.2 mmol, 1.1 equiv.) according to GP2 (0.84 g, 82%) as a pale-yellow solid. ¹**H NMR** (400 MHz, CDCl₃) $\delta = 8.03$ (d, J = 7.8 Hz, 2H), 7.88 (d, J = 7.3 Hz, 2H), 7.84 – 7.75 (m, 5H), 7.68 (d, J = 8.0 Hz, 2H), 7.57 – 7.53 (m, 5H), 7.35 (t, J = 7.8 Hz, 2H) ppm; ¹³**C NMR** (101 MHz, CDCl₃) $\delta = 190.7$, 139.5, 135.9, 135.5, 135.3, 134.6, 132.9, 132.5, 131.6, 131.3, 130.4, 129.7, 129.0, 128.9, 124.1, 121.0 (q, J = 322.2 Hz) ppm; ¹⁹**F NMR** (377 MHz, CDCl₃) $\delta = -78.11$ ppm; **IR** (ATR): 3061, 1710, 1657, 1582, 1526, 1482, 1446, 1259, 1223, 1155, 1029, 999, 955, 761, 707, 637, 572, 517 cm⁻¹; **HRMS** calculated *m*/*z* for C₂₅H₁₈NS⁺ [M–OTf]⁺: 364.1155, found 364.1156; **Mp**: 122–123 °C.

5-[(**Di**-*p*-tolylmethylene)amino]-5*H*-dibenzo[*b*,*d*]thiophen-5-ium Trifluoromethanesulfonate (**3b**):

Compound **3b** was obtained from dibenzothiophene-*S*-oxide (0.20 g, 1.0 mmol, 1.0 equiv.) and imine **5b** (0.23 g, 1.1 mmol, 1.1 equiv.) using Tf₂O (0.31 g, 1.1 mmol, 1.1 equiv.) and pyridine (89 µL, 87 mg, 1.1 mmol, 1.1 equiv.) according to GP2 (0.47 g, 87%) as a white solid. ¹**H NMR** (300 MHz, CDCl₃) $\delta = 8.04$ (dd, J = 7.8, 1.1 Hz, 2H), 7.86 – 7.70 (m, 6H), 7.64 – 7.53 (m, 4H), 7.48 (d, J = 8.1 Hz, 2H), 7.16 (d, J = 8.1 Hz, 2H), 2.56 (s, 3H), 2.38 (s, 3H) ppm; ¹³**C NMR** (151 MHz, CDCl₃) $\delta = 191.0$, 147.0, 143.8, 139.5, 135.4, 132.8, 131.6, 131.5, 130.9, 130.3, 129.7, 129.5, 129.1, 129.0, 124.0, 121.0 (q, J = 322.2 Hz), 22.02, 21.89 ppm; ¹⁹**F NMR** (565 MHz, CDCl₃) $\delta = -78.14$ ppm; **IR** (ATR): 3087, 1607, 1572, 1522, 1496, 1259, 1223, 1155, 1029, 827, 762, 737, 706, 637, 573 cm⁻¹; **HRMS** calculated *m*/*z* for C₂₇H₂₂NS⁺ [M–OTf]⁺: 392.1468, found 392.1471; **Mp**: 128– 129 °C. (*E*/Z)-5-({[1,1'-Biphenyl]-2-yl(phenyl)methylene}amino)-5*H*-dibenzo[*b*,*d*]thiophen-5-ium Trifluoromethanesulfonate (3c):

Compound **3c** was obtained from dibenzothiophene-*S*-oxide (0.20 g, 1.0 mmol, 1.0 equiv.) and imine **5c** (283 mg, 1.1 mmol, 1.1 equiv.) using Tf₂O (0.31 g, 1.1 mmol, 1.1 equiv.) and pyridine (89 µL, 87 mg, 1.1 mmol, 1.1 equiv.) according to GP2 (0.47 g, 80%) as a white solid. ¹H NMR (400 MHz, CDCl₃) $\delta = 8.08$ (d, J = 7.7 Hz, 2H), 7.94 – 7.83 (m, 2H), 7.81 (dt, J = 7.3, 3.7 Hz, 5H), 7.73 – 7.63 (m, 3H), 7.59 (t, J = 7.6 Hz, 2H), 7.49 (ddd, J = 12.1, 9.4, 5.9 Hz, 6H), 7.38 (t, J = 7.7 Hz, 1H), 6.00 (d, J = 7.9 Hz, 1H) ppm; ¹³C NMR (101 MHz, CDCl₃) $\delta = 192.3$, 140.2, 140.0, 139.8, 138.8, 136.3, 136.0, 135.6, 133.2, 132.9, 132.4, 132.0, 131.5, 131.4, 131.3, 131.1, 130.0, 129.6, 129.5, 129.4, 129.3, 128.8, 128.1, 124.6, 124.5, 121.0 (q, J = 322.2 Hz) ppm; ¹⁹F NMR (377 MHz, CDCl₃) $\delta = -78.13$ ppm; **IR** (ATR): 3060, 1706, 1520, 1475, 1445, 1361, 1256, 1221, 1148, 1076, 1027, 778, 755, 698, 634, 571, 515 cm⁻¹; **HRMS** calculated *m*/*z* for C₃₁H₂₂NS⁺ [M–OTf]⁺: 440.1468, found 440.1470; **Mp**: 137–138 °C.

5-[(Diphenylmethylene)amino]-2,8-difluoro-5*H*-dibenzo[*b*,*d*]thiophen-5-ium Trifluoromethanesulfonate (3d):

Compound **3d** was obtained from 2,8-difluorodibenzothiophene-*S*-oxide (0.47 g, 2.0 mmol, 1.0 equiv.) and benzophenone imine (369 µL, 399 mg, 2.2 mmol, 1.1 equiv.) according to GP2 (0.83 g, 76%) as an off white solid. ¹**H NMR** (400 MHz, CDCl₃) δ = 7.91 (d, *J* = 6.9 Hz, 2H), 7.86 – 7.76 (m, 3H), 7.76 – 7.64 (m, 4H), 7.62 – 7.57 (m, 3H), 7.38 (t, *J* = 7.7 Hz, 2H), 7.34 – 7.25 (m, 2H) ppm; ¹³**C NMR** (101 MHz, CDCl₃) δ = 190.4, 167.2 (d, *J* = 260.5 Hz), 141.5 (dd, *J* = 10.4, 2.5 Hz), 135.9, 135.4, 134.4, 133.1, 132.4 (d, *J* = 10.4 Hz), 131.3, 130.5, 130.2, 129.2 (d, *J* = 3.1 Hz), 129.0 (d, *J* = 5.6 Hz), 121.0 (q, *J* = 322.2 Hz), 119.6 (d, *J* = 24.1 Hz), 111.9 (d, *J* = 25.3 Hz); ¹⁹**F NMR** (377 MHz, CDCl₃) δ = -78.26 (s, 3F), -99.65 (tt, q, *J* = 8.5, 5.0 Hz, 2F) ppm; **IR** (ATR):

3093, 1584, 1526, 1480, 1438, 1257, 1220, 1159, 1029, 943, 830, 776, 703, 638, 572, 516, 498, 465 cm⁻¹; **HRMS** calculated m/z for C₂₅H₁₆F₂NS⁺ [M–OTf]⁺: 400.0966, found 400.0966. **Mp**: 124–125 °C.

10-[(Diphenylmethylene)amino]-10*H***-phenoxathiin-10-ium Trifluoromethanesulfonate (3e)**:

Compound **3e** was obtained from phenoxathiine-10-oxide (0.43 g, 2.0 mmol, 1.0 equiv.) and benzophenone imine (369 µL, 399 mg, 2.2 mmol, 1.1 equiv.) according to GP2 (0.90 g, 85%) as a pale-yellow solid. ¹H NMR (300 MHz, CDCl₃) δ = 7.93 – 7.73 (m, 5H), 7.65 – 7.61 (m, 4H), 7.58 – 7.44 (m, 5H), 7.44 – 7.28 (m, 4H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ = 186.9, 152.6, 136.9, 135.7, 135.2, 133.8, 132.7, 132.1, 131.1, 130.4, 128.9, 128.5, 126.6, 120.1, 121.0 (q, *J* = 322.2 Hz), 110.1 ppm; ¹⁹F NMR (377 MHz, CDCl₃) δ = -78.14 ppm; **IR** (ATR): 3063, 1737, 1583, 1528, 1460, 1442, 1271, 1224, 1156, 1072, 1029, 886, 765, 708, 637, 572, 518, 491 cm⁻¹; **HRMS** calculated *m*/*z* for C₂₅H₁₈NOS⁺ [M–OTf]⁺: 380.1104, found 380.1108. **Mp**: 148–149 °C.

5-[(Diphenylmethylene)amino]-5*H*-thianthren-5-ium Trifluoromethanesulfonate (3f):

Compound **3f** was obtained from thianthrene-5-oxide (0.46 g, 2.0 mmol, 1.0 equiv.) and benzophenone imine (369 µL, 399 mg, 2.2 mmol, 1.1 equiv.) according to GP2 (0.78 g, 72%) as a pale-yellow solid. Compound **5f** was decomposed in CDCl₃. ¹**H NMR** (600 MHz, CD₃CN) $\delta = 8.00$ (dd, J = 7.9, 1.2 Hz, 2H), 7.76 (qd, J = 7.7, 1.4 Hz, 3H), 7.63 (tt, J = 8.0, 2.2 Hz, 5H), 7.55 – 7.48 (m, 4H), 7.41 (dd, J = 8.5, 7.4 Hz, 2H), 7.34 – 7.23 (m, 2H) ppm; ¹³**C NMR** (151 MHz, CD₃CN) $\delta = 189.4$, 137.2, 137.2, 135.9, 135.5, 134.7, 133.3, 131.5, 131.2, 130.8, 129.9, 129.8, 129.0, 128.3, 123.5 ppm; ¹⁹**F NMR** (565 MHz, CD₃CN) $\delta = -79.28$ ppm; **IR** (ATR): 3067, 1534, 1487, 1446, 1260, 1223, 1153, 1029, 760, 705, 636, 572, 544, 516, 462 cm⁻¹; **HRMS** calculated *m/z* for C₂₅H₁₈NS₂⁺ [M–OTf]⁺: 396.0875, found 396.0877; **Mp**: 166–167 °C.

2.4 General Procedure (GP3) for the transfer-reaction with thiols

Dry DCM (0.1 M) was added to the mixture of selected nucleophile (1.00 equiv.), DIPEA (1.10 equiv.) and dibenzothiophenium salt **3** (1.50 equiv.) at room temperature. The reaction mixture was stirred for 1 h at the same temperature. After quenching the reaction with water (8 mL), the mixture was extracted with DCM (3×10 mL), the combined organic layers were dried over MgSO₄ and the solvents were removed *in vacuo*. The crude products were purified by column chromatography. *S*-[4-(*tert*-Butyl)phenyl]-*N*-(diphenylmethylene)thiohydroxylamine (6a):

Using the GP3, compound **6a** was prepared from 4-(*tert*butyl)benzenethiol (**7a**) (34.4 μ L, 33.2 mg, 0.2 mmol, 1.00 equiv.), DIPEA (38.3 μ L, 28.4 mg, 0.22 mmol, 1.10 equiv.) and the salt **3a** (154 mg, 0.3 mmol, 1.50 equiv.) in dry DCM. The reaction was carried out at RT for 1 h. After flash chromatography (hexane/EtOAc: 95/5) compound **6a** was obtained as a colorless oil

(42.1 mg, 61%). ¹**H** NMR (400 MHz, CDCl₃) δ = 7.65 (d, *J* = 8.2 Hz, 2H), 7.58 – 7.47 (m, 5H), 7.42 (dd, *J* = 8.5, 1.5 Hz, 2H), 7.37 (ddd, *J* = 9.1, 6.9, 3.8 Hz, 5H), 1.34 (s, 9H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ = 163.8, 149.4, 139.0, 138.0, 136.5, 129.7, 129.4, 129.0, 128.3, 127.9, 127.6, 126.0, 125.2, 34.7, 31.5 ppm; **IR** (ATR): 3058, 2961, 1660, 1596, 1490, 1443, 1397, 1362, 1314, 1268, 1167, 1117, 1012, 950, 823, 775, 695, 637, 545, 484 cm⁻¹; **HRMS** calculated *m*/*z* for C₂₃H₂₄NS⁺ [M+H]⁺: 346.1624, found 346.1615.

N-(Diphenylmethylene)-S-(4-nitrophenyl)thiohydroxylamine (6b):

Using the GP3, compound **6b** was prepared from 4-nitrobenzenethiol (**7b**) (31.0 mg, 0.2 mmol, 1.00 equiv.), DIPEA (38.3 μ L, 28.4 mg, 0.22 mmol, 1.10 equiv.) and **3a** (154 mg, 0.3 mmol, 1.50 equiv.) in dry DCM. The reaction was carried out at RT for 1 h. After flash chromatography (hexane/EtOAc: 95/5) compound **6b** was obtained

as a yellow solid (46.1 mg, 69%). ¹**H NMR** (400 MHz, CDCl₃) δ = 8.24 (d, *J* = 8.8 Hz, 2H), 7.74 (d, *J* = 8.7 Hz, 2H), 7.71 – 7.65 (m, 2H), 7.56 (m, 3H), 7.48 – 7.33 (m, 5H) ppm; ¹³**C NMR** (101 MHz, CDCl₃) δ = 166.7, 149.3, 145.5, 138.4, 137.6, 130.6, 129.9, 129.2, 128.6, 128.3, 127.4, 124.2,

123.6 ppm; **IR** (ATR): 3058, 1658, 1577, 1509, 1475, 1443, 1336, 1108, 1090, 951, 851, 741, 695, 637, 465, 433 cm⁻¹; **HRMS** calculated m/z for C₁₉H₁₅N₂O₂S⁺ [M+H]⁺: 335.0848, found 335.0851; **Mp**: 120–121 °C.

N-(Diphenylmethylene)-*S*-(naphthalen-2-yl)thiohydroxylamine (6c):

Using the GP3, compound **6c** was prepared from naphthalene-2-thiol (**7c**) (32.0 mg, 0.2 mmol, 1.00 equiv.), DIPEA (38.3 μ L, 28.4 mg, 0.22 mmol, 1.10 equiv.) and **3a** (154 mg, 0.3 mmol, 1.50 equiv.) in dry DCM. The reaction was carried out at RT for 1 h. After flash chromatography (hexane/EtOAc: 95/5) compound **6c** was obtained as

a white solid (36.5 mg, 54%). ¹**H NMR** (400 MHz, CDCl₃) $\delta = 8.07$ (s, 1H), 7.88-7.82 (m, 3H), 7.74-7.71 (m, 3H), 7.65 – 7.52 (m, 3H), 7.52 – 7.36 (m, 7H) ppm; ¹³**C NMR** (101 MHz, CDCl₃) $\delta = 164.5$, 138.9, 137.9, 137.4, 133.8, 132.1, 129.9, 129.5, 129.0, 128.6, 128.4, 128.0, 127.9, 127.6, 127.5, 126.6, 125.6, 123.5, 122.7 ppm; **IR** (ATR): 3053, 2924, 1624, 1588, 1500, 1442, 1314, 1294, 1132, 1073, 1028, 943, 851, 811, 775, 744, 694, 630, 472 cm⁻¹; **HRMS** calculated *m*/*z* for C₂₃H₁₈NS⁺ [M+H]⁺: 340.1155, found 340.1156; **Mp**: 118–119 °C.

N-(Diphenylmethylene)-*S*-(3-methoxyphenyl)thiohydroxylamine (6d):

Using the GP3, compound **6d** was prepared from 3-methoxybenzenethiol (**7d**) (24.8 μ L, 28.04 mg, 0.2 mmol, 1.00 equiv.), DIPEA (38.3 μ L, 28.4 mg, 0.22 mmol, 1.10 equiv.) and **3a** (154 mg, 0.3 mmol, 1.50 equiv.) in dry DCM. The reaction was carried out at RT for 1 h. After flash chromatography (hexane/EtOAc: 95/5) compound **6d** was obtained as a

white solid (36.3 mg, 57%). ¹**H NMR** (400 MHz, CDCl₃) $\delta = 7.70 - 7.60$ (m, 2H), 7.59 - 7.44 (m, 3H), 7.41 - 7.34 (m, 5H), 7.33 - 7.23 (m, 2H), 7.19 - 7.09 (m, 1H), 6.75 (ddd, J = 8.2, 2.6, 1.2 Hz, 1H), 3.85 (s, 3H) ppm; ¹³**C NMR** (101 MHz, CDCl₃) $\delta = 164.1, 160.2, 141.3, 138.9, 137.9, 129.9, 129.8, 129.5, 129.0, 128.4, 127.9, 127.5, 116.9, 111.9, 109.9, 55.5 ppm;$ **IR**(ATR): 3057, 2935, 2832, 1659, 1589, 1475, 1442, 1315, 1280, 1246, 1230, 1072, 1043, 951, 863, 773, 693, 634 cm⁻¹;**HRMS**calculated*m*/z for C₂₀H₁₈NOS⁺ [M+H]⁺: 320.1104, found 320.1098.**Mp**: 79–80 °C.

3-{[(Diphenylmethylene)amino]thio}benzoic Acid (6e):

Using the GP3, compound **6e** was prepared from 3-mercaptobenzoic acid (**7e**) (30.83 mg, 0.2 mmol, 1.00 equiv.), DIPEA (38.3 μ L, 28.4 mg, 0.22 mmol, 1.10 equiv.) and **3a** (154 mg, 0.3 mmol, 1.50 equiv.) in dry DCM. The reaction was carried out at RT for 1 h. After flash chromatography (hexane/EtOAc: 9/1) compound **6e** was obtained as a white solid (38.6 mg,

58%). ¹**H** NMR (400 MHz, CDCl₃) δ = 8.36 – 8.32 (m, 1H), 7.94 (ddd, *J* = 7.8, 1.7, 1.2 Hz, 1H), 7.89 (ddd, *J* = 8.0, 1.9, 1.1 Hz, 1H), 7.71 – 7.65 (m, 2H), 7.61 – 7.46 (m, 4H), 7.44 – 7.35 (m, 5H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 171.3, 165.1, 141.0, 138.7, 137.9, 130.1, 130.0, 129.8, 129.6, 129.1, 128.5, 128.1, 127.7, 127.5, 126.4 ppm; **IR** (ATR): 3061, 2925, 2854, 1710, 1659, 1598, 1577, 1446, 1358, 1318, 1277, 1221, 942, 763, 701, 639, 530 cm⁻¹; **HRMS** calculated *m/z* for C₂₀H₁₆NO₂S⁺ [M+H]⁺: 334.0896, found 334.0898; **Mp**: 159–160 °C.

N-(4-{[(Diphenylmethylene)amino]thio}phenyl)acetamide (6f):

Using the GP3, compound **6f** was prepared from *N*-(4-mercaptophenyl)acetamide (**7f**) (33.4 mg, 0.2 mmol, 1.00 equiv.), DIPEA (38.3 μ L, 28.4 mg, 0.22 mmol, 1.10 equiv.) and **3a** (154 mg, 0.3 mmol, 1.50 equiv.) in dry DCM. The reaction was carried out at RT for 1 h. After flash chromatography (hexane/EtOAc: 6/4) compound **6f** was obtained as a white solid (49.1 mg, 71%). ¹H

NMR (400 MHz, CDCl₃) δ = 7.63 (d, *J* = 8.1 Hz, 2H), 7.58 – 7.47 (m, 7H), 7.39 – 7.35 (m, 5H), 2.19 (s, 3H) ppm; ¹³C **NMR** (101 MHz, CDCl₃) δ = 168.3, 164.12, 138.9, 137.9, 136.3, 135.2, 129.8, 129.5, 129.0, 128.4, 127.9, 127.5, 126.1, 120.4, 24.8 ppm; **IR** (ATR): 3296, 3055, 1662, 1594, 1529, 1491, 1443, 1396, 1314, 1258, 1157, 1014, 825, 756, 695, 508, 480 cm⁻¹; **HRMS** calculated *m*/*z* for C₂₁H₁₉N₂OS⁺ [M+H]⁺: 347.1213, found 347.1207; **Mp**: 169–170 °C.

N-(Diphenylmethylene)-*S*-(1-phenyl-1*H*-imidazol-2-yl)thiohydroxylamine (6g):

Using the GP3, compound **6g** was prepared from 1-phenyl-1*H*-imidazole-2thiol (**7g**) (35.2 mg, 0.2 mmol, 1.00 equiv.), DIPEA (38.3 μ L, 28.4 mg, 0.22 mmol, 1.10 equiv.) and **3a** (154 mg, 0.3 mmol, 1.50 equiv.) in dry DCM. The reaction was carried out at RT for 1 h. After flash chromatography (hexane/EtOAc: 9/1) compound **6g** was obtained as a light yellow solid (37.6

mg, 53%). ¹**H** NMR (400 MHz, CDCl₃) $\delta = 7.51 - 7.41$ (m, 6H), 7.44 - 7.38 (m, 2H), 7.35-7.31 (m, 5H), 7.28 - 7.24 (m, 2H), 7.23 - 7.18 (m, 2H) ppm; ¹³C NMR (101 MHz, CDCl₃) $\delta = 165.7$, 142.1, 138.5, 138.1, 136.9, 130.4, 129.9, 129.5, 129.1, 128.9, 128.4, 128.1, 127.9, 127.5, 126.3, 124.3 ppm; **IR** (ATR): 3057, 1657, 1596, 1499, 1428, 1303, 1277, 1121, 1074, 951, 917, 761, 695, 638, 508, 475 cm⁻¹; **HRMS** calculated *m*/*z* for C₂₂H₁₈N₃S⁺ [M+H]⁺: 356.1216, found (ESI) 356.1226; **Mp**: 146–147 °C.

N-(Diphenylmethylene)-*S*-(thiophen-2-yl)thiohydroxylamine (6h):

Using the GP3, compound **6h** was prepared from thiophene-2-thiol (**7h**) (18.23 μ L, 23.2 mg, 0.2 mmol, 1.00 equiv.), DIPEA (38.3 μ L, 28.4 mg, 0.22 mmol, 1.10 equiv.) and **3a** (154 mg, 0.3 mmol, 1.50 equiv.) in dry DCM. The reaction was carried out at RT for 1 h. After flash chromatography

(hexane/EtOAc: 9/1) compound **6h** was obtained as a white solid (35.4 mg, 60%). ¹**H** NMR (400 MHz, CDCl₃) δ = 7.62 – 7.49 (m, 5H), 7.47 (dd, *J* = 5.3, 1.3 Hz, 1H), 7.41 – 7.30 (m, 5H), 7.14 (dd, *J* = 3.6, 1.1 Hz, 1H), 7.03 (dd, *J* = 5.2, 3.6 Hz, 1H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ = 164.4, 139.1, 138.6, 137.4, 129.9, 129.6, 129.2, 129.0, 128.7, 128.3, 128.0, 127.6, 127.5 ppm; **IR** (ATR): 3058, 1656, 1597, 1548, 1489, 1444, 1403, 1317, 1277, 1162, 1026, 942, 848, 777, 695, 638, 593, 530, 458 cm⁻¹; **HRMS** calculated *m*/*z* for C₁₇H₁₄NS₂⁺ [M+H]⁺: 296.0562, found 296.0560. **Mp**: 101–102 °C.

S-(Benzo[d]thiazol-2-yl)-N-(diphenylmethylene)thiohydroxylamine (6i):

Using the GP3, compound **6i** was prepared from 2mercaptobenzothiazole (**7i**) (33.4 mg, 0.2 mmol, 1.00 equiv.), DIPEA (38.3 μ L, 28.4 mg, 0.22 mmol, 1.10 equiv.) and **3a** (154 mg, 0.3 mmol, 1.50 equiv.) in dry DCM. The reaction was carried out at RT for 1 h. After flash chromatography (hexane/EtOAc: 9/1) compound **6i** was

obtained as a white solid (40.8 mg, 59%). ¹**H NMR** (400 MHz, CDCl₃) $\delta = 7.91 - 7.83$ (m, 2H), 7.74 (dd, J = 8.1, 1.7 Hz, 2H), 7.56 (dd, J = 5.2, 1.9 Hz, 3H), 7.42 (m, 6H), 7.35 - 7.28 (m, 1H) ppm; ¹³**C NMR** (101 MHz, CDCl₃) $\delta = 174.0, 167.5, 154.4, 138.1, 136.9, 135.1, 130.8, 130.2, 129.2, 128.6, 128.5, 127.4, 126.1, 123.9, 122.0, 121.1 ppm;$ **IR**(ATR): 3056, 1657, 1550, 1444, 1378, 1316, 1297, 1195, 1176, 1073, 950, 773, 696, 636, 495 cm⁻¹;**HRMS**calculated <math>m/z for C₂₀H₁₄N₂S₂⁺ [M]⁺: 346.0598, found (EI) 346.0600; **Mp**: 161–162 °C.

S-(Benzo[d]oxazol-2-yl)-N-(diphenylmethylene)thiohydroxylamine (6j):

Using the GP3, compound **6j** was prepared from 2-mercaptobenzoxazole (**7j**) (30.2 mg, 0.2 mmol, 1.00 equiv.), DIPEA (38.3 μ L, 28.4 mg, 0.22 mmol, 1.10 equiv.) and **3a** (154 mg, 0.3 mmol, 1.50 equiv.) in dry DCM. The reaction was carried out at RT for 1 h. After flash chromatography (hexane/EtOAc: 9/1) compound **6j** was obtained as a white solid (40.3

mg, 61%). ¹**H** NMR (400 MHz, CDCl₃) δ = 7.74 – 7.67 (m, 3H), 7.60 – 7.51 (m, 4H), 7.50 – 7.36 (m, 5H), 7.35 – 7.28 (m, 2H) ppm; ¹³**C** NMR (101 MHz, CDCl₃) δ = 169.1, 164.1, 151.9, 142.1, 138.2, 136.8, 130.8, 130.2, 129.3, 128.5, 128.5, 127.3, 124.6, 124.5, 119.5, 110.5 ppm; **IR** (ATR): 3058, 1657, 1496, 1450, 1317, 1277, 1239, 1131, 1095, 1000, 920, 805, 744, 697, 638, 428 cm⁻¹; **HRMS** calculated *m*/*z* for C₂₀H₁₅N₂OS⁺ [M+H]⁺: 331.0900, found (ESI) 331.0904; **Mp**: 106–107 °C.

N-(Diphenylmethylene)-*S*-(1-methyl-1*H*-benzo[*d*]imidazol-2-yl)thiohydroxylamine (6k):

Using the GP3, compound **6k** was prepared from 1-methyl-1*H*-benzimidazole-2-thiol (**7k**) (32.8 mg, 0.2 mmol, 1.00 equiv.), DIPEA (38.3 μ L, 28.4 mg, 0.22 mmol, 1.10 equiv.) and **3a** (154 mg, 0.3 mmol, 1.50 equiv.) in dry DCM. The reaction was carried out at RT for 1 h. After flash

chromatography (hexane/EtOAc: 9/1) compound **6k** was obtained as a white solid (39.1 mg, 57%). ¹**H NMR** (400 MHz, CDCl₃) δ = 7.80 (d, *J* = 7.2 Hz, 1H), 7.61 – 7.52 (m, 5H), 7.45 – 7.37 (m, 4H), 7.35 – 7.28 (m, 4H), 3.96 (s, 3H) ppm; ¹³**C NMR** (101 MHz, CDCl₃) δ = 167.2, 150.1, 143.1, 138.3, 136.9, 136.9, 130.3, 129.9, 129.2, 128.4, 128.0, 127.4, 123.5, 122.6, 120.3, 109.6, 31.5 ppm; **IR** (ATR): 3058, 1551, 1444, 1414, 1328, 1278, 1153, 952, 816, 744, 696, 634, 503, 474 cm⁻¹; **HRMS** calculated *m*/*z* for C₂₁H₁₈N₃S⁺ [M+H]⁺: 344.1216, found (ESI) 344.1219; **Mp**: 129–130 °C.

N-(Diphenylmethylene)-*S*-(pyrimidin-2-yl)thiohydroxylamine (6l):

Using the GP3, compound **61** was prepared from pyrimidine-2-thiol (**71**) (22.4 mg, 0.2 mmol, 1.00 equiv.), DIPEA (38.3 μ L, 28.4 mg, 0.22 mmol, 1.10 equiv.) and **3a** (154 mg, 0.3 mmol, 1.50 equiv.) in dry DCM. The reaction was carried out at RT for 1 h. After flash chromatography (hexane/EtOAc: 9/1) compound **61** was obtained as a light yellow solid

(34.3 mg, 59%). ¹**H** NMR (400 MHz, CDCl₃) $\delta = 8.67$ (d, J = 4.8 Hz, 2H), 7.76 – 7.68 (m, 2H), 7.54–7.50 (m, 3H), 7.43–7.31 (m, 5H), 7.05 (t, J = 4.8 Hz, 1H) ppm; ¹³**C** NMR (101 MHz, CDCl₃) $\delta = 172.6$, 167.1, 157.9, 138.8, 137.6, 130.4, 129.7, 129.1, 128.5, 128.4, 127.5, 117.4 ppm; **IR** (ATR): 3056, 1657, 1549, 1443, 1378, 1315, 1195, 1176, 950, 773, 696, 636, 496, 441 cm⁻¹; HRMS calculated *m*/*z* for C₁₇H₁₄N₃S⁺ [M+H]⁺: 292.0903, found (ESI) 292.0904; **Mp**: 161–162 °C.

N-(Diphenylmethylene)-*S*-(4-methoxybenzyl)thiohydroxylamine (6m):

Using the GP3, compound **6m** was prepared from (4methoxyphenyl)methanethiol (**7m**) (27.8 μ L, 30.8 mg, 0.2 mmol, 1.00 equiv.), DIPEA (38.3 μ L, 28.4 mg, 0.22 mmol, 1.10 equiv.) and **3a** (154 mg, 0.3 mmol, 1.50 equiv.) in dry DCM. The reaction was

carried out at RT for 1 h. After flash chromatography (hexane/EtOAc: 9/1) compound **6m** was obtained as a white solid (38.0 mg, 57%). ¹H NMR (400 MHz, CDCl₃) δ = 7.53 (d, *J* = 2.1 Hz, 2H), 7.49 – 7.39 (m, 3H), 7.37 – 7.27 (m, 7H), 6.86 (d, *J* = 8.7 Hz, 2H), 4.33 (s, 2H), 3.79 (s, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ = 163.2, 158.9, 139.1, 137.8, 130.6, 129.7, 129.4, 129.1, 128.8, 128.2, 127.7, 127.6, 114.0, 55.4, 43.9 ppm; **IR** (ATR): 2926, 1610, 1510, 1442, 1299, 1248, 1176, 1033, 951, 833, 757, 695, 631, 551, 491 cm⁻¹; **HRMS** calculated *m*/*z* for C₂₁H₂₀NOS⁺ [M+H]⁺: 334.1260, found 334.1266; **Mp**: 122-123 °C.

S-Benzoyl-N-(diphenylmethylene)thiohydroxylamine (6n):

Using the GP3, compound **6n** was prepared from thiobenzoic acid (**7n**) (23.4 μ L, 27.6 mg, 0.2 mmol, 1.00 equiv.), DIPEA (38.3 μ L, 28.4 mg, 0.22 mmol, 1.10 equiv.) and **3a** (154 mg, 0.3 mmol, 1.50 equiv.) in dry DCM. The reaction was carried out at RT for 1 h. After flash chromatography (hexane/EtOAc: 9/1) compound **6n** was obtained as a

white solid (27.2 mg, 43%). ¹**H NMR** (400 MHz, CDCl₃) δ = 7.88 (d, *J* = 8.7 Hz, 2H), 7.77 (d, *J* = 7.0 Hz, 2H), 7.58 – 7.51 (m, 4H), 7.47 – 7.35 (m, 5H), 7.35 – 7.28 (m, 2H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ = 188.9, 169.6, 138.5, 138.1, 136.2, 133.7, 130.9, 129.8, 129.0, 128.9, 128.9, 128.4, 127.3, 127.2 ppm; **IR** (ATR): 3059, 1685, 1555, 1445, 1293, 1206, 1176, 898, 773, 688, 646, 457, 441 cm⁻¹; **HRMS** calculated *m*/*z* for C₂₀H₁₆NOS⁺ [M+H]⁺: 318.0947, found 318.0953.

Methyl 2-{[(Diphenylmethylene)amino]thio}acetate (60):

Using the GP3, compound **60** was prepared from methyl 2mercaptoacetate (**70**) (18.2 μ L, 21.2 mg, 0.2 mmol, 1.00 equiv.), DIPEA (38.3 μ L, 28.4 mg, 0.22 mmol, 1.10 equiv.) and **3a** (154 mg, 0.3 mmol, 1.50 equiv.) in dry DCM. The reaction was carried out at RT for 1 h. After

flash chromatography ((hexane/EtOAc: 9/1) compound **60** was obtained as a colorless oil (8.5 mg, 15%). ¹**H NMR** (400 MHz, CDCl₃) δ = 7.60 – 7.41 (m, 5H), 7.37 – 7.29 (m, 5H), 3.91 (s, 2H), 3.79 (s, 3H) ppm; ¹³**C NMR** (101 MHz, CDCl₃) δ = 170.3, 164.6, 138.7, 137.4, 129.7, 129.4, 128.9, 128.3, 127.8, 127.6, 52.7, 41.9 ppm; **IR** (ATR): 3053, 1658, 1446, 1277, 1155, 700, 757, 639, 477, 428 cm⁻¹; **HRMS** calculated *m*/*z* for C₁₆H₁₆NO₂S⁺ [M+H]⁺: 286.0896, found 286.0894.

Methyl N-(tert-Butoxycarbonyl)-S-[(diphenylmethylene)amino]-L-cysteinate (6p):

Using the GP3, compound **6p** was prepared from methyl (*tert*-butoxycarbonyl)-*L*-cysteinate (**7p**) (47.0 mg, 0.2 mmol, 1.00 equiv.), DIPEA (38.3 μ L, 28.4 mg, 0.22 mmol, 1.10 equiv.) and **3a** (154 mg, 0.3 mmol, 1.50 equiv.) in dry DCM. The reaction was carried out at RT

for 1 h. After flash chromatography (hexane/EtOAc: 9/1) compound **6p** was obtained as a colorless dense oil (43.1 mg, 52%). ¹H NMR (400 MHz, CDCl₃) δ = 7.56 – 7.42 (m, 5H), 7.40 – 7.27 (m, 5H), 6.06 (d, *J* = 8.2 Hz, 1H), 4.79 (dt, *J* = 8.9, 4.8 Hz, 1H), 3.73 (s, 3H), 3.55 – 3.38 (m, 2H), 1.46 (s, 9H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ = 171.5, 165.3, 155.5, 138.7, 137.4, 129.8, 129.4, 128.9, 128.3, 127.8, 127.5, 79.9, 54.5, 52.6, 40.6, 28.5 ppm; **IR** (ATR): 3363, 2977, 1747, 1714, 1658, 1598, 1505, 1447, 1318, 1277, 1164, 942, 919, 810, 764, 701, 639, 508, 456 cm⁻¹; **HRMS** calculated *m*/*z* for C₂₂H₂₇N₂O₄S⁺ [M+H]⁺: 415.1686, found 415.1677.

2.5 General Procedure (GP4) for the transfer-reaction with sodium sulfinate salts.

Dry DMF (0.1 M) was added to the mixture of dibenzothiophenium salt 3a (1.0 equiv) and respective sodium sulfinate salt (1.50 equiv.) at room temperature. The reaction was stirred for 1 h at the same temperature. After quenching reaction with water (8 mL), the reaction mixture was extracted with ethyl acetate ($3 \times 10 \text{ mL}$), the combined organic layers were dried over MgSO₄ and the solvents were removed in vacuo. The crude products were purified by column chromatography.

N-(Diphenylmethylene)benzenesulfonamide (9a):

Using the GP4, compound **9a** was prepared from sodium benzenesulfinate (8a) (49.2 mg, 0.3 mmol, 1.5 equiv.) and 3a (102.7 mg, 0.2 mmol, 1.00 equiv.) in dry DMF. After flash chromatography (hexane/EtOAc: 9/1) compound 9a was obtained as a colorless oil (39.7 mg, 62%). ¹H NMR (400 MHz, CDCl₃) $\delta = 7.99 - 7.91$ (m, 2H), 7.64 - 7.34 (m, 13H) ppm; ¹³C NMR (101 MHz, $CDCl_3$) $\delta = 179.3, 141.6, 132.7, 132.5, 130.2, 128.9, 128.4, 128.3, 127.4 ppm; four signals more$ at ca. 130 ppm are close to their coalescence temperature and broadened;^[7b] **IR** (ATR): 3343, 3253, 1656, 1597, 1446, 1317, 1276, 1159, 1090, 941, 755, 698, 638, 593, 537 cm⁻¹; **HRMS** calculated

N-(Diphenylmethylene)-4-methylbenzenesulfonamide (9b):

m/z for C₁₉H₁₆NO₂S⁺ [M+H]⁺: 322.0896, found 322.0895.

Using the GP4, compound **9b** was prepared from sodium 4-methylbenzenesulfinate (**8b**) (53.4 mg, 0.3 mmol, 1.5 equiv.) and 3a (102.7 mg, 0.2 mmol, 1.00 equiv.) in dry DMF. After flash chromatography (hexane/EtOAc: 9/1) compound 9b was obtained as a white solid (44.7 mg, 67%). ¹**H NMR** (400 MHz, CDCl₃) δ = 7.83 (d, J = 8.4 Hz, 2H), 7.62 – 7.36 (m, 10H), 7.29 (d, J = 8.0 Hz, 2H), 2.43 (s, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) $\delta = 178.9$, 143.5, 138.7, 132.5, 130.2, 129.5, 128.4, 128.3, 127.5, 21.7 ppm; four signals more at ca. 130 ppm are close to their coalescence temperature and broadened;^[7b] **IR** (ATR): 3356, 3261, 1657, 1597, 1557, 1446, 1304, 1277, 1158, 1092, 918, 814, 764, 700, 638, 576, 555, 537, 411 cm⁻¹; **HRMS** calculated m/z for C₂₀H₁₈NO₂S⁺ [M+H]⁺: 336.1053, found 336.1052; **Mp**: 105–106 °C. The spectroscopic data are in agreement with those previously reported.^[2]

N-(Diphenylmethylene)-4-methoxybenzenesulfonamide (9c):

Using the GP4, compound **9c** was prepared from sodium 4methoxybenzenesulfinate (**8c**) (58.2 mg, 0.3 mmol, 1.5 equiv.) and **3a** (102.7 mg, 0.2 mmol, 1.00 equiv.) in dry DMF. After flash chromatography (hexane/EtOAc: 9/1) compound **9c** was obtained as a

white solid (49.7 mg, 71%). ¹**H NMR** (400 MHz, CDCl₃) δ = 7.86 (d, *J* = 9.0 Hz, 2H), 7.53 (m, 5H), 7.43 (m, 5H), 6.95 (d, *J* = 8.9 Hz, 2H), 3.87 (s, 3H) ppm; ¹³**C NMR** (101 MHz, CDCl₃) δ = 178.5, 162.9, 138.5, 133.2, 130.0, 129.6, 128.4, 128.2, 114.1, 55.7 ppm; four signals more at ca. 130 ppm are close to their coalescence temperature and broadened;^[7b]**IR** (ATR): 3264, 3061, 2840, 1656, 1593, 1556, 1497, 1445, 1318, 1258, 1148, 1090, 1025, 946, 816, 699, 639, 577, 561, 449 cm⁻¹; **HRMS** calculated *m*/*z* for C₂₀H₁₈NO₃S⁺ [M+H]⁺: 352.1002, found 352.0990. **Mp**: 109–110 °C.

N-(Diphenylmethylene)-4-fluorobenzenesulfonam (9d):

Using the GP4, compound **9d** was prepared from sodium 4-fluorobenzenesulfinate (**8d**) (54.6 mg, 0.3 mmol, 1.5 equiv.) and **3a** (102.7 mg, 0.2 mmol, 1.00 equiv.) in dry DMF. After flash chromatography (hexane/EtOAc: 9/1) compound **9d** was obtained as a white solid (37.9 mg, 56%). ¹H NMR (400 MHz, CDCl₃) $\delta = 7.99$ –

7.90 (m, 2H), 7.60 – 7.38 (m, 10H), 7.20 – 7.13 (m, 2H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ = 179.5, 165.2 (d, *J* = 254.6 Hz), 137.6 (d, *J* = 3.2 Hz), 132.6, 130.2 (d, *J* = 9.3 Hz), 130.1, 128.4, 128.3, 116.11 (d, *J* = 22.5 Hz) ppm; three signals more at ca. 130 ppm are close to their coalescence temperature and broadened;^{[7b] 19}F NMR (377 MHz, CDCl₃) δ = -105.53 (ddd, *J* = 13.5, 8.7, 5.1 Hz) ppm; **IR** (ATR): 3261, 3059, 1655, 1591, 1556, 1494, 1447, 1320, 1291, 1237, 1154, 1091, 919, 836, 702, 554, 426 cm⁻¹; **HRMS** calculated *m*/*z* for C₁₉H₁₅FNO₂S⁺ [M+H]⁺: 340.0802, found 340.0799. **Mp**: 112–113 °C.

4-Bromo-*N***-(diphenylmethylene)benzenesulfonamide (9e)**:

Using the GP4, compound **9e** was prepared from sodium 4bromobenzenesulfinate (**8e**) (72.9 mg, 0.3 mmol, 1.5 equiv.) and **3a** (102.7 mg, 0.2 mmol, 1.00 equiv.) in dry DMF. The reaction was carried out at RT for 1 h. After flash chromatography (hexane/EtOAc: 9/1) compound **9e** was obtained as a white solid (43.1 mg, 54%). ¹H

NMR (400 MHz, CDCl₃) $\delta = 7.83 - 7.79$ (m, 2H), 7.66 - 7.61 (m, 2H), 7.60 - 7.39 (m, 10H) ppm; ¹³C **NMR** (101 MHz, CDCl₃) $\delta = 179.7$, 140.6, 132.5, 132.2, 130.2, 129.0, 128.4, 128.4, 127.7 ppm; four signals more at ca. 130 ppm are close to their coalescence temperature and broadened;^[7b] **IR** (ATR): 3263, 3061, 1656, 1554, 1446, 1388, 1319, 1277, 1154, 1087, 1067, 1010, 817, 739, 700, 660, 593, 572 cm⁻¹; **HRMS** calculated *m*/*z* for C₁₉H₁₅BrNO₂S⁺ [M+H]⁺: 400.0001, found 399.9992. **Mp**: 117–118 °C.

N-(Diphenylmethylene)naphthalene-2-sulfonamide (9f):

Using the GP4, compound **9f** was prepared from sodium naphthalene-2-sulfinate (**8f**) (64.2 mg, 0.3 mmol, 1.5 equiv.) and **3a** (102.7 mg, 0.2 mmol, 1.00 equiv.) in dry DMF. After flash chromatography (hexane/EtOAc: 9/1) compound **9f** was obtained as a white solid (49.7

mg, 71%). (51.1 mg, 69%). ¹**H NMR** (400 MHz, CDCl₃) $\delta = 8.43$ (s, 1H), 8.02 – 7.95 (m, 2H), 7.95 – 7.88 (m, 2H), 7.67 – 7.49 (m, 8H), 7.43 – 7.39 (m, 4H) ppm; ¹³**C NMR** (101 MHz, CDCl₃) $\delta = 179.2$, 138.3, 134.9, 132.5, 132.2, 130.2, 129.5, 129.2, 128.9, 128.6, 128.4, 128.3, 127.9, 127.4, 123.1 ppm; two signals more at ca. 130 ppm are close to their coalescence temperature and broadened;^[7b]**IR** (ATR): 3341, 3248, 3059, 1657, 1587, 1555, 1446, 1318, 1277, 1153, 1130, 1075, 946, 861, 810, 751, 701, 638, 551, 485 cm⁻¹; **HRMS** calculated *m*/*z* for C₂₃H₁₇NNaO₂S⁺ [M+Na]⁺: 394.0872, found 394.0875; **Mp**: 114–115 °C.

N-(Diphenylmethylene)thiophene-2-sulfonamide (9g):

Using the GP4, compound **9g** was prepared from sodium thiophene-2-sulfinate (**8g**) (51.0 mg, 0.3 mmol, 1.5 equiv.) and **3a** (102.7 mg, 0.2 mmol, 1.00 equiv.) in dry DMF. After flash chromatography (hexane/EtOAc: 9/1) compound **9g** was obtained as a white solid (42.4 mg, 65%). ¹H NMR (400 MHz, CDCl₃) δ = 7.69 – 7.51 (m, 8H), 7.47 – 7.43 (m, 4H), 7.05 (dd, *J* = 5.0,

3.8 Hz, 1H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ = 179.1, 142.5, 132.5, 128.4, 127.1 ppm; **IR** (ATR): 3269, 3100, 1655, 1586, 1555, 1446, 1404, 1318, 1278, 1149, 1090, 1017, 855, 814, 703,

579, 531, 476 cm⁻¹; **HRMS** calculated *m*/*z* for C₁₇H₁₄NO₂S₂⁺ [M+H]⁺: 328.0461, found 328.0447; **Mp**: 157–158 °C.

2.6 General Procedures (GP5) for the synthesis of hydrazones 12 from aldehydes

A mixture of respective hydrazine (2.4 mmol), aldehyde (2.0 mmol) and anhydrous MgSO₄ (0.5 g) in CH_2Cl_2 (10 mL) was stirred overnight at room temperature. After filtration from MgSO₄, CH_2Cl_2 was removed under reduced pressure, and the residue was purified by column chromatography to give the desired product in almost quantitative yields.^[3]

(1E,2E)-3-(4-methoxyphenyl)-N-morpholinoprop-2-en-1-imine (12b). ¹H NMR (400 MHz,

CDCl₃) δ 7.47 (d, J = 8.7 Hz, 1H), 7.37 (d, J = 8.7 Hz, 2H), 6.87 (d, J = 8.6 Hz, 2H), 6.81 (dd, J = 15.9, 8.7 Hz, 1H), 6.66 (d, J = 16.0 Hz, 1H), 3.89 – 3.83 (m, 4H), 3.81 (s, 3H), 3.13 – 3.06 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 159.7, 139.6, 134.7, 129.7, 127.9, 124.9, 114.3, 66.5, 55.4, 52.1. **IR** (ATR): 2970, 2832, 1603,

1576, 1508, 1457, 1439, 1367, 1354, 1323, 1299, 1272, 1254, 1173, 1158, 1132, 1093, 1065, 1021, 995, 932, 907, 868, 857, 849, 784, 763, 673, 592, 543, 526, 499, 434 cm⁻¹; **HRMS** calculated m/z for C₁₄H₁₉N₂O₂⁺ [M+H]⁺: 247.1441, found 247.1444.

(1E,2E)-3-(4-methoxyphenyl)-N-(piperidin-1-yl)prop-2-en-1-imine (12c). ¹H NMR (400) $MHz, CDCl₃) \delta 7.43 (d, J = 8.8 Hz, 1H), 7.35 (d, J = 8.7 Hz, 2H),$ 6.86 (d, J = 6.7 Hz, 2H), 6.82 (dd, J = 14.9, 7.7 Hz, 1H), 6.60 (d,J = 15.9 Hz, 1H), 3.81 (s, 3H), 3.17 - 3.01 (m, 4H), 1.80 - 1.66 $(m, 4H), 1.60 - 1.46 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) \delta$ 159.5, 138.1, 133.1, 130.1, 127.8, 125.7, 114.3, 55.4, 52.3, 25.2,

24.2. **IR** (ATR): 2943, 2851, 2840, 2790, 1603, 1574, 1561, 1456, 1441, 1422, 1372, 1351, 1304, 1265, 1198, 1174, 1153, 1123, 1109, 989, 917, 900, 850, 826, 777, 756, 632, 581, 497, 433 cm⁻¹; **HRMS** calculated *m*/*z* for C₁₅H₂₁N₂O⁺ [M+H]⁺: 245.1648, found 245.1655.

2.7 General Procedure (GP6) for the imination of aldehyde hydrazones 12

A 10-mL Schlenk tube was equipped with a magnetic stir bar and charged with hydrazone **12** (0.1 mmol, 1.0 equiv.), **3a** (0.2 mmol, 2.0 equiv.), photocatalyst (2–5 mol%) and base (2.0 equiv, 0.2 mmol). The flask was evacuated and backfilled with N₂ for 3 times. Dry DCM (2.0 mL) was added with syringe under N₂. The tube was then irradiated by a 28W blue LED with TLC monitoring. After the reaction was complete, the reaction mixture was concentrated under vacuum to remove DCM. The residue was then purified by chromatography on silica gel (EtOAc : hexane = 3:7) to afford **13**.

(Z)-N-(Diphenylmethylene)-4-methoxy-N'-morpholinobenzimidamide (13a) was prepared

according to the GP6 from **12a** (22.0 mg, 0.1 mmol, 1 equiv.) and **3a** (102.7 mg, 0.2 mmol, 2 equiv.) using [Ru(bpy)₃]Cl₂ (3.2 mg, 5 µmol, 5 mol%) and K₂CO₃ (27.6 mg, 0.2 mmol, 2 equiv.) (RT/16 h). After flash chromatography (hexane/EtOAc: 7/3) compound **13a** was obtained as a yellow solid (25.5 mg, 64%). ¹**H NMR** (400 MHz, CDCl₃) δ = 7.66

(d, J = 8.9 Hz, 2H), 7.57 – 7.40 (m, 6H), 7.34 (t, J = 7.0 Hz, 4H), 6.82 (d, J = 8.9 Hz, 2H), 3.80 (s, 3H), 3.67 (t, J = 4.7 Hz, 4H), 2.73 (br, 4H) ppm; ¹³C NMR (101 MHz, CDCl₃) $\delta = 167.5$, 161.0, 159.9, 137.5, 130.4, 128.8, 128.4, 128.0, 127.9, 113.7, 66.8, 55.4, 53.9 ppm; **IR** (ATR): 2958, 2833, 1712, 1607, 1509, 1446, 1360, 1313, 1253, 1171, 1111, 1029, 978, 840, 698, 648, 620 cm⁻¹; **HRMS** calculated m/z for C₂₅H₂₆N₃O₂⁺ [M+H]⁺: 400.2020, found 400.2020; **Mp**: 144–145 °C.

(1Z,2E)-N-(Diphenylmethylene)-3-(4-methoxyphenyl)-N'-morpholinoacrylimidamide (13b)

was prepared according to the GP6 from **12b** (24.6 mg, 0.1 mmol, 1 equiv.) and **3a** (102.7 mg, 0.2 mmol, 2 equiv.) using $[Ru(bpy)_3]Cl_2$ (3.2 mg, 5 µmol, 5 mol%) and K₂CO₃ (27.6 mg, 0.2 mmol, 2 equiv.) (RT/16 h). After flash chromatography (hexane/EtOAc: 6/4) compound **13b** was obtained as a yellow solid

(26.1 mg, 61%). ¹**H** NMR (300 MHz, CDCl₃) δ 7.66 – 7.31 (m, 12H), 6.88 – 6.78 (m, 3H), 6.53 (d, *J* = 16.2 Hz, 1H), 3.80 (s, 3H), 3.67 (t, *J* = 4.7 Hz, 4H), 2.77 (br, 4H) ppm; ¹³**C** NMR (101 MHz, CDCl₃) δ 168.1, 161.2, 160.2, 137.4, 135.5, 130.4, 129.1, 128.6, 128.1, 127.9, 122.6, 114.3, 66.7, 55.5, 53.9 ppm; **IR** (ATR): 2957, 2832, 1738, 1604, 1574, 1509, 1445, 1246, 1174, 1111, 1029,

991, 960, 865, 824, 744, 697, 616 cm⁻¹; **HRMS** calculated *m*/*z* for C₂₇H₂₈N₃O₂⁺ [M+H]⁺: 426.2176, found 426.2177; **Mp**: 175–176 °C.

(1Z,2E)-N-(Diphenylmethylene)-3-(4-methoxyphenyl)-N'-(piperidin-1-yl)acrylimidamide

(13c) was prepared according to the GP6 from 12c (24.4 mg, 0.1 mmol, 1 equiv.) and 3a (102.7 mg, 0.2 mmol, 2 equiv.) using $Ir(ppy)_3$ (1.31 mg, 2 µmol, 2 mol%) and K_2CO_3 (27.6 mg, 0.2 mmol, 2 equiv.) (RT/16 h). After flash chromatography (hexane/EtOAc: 6/4) compound 13c was obtained as a yellow solid (28.9 mg, 68%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.59 – 7.35 (m, 12H), 6.86 – 6.82 (m, 3H), 6.54 (d, *J* = 16.2 Hz, 1H), 3.80 (s, 3H), 2.65 (br, 4H), 1.55 – 1.549 (m, 4H), 1.39 – 1.33 (m, 2H) ppm; ¹³**C NMR** (101 MHz, CDCl₃) δ 168.1, 160.6, 160.1, 134.9, 132.5, 130.2, 129.3, 128.5, 128.4, 128.0, 123.2, 114.2, 55.5, 54.6, 25.7, 24.2 ppm; **IR** (ATR): 2932, 2804, 1604, 1509, 1445, 1246, 1173, 1106, 1032, 959, 823, 780, 743, 696, 620, 596 cm⁻¹; **HRMS** calculated *m*/*z* for C₂₈H₃₀N₃O⁺ [M+H]⁺: 424.2383, found 424.2385. **Mp**: 139–140 °C.

(Z)-N-(Diphenylmethylene)-4-methoxy-N',N'(dibenzyl)benzimidamide (13d): A mixture of

Ru(bpy)₃(PF₆)₂ (1.7 mg, 0.002 mmol, 1 mol%), KHCO₃ (60.1 mg, 0.6 mmol, 3.0 equiv.), **3a** (154.1 mg, 0.3 mmol, 1.5 equiv.) and **13d** (66.1 mg, 0.2 mmol, 1.0 equiv.) in PhCl (4 mL) was stirred at room temperature under blue light irradiation for 3 h. Column chromatography on silica gel (eluent: hexane to hexane/ethyl acetate = 10:1) afforded **14d** in 63% yield (64.2 mg) as a yellow oil. ¹**H** NMR (300 MHz, CDCl₃) δ

7.49 – 7.10 (m, 22H), 6.71 – 6.68 (m, 2H), 4.11 (bs, 4H), 3.72 (s, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 166.4, 160.4, 157.1, 139.4, 137.0(br), 130.3(br), 129.9, 129.0(br), 128.1, 128.0, 127.9, 126.8, 113.5, 59.4, 55.3 ppm; **IR** (ATR): 3027, 2835, 1605, 1589, 1509, 1494, 1445, 1313, 1248, 1166, 1062, 1026, 950, 914, 836, 768, 736, 694, 639, 624, 563, 507 cm⁻¹; **HRMS** calculated m/z for C₃₅H₃₂N₃O⁺ [M+H]⁺: 510.2540, found 510.2542.

2.9 General Procedure (GP7) for the benzylic C-H sulfoximination

Under a nitrogen atmosphere, a dry Schlenk tube was charged with sulfonium salt **1a** (0.2 mmol, 110 mg, 1 equiv.), $Ru(bpy)_3(PF_6)_2$ (1.72 mg, 2 µmol, 1 mol%), $NaHCO_3$ (50.4 mg, 0.6 mmol, 3

equiv.), 4Å MS (100 mg), benzylic compound **15** (1 mmol, 5 equiv.), and degassed MeCN (2 mL). The resulting orange suspension was irradiated by blue LED strips (12 W) and magnetically stirred (a rotary fan was positioned adjacent to the reaction tube, keeping that the reaction mixture setup at room temperature). After 15–16 hours, the reaction solution was concentrated, and the product was purified by column chromatography (SiO₂, EtOAc and pentane as eluent).

2.10 Preparation of substrates 15

The diarylmethanes **15b-k** were synthesized from corresponding diarylmethanone according to the reported method.^[4] The substrates **15v** and **15w**,^[5] **15ae**,^[6] **15ab** and **15ac**^[7] were prepared according to the reported procedures. The propargylic arenes **15ah-aj**^[8a] were obtained following the reported protocols. Other substrates were commercially available.

2.11 Characterization of products 16

(Benzhydrylimino)diphenyl- λ^6 -sulfanone (16a) was prepared from 1a and diphenylmethane (15a) as a white solid (67% yield). R_f = 0.3 (pentane/EtOAc, 4:1); ¹H NMR (400 MHz, CDCl₃) δ = 7.98 – 7.85 (m, 4H), 7.51 – 7.35 (m, 10H), 7.29 – 7.23 (m, 4H), 7.20 – 7.11 (m, 2H), 5.42 (s, 1H);. ¹³C NMR (101 MHz, CDCl₃) δ = 145.7, 140.90, 132.3, 128.9, 128.6,

128.1, 127.4, 126.4, 61.7 ppm; **IR** (neat): 3060, 2849, 1709, 1598, 1491, 1474, 1445, 1239, 1134, 1092, 1068, 1024, 999, 932, 840, 758, 739, 725, 690, 648, 608, 587, 553, 466 cm⁻¹; **HRMS** calculated m/z for C₂₅H₂₂NOS⁺ [M+H]⁺: 384.1417, found (ESI) 384.1418.

 $\{[(4-Methoxyphenyl)(phenyl)methyl]imino\}diphenyl-\lambda^6-sulfanone (16b)$ was prepared from 1a

and 1-benzyl-4-methoxybenzene (**15b**) as a pale-yellow oil (78% yield). $R_{\rm f} = 0.2$ (pentane/EtOAc, 6:1); ¹H NMR (400 MHz, CDCl₃) $\delta = 7.96 - 7.88$ (m, 4H), 7.50 - 7.42 (m, 2H), 7.42 - 7.36 (m, 6H), 7.32 - 7.22 (m, 4H), 7.19 - 7.12 (m, 1H), 6.84 - 6.63 (m, 2H), 5.38 (s, 1H), 3.75 (s, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) $\delta = 158.1$, 146.0, 141.02, 140.95, 138.1, 132.2, 128.90, 128.88, 128.7, 128.4, 128.0, 127.3, 126.3, 113.4, 61.1, 55.1 ppm; **IR** (neat): 1608, 1508, 1445, 1360, 1240, 1171, 1136,

1092, 1068, 1030, 999, 908,808, 784, 759, 725, 692, 629, 594, 574, 553, 529 cm⁻¹;**HRMS** calculated m/z for C₂₆H₂₄NO₂S⁺ [M+H]⁺: 414.1522, found (ESI) 414.1526.

$\{[(4-Chlorophenyl)(phenyl)methyl]imino\} diphenyl-\lambda^6-sulfanone$

(16c) was prepared from 1a and 1-benzyl-4-chlorobenzene (15c) as a white solid (65% yield). $R_f = 0.2$ (pentane/EtOAc, 8:1); ¹H NMR (600 MHz, CDCl₃) $\delta = 7.94 - 7.85$ (m, 4H), 7.50 - 7.44 (m, 2H), 7.43 - 7.37 (m, 4H), 7.36 - 7.33 (m, 2H), 7.33 - 7.29 (m, 2H), 7.27 - 7.23 (m, 2H), 7.21 - 7.13 (m, 3H), 5.37 (s, 1H) ppm; ¹³C NMR (151 MHz, CDCl₃)

δ = 145.3, 144.4, 140.8, 140.7, 132.4, 132.1, 129.00, 128.99, 128.8, 128.7, 128.6, 128.20, 128.18, 127.3, 126.6, 61.0 ppm. **IR** (neat): 3059, 1901, 1487, 1445, 1360, 1239, 1135, 1089, 1068, 1013, 998, 929, 800, 757, 727, 686, 624, 591, 554, 528 cm⁻¹; **HRMS** calculated *m*/*z* for C₂₅H₂₁ClNOS⁺ [M+H]⁺: 418.1027, found (ESI) 418.1030.

{[(4-Bromophenyl)(phenyl)methyl]imino}diphenyl-λ⁶-sulfanone (16d) was prepared from 1a and 1-benzyl-4-chlorobenzene (15d) as a white solid (66% yield). $R_{\rm f} = 0.2$ (pentane/EtOAc, 8:1); ¹H NMR (400 MHz, CDCl₃) δ = 8.00 – 7.86 (m, 4H), 7.56 – 7.34 (m, 10H), 7.33 – 7.26 (m, 4H), 7.25 – 7.17 (m, 1H), 5.39 (s, 1H) ppm; ¹³C NMR (101

MHz, CDCl₃) δ = 145.3, 145.0, 140.9, 140.7, 132.4, 131.2, 129.2, 129.0, 128.7, 128.6, 128.3, 127.3, 126.7, 120.3, 61.2 ppm; **IR** (neat): 3060, 1906,1710,1483, 1445, 1239, 1135, 1092, 1068, 1024, 1010, 928, 796, 756, 726, 687, 621, 590, 553, 480 cm⁻¹; **HRMS** calculated *m*/*z* for C₂₅H₂₁BrNOS⁺ [M+H]⁺: 462.0522, found (ESI) 462.0527.

Diphenyl{[phenyl(*o*-tolyl)methyl]imino}-λ⁶-sulfanone (16e) was prepared from 1a and 1-benzyl-2-methylbenzene (15e) as a white solid (58% yield). $R_{\rm f} = 0.3$ (pentane/EtOAc, 8:1); ¹H NMR (600 MHz, CDCl₃) δ = 8.02 - 7.96 (m, 2H), 7.85 - 7.80 (m, 2H), 7.77 (dd, J = 1.4, 7.8Hz, 1H), 7.51 - 7.37 (m, 4H), 7.36 - 7.30 (m, 4H), 7.23 - 7.17 (m, 3H), 7.14 - 7.08(m, 2H), 7.02 - 6.95 (m, 1H), 5.59 (s, 1H), 1.98 (s, 3H) ppm; ¹³C NMR

 $(151 \text{ MHz}, \text{CDCl}_3) \delta = 144.8, 143.4, 141.08, 141.05, 134.9, 132.3, 132.2, 130.1, 128.93, 128.87, 128.7, 128.5, 128.3, 128.0, 127.6, 126.5, 126.2, 125.9, 58.3, 19.5 ppm;$ **IR**(neat): 3060, 1812, 1600, 1490, 1445, 1359, 1238, 1134,1092, 1068, 1024, 998, 928, 839, 756,724, 687, 645, 611, 592, 559, 499 cm⁻¹;**HRMS**calculated*m*/*z*for C₂₆H₂₄NOS⁺ [M+H]⁺: 398.1573, found (ESI) 398.1577.

{[(2-Methoxyphenyl)(phenyl)methyl]imino}diphenyl-λ⁶-sulfanone

(16f) was prepared from 1a and 1-benzyl-2-methoxybenzene (15f) as a white solid (64% yield). $R_f = 0.2$ (pentane/EtOAc, 8:1); ¹H NMR (400 MHz, CDCl₃) $\delta = 8.02 - 7.95$ (m, 2H), 7.95 - 7.82 (m, 3H), 7.53 - 7.35 (m, 8H), 7.30 - 7.12 (m, 4H), 7.06 - 6.97 (m, 1H), 6.74 (dd, J = 1.1, 8.2Hz,

1H), 5.96 (s, 1H), 3.58 (s, 3H) ppm; ¹³**C NMR** (101 MHz, CDCl₃) δ = 155.7, 145.9, 141.4, 141.2, 134.6, 132.2, 132.0, 128.9, 128.77, 128.75, 128.7, 127.8, 127.5, 127.4, 126.0, 120.8, 110.3, 55.2, 54.2 ppm; **IR** (neat): 3198, 1711, 1599, 1488, 1445, 1237, 1137, 1105, 1068, 1048, 1026, 929, 787, 754, 725, 694, 592, 561, 540, 407 cm⁻¹; **HRMS** calculated *m*/*z* for C₂₆H₂₄NO₂S⁺ [M+H]⁺: 414.1522, found (ESI) 414.1523.

Diphenyl[(phenyl(*m***-tolyl)methyl)imino]-\lambda^{6}-sulfanone (16g)** was prepared from **1a** and 1-benzyl-3-methylbenzene (**15g**) as a paleyellow solid (61% yield). $R_{\rm f} = 0.3$ (pentane/EtOAc, 8:1); ¹H NMR (500 MHz, CDCl₃) $\delta = 7.94 - 7.88$ (m, 4H), 7.48 - 7.44 (m, 2H), 7.42 - 7.36 (m, 6H), 7.28 - 7.22 (m, 2H), 7.20 - 7.11 (m, 4H), 7.00 - 6.91

(m, 1H), 5.38 (s, 1H), 2.27 (s, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃) δ = 145.9, 145.6, 1401.0, 137.6, 132.32, 132.31, 129.0, 128.9, 128.8, 128.7, 128.2, 128.1, 128.0, 127.4, 127.2, 126.4, 124.5, 61.8, 21. ppm 5; **IR** (neat): 3060, 2921, 1811, 1604, 1490, 1445, 1240, 1133, 1092, 1068, 1024, 998, 928, 842, 757, 724, 687,623, 590, 564, 540, 503, 441 cm⁻¹; **HRMS** calculated *m*/*z* for C₂₆H₂₄NOS⁺ [M+H]⁺: 398.1573, found (ESI) 398.1576.

[(**Di**-*p*-tolylmethyl)imino]diphenyl-λ⁶-sulfanone (16h) was prepared from 1a and di-*p*-tolylmethane (15h) as a white solid (68% yield). $R_f = 0.4$ (pentane/EtOAc, 6:1); ¹H NMR (400 MHz, CDCl₃) δ = 7.97 – 7.89 (m, 4H), 7.51 – 7.43 (m, 2H), 7.43 – 7.36 (m, 4H), 7.31 – 7.26 (m, 4H), 7.10 – 7.03 (m, 4H), 5.35 (s, 1H), 2.30 (s, 6H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ = 143.1, 141.0, 135.7, 132.2, 128.9, 128.8, 128.7, 127.2, 61.3, 21.0 ppm; IR (neat): 2920, 1508, 1445, 1243, 1137, 1092, 1068, 1021, 922, 806, 774,

726, 691, 594, 563, 482 cm⁻¹; **HRMS** calculated m/z for C₂₇H₂₆NOS⁺ [M+H]⁺: 412.1730, found (ESI) 412.1731.

{[Bis(4-methoxyphenyl)methyl]imino}diphenyl-λ⁶-sulfanone (16i) was prepared from 1a and bis(4-methoxyphenyl)methane (15i) as a paleyellow solid (74% yield). R_f = 0.25 (pentane/EtOAc, 4:1); ¹H NMR (400 MHz, CDCl₃) δ = 7.96 (dt, J = 1.0, 7.6 Hz, 4H), 7.59 – 7.39 (m, 6H), 7.40 – 7.29 (m, 4H), 6.84 (d, J = 8.7 Hz, 4H), 5.39 (s, 1H), 3.80 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ = 158.1, 141.1, 138.5, 132.3, 129.0, 128.8, 128.4, 113.5, 60.6, 55.2 ppm; IR (neat): 2835, 1607,1508,1446, 1360,

1301, 1243, 1173, 1138, 1092, 1033, 812, 758, 728, 691,595, 555, 506 cm⁻¹; **HRMS** calculated m/z for C₂₇H₂₅NNaO₃S⁺ [M+Na]⁺: 466.1447, found (ESI) 466.1447.

{[**Bis(4-fluorophenyl)methyl]imino}diphenyl-\lambda^6-sulfanone** (16j) was prepared from 1a and bis(4-fluorophenyl)methane (15j) as a white solid (73% yield). $R_f = 0.2$ (pentane/EtOAc, 8:1); ¹H NMR (400 MHz, CDCl₃) $\delta = 7.96$ -7.79 (m, 4H), 7.56 -7.25 (m, 10H), 7.01 -6.82 (m, 4H), 5.38 (s, 1H) ppm; ¹³C NMR (101 MHz, CDCl₃) $\delta = 161.5$ (d, J = 245.4 Hz), 141.4 (d, J = 3.2Hz), 140.7, 132.4, 129.0, 128.8, 128.7, 128.5, 115.0, 114.7, 60.2 ppm; **IR** (neat): 3060, 2835, 1711, 1606, 1505, 1445, 1409, 1362, 1228, 1172, 1130,

1085, 1069, 1030, 980, 821, 781, 727, 688, 626, 593, 552, 531, 514 cm⁻¹; **HRMS** calculated m/z for C₂₅H₂₀F₂NOS⁺ [M+H]⁺: 420.1228, found (ESI) 420.1231.

{[Naphthalen-1-yl(phenyl)methyl]imino}diphenyl- λ^{6} -sulfanone (16k) was prepared from 1a and 1-benzylnaphthalene (15k) as a yellow oil (72% yield). $R_{\rm f} = 0.23$ (pentane/EtOAc, 8:1); ¹H NMR (400 MHz, CDCl₃) $\delta = 8.06 - 7.92$ (m, 4H), 7.89 - 7.74 (m, 4H), 7.62 - 7.55 (m, 1H), 7.55 - 7.43 (m, 8H), 7.43 - 7.37 (m, 2H), 7.35 - 7.27 (m, 2H), 7.27 - 7.19 (m, 1H),

5.65 (s, 1H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ = 145.6, 143.2, 141.03, 140.95, 133.4, 132.5, 132.41, 132.36, 129.04, 128.99, 128.77, 128.75, 128.2, 128.05, 127.98, 127.60, 127.57, 126.6, 126.3, 125.8, 125.6, 125.4, 61.9 ppm; **IR** (neat): 3059, 1709, 1446, 1360, 1220, 1136, 1092, 1068, 1023, 999, 918,815, 724, 692, 619, 593, 553,528, 477 cm⁻¹; **HRMS** calculated *m*/*z* for C₂₉H₂₄NOS⁺ [M+H]⁺: 434.1573, found (ESI) 434.1576.

Diphenyl(tritylimino)- λ^6 -sulfanone (16l) was prepared from 1a and triphenylmethane (15l) as a white solid (80% yield). $R_f = 0.3$ (pentane/EtOAc, 8:1); ¹H NMR (400 MHz, CDCl₃) $\delta = 7.82$ (dd, J = 1.9, 7.3Hz, 4H), 7.66 – 7.55 (m, 6H), 7.41 – 7.26 (m, 6H), 7.22 – 7.07 (m, 9H) ppm; ¹³C NMR (101 MHz, CDCl₃) $\delta = 147.5$, 144.5, 131.1, 129.3, 128.6, 127.7, 127.3, 126.2, 72.2

ppm; IR (neat): 3057,1710,1489, 1445, 1360, 1255, 1220, 1142, 1089, 1023, 999, 910, 750,722,

686, 634, 601, 558 cm⁻¹; **HRMS** calculated m/z for C₃₁H₂₅NNaOS⁺ [M+Na]⁺: 482.1549, found (ESI) 482.1535.

{[1-([1,1'-Biphenyl]-4-yl)ethyl]imino}diphenyl- λ^6 -sulfanone (16m) was prepared from 1a and 4-ethyl-1,1'-biphenyl (15m) as a white oil (25% yield). $R_f = 0.3$ (pentane/EtOAc, 8:1); ¹H NMR (400 MHz, CDCl₃) $\delta = 8.10 - 8.00$ (m, 2H), 7.88 - 7.76 (m, 2H), 7.63 - 7.56 (m, 2H), 7.54 - 7.27 (m, 13H), 4.43 (q, *J* = 6.6 Hz, 1H),

1.58 (d, J = 6.6 Hz, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) $\delta = 146.6$, 141.5, 141.2, 140.8, 139.2, 132.4, 132.2, 129.0, 128.9, 128.7, 128.4, 127.03, 126.96, 126.9, 126.6, 53.9, 28.1 ppm; **IR** (neat): 3060, 3027, 2969, 2923, 2861, 1712, 1599, 1486, 1445, 1402, 1364, 1243, 1138, 1093, 1023, 1008, 998, 842, 792, 764, 729, 692, 617, 583, 569, 557, 548, 518 cm⁻¹; **HRMS** calculated *m*/*z* for C₂₆H₂₄NOS⁺ [M+H]⁺: 398.1573, found (ESI) 398.1574.

{[1-(4-Methoxyphenyl)ethyl]imino}diphenyl- λ^{6} -sulfanone (16n) was prepared from 1a and 1-ethyl-4-methoxybenzene (15n) as a pale-yellow oil (69% yield). $R_{\rm f}$ = 0.4 (pentane/EtOAc, 4:1); ¹H NMR (400 MHz, CDCl₃) δ = 8.08 – 7.96 (m, 2H), 7.84 – 7.75 (m, 2H), 7.51 – 7.40 (m, 4H), 7.39 – 7.27 (m, 4H), 6.87 – 6.79 (m, 2H), 4.35

(q, J = 6.6 Hz, 1H), 3.78 (s, 3H), 1.52 (d, J = 6.6 Hz, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) $\delta = 158.0, 141.4, 140.8, 139.7, 132.24, 132.13, 128.9, 128.8, 128.4, 127.1, 113.4, 55.2, 53.6, 28.1 ppm; IR (neat): 2964, 2360, 1609, 1508, 1444, 1236, 1172, 1133, 1082, 1032, 998, 829, 805, 756, 725, 687, 637, 593, 555 cm⁻¹; HRMS calculated <math>m/z$ for C₂₁H₂₂NOS⁺ [M+H]⁺: 352.1366, found (ESI) 352.1365.

{[1-(Naphthalen-2-yl)ethyl]imino]diphenyl- λ^6 -sulfanone (160) was prepared from 1a and 2-ethylnaphthalene (150) as a white oil (35% yield). $R_f = 0.3$ (pentane/EtOAc, 8:1); ¹H NMR (400 MHz, CDCl₃) δ = 8.09 - 8.00 (m, 2H), 7.85 - 7.73 (m, 6H), 7.60 (dd, J = 1.8, 8.5 Hz,

1H), 7.53 – 7.38 (m, 6H), 7.36 – 7.28 (m, 2H), 4.54 (q, J = 6.6 Hz, 1H), 1.62 (d, J = 6.6 Hz, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) $\delta = 144.9$, 141.5, 140.7, 133.4, 132.5, 132.4, 132.2, 129.04, 129.01, 128.9, 128.4, 127.9, 127.8, 127.6, 125.7, 125.23, 125.18, 124.2, 54.4, 28.1 ppm; **IR (neat):** 3058, 2969, 1713, 1600, 1507, 1474, 1445, 1365, 1243, 1138, 1093, 1023, 998, 950, 887, 858, 820, 749, 731, 691, 624, 591, 579, 565, 479 cm⁻¹; **HRMS** calculated *m*/*z* for C₂₄H₂₂NOS⁺ [M+H]⁺: 372.1417, found (ESI) 372.1421.

[(7-Methoxy-1,2,3,4-tetrahydronaphthalen-1-yl)imino)diphenyl-

 λ^{6} -sulfanone (16p,) was prepared from 1a and 6-methoxy-1,2,3,4tetrahydronaphthalene (15p) as a yellow solid (57% yield). $R_{\rm f} = 0.25$ (pentane/EtOAc, 8:1); ¹H NMR (600 MHz, CDCl₃) δ = 8.10 – 7.92 (m, 4H), 7.55 – 7.38 (m, 7H), 6.81 – 6.67 (m, 1H), 6.58 – 6.48 (m, 1H), 4.28 (dd, J = 4.7, 7.8Hz, 1H), 3.75 (s, 3H), 2.92 – 2.73 (m, 1H), 2.71

-2.58 (m, 1H), 2.09 -1.96 (m, 2H), 1.97 -1.85 (m, 1H), 1.72 -1.62 (m, 1H) ppm; ¹³C NMR (151 MHz, CDCl₃) δ = 158.0, 141.8, 141.0, 138.2, 132.9, 132.21, 132.17, 130.0, 129.0, 128.9, 128.7, 128.6, 113.1, 112.0, 55.2, 52.5, 34.1, 29.7, 20.5 ppm; **IR** (neat): 2932, 1607, 1498, 1445, 1233, 1131, 1092, 1068, 1038, 998, 853, 755, 727, 690, 600, 557 cm⁻¹. **HRMS** calculated *m*/*z* for C₂₃H₂₄NO₂S⁺ [M+H]⁺: 378.1522, found (ESI) 358.1519.

{[1-(4-Methoxyphenyl)propyl]imino}diphenyl- λ^6 -sulfanone (16q) was prepared from 1a and 1-methoxy-4-propylbenzene (15q) as a yellow oil (62% yield). $R_f = 0.25$ (pentane/EtOAc, 8:1); ¹H NMR (400 MHz, CDCl₃) $\delta = 8.03 - 7.92$ (m, 2H), 7.79 - 7.69 (m, 2H),

7.50 – 7.37 (m, 4H), 7.36 – 7.28 (m, 2H), 7.23 – 7.15 (m, 2H), 6.82 – 6.74 (m, 2H), 4.01 (t, J = 6.7 Hz, 1H), 3.78 (s, 3H), 2.04 – 1.60 (m, 2H), 0.87 (t, J = 7.4 Hz, 3H) ppm; ¹³**C NMR** (101 MHz, CDCl₃) $\delta = 158.0$, 141.3, 141.0, 138.4, 132.2, 132.0, 128.93, 128.90, 128.8, 128.4, 127.8, 113.3, 59.9, 55.2, 34.3, 11.0 ppm; **IR** (neat): 2958, 1609, 1508, 1445, 1238, 1172, 1134, 1092, 1067, 1034, 884, 826, 757, 726, 689, 592, 553 cm⁻¹; **HRMS** calculated *m*/*z* for C₂₂H₂₄NO₂S⁺ [M+H]⁺: 366.1522, found (ESI) 366.1515.

[(2,3-Dihydro-1*H*-inden-1-yl)imino]diphenyl-λ⁶-sulfanone (16r) was prepared from 1a and 2,3-dihydro-1*H*-indene (15r) as a white solid (32% yield). $R_f = 0.3$ (pentane/EtOAc, 4:1); ¹H NMR (400 MHz, CDCl₃) δ = 8.29 - 7.97 (m, 4H), 7.66 - 7.44 (m, 7H), 7.39 - 6.92 (m, 3H), 4.68 (t, *J* = 7.8 Hz, 1H), 3.15 - 2.93 (m, 1H), 2.86 - 2.69 (m, 1H), 2.54 - 2.34 (m,

1H), 2.29 – 2.03 (m, 1H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ = 146.6, 142.6, 141.3, 140.8, 132.42, 132.38, 129.1, 128.8, 128.7, 126.9, 126.4, 124.6, 124.3, 59.3, 37.3, 30.5 ppm; **IR (neat):** 3064, 2940, 1738, 1474, 1446, 1341, 1241, 1138, 1091, 1069, 1023, 997, 927, 828, 742, 727, 691, 633, 582, 555, 438 cm⁻¹; **HRMS** calculated *m*/*z* for C₂₁H₂₀NOS⁺ [M+H]⁺: 334.1260, found (ESI) 334.1256.

[(2,3-Dihydrobenzofuran-3-yl)imino]diphenyl-λ⁶-sulfanone (16s) was prepared from 1a and 2,3-dihydrobenzofuran (15s) as a white oil (28% yield). $R_f = 0.25$ (pentane/EtOAc, 4:1); ¹H NMR (400 MHz, CDCl₃) δ = 8.09 – 7.84 (m, 4H), 7.57 – 7.43 (m, 6H), 7.38 (dt, J = 7.5, 1.3 Hz, 1H), 7.12 (td, J = 7.7, 1.4 Hz, 1H), 6.87 (td, J = 7.4, 1.0 Hz, 1H), 6.76 (d, J =

8.0 Hz, 1H), 5.08 - 4.90 (m, 1H), 4.70 - 4.52 (m, 1H), 4.47 (dd, J = 9.1, 6.2 Hz, 1H) ppm; ¹³C **NMR** (101 MHz, CDCl₃) $\delta = 159.7$, 140.6, 140.5, 132.6, 129.8, 129.3, 129.2, 129.0, 128.62, 128.56, 125.6, 120.7, 109.9, 79.0, 55.8 ppm; **IR** (**neat**): 3062, 1738, 1600, 1478, 1446, 1363, 1322, 1229, 1165, 1135, 1092, 1014, 995, 838, 752, 730, 690, 619, 585, 555 cm⁻¹; **HRMS** calculated *m*/*z* for C₂₀H₁₈NO₂S⁺ [M+H]⁺: 336.1053, found (ESI) 336.1055.

Diphenyl[(2-phenylpropan-2-yl)imino]-\lambda^6-sulfanone (16t) was prepared from 1a and cumene (15t) as a pale-yellow oil (33% yield). $R_f = 0.3$ (pentane/EtOAc, 8:1); ¹H NMR (400 MHz, CDCl₃) $\delta = 7.96 - 7.85$ (m, 4H), 7.66 - 7.58 (m, 2H), 7.44 - 7.32 (m, 6H), 7.30 - 7.22 (m, 2H), 7.19 - 7.13 (m, 1H), 1.62 (s, 6H) ppm; ¹³C NMR (101 MHz, CDCl₃) $\delta = 150.6$, 144.7, 131.5,

128.7, 127.9, 127.8, 125.8, 125.4, 59.4, 33.1 ppm; **IR** (neat): 3057, 2973, 1810, 1492, 1474, 1444, 1244, 1169, 1126, 1089, 1065, 1024, 998, 756, 723, 687, 609, 568, 537 cm⁻¹; **HRMS** calculated m/z for C₂₁H₂₁NNaOS⁺ [M+Na]⁺: 358.1236, found (ESI) 358.1237.

{[2-(4-methoxyphenyl)propan-2-yl]imino}diphenyl- λ^6 -sulfanone (16u) was prepared from 1a and 1-isopropyl-4-methoxybenzene (15u) as a pale-yellow oil (56% yield). $R_f = 0.2$ (pentane/EtOAc, 8:1); ¹H NMR (400 MHz, CDCl₃) $\delta = 7.98 - 7.90$ (m, 4H), 7.60 - 7.50 (m, 2H), 7.47 -

7.32 (m, 6H), 6.90 - 6.71 (m, 2H), 3.82 (s, 3H), 1.65 (s, 6H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ = 157.7, 144.7, 142.9, 131.5, 128.7, 128.0, 126.5, 113.1, 59.0, 55.2, 33.2 ppm; **IR** (neat): 2967, 1608, 1508,1444,1360, 1238, 1167, 1125, 1088,1065, 1032, 998, 917, 829, 778, 754, 722, 687, 600, 566, 533 cm⁻¹; **HRMS** calculated *m*/*z* for C₂₂H₂₃NNaO₂S⁺ [M+Na]⁺: 388.1342, found (ESI) 388.1342.

2-(4-Methoxyphenyl)-2-[(oxodiphenyl- λ^6 -

sulfaneylidene)amino]ethyl acetate (16v) was prepared from 1a and 4-methoxyphenethyl acetate (15v) as a pale-yellow oil (43% yield). $R_f = 0.2$ (pentane/EtOAc, 4:1); ¹H NMR (400 MHz, CDCl₃)

δ = 8.09 - 7.97 (m, 2H), 7.85 - 7.76 (m, 2H), 7.57 - 7.44 (m, 4H), 7.44 - 7.31 (m, 4H), 6.93 - 6.79 (m, 2H), 4.43 (t, J = 6.7 Hz, 1H), 4.27 (d, J = 6.6 Hz, 2H), 3.83 (s, 3H), 2.08 (s, 3H) ppm; ¹³C **NMR** (101 MHz, CDCl₃) δ = 171.0, 158.7, 141.0, 140.6, 134.3, 132.5, 132.4, 129.0, 128.84, 128.82, 128.84, 1

128.6, 128.2, 113.6, 70.0, 56.8, 55.2, 21.1 ppm; **IR** (neat): 2947, 1610, 1509, 1445, 1378, 1238, 1140, 1092, 1033, 829, 758, 727, 690, 593, 553 cm⁻¹; **HRMS** calculated m/z for C₂₃H₂₄NO₄S⁺ [M+H]⁺: 410.1421, found (ESI) 410.1428.

2-(4-Methoxyphenyl)-2-[(oxodiphenyl- λ^{6} **sulfaneylidene)amino]-ethyl benzoate** (**16w**) was prepared from **1a** and 4-methoxyphenethyl benzoate (**15w**) as a pale-yellow oil (53% yield). *R*_f = 0.25 (pentane/EtOAc, 4:1); ¹H NMR (400 MHz, CDCl₃) δ = 8.13 – 8.03 (m, 2H), 8.03 – 7.97 (m, 2H), 7.90 – 7.74 (m, 2H),

7.63 – 7.34 (m, 11H), 6.95 – 6.79 (m, 2H), 4.60 – 4.38 (m, 3H), 3.83 (s, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ = 166.4, 158.8, 140.8, 140.7, 134.5, 132.8, 132.42, 132.39, 130.5, 129.7, 129.04, 129.00, 128.8, 128.6, 128.3, 113.7, 70.6, 57.0, 55.2 ppm; **IR** (neat): 3062, 1609, 1583, 1509, 1446, 1240, 1173, 1141, 1109, 1068, 1026, 998, 828, 757, 711, 687, 637, 557 cm⁻¹. **HRMS** calculated *m*/*z* for C₂₈H₂₆NO₄S⁺ [M+H]⁺: 472.1577, found (ESI) 472.1578.

{[2-Chloro-1-(4-methoxyphenyl)ethyl]imino}diphenyl- λ^{6} sulfan-one (16x) was prepared from 1a and 1-(2-chloroethyl)-4methoxybenzene (15x) as a yellow oil (60% yield). $R_{\rm f} = 0.4$ (pentane/EtOAc, 4:1); ¹H NMR (400 MHz, CDCl₃) $\delta = 8.06 - 7.94$

(m, 2H), 7.91 – 7.76 (m, 2H), 7.58 – 7.43 (m, 4H), 7.42 – 7.34 (m, 2H), 7.30 – 7.14 (m, 2H), 6.91 – 6.70 (m, 2H), 4.29 (t, J = 6.9 Hz, 1H), 3.85 (dd, J = 7.0, 10.6Hz, 1H), 3.78 (s, 3H), 3.68 (dd, J = 7.0, 10.6Hz, 1H) ppm; ¹³C NMR (101 MHz, CDCl₃) $\delta = 158.8$, 140.5, 140.2, 134.7, 132.5, 129.04, 129.00, 128.8, 128.6, 128.2, 113.6, 59.7, 55.1, 51.3 ppm; **IR** (neat): 3060, 2835, 2360, 2341, 1609, 1509, 1445, 1239, 1173, 1137, 1092, 1032, 829, 757, 727, 689, 599, 554 cm⁻¹; **HRMS** calculated m/z for C₂₁H₂₁CINO₂S⁺ [M+H]⁺: 386.0976, found (ESI) 386.0978.

2-(4-Methoxyphenyl)-2-[(oxodiphenyl- λ^6 -sulfaneylidene)amino]acetonitrile (16y) was prepared from 1a and 2-(4-methoxyphenyl)acetonitrile (15y) as a yellow oil (73% yield). $R_f = 0.2$ (pentane/EtOAc, 4:1); ¹H NMR (400 MHz, CDCl₃) $\delta = 8.04 - 8.00$ (m, 2H), 7.99 - 7.95 (m, 2H), 7.59 - 7.49 (m, 4H), 7.49 - 7.39 (m, 4H), 6.90 - 6.83 (m, 2H), 5.19 (s, 1H), 3.78 (s, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) $\delta = 159.6$,

139.6, 139.5, 133.2, 133.1, 129.5, 129.3, 128.6, 128.24, 128.21, 120.0, 114.1, 55.3, 47.6 ppm; **IR** (neat): 2838, 1609, 1509, 1446, 1361, 1305, 1236, 1174, 1132, 1092, 1026, 998, 902, 819,779,757, 727, 685, 593, 569, 529 cm⁻¹. **HRMS** calculated m/z for C₂₁H₁₉N₂O₂S⁺ [M+H]⁺: 363.1162, found (ESI) 363.1165.

2-(4-methoxyphenyl)-2-[(oxodiphenyl-λ⁶-

sulfaneylidene)amino]acetate (16z) was prepared from 1a and methyl 2-(4-methoxyphenyl)acetate (15z) as a pale-yellow oil (63% yield). $R_f = 0.1$ (pentane/EtOAc, 4:1); ¹H NMR (400 MHz, CDCl₃) δ 8.11 – 7.97 (m, 2H), 7.98 – 7.79 (m, 2H), 7.64 – 7.38 (m, 8H),

6.96 - 6.68 (m, 2H), 4.91 (s, 1H), 3.81 (s, 3H), 3.66 (s, 3H) ppm; ¹³**C** NMR (101 MHz, CDCl₃) δ = 173.2, 159.1, 140.5, 140.2, 132.7, 132.6, 132.1, 129.2, 129.1, 128.7, 128.6, 128.4, 113.8, 60.2, 55.2, 52.3; **IR** (neat): 2951, 1747, 1609, 1508, 1445, 1239, 1142, 1092, 1025, 929, 827, 795, 759, 727, 687, 634, 595, 576, 545 cm⁻¹; **HRMS** calculated *m*/*z* for C₂₂H₂₂NO₄S⁺ [M+H]⁺: 396.1264, found (ESI) 396.1264.

Methyl

Ethyl 2-(4-methoxyphenyl)-2-((oxodiphenyl- $λ^6$ sulfaneylidene)amino)acetate (16aa) was prepared from 1a and ethyl 2-(4-methoxyphenyl)acetate (15aa) as a pale-yellow oil (60% yield). $R_f = 0.1$ (pentane/EtOAc, 4:1); ¹H NMR (400 MHz, CDCl₃)

δ = 8.08 - 7.98 (m, 2H), 7.97 - 7.90 (m, 2H), 7.57 - 7.35 (m, 8H), 6.91 - 6.73 (m, 2H), 4.89 (s, 1H), 4.13 (qd, J = 0.9, 7.1Hz, 2H), 3.81 (s, 3H), 1.19 (t, J = 7.1 Hz, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ = 172.7, 159.0, 140.6, 140.4, 132.60, 132.56, 132.2, 129.12, 129.09, 128.73, 128.66, 128.4, 113.7, 61.0, 60.2, 55.2, 14.1 ppm; **IR** (neat): 2979, 1741, 1723, 1609, 1583, 1508, 1445, 1301, 1239, 1141, 1092, 1025, 999, 930, 831, 795, 758, 727, 687, 634, 595 cm⁻¹; **HRMS** calculated m/z for C₂₃H₂₄NO₄S⁺ [M+H]⁺: 410.1421, found (ESI) 410.1423.

(*E*)-diphenyl[(4-phenylbut-3-en-2-yl)imino]- λ^6 -sulfanone (16ab) and (*E*)-diphenyl((1-

phenylbut-2-en-1-yl)imino)- λ^6 sulfanone (16ab') were prepared from 1a and (*E*)-but-1-en-1-ylbenzene (15ab) as white solids in 30 and 15% yield, respectively.

Compound 16ab: $R_f = 0.28$ (pentane/EtOAc, 8:1); ¹**H NMR** (400 MHz, CDCl₃) $\delta = 8.07 - 8.00$ (m, 2H), 7.99 - 7.89 (m, 2H), 7.50 - 7.39 (m, 6H), 7.36 - 7.31 (m, 2H), 7.30 - 7.25 (m, 2H), 7.21 - 7.13 (m, 1H), 6.45 (dd, J = 1.2, 15.8Hz, 1H), 6.30 (dd, J = 6.2, 15.8Hz, 1H), 4.11 - 3.92 (m, 1H), 1.42 (d, J = 6.6 Hz, 3H) ppm; ¹³**C NMR** (101 MHz, CDCl₃) $\delta = 141.4$, 141.0, 137.5, 135.6, 132.33, 132.32, 129.1, 129.0, 128.9, 128.38, 128.37, 127.7, 127.0, 126.3, 52.5, 25.5 ppm; **IR (neat):** 2965,

2359, 1494, 1474, 1445, 1242, 1130, 1092, 1068, 1024, 965, 803, 749, 727, 691, 590, 562 cm⁻¹; **HRMS** calculated *m*/*z* for C₂₂H₂₂NOS⁺ [M+H]⁺: 348.1417, found (ESI) 348.1421.

Compound 16ab': $R_f = 0.28$ (pentane/EtOAc, 8:1); ¹**H NMR** (400 MHz, CDCl₃) $\delta = 8.05 - 7.96$ (m, 2H), 7.91 - 7.78 (m, 2H), 7.54 - 7.34 (m, 8H), 7.32 - 7.23 (m, 2H), 7.22 - 7.14 (m, 1H), 5.72 - 5.61 (m, 1H), 5.56 - 5.40 (m, 1H), 4.77 (d, J = 6.6 Hz, 1H), 1.60 (d, J = 6.5 Hz, 3H) ppm; ¹³**C NMR** (101 MHz, CDCl₃) δ 145.0, 141.4, 141.1, 135.6, 132.3, 132.2, 129.0, 128.9, 128.70, 128.68, 128.1, 127.0, 126.4, 124.6, 60.3, 17.6 ppm; **IR (neat):** 3728, 3061, 2360, 1490, 1446, 1246, 1139, 1093, 1069, 1024, 964, 914, 750, 727, 693, 594, 561, 499, 445, 422 cm⁻¹. **HRMS** calculated *m*/*z* for C₂₂H₂₂NOS⁺ [M+H]⁺: 348.1417, found (ESI) 348.1414.

(*E*)-{[4-(4-chlorophenyl)but-3-en-2yl]imino}diphenyl- λ^6 -sulfanone (16ac) and (*E*)-{[1-(4-chlorophenyl)but-2-en-1yl]imino)diphenyl- λ^6 -sulfanone (16ac') were prepared from 1a and (*E*)-1-(but-1-

en-1-yl)-4-chlorobenzene (15ac) as white oils in 24 and 12% yield, respectively.

Compound 16ac: $R_f = 0.18$ (pentane/EtOAc, 8:1); ¹**H NMR** (600 MHz, CDCl₃) $\delta = 8.10 - 7.84$ (m, 4H), 7.60 - 7.37 (m, 6H), 7.29 - 7.07 (m, 4H), 6.41 (dd, J = 1.3, 15.8Hz, 1H), 6.27 (dd, J = 6.1, 15.7 Hz, 1H), 4.04 - 3.84 (m, 1H), 1.41 (d, J = 6.6 Hz, 3H); ¹³**C NMR** (101 MHz, CDCl₃) $\delta = 141.3$, 141.0, 136.3, 136.0, 132.5, 132.38, 132.36, 129.1, 128.8, 128.5, 128.4, 127.6, 126.5, 52.3, 25.3 ppm; **IR (neat):** 2970, 1738, 1490, 1446, 1365, 1238, 1130, 1092, 1012, 998, 967, 813, 757, 727, 690, 598, 563, 440 cm⁻¹; **HRMS** calculated *m*/*z* for C₂₂H₂₁ClNOS⁺ [M+H]⁺: 382.1027, found (ESI) 382.1018.

Compound 16ac': $R_f = 0.19$ (pentane/EtOAc, 8:1); ¹**H NMR** (600 MHz, CDCl₃) $\delta = 8.01 - 7.95$ (m, 2H), 7.89 - 7.81 (m, 2H), 7.53 - 7.42 (m, 4H), 7.41 - 7.36 (m, 2H), 7.35 - 7.30 (m, 2H), 7.25 - 7.19 (m, 2H), 5.68 - 5.57 (m, 1H), 5.53 - 5.44 (m, 1H), 4.72 (d, J = 6.6 Hz, 1H), 1.63 - 1.54 (m, 3H) ppm; ¹³**C NMR** (101 MHz, CDCl₃) $\delta = 143.6$, 141.2, 141.0, 135.1, 132.4, 132.3, 132.1, 129.03, 128.99, 128.7, 128.6, 128.4, 128.2, 125.0, 59.6, 17.6 ppm; **IR (neat):** 3063, 1738, 1588, 1487, 1446, 1376, 1238, 1138, 1092, 1014, 999, 964, 815, 757, 728, 688, 596, 559, 543, 422 cm⁻¹; **HRMS** calculated m/z for C₂₂H₂₁CINOS⁺ [M+H]⁺: 382.1027, found (ESI) 382.1023.

$\{[1-(4-Methoxyphenyl)allyl]imino\}diphenyl-\lambda^{6}-sulfanone (16ad)$

was prepared from **1a** and 1-allyl-4-methoxybenzene (**15ad**) as a white oil (36% yield). $R_f = 0.25$ (pentane/EtOAc, 8:1); ¹H NMR (400 MHz, CDCl₃) $\delta = 8.04 - 7.97$ (m, 2H), 7.91 - 7.83 (m, 2H), 7.53 - 7.35 (m, 6H), 7.33 - 7.28 (m, 2H), 6.90 - 6.69 (m, 2H), 6.16 - 5.94

(m, 1H), 5.19 (dt, J = 1.6, 16.9Hz, 1H), 5.08 – 4.96 (m, 1H), 4.77 – 4.69 (m, 1H), 3.77 (s, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) $\delta = 158.3$, 142.6, 141.2, 141.0, 136.5, 132.4, 132.3, 128.99, 128.97, 128.7, 128.6, 128.1, 113.6, 113.1, 60.3, 55.2 ppm; **IR (neat):** 2835, 1739, 1608, 1508, 1445, 1238, 1172, 1139, 1092, 1068, 1034, 998, 915, 826, 758, 727, 693, 593, 435 cm⁻¹; **HRMS** calculated m/zfor C₂₂H₂₂NO₂S⁺ [M+H]⁺: 364.1366, found (ESI) 364.1360.

(*E*)-[(1,3-diphenylallyl)imino]diphenyl- λ^6 -sulfanone (16ae) was prepared from 1a and (*E*)-prop-1-ene-1,3-diyldibenzene (15ae) as a white solid (59% yield). $R_f = 0.4$ (pentane/EtOAc, 4:1); ¹H NMR (400 MHz, CDCl₃) $\delta = 8.14 - 8.03$ (m, 2H), 8.01 - 7.87 (m, 2H), 7.57 - 7.39(m, 8H), 7.40 - 7.18 (m, 8H), 6.61 - 6.28 (m, 2H), 5.04 (d, J = 6.4 Hz, 1H) ppm; ¹³C NMR (101 MHz, CDCl₃) $\delta = 144.4$, 141.3, 141.0, 137.3,

134.1, 132.41, 132.38, 129.1, 128.77, 128.75, 128.7, 128.4, 128.3, 127.2, 127.1, 126.7, 126.5, 60.5 ppm; **IR** (neat): 3058, 1599, 1491,1445, 1239, 1134, 1091, 1067, 1023, 998, 963, 927, 743, 725, 688, 585, 556 cm⁻¹; **HRMS** calculated m/z for C₂₇H₂₄NOS⁺ [M+H]⁺: 410.1573, found (ESI) 410.1575.

Diphenyl{(3,4,5,6-tetrahydro-[1,1'-biphenyl]-3-yl)imino}- λ^{6} sulfanone (16af) was prepared from 1a and 2,3,4,5-tetrahydro-1,1'biphenyl (15af) as a white oil (44% yield). $R_{\rm f}$ = 0.25 (pentane/EtOAc, 8:1); ¹H NMR (600 MHz, CDCl₃) δ = 8.06 – 7.95 (m, 4H), 7.56 – 7.42 (m, 6H), 7.40 – 7.34 (m, 2H), 7.30 – 7.25 (m, 2H), 7.22 – 7.14

(m, 1H), 6.33 - 5.85 (m, 1H), 3.99 - 3.80 (m, 1H), 2.49 - 2.39 (m, 1H), 2.35 - 2.26 (m, 1H), 2.03 - 1.94 (m, 2H), 1.86 - 1.78 (m, 1H), 1.70 - 1.60 (m, 1H) ppm; ¹³C NMR (151 MHz, CDCl₃) $\delta = 142.0, 141.33, 141.28, 137.5, 132.3, 129.6, 129.1, 129.0, 128.64, 128.57, 128.0, 126.8, 125.4, 51.2, 33.0, 27.1, 21.0$ ppm; **IR (neat):** 3058, 2928, 2857, 1712, 1597, 1494, 1474, 1444, 1354, 1306, 1231, 1128, 1092, 1068, 1023, 997, 942, 903, 815, 754, 725, 687, 599, 572, 556 cm⁻¹; **HRMS** calculated *m/z* for C₂₄H₂₄NOS⁺ [M+H]⁺: 374.1573, found (ESI) 374.1573.

[(2,2-Diphenylvinyl)imino]diphenyl-λ⁶-sulfanone (16ag) was prepared from 1a and 1,1-diphenylethene (15ag) as a yellow solid (55% yield). $R_f = 0.3$ (pentane/EtOAc, 8:1); ¹H NMR (400 MHz, CDCl₃) δ = 8.02 - 7.93 (m, 4H), 7.71 - 7.64 (m, 2H), 7.60 - 7.41 (m, 8H), 7.36 - 7.13 (m, 6H), 6.91 (s, 1H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ = 142.6, 140.6, 139.6, 132.9, 130.71, 129.5, 129.4, 128.5, 128.0, 127.9,

127.7, 127,0, 126.3, 126.0 ppm; **IR** (neat): 3057, 1595, 1495, 1475 ,1444, 1242, 1194, 1134, 1086, 1027, 984, 917, 885, 756, 738, 723, 696, 603, 547 cm⁻¹; **HRMS** calculated *m/z* for C₂₆H₂₁NNaOS⁺ [M+Na]⁺: 418.1236, found (ESI) 418.1234.

[(1,3-Diphenylprop-2-yn-1-yl)imino]diphenyl-λ⁶-sulfanone (16ah) was prepared from 1a and prop-1-yne-1,3-diyldibenzene (15ah) as a pale-yellow oil (32% yield). $R_f = 0.2$ (pentane/EtOAc, 8:1); ¹H NMR (500 MHz, CDCl₃) $\delta = 8.12 - 8.06$ (m, 2H), 8.03 - 7.96 (m, 2H), 7.71 - 7.62 (m, 2H), 7.52 - 7.40 (m, 6H), 7.37 - 7.29 (m, 4H), 7.27 - 7.19 (m, 4H), 5.43 (s, 1H) ppm; ¹³C NMR (126 MHz, CDCl₃) $\delta = 142.18$,

140.97, 140.86, 132.52, 132.50, 131.65, 129.07, 129.06, 128.35, 128.32, 128.01, 127.88, 127.20, 127.19, 123.35, 90.75, 84.39, 49.21 ppm; **IR** (neat): 3061, 1490, 1446, 1234, 1132, 1093, 1069, 1025, 757, 726, 691, 593, 561 cm⁻¹; **HRMS** calculated m/z for C₂₇H₂₂NOS⁺ [M+H]⁺: 408.1417, found (ESI) 408.1417.

Diphenyl{[1-phenyl-3-(p-tolyl)prop-2-yn-1-yl]imino}-λ⁶**sulfanone** (16ai) was prepared from 1a and 1-methyl-4-(3phenylprop-1-yn-1-yl)benzene (15ai) as a pale-yellow oil (60% yield). $R_{\rm f} = 0.19$ (pentane/EtOAc, 8:1); ¹H NMR (400 MHz, CDCl₃) δ = 8.20 – 7.99 (m, 4H), 7.77 – 7.69 (m, 2H), 7.57 – 7.44 (m, 6H), 7.43 – 7.35 (m, 2H), 7.33 – 7.20 (m, 3H), 7.14 – 7.02 (m, 2H), 5.50 (s, 1H), 2.36 (s, 3H) ppm; ¹³C NMR (101 MHz,

CDCl₃) δ = 142.4, 141.1, 141.0, 137.9, 132.6, 132.5, 131.6, 129.12, 129.10, 128.8, 128.4, 128.3, 127.3, 127.2, 120.3, 90.1, 84.6, 49.3, 21.5 ppm; **IR** (neat): 3060, 1637, 1509, 1492, 1446, 1310, 1270, 1232, 1132, 1093, 1068, 1023, 999, 818, 762, 757, 755, 747, 727, 688, 592, 564 cm⁻¹; **HRMS** calculated *m*/*z* for C₂₈H₂₃NNaOS⁺ [M+Na]⁺: 444.1393, found (ESI) 444.1387.

[(3-Cyclopropyl-1-phenylprop-2-yn-1-yl)imino]diphenyl-λ⁶sulfanone (16aj) was prepared from 1a and (3-cyclopropylprop-2-yn-1-yl)benzene (15aj) as a pale-yellow oil (59% yield). $R_f = 0.17$ (pentane/EtOAc, 8:1); ¹H NMR (400 MHz, CDCl₃) δ 8.13 – 8.05 (m, 2H), 8.03 – 7.94 (m, 2H), 7.61 (dd, J = 1.8, 7.4Hz, 2H), 7.58 – 7.40 (m, 6H), 7.38 – 7.31 (m, 2H), 7.30 – 7.22 (m, 1H), 5.21 (d, J = 1.7 Hz, 1H),

1.29 - 1.09 (m, 1H), 0.75 - 0.64 (m, 2H), 0.62 - 0.49 (m, 2H) ppm; ¹³C NMR (101 MHz, CDCl₃) $\delta = 142.8$, 141.3, 141.0, 132.43, 132.39, 129.02, 128.97, 128.4, 128.2, 127.1, 127.0, 87.8, 76.6, 48.9, 8.05, 8.03, -0.3 ppm; **IR** (neat): 3060, 2246, 1635, 1491, 1474, 1445, 1356, 1309, 1270, 1229, 1127, 1092, 1067, 1023, 998, 887, 836, 762, 757, 746, 724, 686, 634, 590, 560 cm⁻¹; **HRMS** calculated *m*/*z* for C₂₄H₂₁NNaOS⁺ [M+Na]⁺: 394.1236, found (ESI) 394.1227.

2.12 EPR studies

In a dried Schlenk tube, **1a** (27.5 mg, 0.05 mmol, 1.0 equiv.) and Cp₂Co (9.5 mg, 0.05 mmol, 1.0 equiv.) were dissolved in DCM (2.0 mL) under N₂ atmosphere, and the mixture was stirred for 5 minutes. Then (*Z*)-*N*-tert-butyl-1-phenylmethanimine oxide (8.9 mg, 0.05 mmol, 1.0 equiv.) was added. The reaction mixture was analyzed by electron paramagnetic resonance (EPR). EPR spectra were recorded at room temperature on a Bruker E500-10/12.

3 Stern-Volmer Fluorescence Quenching Studies.

3.1 Stern-Volmer Quenching Studies with 3a

The measurements were carried out mixing a $1 \cdot 10^{-4}$ M solution of Ru(bpy)₃(PF₆)₂ in MeCN (1 mL) with the appropriate amount of quencher in a quartz cuvette equipped with a septum under nitrogen atmosphere. The samples were previously degassed with nitrogen for 10 minutes. All solutions

were irradiated at $\lambda = 452$ nm (absorption maximum of Ru(bpy)₃(PF₆)₂). Plots were constructed according to the SternVolmer equation and K_{sv} were calculated.^[9]

Stern-Volmer equation $I_0/I = 1 + K_{SV}[Q]$

The emission of $Ru(bpy)_3(PF_6)_2$ was measured with varying amounts of **3a** (0.00, 0.05, 0.10, 0.15 M solutions in MeCN). As shown in Figure 1, the emission intensity decreased with increasing amounts of **3a**, providing evidence for the direct substrate reduction by photoexcited $Ru(bpy)_3(PF_6)_2^*$.

Figure 1. Emission spectrum of Ru(bpy)₃(PF₆)₂* varying concentration of **3a**.

The Stern-Volmer plot reported in Figure 2 shows a linear correlation between the amounts of **3a** and the ratio I_0/I with a constant K_{sv} of 9.872 M⁻¹.

Figure 2. Stern-Volmer plot of Ru(bpy)₃(PF₆)₂ quenching with varying concentration of **3a**.

3.2 Stern-Volmer Quenching Studies with 1a

Fluorescence quenching experiments were performed on Fluorescence Spectrophotometer. The measurements were carried out mixing a $2 \cdot 10^{-4}$ M solution of Ru(bpy)₃(PF₆)₂ in MeCN (1 mL) with the appropriate amount of quencher in a quartz cuvette equipped with a septum under nitrogen atmosphere. The samples were previously degassed with nitrogen for 10 minutes. All solutions were irradiated at $\lambda = 452$ nm (absorption maximum of Ru(bpy)₃(PF₆)₂) and the emission intensity at 593 nm was observed (emission maximum). Plots were constructed according to the Stern-Volmer equation and KSV were calculated.

Stern-Volmer equation $I_0/I = 1 + K_{SV}[Q]$

The emission of $Ru(bpy)_3(PF_6)_2$ was measured with varying amounts of dibenzothiophenium salt, **1a** (0.00, 0.01, 0.02 & 0.04 M solutions in MeCN). As shown in Figure S3, the emission intensity decreased with increasing amounts of **1a**, providing evidence for the direct substrate reduction by photoexcited $[Ru(bpy)_3^{2+}]^*$.

Figure S3. Emission spectrum of $[Ru(bpy)_3^{2+}]^*$ varying concentration of **1a**.

The Stern-Volmer plot reported in Figure S4 shows a linear correlation between the amounts of **1a** and the ratio I_0/I with a constant K_{SV} of 15.69576 M⁻¹.

4 Cyclic voltammetry measurements.

4.1 Measurements of 3a, 3d-f

Cyclic voltammetry was conducted on an EmStat (PalmSens) potentiostat using a 3-electrode cell configuration. A glassy carbon working electrode was employed alongside a platinum wire counter electrode and a Ag/AgCl reference electrode. All the solutions were degassed by bubbling N₂ prior to measurements. 0.15 M of tetrabutylammonium hexafluorophosphate in dry DMSO as supporting electrolyte and were examined at a scan rate of 0.3 V s⁻¹. Ferrocene ($E_{1/2} = +0.435$ V vs SCE)^[10] was added at the end of the measurements as an internal standard to determine the precise potential scale. Potential values are given versus the saturated calomel electrode (SCE). Irreversible reduction waves were obtained in all cases; therefore, the reduction potentials were obtained from the maximum, E_pmax.

Figure 5. Cyclic voltammogram of 3a

Figure 6. Cyclic voltammogram of 3d

Figure S7. Cyclic voltammogram of 3e

Figure S8. Cyclic voltammogram of 3f

4.2 Measurements of 1a, 1b, 1c

Cyclic voltammetry was conducted on a potentiostat using a 3-electrode cell configuration. A carbon working electrode, a platinum counter electrode and an Au reference electrode. All the solutions were degassed by bubbling N₂ prior to measurements. A 0.2 M of tetrabutylammonium hexafluorophosphate in MeCN as supporting electrolyte and were examined at a scan rate of 0.2V/s. Ferrocene ($E_{(Fc/Fc+)}^{0}$ =0.424 V vs SCE) ^[11,12] was added at the end of the measurements as an internal standard to determine the precise potential scale. The reduction potential values are given versus the Ferrocene.

Irreversible reduction waves were obtained in all cases. The excited state of $[Ru(bpy)_3]^{2+}$ with $E_{1/2}^{red^*} = -0.81$ V versus saturated calomel electrode (SCE)^[13,14].

Figure S9. Cyclic voltammogram of 1a ($E_{\frac{1}{2}} = -0.462$ V vs. SCE)

Figure S10. Cyclic voltammogram of 1b ($E_{\frac{1}{2}} = -0.606$ V vs. SCE)

Figure S11. Cyclic voltammogram of **1c** ($E_{\frac{1}{2}} = -0.405$ V vs. SCE)

5 Determination of the quantum yield of the transformation

To a 10 mL oven-dried Schlenk tube equipped with a stirring bar was added Ru(bpy)₃(PF₆)₂ (1.7 mg, 0.002 mmol, 1 mol%), NaHCO₃ (50.4 mg, 0.6 mmol, 3.0 equiv), 4 Å molecular sieve (100 mg), **1a** (110 mg, 0.2 mmol, 1.0 equiv) and diphenylmethane (167 μ L, 1.0 mmol, 5.0 equiv). The Schlenk tube was then evacuated and backfilled with N₂ three times; CH₂Br₂ (0.2 mmol, 14.0 μ L, 1.0 equiv) and acetonitrile (4 mL) were added under N₂. The tube was positioned 5 cm from a single PR160L-440 nm Kessil LED lamp ($\lambda_{max} = 440$ nm, 25% of the maximum intensity). The reaction was stirred at 500 rpm and approximate 0.1 mL reaction mixture was taken by a syringe after 30 minutes, which was diluted with CDCl₃, and comparison of the integration of the internal standard CH₂Br₂ (4.97 ppm, s, 2H) with that of the formed product (5.41 ppm, s, 1H) revealed yields of **16a** in 24%.

The quantum yield (Φ) was then calculated using:

$$\Phi = \frac{moles \ of \ product}{photon \ flux \cdot t \cdot f}$$

where flux is the photon flux determined by ferrioxalate actinometry $(6.07 \times 10^{-7} \text{ Einstein/s})$,^[14] *t* is the time, and *f* is the fraction of light absorbed by Ru(bpy)₃(PF₆)₂ at 440 nm. A 1.0×10^{-4} M solution of Ru(bpy)₃(PF₆)₂ in acetonitrile was prepared, and the absorbance of

the solution at 440 nm was 2.168. The fraction of light absorbed at 440 nm was calculated:

 $f = 1 - 10^{-A} = 0.9932$

The quantum yield Φ is 0.044.

6 Light on/off experiment

To a 10 mL oven-dried Schlenk tube equipped with a stirring bar was added Ru(bpy)₃(PF₆)₂ (1.7 mg, 0.002 mmol, 1 mol%), NaHCO₃ (50.4 mg, 0.6 mmol, 3.0 equiv), 4 Å molecular sieve (100 mg), **1a** (110 mg, 0.2 mmol, 1.0 equiv) and diphenylmethane (167 μ L, 1.0 mmol, 5.0 equiv). The Schlenk tube was then evacuated and backfilled with N₂ three times after which CH₂Br₂ (0.2 mmol, 14.0 μ L, 1.0 equiv) and CD₃CN (4 mL) were added under N₂. Then, the reaction tube was placed in a photoreactor equipped with blue LED strips (wavelength range: 430-435 nm, 12 W). A mini-

fan was kept on top to maintain room temperature. The reaction mixture was stirred at room temperature, and the light was turned on and off every 15 minutes. During each on/off shift, approximate 0.4 mL reaction mixture was taken by a syringe, which was directly transferred into an NMR tube over a syringe filter (additional CD₃CN was added if it is necessary). Comparison of the integration of the internal standard CH₂Br₂ (5.09 ppm, s, 2H) with that of the formed product (5.41 ppm, s, 1H) revealed yields of **16a** (Figure S12).

Figure S12. Time profile of the reaction with and without light

7 NMR spectra

¹H NMR (400 MHz, CD₃CN) of **1a**

¹H NMR (400 MHz, CD₃CN) of 1c

^1H NMR (400 MHz, CDCl₃) of 3a

 $^{^{13}}C$ NMR (101 MHz, CDCl₃) of 3a

^{19}F NMR (377 MHz, CDCl₃) of 3a

1H NMR (300 MHz, CDCl₃) of 3b

^{13}C NMR (151 MHz, CDCl₃) of 3b

¹⁹F NMR (565 MHz, CDCl₃) of **3b**

1H NMR (400 MHz, CDCl₃) of 3c

^{13}C NMR (101 MHz, CDCl₃) of 3c

o 110 100 f1 (ppm)

 ^{19}F NMR (377 MHz, CDCl_3) of 3c

1H NMR (400 MHz, CDCl₃) of 3d

^{13}C NMR (101 MHz, CDCl₃) of 3d

^{19}F NMR (377 MHz, CDCl₃) of 3d

¹H NMR (300 MHz, CDCl₃) of 3e

¹³C NMR (101 MHz, CDCl₃) of 3e

. 170 . 140 f1 (ppm)

 ^{19}F NMR (377 MHz, CDCl₃) of 3e

¹H NMR (600 MHz, CD₃CN) of **3f**

¹³C NMR (151 MHz, CD3CN) of 3f

^{19}F NMR (3565 MHz, CD_3CN) of 3f

-25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 f1 (ppm)

¹H NMR (400 MHz, CDCl₃) of 6a

110 100 f1 (ppm) . 180 . 140 . 70 . 50 . 30

¹H NMR (400 MHz, CDCl₃) of 6b

^1H NMR (400 MHz, CDCl₃) of 6c

1H NMR (400 MHz, CDCl₃) of 6d

¹H NMR (400 MHz, Chloroform-d) of 6e

¹³C NMR (101 MHz, CDCl₃) of 6e

1H NMR (400 MHz, CDCl₃) of 6f

^{13}C NMR (101 MHz, CDCl₃) of 6f

100 90 f1 (ppm)

¹H NMR (400 MHz, CDCl₃) of **6g**

^{13}C NMR (101 MHz, CDCl₃) of 6g

¹**H NMR** (400 MHz, CDCl₃) of **6h**

¹³C NMR (101 MHz, CDCl₃) of 6h

¹H NMR (400 MHz, CDCl₃) of **6i**

¹³C NMR (101 MHz, CDCl₃) of 6i

1H NMR (400 MHz, CDCl₃) of 6j

¹³C NMR (101 MHz, CDCl₃) of 6j

^{1}H NMR (400 MHz, CDCl₃) of 6m

1H NMR (400 MHz CDCl₃) of 6n

¹³C NMR (101 MHz, CDCl₃) of 6n

110 100 f1 (ppm)

¹H NMR (400 MHz, CDCl₃) of 9a

7, 7, 96 7, 7, 96 7, 7, 95 7, 94 7, 95 7,

¹³C NMR (101 MHz, CDCl₃) of **9a**

200 190 100 f1 (ppm) 70 40 0 180 170 160 150 140 130 120 110 90 80 60 50 30 20 10

1H NMR (400 MHz, CDCl_3) of 9b

¹³C NMR (101 MHz, CDCl₃) of 9b

1H NMR (400 MHz, CDCl₃) of 9d7,7,98 7,7,99 7,295 7,295 7,295 7,295 7,295 7,25

¹³C NMR (101 MHz, CDCl₃) of 9d

^{19}F NMR (377 MHz, CDCl₃) of 9d

1H NMR (400 MHz, CDCl₃) of 9f

^{13}C NMR (101 MHz, CDCl₃) of 9f

1H NMR (400 MHz, CDCl₃) of 9g

^{13}C NMR (101 MHz, CDCl_3) of 9g

¹³C NMR (101 MHz, CDCl₃) of 12b

¹³C NMR (101 MHz, CDCl₃) of **13a**

^{13}C NMR (75 MHz, CDCl₃) of 13d

166.361	160.400 157.064	139.401 137.027 129.910 129.090 128.090 128.090 128.028 128.7915 1126.770 113.467 113.467	77.586 77.161 76.738	59.374	55.298
		11 Varen /	\leq		

¹**H NMR** (400 MHz, CDCl₃) of **16a**

1H NMR (400 MHz, CDCl₃) of 16b

7,294 2,294 2,295 2,275 2,295

¹H NMR (600 MHz, CDCl₃) of 16c

145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 f1 (ppm)

¹H NMR (600 MHz, CDCl₃) of **16e**

1H NMR (400 MHz, CDCl₃) of 16f

1H NMR (500 MHz, CDCl₃) of 16h

¹H NMR (400 MHz, CDCl₃) of **16i**

сн3 ~ ``o 6.23 4.09<u>4</u> 4.05.T 1.00-I 6.17.≖ 4.00-I 7.5 8.0 7.0 6.0 5.5 4.0 f1 (ppm) 6.5 2.0 1.5 1.0 0.0 5.0 4.5 3.5 3.0 2.5 0.5 ^{13}C NMR (100 MHz, CDCl₃) of 16i $-141.09 \\ -138.46 \\ 132.31 \\ 128.75 \\ 128.75 \\ 128.42 \\$ ---- 60.61 --- 55.24 СН₃ ~~ 0 50 30 20 120 40 10 160 150 140 130 110 100 90 80 f1 (ppm) 70 60

---- 3.80

¹H NMR (400 MHz, CDCl₃) of **16j**

¹H NMR (400 MHz, CDCl₃) of **16k**

¹H NMR (400 MHz, CDCl₃) of 16m

¹H NMR (400 MHz, CDCl₃) of **16n**

`СН₃ í No ∣ CH₃ 2.01H 1.00<u>1</u> 4.014 2.01J 2.99<u>T</u> Z-99-I 8.0 7.5 1.5 0.0 7.0 6.5 6.0 5.5 5.0 4.5 4.0 f1 (ppm) 3.5 3.0 2.5 2.0 1.0 0.5 ^{13}C NMR (100 MHz, CDCl₃) of 16n $\overbrace{128.35}^{141.41}$ — 113.44 -- 55.17 -- 53.56 СН₃ ~~ ``` I CH₃ 0 80 f1 (ppm) 70 40 30 20 160 130 120 110 100 60 50 10 140 90 150

¹H NMR (400 MHz, CDCl₃) of **160**

1H NMR (600 MHz, CDCl₃) of 16p

¹H NMR (400 MHz, CDCl₃) of **16q**

2D NMR (cosy, HSQC, HMBC)

¹H NMR (400 MHz, CDCl₃) of 16r

¹H NMR (400 MHz, CDCl₃) of **16s**

¹H NMR (400 MHz, CDCl₃) of **16t**

1H NMR (400 MHz, CDCl₃) of 16u

¹H NMR (400 MHz, CDCl₃) of **16w**

1H NMR (400 MHz, CDCl₃) of 16x

1H NMR (400 MHz, CDCl₃) of 16y

¹H NMR (400 MHz, CDCl₃) of **16z**

¹H NMR (400 MHz, CDCl₃) of 16ab

¹H NMR (400 MHz, CDCl₃) of 16ab'

¹H NMR (400 MHz, CDCl₃) of 16ac

¹H NMR (600 MHz, CDCl₃) of 16ac'

¹H NMR (400 MHz, CDCl₃) of 16ad

¹H NMR (400 MHz, CDCl₃) of **16ae**

1H NMR (600 MHz, CDCl₃) of 16af

88.800 88.001

2D NMR (cosy, HSQC, HMBC)

¹H NMR (400 MHz, CDCl₃) of **16ag**

¹H NMR (500 MHz, CDCl₃) of **16ah**

^1H NMR (400 MHz, CDCl₃) of 16aj

8 Differential scanning calorimetry (DSC)

Figure S13. DSC for **1a** shows rapid decomposition with exotherm (221 J/g) initiating at 280°C. Also note endothermic melting at 130° C.

Figure S14. DSC for **1b** shows rapid decomposition with exotherm (753 J/g) initiating at 240°C. Also note endothermic melting at 120° C.

Figure S15. DSC for **1c** shows rapid decomposition with exotherm (550 J/g) initiating at 260°C. Also note endothermic melting at 190°C.

9 DFT calculation supplement

General Information

Geometry optimization and frequency calculations were done with Gaussian16, Revision A.03^[16]. Input file creation and analysis was done with GaussView 6.0, visualization of molecular orbitals with Avogadro 1.2.0^[17]. The input geometry of each molecule's geometry optimization is based on the coordinates found in the single crystal. Calculation and visualization of IBOs with IboView v20150427^[18]. Input for IBOView are the previously optimized geometries from Gaussian which are given below each molecular orbital figure.

FigureS16: Molecular orbitals of 1b. Level of theory B3LYP/def2TZVP. Isosurface level drawn at 0.04.

SCF E	nergy: -1041724	.4594880	
S	3.57921	17.36819	1.47810
S	2.08059	15.08767	1.74172
0	3.51328	17.76905	2.86631
Ν	3.43286	15.82919	1.13043
С	2.36428	18.33427	0.57869
Н	1.38332	18.06798	0.97212

Н	2.43863	18.11156	-0.48327
Η	2.57070	19.38471	0.77526
С	5.13821	17.76956	0.75013
С	5.91180	18.71067	1.42434
Η	5.57282	19.12742	2.36267
С	7.13247	19.08235	0.87503
Η	7.75001	19.80713	1.38814
С	7.55851	18.52063	-0.32304
Η	8.51099	18.81355	-0.74492
С	6.77295	17.57769	-0.98137
Η	7.11540	17.13630	-1.90767
С	5.55197	17.19156	-0.44867
Η	4.94662	16.44305	-0.93920
С	1.81369	13.70881	0.65287
С	2.04674	12.49193	1.30442
С	2.50305	12.66409	2.68716
С	2.60544	14.00943	3.05822
С	3.01274	14.42901	4.31121
Η	3.08188	15.47962	4.56075
С	3.34921	13.44388	5.23566
Η	3.68190	13.72998	6.22412
С	3.25262	12.09601	4.89625
Η	3.51023	11.34369	5.63000
С	2.82907	11.69718	3.63166
Η	2.75646	10.64482	3.39134
С	1.82461	11.31629	0.59475
Η	1.98650	10.35407	1.06195
С	1.39155	11.38551	-0.72557
Η	1.22219	10.47001	-1.27681
С	1.16755	12.61123	-1.34919
Η	0.82786	12.64243	-2.37543
С	1.36922	13.79930	-0.65340
Н	1.18736	14.75514	-1.12610

Figure S17: IBOs of 1b drawn at Isosurface level 80. Level of theory for generation of IBOs PBE/def2TZVP/univ-JFIT.

Figure S18: Molecular orbitals of 1c. Level of theory B3LYP/def2TZVP. Isosurface level drawn at 0.04.

SCF	Energy: -266.97	5654616926	
S	3.90839	6.23673	8.26256
S	3.54041	5.84960	11.02940
0	5.01304	6.06817	7.36009
Ν	4.44842	6.32315	9.75042
С	2.57813	5.08370	8.04143
С	1.40179	5.75693	7.69421
С	1.57772	7.21833	7.60024
С	2.88719	7.62988	7.86748
С	3.30029	8.94769	7.80360
Η	4.32702	9.22551	8.00150
С	2.34659	9.90297	7.46095
Η	2.63215	10.94380	7.39054

С	1.03202	9.52236	7.19948
Н	0.30358	10.27617	6.93104
С	0.63875	8.18759	7.26605
Н	-0.38516	7.91417	7.04843
С	0.26013	5.00189	7.45290
Н	-0.67022	5.47985	7.17652
С	0.32527	3.61423	7.55477
Н	-0.56276	3.02706	7.36117
С	1.51351	2.96757	7.88690
Н	1.54420	1.88804	7.94394
С	2.66701	3.70648	8.13492
Н	3.60265	3.21625	8.36998
С	4.73157	5.17310	12.16773
С	4.84128	5.95211	13.32396
С	3.99826	7.15073	13.28257
С	3.26703	7.25636	12.09392
С	2.39331	8.29654	11.83296
Н	1.83101	8.34713	10.91014
С	2.26560	9.29060	12.79882
Η	1.59997	10.12501	12.62456
С	2.98304	9.20932	13.99030
Н	2.86644	9.98521	14.73536
С	3.84324	8.14518	14.24247
Н	4.38415	8.09601	15.17812
С	5.70404	5.52192	14.32663
Н	5.81505	6.09231	15.23918
С	6.43241	4.35065	14.14419
Η	7.10794	4.01940	14.92174
С	6.30990	3.59865	12.97772
Η	6.88990	2.69441	12.85337
С	5.44088	4.00355	11.96905
Н	5.34131	3.42708	11.05943

Figure S19: IBOs of 1c drawn at Isosurface level 80. Level of theory for generation of IBOs PBE/def2TZVP/univ-JFIT.

Figure S20: Molecular orbitals of 3a. Level of theory B3LYP/def2TZVP. Isosurface level drawn at 0.04.

SCF Energy: -	-888923.5379629
---------------	-----------------

	0,		
S	18.88047	5.47623	8.88528
Ν	17.72931	4.27352	9.23828
С	20.36642	4.53347	8.61808
С	21.23923	4.62948	9.70930
С	20.69902	5.44815	10.79647
С	19.42648	5.95527	10.50829
С	18.71843	6.77044	11.37270
Η	17.74143	7.15757	11.11615
С	19.30811	7.07634	12.59563
Η	18.78249	7.70582	13.30062
С	20.57334	6.58406	12.90916
Η	21.02127	6.83777	13.86082

С	21.27518	5.77735	12.01880
Η	22.26004	5.41282	12.27882
С	22.46363	3.97442	9.63108
Н	23.16867	4.02855	10.44987
С	22.77754	3.24569	8.48841
Н	23.72901	2.73392	8.43003
С	21.89106	3.16722	7.41671
Η	22.15534	2.59787	6.53609
С	20.66593	3.82521	7.46856
Η	19.97830	3.77468	6.63567
С	16.56622	4.34912	8.65162
С	16.21465	5.33266	7.59021
С	15.24115	6.30523	7.83426
Η	14.72842	6.32944	8.78747
С	14.93631	7.24469	6.85803
Η	14.19252	8.00435	7.05944
С	15.57372	7.20214	5.62240
Η	15.32381	7.92712	4.85905
С	16.52350	6.22037	5.36463
Н	17.00742	6.17237	4.39801
С	16.85047	5.29376	6.34639
Η	17.57279	4.51570	6.13227
С	15.55400	3.37784	9.08948
С	15.72417	2.66022	10.28618
Η	16.59743	2.84584	10.89474
С	14.77778	1.73429	10.68411
Η	14.91049	1.19281	11.61139
С	13.65284	1.49963	9.89457
Н	12.91517	0.77250	10.20877
С	13.47551	2.19863	8.70600
Н	12.60534	2.01304	8.09061
С	14.41522	3.13605	8.30535
Н	14.27386	3.66953	7.37628

Figure S21: IBOs of 3a drawn at isosurface level 80. Level of theory for generation of IBOs PBE/def2TZVP/univ-JFIT.

Figure S22: Molecular orbitals of **3e**. Level of theory B3LYP/def2TZVP. Isosurface level drawn at 0.04.

SCF E	nergy: -1041724	.4594880	
S	3.57921	17.36819	1.47810
S	2.08059	15.08767	1.74172
0	3.51328	17.76905	2.86631
Ν	3.43286	15.82919	1.13043
С	2.36428	18.33427	0.57869
Η	1.38332	18.06798	0.97212
Η	2.43863	18.11156	-0.48327
Η	2.57070	19.38471	0.77526
С	5.13821	17.76956	0.75013
С	5.91180	18.71067	1.42434
Η	5.57282	19.12742	2.36267
С	7.13247	19.08235	0.87503
Н	7.75001	19.80713	1.38814

SCF Energy:	-1041724	.459488

С	7.55851	18.52063	-0.32304
Η	8.51099	18.81355	-0.74492
С	6.77295	17.57769	-0.98137
Η	7.11540	17.13630	-1.90767
С	5.55197	17.19156	-0.44867
Η	4.94662	16.44305	-0.93920
С	1.81369	13.70881	0.65287
С	2.04674	12.49193	1.30442
С	2.50305	12.66409	2.68716
С	2.60544	14.00943	3.05822
С	3.01274	14.42901	4.31121
Η	3.08188	15.47962	4.56075
С	3.34921	13.44388	5.23566
Η	3.68190	13.72998	6.22412
С	3.25262	12.09601	4.89625
Η	3.51023	11.34369	5.63000
С	2.82907	11.69718	3.63166
Η	2.75646	10.64482	3.39134
С	1.82461	11.31629	0.59475
Η	1.98650	10.35407	1.06195
С	1.39155	11.38551	-0.72557
Η	1.22219	10.47001	-1.27681
С	1.16755	12.61123	-1.34919
Η	0.82786	12.64243	-2.37543
С	1.36922	13.79930	-0.65340
Н	1.18736	14.75514	-1.12610

Figure S23: IBOs of 3e drawn at isosurface level 80. Level of theory for generation of IBOs PBE/def2TZVP/univ-JFIT.

10 Single crystal X-ray diffraction analysis supplement

General Information

Data collection was done on two dual source equipped *Bruker D8 Venture* four-circlediffractometer from *Bruker AXS GmbH*; used X-ray sources: microfocus $I\mu S$ 2.0 Cu/Mo and microfocus $I\mu S$ 3.0 Ag/Mo from *Incoatec GmbH* with mirror optics *HELIOS* and single-hole collimator from *Bruker AXS GmbH*; used detector: *Photon III CE14* (Cu/Mo) and Photon III HE (Ag/Mo) from *Bruker AXS GmbH*.

Used programs: *APEX3 Suite* (v2018.7-2) for data collection and therein integrated programs *SAINT* V8.38A (Integration) und *SADABS* 2016/2 (Absorption correction) from *Bruker AXS GmbH*; structure solution was done with *SHELXT*, refinement with *SHELXL*-2018/3 ^[18]; OLEX² was used for data finalization ^[20].

Special Utilities: *SMZ1270* stereomicroscope from *Nikon Metrology GmbH* was used for sample preparation; crystals were mounted on *MicroMounts* or *MicroLoops* from *MiTeGen* in NVH oil. All compounds were crystalized by diffusion of diethylether into dichloromethane solutions of the title compounds.

Compound 1a

Figure S24: Molecular structure of full asymmetric unit and numbering scheme of compound 1a. Ellipsoids drawn at 50% probability level.

Crystal data and structure refinement for 1a.

CCDC	2062172
Empirical formula	$C_{49}H_{38}Cl_2F_{12}N_2O_2S_4Sb_2$
Formula weight	1357.45
Temperature/K	100
Crystal system	Monoclinic
Space group	P2 ₁ /n
a/Å	8.2412(3)
b/Å	17.5619(6)
c/Å	18.4820(5)
α/°	90
β/°	99.5660(10)
$\gamma/^{\circ}$	90
Volume/Å ³	2637.73(15)

Ζ	2
$\rho_{calc}g/cm^3$	1.709
μ/mm^{-1}	1.367
F(000)	1340.0
Crystal size/mm ³	0.335 imes 0.25 imes 0.198
Radiation	MoK α ($\lambda = 0.71073$)
2Θ range for data collection/°	5.036 to 61.076
Index ranges	$-11 \le h \le 11, -25 \le k \le 25, -26 \le l \le 26$
Reflections collected	161835
Independent reflections	$8064 [R_{int} = 0.0209, R_{sigma} = 0.0065]$
Data/restraints/parameters	8064/22/343
Goodness-of-fit on F ²	1.071
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0279, wR_2 = 0.0842$
Final R indexes [all data]	$R_1 = 0.0286, wR_2 = 0.0850$
Largest diff. peak/hole / e Å ⁻³	2.64/-1.03

Compound 1b

Figure S15:Molecular structure of full asymmetric unit and numbering scheme of compound 1b. Ellipsoids
drawn at 50% probability level.

CCDC	2062173
Empirical formula	$C_{20}H_{16}F_3NO_4S_3$
Formula weight	487.52
Temperature/K	100
Crystal system	Monoclinic
Space group	P2 ₁ /c
a/Å	10.8928(10)
b/Å	26.053(2)
c/Å	7.3295(5)
α/°	90
β/°	103.374(3)
$\gamma/^{\circ}$	90
Volume/Å ³	2023.7(3)
Ζ	4
$\rho_{calc}g/cm^3$	1.600
μ/mm ⁻¹	0.423

Crystal data and structure refinement for 1b.

F(000)	1000.0
Crystal size/mm ³	0.321 imes 0.189 imes 0.172
Radiation	MoKα ($\lambda = 0.71073$)
2Θ range for data collection/°	4.956 to 59.252
Index ranges	$-15 \le h \le 15, -36 \le k \le 36, -10 \le l \le 10$
Reflections collected	61810
Independent reflections	5697 [$R_{int} = 0.0286, R_{sigma} = 0.0138$]
Data/restraints/parameters	5697/0/281
Goodness-of-fit on F ²	1.067
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0288, wR_2 = 0.0724$
Final R indexes [all data]	$R_1 = 0.0313, wR_2 = 0.0743$
Largest diff. peak/hole / e Å ⁻³	0.43/-0.42
Compound 1c

Figure S26:Molecular structure of full asymmetric unit and numbering scheme of compound 1c. Ellipsoids
drawn at 50% probability level. Minor disorder drawn with translucent ellipsoids and stippled bonds.
The refined occupancy of the major disorder part is 0.865(8).

Crystal data and	structure refinement for 1	1c.
------------------	----------------------------	-----

CCDC	2062174
Empirical formula	$C_{25}H_{16}F_3NO_4S_3$
Formula weight	547.57
Temperature/K	100
Crystal system	Monoclinic
Space group	P2 ₁ /c
a/Å	7.7343(9)
b/Å	11.6345(13)
c/Å	25.586(2)
α/°	90
$\beta/^{\circ}$	95.771(3)
$\gamma/^{\circ}$	90
Volume/Å ³	2290.7(4)
Ζ	4

$\rho_{calc}g/cm^3$	1.588
μ/mm^{-1}	0.384
F(000)	1120.0
Crystal size/mm ³	$0.203\times0.182\times0.066$
Radiation	MoKα ($\lambda = 0.71073$)
2Θ range for data collection/°	4.744 to 59.302
Index ranges	$-10 \le h \le 10, -16 \le k \le 16, -35 \le l \le 35$
Reflections collected	114032
Independent reflections	6453 [$R_{int} = 0.0278$, $R_{sigma} = 0.0110$]
Data/restraints/parameters	6453/78/398
Goodness-of-fit on F ²	1.060
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0294, wR_2 = 0.0802$
Final R indexes [all data]	$R_1 = 0.0305, wR_2 = 0.0811$
Largest diff. peak/hole / e Å ⁻³	0.48/-0.38

Compound 3a

Figure S27: Molecular structure of full asymmetric unit and numbering scheme of compound 3a. Ellipsoids drawn at 50% probability level.

CCDC	2062175
Empirical formula	$C_{26}H_{18}F_{3}NO_{3}S_{2}$
Formula weight	513.53
Temperature/K	100
Crystal system	Monoclinic
Space group	C2/c
a/Å	32.2922(19)
b/Å	8.2812(5)
c/Å	18.3803(9)
α/°	90
β/°	111.542(2)
$\gamma/^{\circ}$	90
Volume/Å ³	4571.9(4)
Ζ	8
$\rho_{calc}g/cm^3$	1.492
µ/mm ⁻¹	0.288
F(000)	2112.0

Crystal data and structure refinement for 3a.

Crystal size/mm ³	$0.36 \times 0.249 \times 0.098$
Radiation	MoK α ($\lambda = 0.71073$)
2Θ range for data collection/°	4.536 to 55.854
Index ranges	$-42 \le h \le 42, -10 \le k \le 10, -24 \le l \le 24$
Reflections collected	24330
Independent reflections	5458 [$R_{int} = 0.0204$, $R_{sigma} = 0.0167$]
Data/restraints/parameters	5458/0/316
Goodness-of-fit on F ²	1.058
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0387, wR_2 = 0.0956$
Final R indexes [all data]	$R_1 = 0.0437, wR_2 = 0.1003$
Largest diff. peak/hole / e Å ⁻³	0.58/-0.66

Compound 3b

Figure S28:Molecular structure of full asymmetric unit and numbering scheme of compound 3b. Ellipsoids
drawn at 50% probability level. The methyl group C20 features rotational disorder.

Crystal data and structure refinement for **3b**.

CCDC	2062176
Empirical formula	$C_{28}H_{22}F_{3}NO_{3}S_{2}$
Formula weight	541.58
Temperature/K	100
Crystal system	Monoclinic
Space group	P2 ₁ /n
a/Å	8.0241(6)
b/Å	20.8105(12)
c/Å	15.2442(8)
α/°	90
β/°	105.143(2)
$\gamma^{\prime \circ}$	90
Volume/Å ³	2457.2(3)

Ζ	4
$\rho_{calc}g/cm^3$	1.464
μ/mm^{-1}	0.272
F(000)	1120.0
Crystal size/mm ³	$0.336 \times 0.249 \times 0.038$
Radiation	$MoK\alpha (\lambda = 0.71073)$
2Θ range for data collection/°	4.794 to 61.056
Index ranges	$-11 \le h \le 10, -29 \le k \le 29, -21 \le l \le 21$
Reflections collected	47717
Independent reflections	7440 [$R_{int} = 0.0273$, $R_{sigma} = 0.0178$]
Data/restraints/parameters	7440/3/337
Goodness-of-fit on F ²	1.046
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0336, wR_2 = 0.0865$
Final R indexes [all data]	$R_1 = 0.0396, wR_2 = 0.0910$
Largest diff. peak/hole / e Å ⁻³	0.44/-0.41

Compound 3c

Figure S29:Molecular structure of full asymmetric unit and numbering scheme of compound 3c. Ellipsoids
drawn at 50% probability level.

CCDC	2062177
Empirical formula	$C_{32}H_{22}F_{3}NO_{3}S_{2}$
Formula weight	589.62
Temperature/K	100
Crystal system	Triclinic
Space group	P-1
a/Å	10.266(2)
b/Å	10.436(2)
c/Å	13.703(3)
α/°	77.481(7)
β/°	74.186(7)
$\gamma/^{\circ}$	87.828(8)
Volume/Å ³	1378.5(6)
Ζ	2
$\rho_{calc}g/cm^3$	1.421
µ/mm ⁻¹	0.249

Crystal data and structure refinement for 3c.

F(000)	608.0
Crystal size/mm ³	$0.351 \times 0.23 \times 0.092$
Radiation	MoKα ($\lambda = 0.71073$)
2Θ range for data collection/°	4 to 56.622
Index ranges	$-13 \le h \le 13, -13 \le k \le 13, -18 \le l \le 18$
Reflections collected	75438
Independent reflections	$6830 [R_{int} = 0.0448, R_{sigma} = 0.0223]$
Data/restraints/parameters	6830/0/371
Goodness-of-fit on F ²	1.073
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0437, wR_2 = 0.1036$
Final R indexes [all data]	$R_1 = 0.0541, wR_2 = 0.1126$
Largest diff. peak/hole / e Å ⁻³	0.78/-0.56

Compound 3d

Figure S30: Molecular structure of full asymmetric unit and numbering scheme of compound 3d. Ellipsoids drawn at 50% probability level.

Crystal data and structure refinement for 3d.

CCDC	2062178
Empirical formula	$C_{26}H_{16}F_5NO_3S_2$
Formula weight	549.52
Temperature/K	100
Crystal system	Monoclinic
Space group	$P2_1/n$
a/Å	10.9164(9)
b/Å	15.2555(15)
c/Å	14.1703(13)
α/°	90
β/°	99.893(4)
$\gamma/^{\circ}$	90
Volume/Å ³	2324.8(4)

Ζ	4
$\rho_{calc}g/cm^3$	1.570
μ/mm^{-1}	0.301
F(000)	1120.0
Crystal size/mm ³	0.481 imes 0.4 imes 0.248
Radiation	MoKα ($\lambda = 0.71073$)
2Θ range for data collection/°	4.366 to 61.074
Index ranges	$-15 \le h \le 15, -21 \le k \le 21, -20 \le l \le 20$
Reflections collected	75701
Independent reflections	7099 [$R_{int} = 0.0279, R_{sigma} = 0.0161$]
Data/restraints/parameters	7099/0/334
Goodness-of-fit on F ²	1.094
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0424, wR_2 = 0.1041$
Final R indexes [all data]	$R_1 = 0.0456, wR_2 = 0.1066$
Largest diff. peak/hole / e Å ⁻³	0.63/-0.54

Compound 3e

Figure S31:Molecular structure of full asymmetric unit and numbering scheme of compound 3e. Ellipsoids
drawn at 50% probability level. Minor disorder drawn with translucent ellipsoids and stippled bonds.
The refined occupancy of the major disorder part is 0.88(1).

CCDC	2062179
Empirical formula	$C_{26}H_{18}F_3NO_4S_2$
Formula weight	529.53
Temperature/K	100
Crystal system	Orthorhombic
Space group	Pbca
a/Å	9.8155(6)
b/Å	16.0505(14)
c/Å	29.742(2)

Crystal data and structure refinement for **3e**.

$\alpha/^{\circ}$	90
β/°	90
$\gamma^{\prime \circ}$	90
Volume/Å ³	4685.7(6)
Ζ	8
$\rho_{calc}g/cm^3$	1.501
µ/mm ⁻¹	0.287
F(000)	2176.0
Crystal size/mm ³	$0.249 \times 0.194 \times 0.046$
Radiation	MoKα ($\lambda = 0.71073$)
2Θ range for data collection/°	4.972 to 57.392
Index ranges	$-13 \le h \le 13, -21 \le k \le 21, -40 \le l \le 40$
Reflections collected	89715
Independent reflections	$6055 [R_{int} = 0.0432, R_{sigma} = 0.0178]$
Data/restraints/parameters	6055/74/398
Goodness-of-fit on F ²	1.105
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0393, wR_2 = 0.0796$
Final R indexes [all data]	$R_1 = 0.0449, wR_2 = 0.0830$
Largest diff. peak/hole / e Å ⁻³	0.33/-0.39

Compound $3f \circ$ thianthrene S-oxide

Figure S32: Molecular structure of full asymmetric unit and numbering scheme of compound 3f. Ellipsoids drawn at 50% probability level. Minor disorder drawn with translucent ellipsoids and stippled bonds. The refined occupancy of the major disorder part is 0.751(5). 3f tends to co-crystalize with one equivalent of thianthrene S-oxide, if remaining from the synthesis. Noteworthy chalcogenic interaction can be found between O1 and S2, which is rather typical for these compounds; and for O4 and S3, which is explaining the favored co-crystallization.

Crystal data and structure refinement for $3f \circ$ thianthrene S-oxide.

CCDC	2062180
Empirical formula	$C_{38}H_{26}F_3NO_4S_5$
Formula weight	777.90
Temperature/K	100
Crystal system	Monoclinic
Space group	P2 ₁ /n
a/Å	11.0127(8)
b/Å	18.919(2)
c/Å	17.186(2)
$\alpha/^{\circ}$	90
$\beta/^{\circ}$	106.981(3)
$\gamma/^{\circ}$	90
Volume/Å ³	3424.5(6)
Ζ	4

$\rho_{calc}g/cm^3$	1.509
μ/mm ⁻¹	0.399
F(000)	1600.0
Crystal size/mm ³	$0.264 \times 0.242 \times 0.187$
Radiation	MoKα ($\lambda = 0.71073$)
2Θ range for data collection/°	4.306 to 60.992
Index ranges	$-15 \le h \le 14, -25 \le k \le 27, -24 \le l \le 24$
Reflections collected	69718
Independent reflections	10273 [$R_{int} = 0.0283$, $R_{sigma} = 0.0211$]
Data/restraints/parameters	10273/11/479
Goodness-of-fit on F ²	1.057
Final R indexes [I>=2σ (I)]	$R_1 = 0.0465, wR_2 = 0.1043$
Final R indexes [all data]	$R_1 = 0.0578, wR_2 = 0.1111$
Largest diff. peak/hole / e Å ⁻³	0.90/-1.14

Compound 3f

Figure S33: Molecular structure of full asymmetric unit and numbering scheme of compound **3f**. Ellipsoids drawn at 50% probability level. Minor disorder drawn with translucent ellipsoids and stippled bonds. The thianthrene and triflate disorder were modelled separately: The thianthrene was partly splited in two positions with the major part occupancy factor refined to 0.66(2). The triflate anion was split in three positions with each position's occupancy factor refined separately and the sum of occupancies restrained to 1. The final occupancy factors were refined to 0.395(3), 0.376(3) and 0.229(3).

CCDC	2062181
Empirical formula	$C_{26}H_{18}F_3NO_3S_3$
Formula weight	545.59
Temperature/K	100
Crystal system	Tetragonal
Space group	P41212
a/Å	13.0989(6)
b/Å	13.0989(6)
c/Å	27.9396(10)
α/°	90
β/°	90
$\gamma/^{\circ}$	90
Volume/Å ³	4793.9(5)
Ζ	8

Crystal data and structure refinement for 3f.

$\rho_{calc}g/cm^3$	1.512
µ/mm ⁻¹	0.363
F(000)	2240.0
Crystal size/mm ³	$0.15\times0.133\times0.127$
Radiation	MoKα ($\lambda = 0.71073$)
2Θ range for data collection/°	4.262 to 61.028
Index ranges	$-18 \le h \le 18, -18 \le k \le 18, -39 \le l \le 39$
Reflections collected	265858
Independent reflections	7323 [$R_{int} = 0.0299, R_{sigma} = 0.0092$]
Data/restraints/parameters	7323/183/483
Goodness-of-fit on F ²	1.043
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0491, wR_2 = 0.1256$
Final R indexes [all data]	$R_1 = 0.0559, wR_2 = 0.1332$
Largest diff. peak/hole / e Å ⁻³	0.55/-0.79
Flack parameter	0.47(11)*

* refined as Inversion twin.

Figure 34:Molecular structure of full asymmetric unit and numbering scheme of compound 6j.Ellipsoids drawn at 50% probability level.

CCDC	2063032
Empirical formula	$C_{20}H_{14}N_2OS$
Formula weight	330.39
Temperature/K	150
Crystal system	Triclinic
Space group	P-1
a/Å	8.5809(8)
b/Å	9.1772(7)
c/Å	10.4716(9)
α/°	103.021(4)
β/°	93.915(4)
γ/°	96.530(3)
Volume/Å ³	794.44(12)
Ζ	2
ρ _{calc} g/cm ³	1.381
μ/mm ⁻¹	0.212

Crystal data and structure refinement for 6j.

F(000)	344.0
Crystal size/mm ³	0.35 × 0.3 × 0.05
Radiation	ΜοΚα (λ = 0.71073)
20 range for data collection/°	4.596 to 59.268
Index ranges	$-11 \le h \le 11, -12 \le k \le 12, -14 \le \le 14$
Reflections collected	26461
Independent reflections	4469 [R _{int} = 0.0265, R _{sigma} = 0.0183]
Data/restraints/parameters	4469/0/217
Goodness-of-fit on F ²	1.062
Final R indexes [I>=2σ (I)]	$R_1 = 0.0337$, w $R_2 = 0.0836$
Final R indexes [all data]	$R_1 = 0.0382$, w $R_2 = 0.0876$
Largest diff. peak/hole / e Å ⁻³	0.33/-0.33

Compound 13b

Figure 35:Molecular structure of full asymmetric unit and numbering scheme of compound 13b.Ellipsoids drawn at 50% probability level.

Crystal data and structure refinement for **13b**.

CCDC	2063033
Empirical formula	C ₂₇ H ₂₇ N ₃ O ₂
Formula weight	425.51
Temperature/K	100
Crystal system	Triclinic
Space group	P-1
a/Å	10.1835(13)
b/Å	10.1873(12)
c/Å	12.0324(13)
α/°	73.061(4)
β/°	85.268(5)
γ/°	71.102(4)
Volume/Å ³	1129.7(2)
Z	2
$\rho_{calc}g/cm^3$	1.251
μ/mm ⁻¹	0.080
F(000)	452.0
Crystal size/mm ³	0.194 × 0.159 × 0.155
Radiation	ΜοΚα (λ = 0.71073)
20 range for data collection/°	4.228 to 56.702
Index ranges	$-13 \le h \le 13$, $-13 \le k \le 13$, $-16 \le l \le 15$

Reflections collected	53011
Independent reflections	5631 [R _{int} = 0.0334, R _{sigma} = 0.0172]
Data/restraints/parameters	5631/0/291
Goodness-of-fit on F ²	1.038
Final R indexes [I>=2σ (I)]	$R_1 = 0.0383$, w $R_2 = 0.0961$
Final R indexes [all data]	$R_1 = 0.0432$, w $R_2 = 0.1001$
Largest diff. peak/hole / e Å ⁻³	0.32/-0.17

Compound 16b

Figure 36:Molecular structure of full asymmetric unit and numbering scheme of compound 16b.Ellipsoids drawn at 50% probability level.

CCDC	2063034
Empirical formula	C ₂₆ H ₂₁ NO ₂ S
Formula weight	411.50
Temperature/K	100
Crystal system	Monoclinic
Space group	P21/c
a/Å	12.890(3)
b/Å	17.696(4)
c/Å	9.0179(16)
α/°	90
β/°	99.136(6)
γ/°	90
Volume/Å ³	2031.0(8)
Z	4
ρ _{calc} g/cm ³	1.346

Crystal data and structure refinement for 16b.

µ/mm ⁻¹	0.183
F(000)	864.0
Crystal size/mm ³	$0.204 \times 0.117 \times 0.107$
Radiation	ΜοΚα (λ = 0.71073)
20 range for data collection/°	4.604 to 65.982
Index ranges	-19 ≤ h ≤ 19, -26 ≤ k ≤ 26, -13 ≤ l ≤ 13
Reflections collected	52320
Independent reflections	6915 [R _{int} = 0.0448, R _{sigma} = 0.0341]
Data/restraints/parameters	6915/0/272
Goodness-of-fit on F ²	1.062
Final R indexes [I>=2σ (I)]	R ₁ = 0.0517, wR ₂ = 0.1213
Final R indexes [all data]	$R_1 = 0.0676$, w $R_2 = 0.1291$
Largest diff. peak/hole / e Å ⁻³	0.48/-0.52

Compound 16h

Figure 37:Molecular structure of full asymmetric unit and numbering scheme of compound 16h.Ellipsoids drawn at 50% probability level.

CCDC	2063035
Empirical formula	C ₂₇ H ₂₃ NOS
Formula weight	409.52
Temperature/K	100
Crystal system	Triclinic
Space group	P-1

Crystal data and structure refinement for 16h.

a/Å	9.6947(3)
b/Å	10.8404(3)
c/Å	12.1920(4)
α/°	99.1640(10)
β/°	113.4380(10)
γ/°	109.7450(10)
Volume/Å ³	1040.54(6)
Ζ	2
$\rho_{calc}g/cm^3$	1.307
μ/mm ⁻¹	0.175
F(000)	432.0
Crystal size/mm ³	0.426 × 0.272 × 0.142
Radiation	ΜοΚα (λ = 0.71073)
2Θ range for data collection/°	4.672 to 68.762
Index ranges	-14 ≤ h ≤ 15, -17 ≤ k ≤ 17, -19 ≤ l ≤ 19
Reflections collected	78916
Independent reflections	7926 [R _{int} = 0.0265, R _{sigma} = 0.0168]
Data/restraints/parameters	7926/0/340
Goodness-of-fit on F ²	1.052
Final R indexes [I>=2σ (I)]	$R_1 = 0.0338$, $wR_2 = 0.0919$
Final R indexes [all data]	$R_1 = 0.0370$, $wR_2 = 0.0976$
Largest diff. peak/hole / e Å ⁻³	0.47/-0.43

Compound 16i

Figure 38:Molecular structure of full asymmetric unit and numbering scheme of compound 16i.Ellipsoids drawn at 50% probability level.

CCDC	2063036
Empirical formula	C ₂₇ H ₂₅ NO ₃ S
Formula weight	443.54
Temperature/K	100
Crystal system	Monoclinic
Space group	P21/c
a/Å	12.3013(16)
b/Å	11.0116(11)
c/Å	16.542(2)
α/°	90
β/°	100.472(4)
γ/°	90
Volume/Å ³	2203.4(5)
Z	4
ρ _{calc} g/cm ³	1.337
μ/mm ⁻¹	0.177

Crystal data and structure refinement for 16i.

F(000)	936.0
Crystal size/mm ³	0.291 × 0.278 × 0.112
Radiation	ΜοΚα (λ = 0.71073)
20 range for data collection/°	4.466 to 59.338
Index ranges	-16 ≤ h ≤ 17, -14 ≤ k ≤ 15, -23 ≤ l ≤ 23
Reflections collected	81796
Independent reflections	6220 [R _{int} = 0.0277, R _{sigma} = 0.0130]
Data/restraints/parameters	6220/0/291
Goodness-of-fit on F ²	1.038
Final R indexes [I>=2σ (I)]	$R_1 = 0.0324$, w $R_2 = 0.0869$
Final R indexes [all data]	$R_1 = 0.0346$, w $R_2 = 0.0890$
Largest diff. peak/hole / e Å ⁻³	0.40/-0.42

Compound 16l

Figure 39:Molecular structure of full asymmetric unit and numbering scheme of compound 16I.Ellipsoids drawn at 50% probability level.

Crystal data and structure refinement for 16I.

CCDC	2063037
Empirical formula	C ₃₁ H ₂₅ NOS
Formula weight	459.58
Temperature/K	100
Crystal system	Monoclinic
Space group	C2/c
a/Å	24.1618(13)
b/Å	8.1430(5)
c/Å	24.1637(15)
α/°	90
β/°	99.543(2)
γ/°	90
Volume/Å ³	4688.4(5)

Z	8
ρ _{calc} g/cm ³	1.302
μ/mm ⁻¹	0.163
F(000)	1936.0
Crystal size/mm ³	0.475 × 0.332 × 0.3
Radiation	ΜοΚα (λ = 0.71073)
20 range for data collection/°	5.286 to 61.198
Index ranges	$-34 \le h \le 34$, $-11 \le k \le 11$, $-34 \le l \le 34$
Reflections collected	62839
Independent reflections	7196 [R _{int} = 0.0271, R _{sigma} = 0.0160]
Data/restraints/parameters	7196/0/307
Goodness-of-fit on F ²	1.031
Final R indexes [I>=2σ (I)]	$R_1 = 0.0330$, $wR_2 = 0.0890$
Final R indexes [all data]	$R_1 = 0.0344$, w $R_2 = 0.0903$
Largest diff. peak/hole / e Å ⁻³	0.41/-0.44

Compound 16ae

Figure 40:Molecular structure of full asymmetric unit and numbering scheme of compound 16ae.Ellipsoids drawn at 50% probability level.

CCDC	2063038
Empirical formula	C ₂₇ H ₂₃ NOS
Formula weight	409.52
Temperature/K	100
Crystal system	Monoclinic
Space group	P21/c
a/Å	12.066(5)
b/Å	11.422(5)

Crystal data and structure refinement for 16ae.

c/Å	16.283(7)
α/°	90
β/°	103.093(11)
γ/°	90
Volume/Å ³	2185.8(16)
Ζ	4
ρ _{calc} g/cm ³	1.244
μ/mm ⁻¹	0.166
F(000)	864.0
Crystal size/mm ³	0.285 × 0.25 × 0.018
Radiation	ΜοΚα (λ = 0.71073)
2Θ range for data collection/°	4.394 to 57.482
Index ranges	-16 ≤ h ≤ 16, -15 ≤ k ≤ 15, -20 ≤ l ≤ 21
Reflections collected	62399
Independent reflections	5646 [R _{int} = 0.0556, R _{sigma} = 0.0336]
Data/restraints/parameters	5646/0/272
Goodness-of-fit on F ²	1.092
Final R indexes [I>=2σ (I)]	R ₁ = 0.0679, wR ₂ = 0.1777
Final R indexes [all data]	$R_1 = 0.0961$, $wR_2 = 0.2025$
Largest diff. peak/hole / e Å ⁻³	0.60/-0.64

Compound 16ag

Figure 41:Molecular structure of full asymmetric unit and numbering scheme of compound 16ag.
Ellipsoids drawn at 50% probability level.

Crystal data and structure refinement for 16ag.

CCDC	2063039
Empirical formula	C ₂₆ H ₂₁ NOS
Formula weight	395.50
Temperature/K	100
Crystal system	Orthorhombic
Space group	P212121
a/Å	6.149(2)
b/Å	16.882(5)
c/Å	19.240(6)
α/°	90
β/°	90

γ/°	90
Volume/Å ³	1997.4(11)
Z	4
$\rho_{calc}g/cm^3$	1.315
µ/mm⁻¹	0.179
F(000)	832.0
Crystal size/mm ³	0.77 × 0.083 × 0.073
Radiation	ΜοΚα (λ = 0.71073)
20 range for data collection/°	4.234 to 61.26
Index ranges	$-8 \le h \le 8$, $-24 \le k \le 23$, $-27 \le l \le 27$
Reflections collected	46833
Independent reflections	6128 [R _{int} = 0.0479, R _{sigma} = 0.0298]
Data/restraints/parameters	6128/0/262
Goodness-of-fit on F ²	1.058
Final R indexes [I>=2σ (I)]	$R_1 = 0.0345$, $wR_2 = 0.0804$
Final R indexes [all data]	R ₁ = 0.0386, wR ₂ = 0.0841
Largest diff. peak/hole / e Å ⁻³	0.29/-0.38
Flack parameter	0.097(19)

11 References

2009, 42, 339-341.

[1] Y. Xie, B. Zhou, S. Zhou, W. Wie, J. Liu, Y. Zhan, D. Cheng, M. Chen, Y. Li, B. Wang, X. Xue, Z. Li, ChemistrySelect 2017, 2, 1620. [2] P. Ortiz, J. F. Collados, S.R. Harutyunyan, Eur. J. Org. Chem. 2016, 1247–1250. [3] a) M. Ke, Q. Song, J. Org. Chem. 2016, 81, 3654-3664; X. Li C. Golz, M. Alcarazo, Angew. Chem. Int. Ed. 2021, DOI: 10.1002/anie.202014775 [4] Y. Cheng, W. Dong, L. Wang, K. Parthasarathy, C. Bolm, Org. Lett. 2014, 16, 2000. [5] R. Torres-Ochoa, A. Leclair, Q. Wang, J. Zhu, Chem. Eur. J. 2019, 25, 9477. [6] Q. Yuan, K. Yao, D. Liu, W. Zhang, Chem. Commun., 2015, 51, 11834. [7] Z. Jia, S. Gao, F. Arnold, J. Am. Chem. Soc., 2020, 142, 10279. [8] (a) H. Zhang, N. Sun, B. Hu, Z. Shen, X. Hu, L. Jin, Org. Chem. Front., 2019, 6, 1983. (b) H. Friebolin, Ein- und zweidimensionale NMR-Spektroskopie, Wiley-VCH, Weinheim, 2013. [9] J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd Ed., Chap. 3, pp. 63–97, Chap. 8, pp. 278–289, Springer US, New York, 2006. [10] J. R. Aranzaes, M-C. Daniel, D. Astruc, Can. J. Chem. 2006, 84, 288–299. [11] S. Rashidnadimi, T. H. Hung, K. Wong, A. J. Bard, J. Am. Chem. Soc. 2008, 130, 634; [12] J. D. Debad, J. C. Morris, P. Magnus, A. J. Bard, J. Org. Chem. 1997,62, 530; [13] C. K. Prier, D. A. Rankic, D. W. C. MacMillan, Chem. Rev. 2013, 113, 5322; [14] W. F. Wacholtz, R. A. Auerbach, R. H. Schmehl, Inorg. Chem. 1986, 25, 227. [15] X. Li, C. Golz, M. Alcarazo, Angew. Chem. Int. Ed. 10.1002/anie.202014775. [16] Gaussian 16, Revision A.03, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016. [17] M. D. Hanwell, D. E. Curtis, D. C. Lonie, T. Vandermeersch, E. Zurek, G. R. Hutchison, Journal of Cheminformatics 2012, 4, 17. [18] G. Knizia, J. Chem. Theory Comput. 2013, 9, 11, 4834–4843. [19] Both: G.M. Sheldrick, Acta Cryst. 2008, A64, 112-122. [20] O.V. Dolomanov, L.J. Bourhis, R.J Gildea, J.A.K. Howard, H. Puschmann, J. Appl. Cryst.