Binaphthyl-Prolinol chiral ligands: Design and Their Application in Enantioselective Arylation of Aromatic Aldehydes

Chao Yao,^a Yaoqi Chen,^a Ruize Sun,^a Yue Huang,^a Lin Li^a and Yue-Ming Li^{a,b*}

^a State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, People's Republic of China Email: ymli@nankai.edu.cn

^b CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China

Contents

1.	Optimization of Reaction Conditions for Enantioselective Arylation-Lactonization of Methy			
	2-Formylbenzoate	S1		
2.	Preparation and Characterization of Chiral Ligands	S2		
3.	Characterization and Enantiomeric Excesses of Products	S2		
4.	Copies of NMR Spectra of Chiral Ligands.	S40		
5.	Copies of NMR Spectra of Products	S75		
6.	References	S109		

1. Optimization of Reaction Conditions for Enantioselective Arylation-Lactonization of Methyl 2-Formylbenzoate

The general procedure for aryl transfer was adopted. Further study showed that the reaction temperature played a crucial role on the enantioselectivity and reactivity (Table S1, entries 1-2). The yield could be improved when the reaction time was prolonged from 24 h to 36 h. (Table S1, entries 2-3). Further increasing the reaction time didn't improve the yield of the reaction (Table S1, entries 3-4). The amount of chiral ligand was also studied, and 10 mol% of the chiral ligand was still the best choice (Table S1, entries 3, 5 and 6). Therefore, the final reaction condition was fixed as follows: reactions were performed on 0.25 mmol scale with PhB(OH)₂ (2.4 equiv), Et₂Zn (7.2 equiv) in toluene (stirring at 60 °C for 12 h), then addition of **3f** (10 mol%), DiMPEG 2000 (10 mol%) and aldehyde at 0 °C. The reaction mixture was stirred at 0 °C for 36 h under in an argon atmosphere.

Table S1. Optimization of enantioselective arylation-lactonization of methyl 2-formylbenzoate^a

3f. DiMPEG 2000

OH

ZnEt₂, 60 °C

		l ───► - toluene, 12 h	CH	о СН3		
entry	Ligand (mol%)	$T(^{\circ}C)$	<i>t</i> (h)	yield (%) ^b	ee (%) ^c	config. ^d
1	10	25	24	83	89	R
2	10	0	24	67	94	R
3	10	0	36	76	95	R
4	10	0	48	75	95	R
5	5	0	36	73	93	R
6	20	0	36	71	90	R

^a Reactions were performed on a 0.25 mmol scale with PhB(OH)₂ (2.4 equiv), Et₂Zn (7.2 equiv)

in toluene (stirring at 60 °C for 12 h), then addition of **3f** (10 mol%), DiMPEG 2000 (10 mol%) and aldehyde at 0 °C, with stirring for 36 h under an atmosphere of argon. ^b Isolated yields. ^c The ee values were determined by HPLC (chiralcel OD-H column). ^d Absolute configuration was assigned by comparison to reported value and sign of specific rotation of the product.¹

2. Preparation and Characterization of Chiral Ligands

The method for preparation of intermediate 4, ligands 1 and 2 can be found in our previously report.²

3. Characterization and Enantiomeric Excesses of Products

(*R*)-phenyl(p-tolyl)methanol $(15a)^3$

90% yield, 98% ee, Colorless oil; HPLC (Chiralcel OD-H, 2% IPA in hexane, 1.0 mL/min, UV 220 nm): $t_R = 27.3$ min for enantiomer (S), $t_R =$

30.7 min for enantiomer (R). [*a*]_D²⁰ = +17.8 (*c* = 1.00, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.34 – 7.24 (m, 4H), 7.24 – 7.15 (m, 3H), 7.09 (d, *J* = 7.9 Hz, 2H), 5.69 (s, 1H), 2.62 (s, 1H), 2.29 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 144.0, 141.0, 137.3, 129.6, 129.2, 128.5, 127.5, 126.7, 126.6, 120.4, 115.5, 76.1, 21.2.

(S)-phenyl (p-tolyl) methanol

93% yield, 88% ee, Colorless oil; HPLC (Chiralcel OD-H, 2% IPA in hexane, 1.0 mL/min, UV 220 nm): $t_R = 28.0$ min for enantiomer (S), $t_R = 32.3$ min for enantiomer (R). $[\alpha]_D^{20} = -8.9$ (c = 0.60, CHCl₃)

HPLC Chromatograms - Enantiomer ${\mathcal S}$

Me

OH

89% yield, 95% ee, Colorless oil; HPLC (Chiralcel OB-H, 25% IPA in

hexane, 1.0 mL/min, UV 220 nm): $t_R = 7.4$ min for enantiomer (R), $t_R = 12.2$ min for enantiomer (S). $[a]_D^{20} = +4.8$ (c = 0.40, CHCl₃).

¹H NMR (400 MHz, CDCl₃) δ 7.32 – 7.27 (m, 4H), 7.22 – 7.09 (m, 4H), 7.06 – 6.99 (m, 1H), 5.67 (s, 1H), 2.67 (s, 1H), 2.28 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 143.9, 143.8, 138.2, 128.5, 127.5, 127.3, 126.6, 123.8, 120.4, 115.5, 76.3, 21.5.

(S)-phenyl(m-tolyl)methanol⁴

78% yield, 81% ee, Colorless oil; HPLC (Chiralcel OB-H, 25% IPA in hexane, 1.0 mL/min, UV 220 nm): $t_R = 7.8$ min for enantiomer (R), $t_R = 12.0$ min for enantiomer (S). $[a]_D^{20} = -2.6$ (c = 0.40, CHCl₃).

HPLC Chromatograms - Enantiomer R

OH Me (*R*)-phenyl(o-tolyl)methanol (15c)⁵
88% yield, 98% ee, Colorless oil; HPLC (Chiralcel OJ-H, 10% IPA in hexane, 0.4 mL/min, UV 210 nm): t_R = 25.4 min for enantiomer (R), t_R = 27.9 min for enantiomer (S). [*a*]_D²⁰ = -7.8 (*c* = 1.25, CHCl₃).
¹H NMR (400 MHz, CDCl₃) ¹H NMR (400 MHz, CDCl₃) δ 7.51 - 7.49 (m, 1H), 7.34 - 7.28 (m, 4H), 7.27 - 7.19 (m, 3H), 7.14 - 7.12 (m, 1H), 5.99 (s, 1H), 2.24 (s, 3H), 1.94 (s, 1H).¹³C NMR (100 MHz, CDCl₃) δ 143.1, 141.6, 135.5, 130.7, 128.6, 127.7, 127.7, 127.2, 126.5, 126.3, 73.6, 19.5.
(*S*)-phenyl(o-tolyl)methanol⁵

81% yield, 92% ee, Colorless oil; HPLC (Chiralcel OJ-H, 10% IPA in hexane, 0.4 mL/min, UV 210 nm): $t_R = 29.9$ min for enantiomer (R), $t_R = 31.7$ min for enantiomer (S). $[a]_D^{20} = +11.8$ (c = 0.70, CHCl₃)

OH Me Me

(*R*)-(3,4-dimethylphenyl)(phenyl)methanol (15d)⁶
95% yield, 94% ee, Colorless oil; HPLC (Chiralcel OD-H, 2% IPA in

Me hexane, 1.0 mL/min, UV 220 nm): $t_R = 28.9$ min for enantiomer (S), $t_R =$

36.4 min for enantiomer (R). $[a]_{D^{20}} = -7.7$ (*c* = 0.30, CHCl₃).

¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.35 (m, 2H), 7.23 (d, *J* = 2.4 Hz, 2H), 7.16-7.13 (m, 1H), 7.08 (d, *J* = 1.3 Hz, 3H), 5.77 (s, 1H), 2.23 (s, 6H), 2.21 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 144.2, 141.6, 136.9, 136.1, 129.9, 128.6, 128.0, 127.5, 127.3, 126.6, 124.2, 76.3, 19.9, 19.5.

OH

(R)-(4-methoxyphenyl)(phenyl)methanol (15e)⁴

91% yield, 98% ee, Colorless oil; HPLC (Chiralcel AD-H, 3% IPA in OMe hexane, 1.0 mL/min, UV 215 nm): $t_R = 26.6$ min for enantiomer (R), $t_R =$ 29.2 min for enantiomer (S). $[a]_{D}^{20} = +19.8 (c = 0.60, CHCl_{3}).$

¹H NMR (400 MHz, CDCl₃) δ 7.36 – 7.28 (m, 4H), 7.27 – 7.20 (m, 3H), 6.87 – 6.75 (m, 2H), 5.75 (s, 1H), 3.75 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 159.2, 144.2, 136.4, 128.5, 128.0, 127.5, 126.5, 114.0, 75.9, 55.4.

HPLC Chromatograms - Enantiomer R

ΟН OMe (*R*)-(3-methoxyphenyl)(phenyl)methanol $(15f)^7$

96% yield, 99% ee, Colorless oil; HPLC (Chiralcel IB, 5% IPA in hexane, 0.8 mL/min, UV 220 nm): t_R = 14.8 min for enantiomer (R), t_R = 19.0 min for enantiomer (S). $[\alpha]_{D}^{20} = -24.6$ (*c* = 1.0, CHCl₃).

¹H NMR (400 MHz, CDCl₃) δ 7.29 – 7.21 (m, 4H), 7.19 – 7.13 (m, 3H), 6.83 – 6.71 (m, 2H), 5.68 (s, 1H), 3.68 (s, 3H), 2.29 (d, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 159.1, 144.2, 136.3, 128.5, 128.5, 128.0, 127.5, 126.5, 114.0, 75.9, 55.4.

(S)-(3-methoxyphenyl)(phenyl)methanol

90% yield, 99% ee, Colorless oil; HPLC (Chiralcel IB, 5% IPA in hexane, 0.8 mL/min, UV 220 nm): $t_{R} = 14.7$ min for enantiomer (R), $t_{R} = 18.8$ min for enantiomer (S). $[a]_{D}^{20} = +22.9$ (c = 1.00, $CHCl_3$).

HPLC Chromatograms - Enantiomer ${\mathcal S}$

Peak	Ret. Time.	Area	Area%
1	14.700	237547	0.562
2	18.853	42034180	99.438

QH OMe (R)-(2-methoxyphenyl)(phenyl)methanol (15g)⁸

92% yield, 94% ee, Colorless oil; HPLC (Chiralcel OD-H, 2% IPA in hexane, 1.0 mL/min, UV 220 nm): $t_R = 20.8$ min for enantiomer (S), $t_R = 22.8$ min for enantiomer (R). $[a]_D^{20} = +22.9$ (c = 0.60, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.36 (m, 2H), 7.33 – 7.28 (m, 2H), 7.26 – 7.19 (m, 3H), 6.99 – 6.82 (m, 2H), 6.05 (d, J = 4.8 Hz, 1H), 3.79 (s, 3H), 3.01 (d, J = 5.3 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 156.9, 143.5, 132.2, 128.8, 128.3, 128.0, 127.3, 126.7, 121.0, 110.9, 72.4, 55.5. HPLC Chromatograms - Enantiomer *R*

(*R*)-(4-chlorophenyl)(phenyl)methanol $(15h)^4$

ОН

CI

93% yield, 94% ee, Colorless oil; HPLC (Chiralcel AD-H, 5% IPA in hexane, 1.0 mL/min, UV 220 nm): $t_R = 11.7$ min for enantiomer (R), $t_R = 13.2$ min

for enantiomer (S). [*a*]_D²⁰ = -12.7 (*c* = 0.80, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 6.90 (m, 9H), 5.59 (d, *J* = 1.9 Hz, 1H), 2.62 (d, *J* = 2.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 143.5, 142.3, 133.3, 128.7, 128.7, 128.0, 127.9, 127.9, 126.6, 75.6.

(R)-(4-bromophenyl)(phenyl)methanol (15i)⁷

92% yield, 94% ee, Colorless oil; HPLC (Chiralcel AD-H, 5% IPA in hexane, 1.0 mL/min, UV 220 nm): $t_R = 12.5$ min for enantiomer (R), $t_R = 14.2$ min

for enantiomer (S). [*a*]_D²⁰ = -10.8 (*c* = 0.50, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.27 (m, 2H), 7.26 – 7.06 (m, 7H), 5.61 (s, 1H), 2.50 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 143.4, 142.8, 131.6, 131.6, 128.7, 128.3, 127.9, 126.6, 121.5, 75.7.

(S)-(4-bromophenyl)(phenyl)methanol

93% yield, 88% ee, Colorless oil; HPLC (Chiralcel AD-H, 5% IPA in hexane, 1.0 mL/min, UV 220 nm): $t_R = 14.1$ min for enantiomer (R), $t_R = 15.7$ min for enantiomer (S). $[a]_D^{20} = +15.6$ (c = 0.50, CHCl₃)

HPLC Chromatograms - Enantiomer ${\mathcal S}$

OH Br

(R)-(2-bromophenyl)(phenyl)methanol (15j)⁹

95% yield, 96% ee, Colorless oil; HPLC (Chiralcel OD-H, 10% IPA in hexane, 1.0 mL/min, UV 210 nm): t_R = 8.6 min for enantiomer (R), t_R = 11.3 min for

enantiomer (S). [*a*]_D²⁰ = +37.8 (*c* = 1.50, CHCl₃).¹H NMR (400 MHz, CDCl₃) δ 7.48 – 7.35 (m, 2H), 7.26 – 7.22 (m, 2H), 7.21 – 7.09 (m, 4H), 7.03 – 6.90 (m, 1H), 6.00 (s, 1H), 2.68 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 142.6, 142.2, 132.9, 129.1, 128.5, 128.5, 127.8, 127.8, 127.1, 122.8, 74.8. HPLC Chromatograms - Enantiomer *R*

OH

(*R*)-phenyl(4-(trifluoromethyl)phenyl)methanol $(15k)^4$

74% yield, 92% ee, Colorless oil; HPLC (Chiralcel AD-H, 10% IPA in CF_3 hexane, 1.0 mL/min, UV 220 nm): $t_R = 6.2$ min for enantiomer (R), $t_R =$

7.3 min for enantiomer (S). $[a]_D^{20} = -27.8$ (c = 1.30, CHCl₃).

¹H NMR (400 MHz, CDCl₃) δ 7.45 (d, J = 8.2 Hz, 2H), 7.34 (d, J = 8.1 Hz, 2H), 7.27 – 7.12 (m, 5H), 5.67 (s, 1H), 2.70 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 147.6, 143.2, 129.8 (q, ²*J*_{C-F} = 32.4 Hz), 128.9, 128.2, 126.8, 126.8, 125.5 (q, ³*J*_{C-F} = 3.9 Hz), 124.29 (q, ¹*J*_{C-F} = 271.9 Hz).75.8.

(R)-naphthalen-1-yl(phenyl)methanol $(15l)^4$

90% yield, 86% ee, Colorless oil; HPLC (Chiralcel OD-H, 10% IPA in hexane, 1.0 mL/min, UV 220 nm): $t_R = 15.3$ min for enantiomer (S), $t_R = 33.5$ min for enantiomer (R). $[\alpha]_{D}^{20} = +67.8 (c = 1.00, CHCl_3).$

¹H NMR (400 MHz, CDCl₃) δ 7.95 – 7.86 (m, 1H), 7.79 – 7.66 (m, 2H), 7.55 – 7.47 (m, 1H), 7.41 - 7.25 (m, 5H), 7.25 - 7.11 (m, 3H), 6.38 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 143.2, 138.9, 134.1, 130.8, 128.9, 128.6, 128.6, 127.8, 127.2, 126.3, 125.7, 125.4, 124.7, 124.1, 73.7.

(*R*)-naphthalen-2-yl(phenyl)methanol $(15m)^4$

86% yield, 97% ee, Colorless oil; HPLC (Chiralcel OD-H, 10% IPA in hexane, 1.0 mL/min, UV 220 nm): $t_R = 15.5$ min for enantiomer (R), $t_R = r(S) [r^2]^{20} = +22.6$ (r = 1.00 CHCl.)

19.0 min for enantiomer (S). $[a]_D^{20} = +22.6$ (*c* = 1.00, CHCl₃).

¹H NMR (400 MHz, CDCl₃) δ 7.79 – 7.55 (m, 4H), 7.38 – 7.29 (m, 2H), 7.29 – 7.22 (m, 3H), 7.22 – 7.09 (m, 3H), 5.92 – 5.68 (s, 1H), 2.55 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 143.7, 141.2, 133.3, 133.0, 129.7, 128.6, 128.4, 128.2, 127.8, 127.7, 126.8, 126.3, 126.1, 125.1, 124.9, 120.5, 115.4, 76.4.

(*R*)-phenyl(thiophen-2-yl)methanol $(15n)^7$

92% yield, 97% ee, Colorless oil; HPLC (Chiralcel OD-H, 5% IPA in hexane, 0.8 mL/min, UV 220 nm): t_R = 21.3 min for enantiomer (S), t_R = 22.5 min for

enantiomer (R). [*a*]_D²⁰ = -15.7 (*c* = 1.25, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.33 (m, 2H), 7.31 – 7.21 (m, 3H), 7.19 – 7.15 (m, 1H), 6.90 – 6.82 (m, 1H), 6.82 – 6.73 (m, 1H), 5.95 (d, *J* = 2.8 Hz, 1H), 2.43 (d, *J* = 3.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 148.3, 143.3, 128.7, 128.1, 126.8, 126.4, 125.5, 125.0, 72.5.

(*R*)-furan-2-yl(phenyl)methanol $(15o)^7$

96% yield, 95% ee, Yellow oil; HPLC (Chiralcel OD-H, 3% IPA in hexane, 0.25 mL/min, UV 220 nm): $t_R = 78.0$ min for enantiomer (S), $t_R = 90.7$ min for

enantiomer (R). [*a*]_D²⁰ = +19.1(*c* = 1.30, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.35 (m, 2H), 7.35 – 7.23 (m, 4H), 6.34 – 6.19 (m, 1H), 6.06 (d, *J* = 3.2 Hz, 1H), 5.72 (s, 1H), 2.86 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 156.1, 142.5, 141.0, 128.5, 128.0, 126.7, 110.3, 107.4, 70.1.

OH

(*R,E*)-1,3-diphenylprop-2-en-1-ol (**15p**)¹⁰

78% yield, 91% ee, Colorless oil; HPLC (Chiralcel OD-H, 10% IPA in hexane, 1.0 mL/min, UV 220 nm): $t_R = 14.5$ min for enantiomer (R), $t_R =$

18.9 min for enantiomer (S). [*a*]_D²⁰ = +29.8 (*c* = 0.90, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.33 – 7.29 (m, 2H), 7.29 – 7.23 (m, 4H), 7.22 – 7.17 (m, 3H), 7.15 – 7.11 (m, 1H), 6.56 (d, *J* = 15.9 Hz, 1H), 6.38 – 6.09 (m, 1H), 5.24 (d, *J* = 6.5 Hz, 1H), 2.18 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 142.9, 136.7, 131.7, 130.6, 128.7, 128.7, 128.6, 127.9, 127.2, 126.7, 126.5, 75.2.

 $\begin{array}{l} (R)-(4-\text{chlorophenyl})(\text{p-tolyl})\text{ methanol }(15\text{q})^8 \\ \text{Me} \\ (R)-(4-\text{chlorophenyl})(\text{p-tolyl})\text{ methanol }(15\text{q})^8 \\ \text{83\% yield, }97\% \text{ ee, Colorless oil; HPLC (Chiralcel OD-H, 5\% IPA in hexane, 1.0 mL/min, UV 220 nm): } t_R = 10.8 \text{ min for enantiomer }(R), t_R \\ = 11.6 \text{ min for enantiomer }(S). [a]_D^{20} = +8.9 (c = 0.90, \text{CHCl}_3). ^1\text{H NMR }(400 \text{ MHz, CDCl}_3) \delta 7.31 \\ - 7.25 (m, 4\text{H}), 7.23 - 7.18 (m, 2\text{H}), 7.17 - 7.10 (m, 2\text{H}), 5.76 (s, 1\text{H}), 2.32 (s, 3\text{H}). ^{13}\text{C NMR }(100 \\ \end{array}$

MHz, CDCl₃) δ 142.5, 140.7, 137.8, 133.3, 129.5, 128.7, 127.9, 126.6, 75.6, 21.2

OH Me

(R)-(4-chlorophenyl)(o-tolyl)methanol (15r)⁸

89% yield, 93% ee, Colorless oil; HPLC (Chiralcel AD-H, 5% IPA in hexane, 1.0 mL/min, UV 220 nm): $t_R = 11.3$ min for enantiomer (R), $t_R = 12.1$ min

for enantiomer (S). [*a*]_D²⁰ = +49.8 (*c* = 1.20, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.40 (m, 1H), 7.30 – 7.19 (m, 6H), 7.16 – 7.11 (m, 1H), 5.95 (s, 1H), 2.23 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 141.5, 141.2, 135.5, 133.4, 130.8, 128.7, 128.6, 127.9, 126.5, 126.4, 72.9, 19.5.

(R)-N,N-dimethyl-2-(phenyl(o-tolyl)methoxy)ethan-1-amine-Orphenadrine¹¹71% yield, 98% ee, Colorless oil; HPLC (Chiralcel IB, 95:5*n*-Heptane /(Ethanol /*iso*-propanol 50:50 + 0.5% diethylamine), 1.0 mL/min, UV 220 nm): $t_R = 6.9 min for enantiomer (R), t_R = 8.5 min for enantiomer (S). <math>[a]_D^{20} = +4.8$ (*c* = 0.90, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.46 - 7.41 (m, 1H), 7.32 - 7.25 (m, 4H), 7.24 -7.13 (m, 3H), 7.13 - 7.08 (m, 1H), 5.53 (s, 1H), 3.64 - 3.49 (m, 2H), 2.69 - 2.55 (m, 2H), 2.28 (s, 6H), 2.25 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 141.1, 139.8, 135.9, 130.6, 128.3, 127.6, 127.4, 127.1, 126.0, 81.4, 67.3, 58.9, 45.8, 19.5.

HPLC Chromatograms - Enantiomer R

Ω

Me

(*R*)-N,N-dimethyl-2-(phenyl(p-tolyl)methoxy)ethan-1-amine-Neobenodi ne¹²

76% yield, 98% ee, Colorless oil; HPLC (Chiralcel OD-H, 5% IPA in hexane, 1.0 mL/min, UV 220 nm, 1.0 mL/min, UV 220 nm): $t_R = 27.4$ min

for enantiomer (S), t_R = 29.2 min for enantiomer (R). [*a*]_D²⁰ = -6.6 (*c* = 0.90, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.35 – 7.25 (m, 4H), 7.25 – 7.16 (m, 3H), 7.10 (d, *J* = 7.9 Hz, 2H), 5.33 (s, 1H), 3.57 (t, *J* = 5.9 Hz, 2H), 2.64 (t, *J* = 5.9 Hz, 2H), 2.30 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 142.4, 139.3, 137.1, 129.1, 128.4, 127.4, 127.0, 126.9, 83.9, 67.2, 58.8, 45.8, 21.2.

(R)-3-phenylisobenzofuran-1(3H)-one (16a)¹³ 83% yield, 95% ee; after recrystallization: 98.5% ee; White solid. $[a]_D^{20} = -52.98$ (c = 1.20 in DCM). HPLC (Chiralcel OD-H, 85% IPA in hexane, 1 mL/min, UV 215 nm): t_R = 9.2 min for enantiomer (S), t_R = 11.5 min for enantiomer (R). ¹H NMR (400 MHz, CDCl₃) δ 7.93 – 7.85 (m, 1H), 7.62 – 7.52 (m, 1H), 7.51 – 7.43 (m, 1H), 7.31 – 7.23 (m, 4H), 7.22 – 7.17 (m, 2H), 6.33 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 170.6, 149.8, 136.5, 134.4, 129.5, 129.4, 129.1, 127.1, 125.8, 125.7, 123.0, 82.8.

After recrystallization

Me (R)-3-(p-tolyl)isobenzofuran-1(3H)-one $(16b)^{13}$

88% yield, 97% ee; after recrystallization: 99.1% ee; White solid. $[\alpha]_D^{20} = -23.88$ (*c* = 1.00 in CHCl₃). HPLC (Chiralcel OD-H, 85% IPA in hexane, 1 mL/min, UV 215 nm): t_R = 7.0 min for enantiomer (S), t_R = 8.9 min for enantiomer (R). ¹H NMR (400 MHz, CDCl₃) δ 7.99 – 7.92 (m, 1H), 7.68 – 7.61 (m, 1H), 7.58 – 7.52

(m, 1H), 7.34 – 7.29 (m, 1H), 7.20 – 7.13 (m, 4H), 6.38 (s, 1H), 2.35 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.7, 150.0, 139.5, 134.4, 133.5, 129.8, 129.7, 129.4, 127.2, 125.8, 125.7, 123.0, 82.9, 21.4.

Me (R)-3-(m-tolyl)isobenzofuran-1(3H)-one (16c)¹⁴ 90% yield, 98% ee; after recrystallization: 99.9% ee; White solid. $[\alpha]_D^{20} = -2.60$ (c = 0.15 in CHCl₃). HPLC (Chiralcel OD-H, 85% IPA in hexane, 1 mL/min, UV 215 nm): t_R = 6.2 min for enantiomer (S), t_R = 7.6 min for enantiomer (R). ¹H NMR (400 MHz, CDCl₃) δ 7.96 (dt, J = 7.6, 1.0 Hz, 1H), 7.65 (td, J = 7.5, 1.2 Hz, 1H), 7.55 (tt, J

= 7.5, 0.8 Hz, 1H), 7.35-7.32 (m, 1H), 7.28 – 7.23 (m, 1H), 7.22 – 7.14 (m, 1H), 7.08 (dd, J = 9.3, 1.9 Hz, 2H), 6.37 (s, 1H), 2.33 (s, 3H).¹³C NMR (100 MHz, CDCl₃) δ 170.7, 149.9, 139.0, 136.4, 134.4, 130.2, 129.4, 129.0, 127.6, 125.7, 125.7, 124.2, 123.0, 82.9, 21.5.

After recrystallization

'n

(R)-3-(o-tolyl)isobenzofuran-1(3H)-one $(16d)^{13}$

Me 84% yield, 94% ee; after recrystallization: 99.9% ee; White solid. $[\alpha]_D^{20} = +13.78$ (c = 0.50 in DCM). HPLC (Chiralcel OD-H, 85% IPA in hexane, 1 mL/min, UV 215 nm): t_R = 8.1 min for enantiomer (S), t_R = 10.5 min for enantiomer (R).

¹H NMR (400 MHz, CDCl₃) δ 7.98 (dt, J = 7.6, 1.0 Hz, 1H), 7.67 (td, J = 7.5, 1.2 Hz, 1H), 7.59-7.55 (m, 1H), 7.36-7.33 (m, 1H), 7.28 – 7.25 (m, 2H), 7.15-7.11 (m, 1H), 6.97 – 6.88 (m, 1H), 6.68 (s, 1H), 2.50 (s, 3H).¹³C NMR (100 MHz, CDCl₃) δ 170.8, 149.4, 137.3, 134.3, 134.2, 131.3, 129.5, 129.4, 127.4, 126.5, 125.9, 123.1, 80.7, 19.5.

After recrystallization

OMe (R)-3-(3-methoxyphenyl)isobenzofuran-1(3H)-one $(16e)^{13}$

84% yield, 90% ee; yellow oil. $[a]_D^{20} = -33.42$ (c = 0.70 in DCM). HPLC (Chiralcel OD-H, 85% IPA in hexane, 1 mL/min, UV 215 nm): t_R = 8.9 min for enantiomer (S), t_R = 12.4 min for enantiomer (R). ¹H NMR (400 MHz,

CDCl₃) δ 7.87 (dd, J = 7.8, 1.0 Hz, 1H), 7.56 (td, J = 7.5, 1.1 Hz, 1H), 7.46 (t, J = 7.4 Hz, 1H), 7.29 – 7.24 (m, 1H), 7.24 – 7.18 (m, 1H), 6.85 – 6.76 (m, 2H), 6.71 (t, J = 2.1 Hz, 1H), 6.29 (s, 1H), 3.69 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.7, 160.1, 149.7, 138.0, 134.5, 130.2, 129.5, 125.7, 125.5, 122.9, 119.2, 114.7, 112.5, 82.6, 55.4.

(R)-3-(naphthalen-1-yl)isobenzofuran-1(3H)-one (16f)¹³

65% yield, 86% ee; after recrystallization: 99.9% ee; White solid. $[\alpha]_D^{20} = +$ 9.81 (c = 0.90 in DCM). HPLC (Chiralcel OD-H, 85% IPA in hexane, 1

mL/min, UV 215 nm): $t_R = 14.1$ min for enantiomer (S), $t_R = 22.9$ min for enantiomer (R). ¹H NMR (400 MHz, CDCl₃) δ 8.30 – 8.22 (m, 1H), 8.02 (dt, J = 7.4, 1.1 Hz, 1H), 7.98 – 7.91 (m, 1H), 7.91 – 7.84 (m, 1H), 7.72 – 7.52 (m, 4H), 7.48 – 7.35 (m, 2H), 7.28 – 7.25 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 170.7, 149.5, 134.3, 134.2, 132.1, 131.5, 130.1, 129.6, 129.2, 127.2, 126.4, 126.3, 126.2, 125.4, 124.7, 123.4, 123.1, 79.8.

After recrystallization

Peak	Ret. Time.	Area	Area%
1	14.218	8740	0.003
2	22.625	299472667	99.997

 ${\mathsf B}^{\mathsf{r}}$ (R)-3-(4-bromophenyl)isobenzofuran-1(3H)-one (**16g**)¹³

91% yield, 97% ee; after recrystallization: 99.5% ee; White solid. $[\alpha]_D^{20} = -18.77$ (c = 1.00 in DCM). HPLC (Chiralcel OD-H, 85% IPA in hexane, 1 mL/min, UV 215 nm): t_R = 8.3 min for enantiomer (S), t_R = 9.8 min for enantiomer (R).¹H NMR (400 MHz, CDCl₃) δ 7.96 (dt, J = 7.6, 1.0 Hz, 1H), 7.67 (td, J = 7.5, 1.2 Hz, 1H),

7.57 (tt, J = 7.6, 0.8 Hz, 1H), 7.54 – 7.48 (m, 2H), 7.32 (dq, J = 7.8, 0.9 Hz, 1H), 7.20 – 7.12 (m, 2H), 6.36 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 170.4, 149.3, 135.6, 134.6, 132.3, 129.7, 128.7, 125.9, 125.6, 123.6, 122.9, 82.0.

Peak	Ret. Time.	Area	Area%
1	8.547	901606	1.225
2	10.075	72701751	98.775

After recrystallization

(R)-3-(4-chlorophenyl)isobenzofuran-1(3H)-one (16h)¹³

91% yield, 97% ee; after recrystallization: 99.9% ee; White solid. $[\alpha]_D^{20} = -29.88$ (*c* = 0.98 in DCM). HPLC (Chiralcel OD-H, 85% IPA in hexane, 1 mL/min, UV 215 nm): t_R = 7.9 min for enantiomer (S), t_R = 9.5 min for enantiomer (R). ¹H NMR (400 MHz, CDCl₃) δ 7.97 (dt, J = 7.7, 1.0 Hz, 1H), 7.67 (td, J = 7.5, 1.2 Hz, 1H), 7.57 (tt, J = 7.5, 0.8 Hz, 1H), 7.40 – 7.29 (m, 3H), 7.25 – 7.19 (m, 2H), 6.38 (s, 1H). ¹³C NMR (100

MHz, CDCl₃) δ 170.4, 149.4, 135.5, 135.1, 134.6, 129.7, 129.4, 128.5, 126.0, 125.7, 122.9, 82.0.

After recrystallization

CI (R)-3-(3-chlorophenyl)isobenzofuran-1(3H)-one (16i)¹⁵ 93% yield, 94% ee; after recrystallization: 99.9% ee; White solid. $[\alpha]_D^{20} = -$ 46.31 (c = 1.20 in DCM). HPLC (Chiralcel OD-H, 85% IPA in hexane, 1 mL/min, UV 215 nm): t_R = 7.9 min for enantiomer (S), t_R = 9.5 min for

enantiomer (R).¹H NMR (400 MHz, CDCl₃) δ 7.90 (dt, J = 7.6, 1.0 Hz, 1H), 7.60 (td, J = 7.5, 1.2

Hz, 1H), 7.52-7.48 (m, 1H), 7.31 – 7.21 (m, 3H), 7.19 (d, *J* = 1.8 Hz, 1H), 7.12 (dt, *J* = 6.8, 1.9 Hz, 1H), 6.29 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 170.3, 149.2, 138.6, 135.1, 134.7, 130.4, 129.8, 129.6, 127.1, 126.0, 125.5, 125.2, 122.9, 81.8.

After recrystallization

Peak	Ret. Time.	Area	Area%
1	7.717	90132	0.007
2	8.918	84246720	99.993

(R)-3-(4-fluorophenyl)isobenzofuran-1(3H)-one (16j)¹⁵
95% yield, 96% ee; after recrystallization: 99.5% ee; White solid. [α]_D²⁰ = +23.28 (*c* = 1.00 in DCM). HPLC (Chiralcel OD-H, 85% IPA in hexane, 1 mL/min, UV 215 nm): t_R = 7.6 min for enantiomer (S), t_R = 9.1 min for enantiomer (R). ¹H NMR (400 MHz, CDCl₃) 8 7.96 (dt, *J* = 7.6, 1.0 Hz, 1H), 7.67 (td, *J* = 7.5, 1.2 Hz, 1H), 7.57 (tt, *J* = 7.5, 0.9 Hz, 1H), 7.32 (dt, *J* = 7.7, 1.0 Hz, 1H), 7.30 – 7.21 (m, 2H), 7.07 (ddt, *J* = 8.6, 6.5, 2.5 Hz, 2H), 6.40 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) 8 170.4, 164.5, 162.1, 149.5, 134.6, 132.4, 132.4, 129.6, 129.2, 129.1, 125.8, 125.7, 123.0, 116.2, 116.0, 82.1.

Peak	Ret. Time.	Area	Area%
1	7.748	1247790	1.969
2	9.217	62139491	98.031

After recrystallization

 $-CF_3$ (R)-3-(3-(trifluoromethyl)phenyl)isobenzofuran-1(3H)-one (**16k**)¹⁵ 84% yield, 98% ee; White solid. $[\alpha]_D^{20} = -53.21$ (c = 1.10 in DCM). HPLC (Chiralcel OD-H, 85% IPA in hexane, 1 mL/min, UV 215 nm): t_R = 6.5 min for enantiomer (S), t_R = 7.5 min for enantiomer (R).¹H NMR (400 MHz,

CDCl₃) δ 8.00 (dt, *J* = 7.6, 1.0 Hz, 1H), 7.71 – 7.62 (m, 2H), 7.63 – 7.56 (m, 2H), 7.55 – 7.47 (m, 2H), 7.35 (dq, *J* = 7.7, 0.9 Hz, 1H), 6.46 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 170.2, 149.0, 137.7, 134.8, 131.60 (q, ²*J*_{C-F} = 32.7 Hz), 130.3, 129.9, 129.8, 126.3 (q, ³*J*_{C-F} = 3.8 Hz), 126.1, 125.5, 123.84 (q, ³*J*_{C-F} = 4.0 Hz), 123.82 (q, ¹*J*_{C-F} = 272.4 Hz), 122.9, 81.8.

(S)-3-(2,4-difluorophenyl)isobenzofuran-1(3H)-one (161)¹³

89% yield, 91% ee; after recrystallization: ee 99.5%; White solid. $[\alpha]_D^{20} = -14.88$ F (*c* = 1.00 in DCM). HPLC (Chiralcel OD-H, 85% IPA in hexane, 1 mL/min, UV 215 nm): t_R = 7.6 min for enantiomer (S), t_R = 8.3 min for enantiomer (R). ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, *J* = 7.6 Hz, 1H), 7.68 (td, *J* = 7.5, 1.1 Hz, 1H), 7.58 (t, *J* = 7.5 Hz, 1H), 7.41 (d, *J* = 7.7 Hz, 1H), 7.26 (s, 1H), 7.11 (td, *J* = 8.5, 6.1 Hz, 1H), 6.95 – 6.82 (m, 2H), 6.70 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 170.3, 163.6 (dd, ¹*J*_{C-F} = 254.0 Hz, ³*J*_{C-F} =12.5 Hz), 160.94 (dd, ¹*J*_{C-F} = 251.5 Hz, ³*J*_{C-F} = 11.5 Hz), 149.0, 134.7, 129.8, 129.2 (dd, ³*J*_{C-F} = 10.1 Hz, ⁴*J*_{C-F} = 4.9 Hz), 126.0, 125.7, 122.9 (d, *J*_{C-F} = 1.9 Hz), 120.3 (d, ³*J*_{C-F} = 12.7 Hz), 112.2 (dd, ²*J*_{C-F} = 21.5 Hz, ¹*J*_{C-F} = 3.6 Hz), 104.7 (t, *J* = 25.4 Hz), 76.4 (d, ⁴*J*_{C-F} = 3.9 Hz).

After recrystallization

(R)-3-(thiophen-3-yl)isobenzofuran-1(3H)-one $(16m)^{15}$

77% yield, 87% ee; White solid. $[\alpha]_D{}^{20} = +18.19$ (*c* = 0.50 in DCM). HPLC (Chiralcel OD-H, 85% IPA in hexane, 1 mL/min, UV 215 nm): t_R = 10.4 min for enantiomer (S), t_R = 12.3 min for enantiomer (R). ¹H NMR (400 MHz, CDCl₃) δ

7.89 (d, J = 7.6 Hz, 1H), 7.62 (td, J = 7.5, 1.1 Hz, 1H), 7.51 (t, J = 7.5 Hz, 1H), 7.35 (d, J = 7.6 Hz, 1H), 7.31 – 7.22 (m, 2H), 6.88 (dd, J = 4.5, 1.9 Hz, 1H), 6.44 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 170.4, 149.2, 137.4, 134.4, 129.6, 127.4, 126.1, 126.0, 125.9, 124.6, 123.0, 78.6.

4. Copies of NMR Spectra of Chiral Ligands.

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2 f1 (ppm)

= 149.0 = 149.0 = 139.1 = 132.6 = 132.6 = 132.6 = 132.6 = 132.6 = 132.6 = 122.3 = 122.3 = 122.3 = 122.4 = 12

-20.3

- 168.1 - 146.3 - 146.3 - 146.3 - 133.1 - 133.1 - 128.7 - 128.7 - 128.7 - 128.7 - 126.

 $< \frac{20.6}{20.4}$

168.3 143.0 134.8 134.8 134.8 132.6 131.2 132.9 131.2 132.9 132.9 132.9 132.9 132.9 132.9 132.6 132.9 123.8 123.9 122.9 122.9 122.9 122.9 122.9 122.9 122.9 122.9 122.9 122.0

 $< \frac{20.4}{20.0}$

$\begin{array}{c} - 148.8 \\ 136.7 \\ 131.6 \\ 132.5 \\ 132.5 \\ 132.5 \\ 132.5 \\ 132.5 \\ 132.5 \\ 122.4 \\ 122.8 \\ 122.8 \\ 122.8 \\ 122.8 \\ 122.8 \\ 122.5 \\ 122.$

 $\begin{array}{c} -167.9 \\ 145.7 \\ 133.4.6 \\ 133.4.6 \\ 133.3.6 \\ 133.4.6 \\ 132.6 \\ 132.6 \\ 132.6 \\ 132.6 \\ 126.3 \\ 126.3 \\ 126.3 \\ 126.3 \\ 126.3 \\ 126.3 \\ 125.7 \\ 233.3 \\ 72.4 \\ 25.2 \\ -55.2 \\ -55.2 \\ -55.2 \\ -55.2 \\ 25.2 \\ 25.2 \\ 25.2 \\ 25.2 \\ 25.1$

S61

T.02 1.05 1.02 7.5 6.5 6.0 5.5 5.0 4.5 f1 (ppm) 7.0 2.5 1.0 0.0 9.0 8.5 4.0 2.0 0.5 8.0 3.0

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2 f1 (ppm)

188.1 137.8 137.8 137.8 137.8 137.8 137.8 137.8 137.8 137.8 137.8 137.8 137.8 137.8 132.5 132.6 132.6 132.6 132.6 132.8 132.8 132.5 122.8 122.8 122.8 122.3 122.4 122.5 122.4 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.6 122.7 122.7 122.6 122.7 122.6 122.7 122.7 122.7 122.7 122.1 122.3 122.4</

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2 f1 (ppm)

168.2 147.6 142.1 137.2 137.5 137.6 137.6 137.6 137.6 137.6 137.6 137.6 137.6 128.3 128.3 128.4 127.4 127.4 127.4 127.4 127.4 127.4 127.4 127.4 127.4 127.4 127.4 127.4 127.4</

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2 f1 (ppm)

147.6 147.1 147.1 147.1 135.2 135.2 135.2 135.2 135.2 128.5 128.5 128.5 128.5 128.5 128.5 128.5 128.5 128.5 128.5 128.5 128.5 128.5 125.5 -- 29.4 -- 24.3

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2 f1 (ppm)

5. Copies of NMR Spectra of Products

- 19.5

170.4 164.5 162.1 149.5 132.4 132.4 132.4 132.5 129.6 125.5 125.5 125.5 125.5 116.0 116.0

- 170.2 - 149.0 137.7 132.1 131.8 131.8 131.4 132.1 131.4 131.4 132.3 131.4 132.3 132.5 125.3 12

$\begin{bmatrix} 170.3 \\ 64.7 \\ 164.7 \\ 164.7 \\ 159.7 \\ 159.8 \\ 159.7 \\ 159.1 \\ 159.1 \\ 129.1 \\ 129.1 \\ 129.1 \\ 129.1 \\ 129.1 \\ 129.1 \\ 129.1 \\ 129.1 \\ 120.2 \\ 122.9 \\ 122.2 \\ 12$

6. References

- 1. A. M. M. Carlos, R. Stieler and D. S. Lüdtke, *Org. Biomol. Chem.*, 2019, **17**, 283-289.
- C. Yao, P. Wu, Y. Huang, Y. Chen, L. Li and Y.-M. Li, *Organic & Biomolecular Chemistry*, 2020, 18, 9712-9725.
- 3. M. Hatano, T. Miyamoto and K. Ishihara, *J Org Chem*, 2006, **71**, 6474-6484.
- 4. R. B. Jagt, P. Y. Toullec, J. G. de Vries, B. L. Feringa and A. J. Minnaard, *Org Biomol Chem*, 2006, **4**, 773-775.
- F. Ling, S. Nian, J. Chen, W. Luo, Z. Wang, Y. Lv and W. Zhong, *J Org Chem*, 2018, 83, 10749-10761.
- 6. H. Li, D. Zhu, L. Hua and E. R. Biehl, *Advanced Synthesis & Catalysis*, 2009, **351**, 583-588.
- Y.-X. Yang, Y. Liu, L. Zhang, Y.-E. Jia, P. Wang, F.-F. Zhuo, X.-T. An and C.-S. Da, *J Org Chem*, 2014, **79**, 10696-10702.
- M.-C. Wang, Q.-J. Zhang, W.-X. Zhao, X.-D. Wang, X. Ding, T.-T. Jing and M.-P. Song, J Org Chem, 2008, 73, 168-176.
- 9. H.-F. Duan, J.-H. Xie, W.-J. Shi, Q. Zhang and Q.-L. Zhou, *Org Lett*, 2006, **8**, 1479-1481.
- 10. Z. Lu, H. Zhang, Z. Yang, N. Ding, L. Meng and J. Wang, *ACS Catalysis*, 2019, **9**, 1457-1463.
- P. Chaumont-Olive, M. Rouen, G. Barozzino-Consiglio, A. Ben Abdeladhim, J. Maddaluno and A. Harrison-Marchand, *Angewandte Chemie International Edition*, 2019, 58, 3193-3197.
- 12. W. Liu, J. Guo, S. Xing and Z. Lu, *Org Lett*, 2020, **22**, 2532-2536.
- 13. A. M. M. Carlos, R. Stieler and D. S. Lüdtke, *Org Biomol Chem*, 2019, 17, 283-289.
- X. Song, Y. Z. Hua, J. G. Shi, P. P. Sun, M. C. Wang and J. Chang, *J Org Chem*, 2014, 79, 6087-6093.
- 15. M. Yohda and Y. Yamamoto, *Org Biomol Chem*, 2015, **13**, 10874-10880.