Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2021

Electronic Supplementary Information for

Chiral figure-eight molecular scaffold for fluorescent probe development

Cynthia L. Schreiber, Canjia Zhai, and Bradley D. Smith* Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall University of Notre Dame, Notre Dame, Indiana 46556, USA *Email: smith.115@nd.edu

Table of Contents

1.	Synthesis and Characterization	S2-S14
2.	Variable Temperature ¹ H NMR Studies of SF8(f) ₂	S15-S16
3.	Log P and Stability Measurements	S17
4.	Cell Toxicity and Fluorescence Microscopy	S18
5.	References	S19

1. Synthesis and Characterization

Scheme S1. Synthesis of SF8(f)₂.

Note: Compound **SR1**•(**TFA salt**)¹ and **S2**² were synthesized according to reported procedures.

SR2. A mixture of **SR1**•(**TFA salt**) (15 mg, 0.0138 mmol), **S1** (44 mg, 0.165 mmol), 1-hydroxybenzotriazole hydrate (HOBt) (32 mg, 0.206 mmol) and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) (40 mg, 0.206 mmol) in DMF (0.5mL) was stirred at room temperature overnight. The solvent was removed by rotary evaporation and the resulting residue was purified by silica gel column chromatography (0-5% MeOH in CHCl₃) to give product **SR2** as green blue solid (17 mg, 78%). ¹H NMR (500 MHz, Chloroform-*d*) δ 9.94 (t, *J* = 5.9 Hz, 4H), 8.11 (d, *J* = 9.0 Hz, 4H), 8.08 (s, 4H), 7.28 (s, 2H), 7.26-7.17 (m, 8H), 6.57 (d, *J* = 3.5 Hz, 8H), 6.41 (s, 2H), 6.17-6.08 (m, 4H), 5.18 (d, *J* = 8.0 Hz, 2H), 4.93 (d, *J* = 2.4 Hz, 4H), 4.50 (s, 8H), 4.35 (q, *J* = 7.4 Hz, 2H), 3.31-3.19 (m, 10H), 3.13 (d, *J* = 10.1 Hz, 2H), 3.09 (d, *J* = 7.2 Hz, 4H), 2.65 (t, *J* = 2.4 Hz, 2H), 1.68-1.63 (m, 4H), 1.59 (q, *J* = 7.6 Hz, 4H), 1.38 (s, 18H), 0.93 (t, *J* = 7.3 Hz, 6H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 185.29, 184.49, 171.79, 166.65, 163.57, 153.29, 151.83, 136.95, 136.70, 133.77, 129.54, 129.11, 128.86, 127.19, 119.03, 111.90, 80.46, 77.46, 76.96, 68.19, 56.60, 56.40, 53.38, 49.01, 43.61, 38.65, 37.01, 31.81, 29.92, 28.49, 27.67, 25.83, 22.88, 21.09, 14.42, 14.36, 11.49. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₉₂H₁₀₃N₁₂O₁₄⁺ 1599.7711; Found 1599.7709.

SR3. Trifluoroacetic acid (0.2 mL) was added dropwise to a solution of **SR2** (17 mg) in CH₂Cl₂ (2 mL) under ice bath. The reaction was stirred overnight. Solvent was removed and the residue was washed with Et₂O (×3) to give blue powder product **SR3** (14 mg, 96%). ¹H NMR (400 MHz, Methanol-*d*₄) δ 10.12 (t, *J* = 6.0 Hz, 4H), 8.07 (d, *J* = 10.2 Hz, 8H), 7.35-7.24 (m, 10H), 6.56 (s, 8H), 6.24 (d, *J* = 9.0 Hz, 4H), 5.11 (d, *J* = 2.4 Hz, 4H), 4.49 (d, *J* = 5.9 Hz, 8H), 3.97 (t, *J* = 7.5 Hz, 2H), 3.38-3.31 (m, 8H), 3.22 (t, *J* = 2.3 Hz, 2H), 3.20-3.04 (m, 8H), 1.60 (m, 8H), 0.92 (t, *J* = 7.4 Hz, 6H). ¹³C NMR (101 MHz, Methanol-*d*₄) δ 185.50, 182.09, 168.90, 166.91, 165.50, 163.52, 153.61, 151.09, 136.49, 134.74, 133.29, 129.11, 128.64, 128.51, 127.32, 118.40, 111.63, 111.57, 77.51, 76.77, 56.19, 54.74, 48.24, 48.03, 42.84, 37.85, 36.63, 26.83, 20.37, 10.10. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₈₂H₈₇N₁₂O₁₀⁺ 1399.6663; Found 1399.6643.

SR(azido-f)₂. A mixture of **SR3** (14 mg, 0.01 mmol), **S2** (14 mg, 0.12 mmol), HOBt (23 mg, 0.15 mmol) and EDC (29 mg, 0.15 mmol) in DMF (0.5mL) was stirred at room temperature overnight. The solvent was removed by rotary evaporation and the resulting residue was purified by silica gel column chromatography (0-5% MeOH in CHCl₃) to give product **SR(azido-f)**₂ as green blue solid (9 mg, 58%). ¹H NMR (400 MHz, Chloroform-*d*) δ 9.88 (t, *J* = 5.9 Hz, 4H), 8.05 (d, *J* = 8.7 Hz, 4H), 8.00 (s, 4H), 7.22 (d, *J* = 1.2 Hz, 1H), 7.19-7.07 (m, 9H), 6.51 (s, 8H), 6.39 (s, 2H), 6.06 (s, 4H), 4.88 (d, *J* = 2.4 Hz, 4H), 4.67-4.60 (m, 2H), 4.44 (d, *J* = 5.8 Hz, 8H), 3.60-3.43 (m, 6H), 3.20 (s, 6H), 3.06 (dd, *J* = 7.2, 4.1 Hz, 8H), 2.58 (t, *J* = 2.4 Hz, 2H), 2.39 (t, *J* = 6.2 Hz, 4H), 1.68 (s, 4H), 1.61-1.47 (m, 10H), 0.87 (t, *J* = 7.3 Hz, 6H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 185.31, 171.04, 170.28, 166.66, 163.61, 151.77, 136.70, 136.68, 133.78, 129.48, 129.12,

128.91, 127.34, 111.96, 77.47, 56.63, 55.04, 47.49, 43.62, 38.33, 37.12, 35.90, 29.93, 11.50. HRMS (ESI-TOF) m/z: $[M+H]^+$ Calcd for $C_{88}H_{93}N_{18}O_{12}^+$ 1593.715; Found 1593.7210.

SF8(f)₂. Compound **SR(azido-f)**₂ (8 mg, 0.00489 mmol) was dissolved in CHCl₃ (10 mL). CuBr-TBTA (6 mg) and Et₃N (14 μL, 0.0979 mmol) were added to the solution. The reaction mixture was stirred at room temperature overnight. The solvent was removed by rotary evaporation and the resulting residue was purified by silica gel column chromatography (0-10% MeOH in CH₂Cl₂) to give product **SF8(f)**₂ as green blue solid (4.5 mg, 58%). ¹H NMR (400 MHz, Chloroform-*d*) δ 10.37 (t, *J* = 8.3 Hz, 2H), 8.14 (d, *J* = 2.5 Hz, 2H), 8.03 (d, *J* = 2.5 Hz, 3H), 7.82 (s, 2H), 7.78 (s, 2H), 7.32-7.19 (m, 10H), 6.95-6.32 (m, 12H), 5.52-5.42 (m, 4H), 5.37 (s, 2H), 5.11 (m, 4H), 4.87-4.78 (m, 2H), 4.70 (dt, *J* = 13.1, 4.0 Hz, 2H), 4.54 (t, *J* = 7.7 Hz, 2H), 3.85 (dd, *J* = 14.6, 3.7 Hz, 4H), 3.10 (m, 4H), 2.99-2.86 (m, 6H), 2.83-2.69 (m, 4H), 1.65 (m, 4H), 1.53 (d, *J* = 21.6 Hz, 4H), 1.01 (t, *J* = 7.4 Hz, 6H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 185.21, 184.08, 171.38, 170.68, 167.36, 164.05, 163.97, 153.27, 152.16, 151.77, 136.89, 136.33, 129.29, 128.65, 126.98, 124.21, 118.08, 112.18, 111.27, 62.70, 55.20, 53.17, 47.04, 43.82, 37.22, 37.06, 36.55, 29.81, 27.15, 21.05, 11.32. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₈₈H₉₃N₁₈O₁₂⁺ 1593.715; Found 1593.7212.

 13 C NMR (101 MHz, CD₃OD) of **SR3**

S7

¹³C NMR (126 MHz, 10% CD₃OD in CDCl₃) of SF8(f)₂

HRMS-ESI of SF8(f)2

Scheme S2. Synthesis of SF8(F)₂.

SR4. A mixture of **SR1•(TFA salt)** (15 mg, 0.013 mmol), **S3** (61 mg, 0.156 mmol), HOBt (30 mg, 0.195 mmol) and EDC (38 mg, 0.195 mmol) in DMF (0.5 mL) was stirred at room temperature overnight. The solvent was removed by rotary evaporation and the resulting residue was purified by silica gel column chromatography (0-5% MeOH in CHCl₃) to give product **SR4** as green blue solid (17 mg, 78%).¹H NMR (500 MHz, Chloroform-*d*) δ 9.92 (t, *J* = 5.8 Hz, 4H), 8.13 (s, 5H), 8.07 (s, 5H), 7.74 (d, *J* = 7.5 Hz, 5H), 7.51 (dd, *J* = 15.6, 7.4 Hz, 6H), 7.38 (t, *J* = 7.6 Hz, 6H), 7.21 (d, *J* = 29.6 Hz, 20H), 6.56 (s, 10H), 6.10 (s, 4H), 5.59 (s, 2H), 4.89 (s, 5H), 4.46 (dd, *J* = 31.7, 6.5 Hz, 13H), 4.29 (t, *J* = 8.7 Hz, 2H), 4.16 (t, *J* = 7.0 Hz, 3H), 3.18 (d, *J* = 70.1 Hz, 19H), 2.60 (s, 2H), 1.60 (d, *J* = 21.5 Hz, 11H), 0.91 (d, *J* = 7.7 Hz, 7H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 171.38, 166.67, 163.59, 151.77, 143.88, 141.48, 136.68, 129.54, 129.11, 128.92, 127.96, 127.29, 125.17, 120.22, 111.95, 67.28, 56.61, 47.29, 43.61, 37.06, 11.49. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₁₂H₁₀₇N₁₂O₁₄⁺ 1843.8024; Found 1843.8046.

SR(azido-F)₂. Compound **SR4** (17 mg, 0.009 mmol) was dissolved in 20% piperidine/DMF solution. The reaction was stirred at room temperature for 1 hour. Then the solvent was removed by rotary evaporation to produce the intermediate **SR4a**. A mixture of **S2** (13 mg, 0.108 mmol), HOBt (21 mg, 0.135 mmol), and EDC (26 mg, 0.135 mmol) in DMF (0.5 mL) was stirred at room temperature overnight. The solvent was removed by rotary evaporation and the resulting residue was purified by silica gel column chromatography (0-5% MeOH in CHCl₃) to give product **SR(azido-F)**₂ as green blue solid (11.5 mg, 80%). ¹H NMR (500 MHz, Chloroform-*d*) δ 9.95 (t, *J* = 5.9 Hz, 4H), 8.12 (d, *J* = 8.7 Hz, 4H), 8.07 (s, 4H), 7.28 (s, 3H), 7.25-7.17 (m, 8H), 6.58 (s, 9H), 6.52 (d, *J* = 8.0 Hz, 2H), 6.42 (t, *J* = 6.8 Hz, 2H), 6.13 (d, *J* = 8.7 Hz, 4H), 4.95 (s, 4H), 4.70 (q, *J* = 7.5 Hz, 2H), 4.50 (d, *J* = 5.7 Hz, 8H), 3.72 (q, *J* = 7.1 Hz, 1H), 3.62 (m, 2H), 3.54 (m, 6H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 185.30, 170.99, 170.25, 166.67, 163.61, 151.79, 136.69, 133.79, 129.47, 129.12, 128.91, 127.34, 111.95, 56.62, 55.04, 53.45, 48.99, 47.49, 43.63, 38.32, 37.13, 35.92, 29.93, 27.48, 21.14, 11.50. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₈₈H₉₃N₁₈O₁₂⁺ 1593.7215; Found 1593.7221.

SF8(F)₂. Compound **SR(azido-F)**₂ (11 mg, 0.00703 mmol) was dissolved in CHCl₃ (14 mL). CuBr·TBTA (6 mg) and Et₃N (29 μ L, 0.211 mmol) were added to the solution. The reaction mixture was stirred at room temperature overnight. The solvent was removed by rotary evaporation and the resulting residue was purified by silica gel column chromatography (0-10% MeOH in CH₂Cl₂) to give product **SF8(F)**₂ as green blue solid (4.7 mg, 42%).¹H NMR (500 MHz, Chloroform-*d*) δ 10.31 (d, *J* = 9.8 Hz, 4H), 8.15 (s, 2H), 8.03 (d, *J* = 19.6 Hz, 4H), 7.77 (d, *J* = 32.8 Hz, 4H), 7.30 (d, *J* = 7.1 Hz, 4H), 7.23 (d, *J* = 7.8 Hz, 5H), 6.71 (s, 6H), 6.50 (s, 5H), 6.05 (s, 2H), 5.49 (d, *J* = 16.9 Hz, 4H), 5.34 (s, 2H), 5.14 (dt, *J* = 15.3, 9.0 Hz, 4H), 4.88 (s, 2H), 4.68 – 4.60 (m, 8H), 3.83 (d, *J* = 14.4 Hz, 4H), 3.33 (s, 4H), 3.13 (dd, *J* = 28.8, 8.5 Hz, 6H), 2.98 (d, *J* = 44.9 Hz, 4H), 2.83 – 2.73 (m, 4H), 1.00 (s, 6H). HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₈₈H₉₃N₁₈O₁₂⁺ 1593.7215; Found 1593.7217.

S14

2. Variable Temperature ¹H NMR Studies of SF8(f)₂

Chemical shift (ppm)

Figure S1. Variable temperature ¹H NMR (500 MHz, 10% CD₃OD in CDCl₃) of **SF8(f)**₂. (*Due to the proton exchange with solvent CD₃OD, proton d is weak)

Figure S2. Expanded coalescence region for proton f from Figure S1. (coalescence temperature is 313 K)

Table S1. Summary of variable temperature ¹H NMR data for compound SF8(f)₂.

Compound	$T_{c}(K)$	∆ν (Hz)	<i>k</i> (s ⁻¹)	∆G [≠] (kJ/mol)
SF8(f) ₂	313	86	191.0	63.2

The rate of two-site exchange (k) at the coalescence temperature was determined using:

$$k = \frac{\pi}{\sqrt{2}} \Delta v_0$$

Where Δv_0 is the chemical shift difference of the two protons (in Hz). To determine the activation energy (in kJ/mol), the Eyring equation was simplified into the following form, where *Tc* is the coalescence temperature (in K):

$$\Delta G^{\neq} = 19.12 \ Tc \ [9.97 + \ \log_{10}(\frac{Tc}{\Delta v_0})]$$

3. Log P and Stability Measurements

Figure S3. Determination of log *P* with octanol–water partitioning at 25 °C. (A) Photographs of each probe (10 μ M) partitioned between octanol and water. (B) Calculated log *P* values for each probe.

Figure S4. Absorption spectra showing maxima band of **SF8(f)**₂ (5 μ M) in water (1), or after addition of one molar equivalent of Arg (2), Ser (3), Cys (4), Trp (5), DTT (6), GSH (7), Ascorbic acid (8), H₂O₂ (9). The absorption band is broad due to self-aggregation of the probe in water. The additives have no effect on the absorption spectra indicating no chemical or non-covalent interaction with the encapsulated squaraine dye within **SF8(f)**₂. T = 25 °C.

4. Cell Toxicity and Fluorescence Microscopy

Figure S5. MTT viability assays for HT-1080 cells after 6 hour incubations with SF8 probes.

Figure S6. (top) Localization of **SF(C6)**₂ within cell lysosomes. HT-1080 cells were incubated with 1 µM of **SF(C6)**₂ for 30 min and co-stained with 100 nM LysoTracker Red DND-99 for 15 min. Representative epifluorescence cell micrographs depict colocalization. Red fluorescence shows SF8 probes; yellow fluorescence shows LysoTracker Red DND-99; orange fluorescence shows colocalization. Scale bar = 30 µm. (bottom) Localization of **SF(C6)**₂ within cell mitochondria. HT-1080 cells were incubated with 1 µM of **SF(C6)**₂ for 30 min and co-stained with 100 nM MitoTracker Green FM for 15 min. Representative epifluorescence cell micrographs depict qualitative colocalization. Red fluorescence shows SF8 probes; green fluorescence shows MitoTracker Green FM; yellow fluorescence shows colocalization. Scale bar = 30 µm.

5. References

- 1 C. Zhai, C. L. Schreiber, S. Padilla-Coley, A. G. Oliver and B. D. Smith, *Angew. Chem. Int. Ed.*, 2020, **59**, 23740–23747.
- 2 Y. C. Su, Y. L. Lo, C. C. Hwang, L. F. Wang, M. H. Wu, E. C. Wang, Y. M. Wang and T. P. Wang, *Org. Biomol. Chem.*, 2014, **12**, 6624–6633.