Supporting Information

Direct N alkylation of sulfur-containing amines

Chen Li, Min-Tong Ge, Liang Bai, Ai-Bao Xia, * Dan-Qian Xu, *

and Zhen-Yuan Xu

Catalytic Hydrogenation Research Centre, State Key Laboratory

Breeding Base of Green Chemistry-Synthesis Technology,

Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China

Fax (+86) 0571 88320066;

E-mail: xiaaibao@zjut.edu.cn; chrc@zjut.edu.cn

Table of Contents

1.	General information	S2
2.	General procedures	S2
3.	Multigram-scale synthesis of the product 3aa	S4
4.	Synthesis of the quetiapine 6	S4
5.	Characterization of products	S 5
6.	¹ H, ¹³ C NMR spectra	S20
7.	HPLC chromatograms of the compound 4b	S80
8.	Crystallographic data of RuCl ₂ (H ₂ O)(CO)(PPh ₃) ₂	S81

1. General information

NMR data were obtained on Bruker AVANCE III 500MHz for ¹H at 500 MHz and for ¹³C at 125 MHz with TMS as the internal standard. HRMS data were measured on an Agilent 6120 LC/TOF-MS with ESI source or Waters Premier GC/TOF-MS with EI source. In each case, enantiomeric excess was determined on a chiral column in comparison with authentic racemates by chiral HPLC, using a JASCO LC-2000 Plus system, consisting of MD-2010 HPLC diode array detector. Column chromatography and flash chromatography experiments were conducted using silica gel GF254 (200-300mesh) eluting with ethyl ether and petroleum ether. TLC experiments were carried out on glass-backed silica plates. Unless otherwise noted, chemicals were used without purification as commercially available.

2. General procedures

$\bigcirc OH + HN \\ S \frac{RuCl_2(H_2O)(CO)(PPh_3)_2 (x \text{ mol}\%)}{\text{solvent, T, t}} \bigcirc N \\ S \\$						
1a		2a			3aa	
Entry	M_{1a} : M_{2a}	Load of cat. /mol%	Solvent	Temperature/°C	Time/h	Yield/%
1	2:1	0.2	-	150	5	71
2	2:1	0.5	-	150	5	8
3	2:1	1	-	150	5	28
4	2:1	1	-	140	5	52
5	2:1	1	-	160	5	43
6	2:1	1	Toluene	150	5	53
7	2:1	1	Xylene	150	5	58
8	2:1	1	DMSO	150	5	26
9	2:1	1	-	150	10	65
10	3:1	1	-	150	5	86
11	5:1	1	-	150	5	95

Table S1. Optimization of the Reaction Conditions^{a, b}

^aReaction conditions: benzyl alcohol **1a**, thiomorpholine **2a** (1.0 mmol) and $RuCl_2(H_2O)(CO)(PPh_3)_2$, solvent (1.0 mL) were heated for 5-8 h under N₂. ^bIsolated yields.

General procedures for the synthesis of RuCl₂(CO)(H₂O)(PPh₃)₂, RuCl₂(CO)(CH₃CN)(PPh₃)₂

RuCl₃ (1.0 mmol, 0.21 g) and triphenylphosphine (3.0 mmol, 0.79 g) were refluxed in formaldehyde aqueous solution (10 mL, 40 w./w.%) and ethylene glycol methyl ether (10 mL) for 40 min to produce yellow solid. Then, the soild was purified by flite, washed with alcohol and water (10 mL×3), dried to obtain catalyst

 $RuCl_2(CO)(H_2O)(PPh_3)_2$ (0.63 g, 85% yield). Furthermore, the catalyst $RuCl_2(CO)(H_2O)(PPh_3)_2$ (1.0 mmol, 0.74 g) was refluxed in acetonitrile (20 mL) to obtain catalyst $RuCl_2(CO)(CH_3CN)(PPh_3)_2$ (0.72 g, 94% yield).

General procedures for the synthesis of products 3a

To a 10-mL of Schlenk tube was added alcohols **1** (5.0 mmol), thiomorpholine **2a** (1.0 mmol) and RuCl₂(CO)(H₂O)(PPh₃)₂ (1.0 mol%), nitrogen replacement and sealed. The mixture was stirred at 150 °C for 5 h. Then the mixture was diluted with EtOAc (10 mL), and cancentrated under vacuum. The residue was purified by flash chromatography on silica gel with petroleum ether/ethyl acetate (20:1 to 5:1) to afford products **3a**.

General procedures for the synthesis of products 3b

To a 10-mL of Schlenk tube was added alcohols **1** (5.0 mmol), thiomorpholine **2a** (1.0 mmol) and RuCl₂(CO)(H₂O)(PPh₃)₂ (3.0 mol%), nitrogen replacement and sealed. The mixture was stirred at 150 °C for 5 h. Then the mixture was diluted with EtOAc (10 mL), and cancentrated under vacuum. The residue was purified by flash chromatography on silica gel with petroleum ether/ethyl acetate (20:1 to 5:1) to afford products **3b**.

General procedures for the synthesis of products 3c

To a 10-mL of Schlenk tube was added alcohol 1 (5.0 mmol), amine 2 (1.0 mmol) and RuCl₂(CO)(H₂O)(PPh₃)₂ (1.0-3.0 mol%), nitrogen replacement and sealed. The mixture was stirred at 150 °C for 5 h. Then the mixture was diluted with EtOAc (10 mL), and cancentrated under vacuum. The residue was purified by flash chromatography on silica gel with petroleum ether/ethyl acetate (20:1 to 5:1) to afford

products 3c.

3. Multigram-scale synthesis of the product 3aa

To a 50-mL of Schlenk tube was added benzyl alcohol **1a** (5.4 g, 50.0 mmol), thiomorpholine **2a** (1.03 g, 10.0 mmol) and $\text{RuCl}_2(\text{CO})(\text{H}_2\text{O})(\text{PPh}_3)_2$ (1.0 mol%), nitrogen replacement and sealed. The mixture was stirred at 150 °C for 5 h. Then the mixture was diluted with EtOAc (100 mL), and cancentrated under vacuum. The residue was purified by flash chromatography on silica gel with petroleum ether/ethyl acetate (20:1) to afford the product **3aa** 1.79 g in 93% yield.

4. Synthesis of the quetiapine 6

To a 10-mL of Schlenk tube was added diethylene glycol (212 mg, 2.0 mmol), intermediate **5** (295 mg, 1.0 mmol), toluene 1 mL and $\text{RuCl}_2(\text{CO})(\text{H}_2\text{O})(\text{PPh}_3)_2$ (3.0 mol%), nitrogen replacement and sealed. The mixture was stirred at 150 °C for 5 h. Then the mixture was diluted with EtOAc (10 mL), and cancentrated under vacuum. The residue was purified by flash chromatography on silica gel with methylene chloride/methanol (20:1) to afford the quetiapine **6**.

5. Characterization of products

4-benzylthiomorpholine (3aa)

Yield: 183.3 mg, 95%. ¹H NMR (500 MHz, CDCl₃) δ 7.38 – 7.31 (m, 4H), 7.30 – 7.25 (m, 1H), 3.54 (s, 2H), 2.77 – 2.65 (m, 8H). ¹³C NMR (126 MHz, CDCl₃) δ 138.01, 129.00 (2C), 128.20 (2C), 127.05, 63.64, 54.87 (2C), 27.97 (2C). HRMS (ES+) *m*/*z* calcd for C₁₁H₁₅NS ([M+H]⁺) 194.0998, found 194.0999.

4-(2-methylbenzyl)thiomorpholine (3ab)

Yield: 167.7 mg, 81%. ¹H NMR (500 MHz, CDCl₃) δ 7.30 – 7.24 (m, 1H), 7.22 – 7.13 (m, 3H), 3.48 (s, 2H), 2.73 (dd, J = 6.3, 2.8 Hz, 4H), 2.67 (dd, J = 5.4, 4.0 Hz, 4H), 2.37 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 137.58, 136.19, 130.31, 129.83, 127.10, 125.46, 61.56, 54.99 (2C), 28.15 (2C), 19.22. HRMS (ES+) *m/z* calcd for C₁₂H₁₇NS ([M+H]⁺) 208.1154, found 208.1155.

4-(3-methylbenzyl)thiomorpholine (3ac)

Yield: 192.5 mg, 93%. ¹H NMR (500 MHz, CDCl₃) δ 7.22 (t, *J* = 7.5 Hz, 1H), 7.15 – 7.07 (m, 3H), 3.50 (s, 2H), 2.76 – 2.66 (m, 8H), 2.37 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 137.88, 137.83, 129.79, 128.10, 127.84, 126.16, 63.69, 54.92 (2C), 27.97 (2C), 21.37. HRMS (ES+) *m/z* calcd for C₁₂H₁₇NS ([M+H]⁺) 208.1154, found 208.1158.

4-(4-methylbenzyl)thiomorpholine (3ad)

Yield: 194.5 mg, 94%. ¹**H NMR** (500 MHz, CDCl₃) δ 7.21 (d, *J* = 7.9 Hz, 2H), 7.14 (d, *J* = 7.9 Hz, 2H), 3.50 (s, 2H), 2.75 – 2.65 (m, 8H), 2.38 – 2.32 (m, 3H). ¹³**C NMR** (126 MHz, CDCl₃) δ 136.69, 134.88, 129.04 (2C), 128.92 (2C), 63.41, 54.86 (2C), 28.01 (2C), 21.07. **HRMS** (ES+) *m/z* calcd for C₁₂H₁₇NS ([M+H]⁺) 208.1154, found 208.1155.

4-(2-methoxybenzyl)thiomorpholine (3ae)

Yield: 151.6 mg, 68%. ¹H NMR (500 MHz, CDCl₃) δ 7.35 (dd, J = 7.4, 1.5 Hz, 1H), 7.25 (td, J = 8.0, 1.7 Hz, 1H), 6.97 – 6.92 (m, 1H), 6.88 (d, J = 8.2 Hz, 1H), 3.83 (s, 3H), 3.60 (s, 2H), 2.81 – 2.74 (m, 4H), 2.74 – 2.67 (m, 4H). ¹³C NMR (126 MHz, CDCl₃) δ 157.82, 130.31, 128.04, 126.01, 120.30, 110.46, 56.66, 55.39, 54.86 (2C), 27.96 (2C). HRMS (ES+) *m*/*z* calcd for C₁₂H₁₇NOS ([M+H]⁺) 224.1104, found 224.1107.

4-(3-methoxybenzyl)thiomorpholine (3af)

Yield: 178.4 mg, 80%. ¹H NMR (500 MHz, CDCl₃) δ 7.26 – 7.21 (m, 1H), 6.93 – 6.88 (M, 2H), 6.84 – 6.78 (m, 1H), 3.82 (s, 3H), 3.51 (s, 2H), 2.76 – 2.66 (m, 8H). ¹³C NMR (126 MHz, CDCl₃) δ 159.68, 139.81, 129.17, 121.30, 114.48, 112.46, 63.57, 55.18, 54.92 (2C), 28.01 (2C). HRMS (ES+) *m/z* calcd for C₁₂H₁₇NOS ([M+H]⁺) 224.1104, found 224.1110.

4-(4-methoxybenzyl)thiomorpholine (3ag)

Yield: 187.3 mg, 84%. ¹H NMR (500 MHz, CDCl₃) δ 7.25 – 7.20 (m, 2H), 6.89 – 6.84 (m, 2H), 3.81 (s, 3H), 3.47 (s, 2H), 2.75 – 2.63 (m, 8H). ¹³C NMR (126 MHz, CDCl₃) δ 158.78, 130.23 (2C), 129.93, 113.63 (2C), 63.05, 55.25, 54.78 (2C), 27.99 (2C). HRMS (ES+) *m/z* calcd for C₁₂H₁₇NOS ([M+H]⁺) 224.1104, found 224.1103.

4-(4-(*tert*-butyl)benzyl)thiomorpholine (3ah)

Yield: 146.9 mg, 59%. ¹H NMR (500 MHz, CDCl₃) δ 7.37 – 7.33 (m, 2H), 7.25 (d, *J* = 8.2 Hz, 2H), 3.51 (s, 2H), 2.76 – 2.66 (m, 8H), 1.34 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 150.02, 134.85, 128.78 (2C), 125.13 (2C), 63.35, 54.90 (2C), 34.46, 31.40 (3C), 28.02 (2C). HRMS (ES+) *m/z* calcd for C₁₅H₂₃NS ([M+H]⁺) 250.1624, found 250.1625.

4-([1,1'-biphenyl]-4-ylmethyl)thiomorpholine (3ai)

Yield: 250.2mg, 93%. ¹H NMR (500 MHz, CDCl₃) δ 7.64 – 7.60 (m, 2H), 7.60 – 7.55 (m, 2H), 7.49 – 7.43 (m, 2H), 7.43 – 7.34 (m, 3H), 3.59 (s, 2H), 2.82 – 2.66 (m, 8H). ¹³C NMR (126 MHz, CDCl₃) δ 140.94, 140.08, 137.14, 129.45 (2C), 128.75 (2C), 127.19, 127.04 (2C), 127.00 (2C), 63.35, 54.96 (2C), 28.05 (2C). HRMS (ES+) *m/z* calcd for C₁₇H₁₉NS ([M+H]⁺) 270.1311, found 270.1312.

4-(3-phenoxybenzyl)thiomorpholine (3aj)

Yield: 242.3 mg, 85%. ¹H NMR (500 MHz, CDCl₃) δ 7.39 – 7.32 (m, 2H), 7.31 – 7.26 (m, 1H), 7.15 – 7.09 (m, 1H), 7.07 (d, *J* = 7.6 Hz, 1H), 7.05 – 7.00 (m, 3H), 6.91 (dd, *J* = 8.1, 1.9 Hz, 1H), 3.52 (s, 2H), 2.78 – 2.64 (m, 8H). ¹³C NMR (126 MHz, CDCl₃) δ 157.27 (2C), 140.30, 129.71 (2C), 129.48, 123.78, 123.17, 119.36, 118.79 (2C), 117.50, 63.26, 54.88 (2C), 27.99 (2C). HRMS (ES+) *m/z* calcd for C₁₇H₁₉NOS ([M+H]⁺) 286.1260, found 286.1265.

4-(2-fluorobenzyl)thiomorpholine (3ak)

Yield: 147.7 mg, 70%. ¹**H** NMR (500 MHz, CDCl₃) δ 7.37 (td, J = 7.5, 1.7 Hz, 1H), 7.28 – 7.21 (m, 1H), 7.12 (td, J = 7.5, 1.0 Hz, 1H), 7.06 – 7.01 (m, 1H), 3.61 (s, 2H), 2.79 – 2.73 (m, 4H), 2.73 – 2.67 (m, 4H). ¹³**C** NMR (126 MHz, CDCl₃) δ 161.43 (d, ¹ J_{C-F} = 246.6 Hz, 1C), 131.41 (d, ³ J_{C-F} = 4.54 Hz, 1C), 128.82 (d, ³ J_{C-F} = 8.3 Hz, 1C), 124.45 (d, ² J_{C-F} = 14.6 Hz, 1C), 123.85 (d, ⁴ J_{C-F} = 3.5 Hz, 1C), 115.27 (d, ² J_{C-F} = 22.2 Hz, 1C), 55.96 (d, J_{C-F} = 1.76 Hz, 1C), 54.62 (2C), 27.98 (2C). HRMS (ES+) *m/z* calcd for C₁₁H₁₄FNS ([M+H]⁺) 212.0904, found 212.0909.

4-(3-fluorobenzyl)thiomorpholine (3al)

Yield: 196.2 mg, 93%. ¹**H NMR** (500 MHz, CDCl₃) δ 7.31 – 7.24 (m, 1H), 7.07 (dd, J = 10.5, 4.4 Hz, 2H), 6.95 (td, J = 8.5, 2.4 Hz, 1H), 3.52 (s, 2H), 2.77 – 2.63 (m, 8H). ¹³**C NMR** (126 MHz, CDCl₃) δ 162.97 (d, ¹ $J_{C-F} = 246.1$ Hz, 1C), 140.99 (d, ³ $J_{C-F} = 6.9$ Hz, 1C), 129.63 (d, ³ $J_{C-F} = 8.2$ Hz, 1C), 124.35 (d, ⁴ $J_{C-F} = 2.8$ Hz, 1C), 115.54 (d, ² $J_{C-F} = 21.3$ Hz, 1C), 113.95 (d, ² $J_{C-F} = 21.2$ Hz, 1C), 63.03 (d, $J_{C-F} = 1.8$ Hz, 1C), 54.91 (2C), 28.00 (2C). **HRMS** (ES+) m/z calcd for C₁₁H₁₄FNS ([M+H]⁺) 212.0904, found 212.0905.

4-(4-fluorobenzyl)thiomorpholine (3am)

Yield: 175.1 mg, 83%. ¹H NMR (500 MHz, CDCl₃) δ 7.32 – 7.20 (m, 2H), 7.06 – 6.95 (m, 2H), 3.49 (s, 2H), 2.75 – 2.58 (m, 8H). ¹³C NMR (126 MHz, CDCl₃) δ 162.01 (d, ¹*J*_{C-F} = 245.3 Hz, 1C), 131.75, 130.42 (d, ³*J*_{C-F} = 8.1 Hz, 2C), 115.02 (d, ²*J*_{C-F} = 21.3 Hz, 2C), 62.82, 54.82 (2C), 28.00 (2C). HRMS (ES+) *m/z* calcd for C₁₁H₁₄FNS ([M+H]⁺) 212.0904, found 212.0906.

4-(2-bromobenzyl)thiomorpholine (3an)

Yield: 165.9 mg, 61%. ¹**H NMR** (500 MHz, CDCl₃) δ 7.54 (dd, J = 8.0, 1.1 Hz, 1H), 7.46 (dd, J = 7.6, 1.5 Hz, 1H), 7.29 (td, J = 7.5, 1.5 Hz, 1H), 7.12 (td, J = 7.7, 1.7 Hz, 1H), 3.61 (s, 2H), 2.82 – 2.75 (m, 4H), 2.73 – 2.65 (m, 4H). ¹³**C NMR** (126 MHz, CDCl₃) δ 137.45, 132.71, 130.53, 128.38, 127.13, 124.60, 62.37, 54.88 (2C), 28.00 (2C). **HRMS** (ES+) *m/z* calcd for C₁₁H₁₄BrNS ([M+H]⁺) 274.0082, found 274.0093.

4-(3-bromobenzyl)thiomorpholine (3ao)

Yield: 261.1 mg, 96%. ¹**H NMR** (500 MHz, CDCl₃) δ 7.48 (s, 1H), 7.40 – 7.36 (m, 1H), 7.23 (d, J = 7.7 Hz, 1H), 7.18 (t, J = 7.7 Hz, 1H), 3.47 (s, 2H), 2.73 – 2.63 (m, 8H). ¹³**C NMR** (126 MHz, CDCl₃) δ 140.62, 131.72, 130.12, 129.74, 127.41, 122.41, 62.87, 54.81 (2C), 27.91 (2C). **HRMS** (ES+) m/z calcd for C₁₁H₁₄BrNS ([M+H]⁺) 274.0082, found 274.0092.

4-(4-bromobenzyl)thiomorpholine (3ap)

Yield: 251.2 mg, 92%. ¹H NMR (500 MHz, CDCl₃) δ 7.48 – 7.42 (m, 2H), 7.20 (d, *J* = 8.3 Hz, 2H), 3.47 (s, 2H), 2.74 – 2.62 (m, 8H). ¹³C NMR (126 MHz, CDCl₃) δ 137.18, 131.37 (2C), 130.63 (2C), 120.90, 62.90, 54.88 (2C), 27.99 (2C). HRMS (ES+) *m/z* calcd for C₁₁H₁₄BrNS ([M+H]⁺) 274.0082, found 274.0085.

4-(2-iodobenzyl)thiomorpholine (3aq)

Yield: 315.8 mg, 99%. ¹H NMR (500 MHz, CDCl₃) δ 7.85 (dd, J = 7.9, 1.1 Hz, 1H), 7.40 (d, J = 7.2 Hz, 1H), 7.32 (td, J = 7.5, 1.7 Hz, 1H), 6.96 (td, J = 7.7, 1.7 Hz, 1H), 3.54 (s, 2H), 2.84 – 2.74 (m, 4H), 2.74 – 2.63 (m, 4H). ¹³C NMR (126 MHz, CDCl₃) δ 139.55 (2C), 130.28, 128.74, 127.95, 100.58, 67.08, 54.81 (2C), 28.04 (2C). HRMS (ES+) *m/z* calcd for C₁₁H₁₄INS ([M+H]⁺) 319.9964, found 319.9966.

4-(3-iodobenzyl)thiomorpholine (3ar)

Yield: 312.6 mg, 98%. ¹**H NMR** (500 MHz, CDCl₃) δ 7.69 (s, 1H), 7.60 (d, J = 7.9 Hz, 1H), 7.28 (d, J = 6.4 Hz, 1H), 7.06 (t, J = 7.7 Hz, 1H), 3.46 (s, 2H), 2.75 – 2.65 (m, 8H). ¹³**C NMR** (126 MHz, CDCl₃) δ 140.64, 137.81, 136.21, 130.02, 128.20, 94.41, 62.86, 54.88 (2C), 27.95 (2C). **HRMS** (ES+) m/z calcd for C₁₁H₁₄INS ([M+H]⁺) 319.9964, found 319.9970.

4-(4-iodobenzyl)thiomorpholine (3as)

Yield: 293.5 mg, 92%. ¹H NMR (500 MHz, CDCl₃) δ 7.68 – 7.62 (m, 2H), 7.08 (d, *J* = 8.3 Hz, 2H), 3.46 (s, 2H), 2.76 – 2.62 (m, 8H). ¹³C NMR (126 MHz, CDCl₃) δ 137.87, 137.36 (2C), 130.94 (2C), 92.41, 62.99, 54.89 (2C), 27.99 (2C). HRMS (ES+) *m*/*z* calcd for C₁₁H₁₄INS ([M+H]⁺) 319.9964, found 319.9969.

4-(2-(trifluoromethyl)benzyl)thiomorpholine (3at)

Yield: 148.8 mg, 57%. ¹**H NMR** (500 MHz, CDCl₃) δ 7.79 (d, J = 7.7 Hz, 1H), 7.64 (d, J = 7.8 Hz, 1H), 7.53 (t, J = 7.5 Hz, 1H), 7.34 (t, J = 7.6 Hz, 1H), 3.68 (s, 2H), 2.73 (td, J = 9.4, 3.4 Hz, 8H). ¹³**C NMR** (126 MHz, CDCl₃) δ 137.79, 131.73, 130.15, 128.68 (q, ² J_{C-F} = 30.2 Hz, 1C), 126.81, 125.78 (q, ³ J_{C-F} = 5.9 Hz, 1C), 124.5 (q, ¹ J_{C-F} = 274.6 Hz, 1C), 58.90, 55.08 (2C), 28.11 (2C). **HRMS** (ES+) *m/z* calcd for C₁₂H₁₄F₃NS ([M+H]⁺) 262.0872, found 262.0879.

4-(3-(trifluoromethyl)benzyl)thiomorpholine (3au)

Yield: 255.8 mg, 98%. ¹**H NMR** (500 MHz, CDCl₃) δ 7.59 (s, 1H), 7.52 (d, *J* = 7.7 Hz, 2H), 7.44 (t, *J* = 7.7 Hz, 1H), 3.57 (s, 2H), 2.77 – 2.65 (m, 8H). ¹³**C NMR** (126 MHz, CDCl₃) δ 139.39, 132.18, 130.68 (q, ²*J*_{C-F} = 30.0 Hz, 1C), 128.71, 125.50 (q, ³*J*_{C-F} = 3.8 Hz, 1C), 124.22 (q, ¹*J*_{C-F} = 272.8 Hz, 1C), 129.98 (q, ³*J*_{C-F} = 3.8 Hz, 1C), 63.07, 54.94 (2C), 27.99 (2C). **HRMS** (ES+) *m/z* calcd for C₁₂H₁₄F₃NS ([M+H]⁺) 262.0872, found 262.0878.

4-(3,5-dimethoxybenzyl)thiomorpholine (3av)

Yield: 202.4 mg, 80%. ¹H NMR (500 MHz, CDCl₃) δ 6.50 (d, J = 2.3 Hz, 2H), 6.37 (t, J = 2.3 Hz, 1H), 3.80 (s, 6H), 3.47 (s, 2H), 2.70 (q, J = 6.7 Hz, 8H). ¹³C NMR (126 MHz, CDCl₃) δ 160.75 (2C), 140.66, 106.78 (2C), 98.99, 63.69, 55.30 (2C), 54.92 (2C), 28.00 (2C). HRMS (ES+) m/z calcd for C₁₃H₁₉NO₂S ([M+H]⁺) 254.1209, found 254.1217.

4-(3,5-difluorobenzyl)thiomorpholine (3aw)

Yield: 132.8, 58%. ¹H NMR (500 MHz, CDCl₃) δ 6.92 – 6.85 (m, 2H), 6.69 (tt, *J* = 8.9, 2.4 Hz, 1H), 3.49 (s, 2H), 2.76 – 2.65 (m, 8H). ¹³C NMR (126 MHz, CDCl₃) δ 163.03 (dd, ¹*J*_{C-F} = 248.2, 12.7 Hz, 2C), 142.72 (t, ³*J*_{C-F} = 8.7 Hz, 1C), 111.19 (dd, ²*J*_{C-F} = 19.3, 5.7 Hz, 2C), 102.40 (t, ²*J*_{C-F} = 25.4 Hz, 1C), 62.70 (t, ⁴*J*_{C-F} = 2.0 Hz, 1C), 54.90 (2C), 27.98 (2C). **HRMS** (ES+) *m/z* calcd for C₁₁H₁₃F₂NS ([M+H]⁺) 230.0810, found 230.0820.

4-(pyridin-2-ylmethyl)thiomorpholine (3ax)

Yield: 155.2mg, 80%. ¹H NMR (500 MHz, CDCl₃) δ 8.41 (m, 1H), 7.50 (m, 1H), 7.25 (d, J = 7.7 Hz, 1H), 7.25 (d, J = 7.7 Hz, 1H), 7.02 (m, 2H), 2.61 (m, 4H), 2.58 – 2.49 (m, 4H). ¹³C NMR (126 MHz, CDCl₃) δ 158.00, 148.82, 135.99, 122.70, 121.66, 64.79, 54.67 (2C), 27.50 (2C). HRMS (ES+) *m/z* calcd for C₁₀H₁₄N₂S ([M+H]⁺) 195.0950, found 195.0958.

4-(thiophen-2-ylmethyl)thiomorpholine (3ay)

Yield: 173.1 mg, 87%. ¹H NMR (500 MHz, CDCl₃) δ 7.27 - 7.23(m, 1H), 6.98 – 6.94 (m, 1H), 6.93 – 6.89 (m, 1H), 3.75 (s, 2H), 2.81- 2.73 (m, 4H), 2.73 – 2.65 (m, 4H). ¹³C NMR (126 MHz, CDCl₃) δ 141.46, 126.48, 126.08, 125.12, 57.89, 54.61 (2C), 28.02 (2C). HRMS (ES+) *m/z* calcd for C₉H₁₃NS₂ ([M+H]⁺) 200.0562, found 200.0561.

4-(naphthalen-1-ylmethyl)thiomorpholine (3az)

Yield: 155.5 mg, 64%. ¹H NMR (500 MHz, CDCl₃) δ 8.31 (d, J = 8.3 Hz, 1H), 7.91 – 7.86 (m, 1H), 7.81 (dd, J = 7.0, 2.1 Hz, 1H), 7.57 – 7.50 (m, 2H), 7.47 – 7.40 (m, 2H), 3.94 (s, 2H), 2.85 – 2.78 (m, 4H), 2.71 – 2.64 (m, 4H). ¹³C NMR (126 MHz, CDCl₃) δ 133.87, 133.79, 132.52, 128.39, 128.01, 127.44, 125.71, 125.62, 125.05, 124.73, 61.84, 55.10 (2C), 28.09 (2C). HRMS (ES+) *m/z* calcd for C₁₅H₁₇NS ([M+H]⁺) 244.1154, found 244.1158.

4-propylthiomorpholine (3ba)

Yield: 126.2 mg, 87%. ¹H NMR (500 MHz, CDCl₃) δ 2.76 – 2.62 (m, 8H), 2.35 – 2.27 (m, 2H), 1.54 – 1.43 (m, 2H), 0.88 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 61.35, 54.99 (2C), 27.97 (2C), 19.58, 11.87. HRMS (ES+) *m/z* calcd for C₇H₁₅NS ([M+H]⁺) 146.0998, found 146.1000.

4-butylthiomorpholine (**3bb**)

Yield: 120.8 mg, 76%. ¹H NMR (500 MHz, CDCl₃) δ 2.76 – 2.63 (m, 8H), 2.39 – 2.30 (m, 2H), 1.51 – 1.40 (m, 2H), 1.35 – 1.22 (m, 2H), 0.91 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 59.17, 55.03 (2C), 28.63, 27.98 (2C), 20.71, 13.99. HRMS (ES+) *m/z* calcd for C₈H₁₇NS ([M+H]⁺) 160.1154, found 160.1158.

4-pentylthiomorpholine (**3bc**)

Yield: 145.3 mg, 84%. ¹H NMR (500 MHz, CDCl₃) δ 2.74 – 2.62 (m, 8H), 2.37 - 2.29 (m, 2H), 1.52 – 1.40 (m, 2H), 1.37 – 1.21 (m, 4H), 0.89 (t, J = 7.2 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 59.47,

55.03 (2C), 29.74, 27.97 (2C), 26.16, 22.57, 14.01. **HRMS** (ES+) m/z calcd for C₉H₁₉NS ([M+H]⁺) 174.1311, found 174.1309.

4-hexylthiomorpholine (3bd)

Yield: 166.4 mg, 89%. ¹H NMR (500 MHz, CDCl₃) δ 2.76 – 2.63 (m, 8H), 2.38 – 2.31 (m, 2H), 1.51 – 1.41 (m, 2H), 1.35 – 1.23 (m, 6H), 0.88 (t, *J* = 6.9 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 59.52, 55.06 (2C), 31.76, 28.00 (2C), 27.24, 26.47, 22.59, 14.02. HRMS (ES+) *m/z* calcd for C₁₀H₂₁NS ([M+H]⁺) 188.1467, found 188.1464.

4-(2-methylbutyl)thiomorpholine (3be)

Yield: 141.9 mg, 82%. ¹H NMR (500 MHz, CDCl₃) δ 2.76 – 2.54 (m, 8H), 2.19 (dd, J = 12.3, 6.7 Hz, 1H), 2.06 (dd, J = 12.3, 7.8 Hz, 1H), 1.56 (dt, J = 14.2, 7.1 Hz, 1H), 1.50 – 1.34 (m, 1H), 1.14 – 1.00 (m, 1H), 0.93 – 0.81 (m, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 65.97, 55.58 (2C), 31.87, 28.00, 27.67 (2C), 17.77, 11.32. HRMS (ES+) m/z calcd for C₉H₁₉NS ([M+H]⁺) 174.1311, found 174.1310.

4-(cyclohexylmethyl)thiomorpholine (3bf)

Yield: 173.1 mg, 87%. ¹H NMR (500 MHz, CDCl₃) δ 2.70 – 2.59 (m, 8H), 2.12 (d, *J* = 7.1 Hz, 2H), 1.78 – 1.61 (m, 5H), 1.52 – 1.41 (m, 1H), 1.27 – 1.09 (m, 3H), 0.91 – 0.77 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 66.28, 55.61 (2C), 35.03, 31.85 (2C), 27.99 (2C), 26.79, 26.13 (2C). HRMS (ES+) *m/z* calcd for C₁₁H₂₁NS ([M+H]⁺) 200.1467, found 200.1474.

4-cyclopentylthiomorpholine (3bg)

Yield: 152.2 mg, 89%. ¹H NMR (500 MHz, CDCl₃) δ 2.81 – 2.73 (m, 4H), 2.73 – 2.67 (m, 4H), 2.64 (td, J = 8.9, 4.5 Hz, 1H), 1.89 – 1.78 (m, 2H), 1.72 – 1.61 (m, 2H), 1.59 – 1.48 (m, 2H), 1.44 – 1.34 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 67.54, 53.75 (2C), 29.83 (2C), 27.91 (2C), 24.10 (2C). HRMS (ES+) *m*/z calcd for C₉H₁₇NS ([M+H]⁺) 172.1154, found 172.1162.

4-cyclohexylthiomorpholine (3bh)

Yield: 112.9 mg, 61%. ¹H NMR (500 MHz, CDCl₃) δ 2.90 – 2.79 (m, 4H), 2.73 – 2.61 (m, 4H), 2.39 – 2.25 (m, 1H), 1.79 (d, *J* = 8.5 Hz, 4H), 1.67 – 1.58 (m, 1H), 1.32 – 1.16 (m, 4H), 1.08 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 65.44, 51.39 (2C), 28.61 (2C), 28.54 (2C), 26.39, 26.19 (2C). HRMS (ES+) *m/z* calcd for C₁₀H₁₉NS ([M+H]⁺) 186.1311, found 186.1317.

4-phenethylthiomorpholine (3bi)

Yield: 124.2 mg, 60%. ¹H NMR (500 MHz, CDCl₃) δ 7.33 – 7.27 (m, 2H), 7.25 – 7.18 (m, 3H), 2.87 – 2.76 (m, 6H), 2.76 – 2.70 (m, 4H), 2.69 – 2.62 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 140.21, 128.69 (2C), 128.40 (2C), 126.07, 61.19, 54.92 (2C), 33.10, 27.97 (2C). HRMS (ES+) *m/z* calcd for C₁₂H₁₇NS ([M+H]⁺) 208.1154, found 208.1156.

4-(3-phenylpropyl)thiomorpholine (3bj)

Yield: 132.6 mg, 60%. ¹H NMR (500 MHz, CDCl₃) δ 7.32 – 7.26 (m, 2H), 7.24 – 7.16 (m, 3H), 2.76 – 2.67 (m, 8H), 2.67 – 2.61 (m, 2H), 2.46 – 2.38 (m, 2H), 1.87 – 1.78 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 142.00, 128.35 (2C), 128.29 (2C), 125.76, 58.55, 54.95 (2C), 33.56, 28.12, 27.93 (2C). HRMS (ES+) *m/z* calcd for C₁₃H₁₉NS ([M+H]⁺) 222.1311, found 222.1317.

4-(2-methoxyethyl)thiomorpholine (3bk)

Yield: 90.2 mg, 56%. ¹**H NMR** (500 MHz, CDCl₃) δ 3.50 (t, J = 5.6 Hz, 2H), 3.34 (s, 3H), 2.80 – 2.74 (m, 4H), 2.72 – 2.67 (m, 4H), 2.61 (t, J = 5.6 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 69.93, 58.88, 58.56, 55.27 (2C), 27.71 (2C). **HRMS** (ES+) *m/z* calcd for C₇H₁₅NOS ([M+H]⁺) 162.0947, found 162.0948.

4-(2-propoxyethyl)thiomorpholine (3bl)

Yield: 132.3 mg, 70%. ¹H NMR (500 MHz, CDCl₃) δ 3.57 – 3.51 (m, 2H), 3.37 (t, *J* = 6.7 Hz, 2H), 2.83 – 2.73 (m, 4H), 2.71 – 2.64 (m, 4H), 2.61 (t, *J* = 5.9 Hz, 2H), 1.63 – 1.53 (m, 2H), 0.90 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 72.88, 68.20, 58.52, 55.26 (2C), 27.81 (2C), 22.77, 10.53. HRMS (ES+) *m/z* calcd for C₉H₁₉NOS ([M+H]⁺) 190.1260, found 190.1266.

4-(4,4,4-trifluorobutyl)thiomorpholine (**3bm**)

Yield: 164.0 mg, 77%. ¹**H NMR** (500 MHz, CDCl₃) δ 2.71 – 2.56 (m, 8H), 2.36 (t, *J* = 7.1 Hz, 2H), 2.15 – 2.01 (m, 2H), 1.68 (dt, *J* = 14.8, 7.4 Hz, 2H). ¹³**C NMR** (126 MHz, CDCl₃) δ 127.24 (q, ¹*J*_{C-F} = 276.7 Hz, 1C), 57.33, 54.80 (2C), 31.38 (q, ²*J*_{C-F} = 28.7 Hz, 1C), 27.88 (2C), 19.04 (q, ³*J*_{C-F} = 2.6 Hz, 1C). **HRMS** (ES+) *m/z* calcd for C₈H₁₄F₃NS ([M+H]⁺) 214.0872, found 214.0878.

1-thiomorpholinopropan-2-one (3bn)

Yield:116.1 mg, 73%. ¹H NMR (500 MHz, CDCl₃) δ 3.18 (s, 2H), 2.76 – 2.67 (m, 8H), 2.13 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 206.66, 68.78, 55.07 (2C), 27.73 (2C), 27.62. HRMS (ES+) *m/z* calcd for C₇H₁₃NOS ([M+H]⁺) 160.0791, found 160.0790.

tert-butyl 2-(thiomorpholinomethyl)pyrrolidine-1-carboxylate (3bo)

Yield: 143.0 mg, 50%. ¹H NMR (500 MHz, CDCl₃) δ 3.98 – 3.68 (m, 1H), 3.39 – 3.17 (m, 2H), 2.92 – 2.80 (m, 2H), 2.72 – 2.46 (m, 7H), 2.11 (dd, *J* = 12.2, 10.1 Hz, 1H), 1.94 – 1.75 (m, 4H), 1.45 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 154.38, 79.23, 61.75, 55.79, 55.04 (2C), 46.16, 29.68, 28.52 (3C), 27.94 (2C), 22.58. HRMS (ES+) *m/z* calcd for C₁₄H₂₆N₂O₂S ([M+H]⁺) 287.1788, found 287.1795.

4-(adamantan-1-ylmethyl)thiomorpholine (3bp)

Yield: 130.5 mg, 52%. ¹H NMR (500 MHz, CDCl₃) δ 2.78 – 2.70 (m, 4H), 2.67 – 2.57 (m, 4H), 1.94 (s, 5H), 1.72 (dd, J = 15.6, 7.4 Hz, 4H), 1.62 (d, J = 11.3 Hz, 3H), 1.45 (d, J = 2.3 Hz, 5H). ¹³C NMR (126 MHz, CDCl₃) δ 71.73, 57.64 (2C), 40.78 (3C), 37.26 (3C), 35.15, 28.46 (3C), 28.26 (2C). HRMS

(ES+) m/z calcd for C₁₅H₂₅NS ([M+H]⁺) 252.1780, found 252.1788.

4-thiomorpholinobutan-1-ol (3bq)

Yield: 124.3 mg, 71%. ¹**H NMR** (500 MHz, CDCl₃) δ 3.59 – 3.49 (m, 2H), 2.79 – 2.62 (m, 8H), 2.43 – 2.32 (m, 2H), 1.67 – 1.58 (m, 4H). ¹³**C NMR** (126 MHz, CDCl₃) δ 62.48, 59.23, 54.96 (2C), 32.26, 27.48 (2C), 24.88. **HRMS** (ES+) *m/z* calcd for C₈H₁₇NOS ([M+H]⁺) 176.1104, found 176.1110.

1-benzylpiperidine (3ca)

Yield: 171.5 mg, 98%. ¹H NMR (500 MHz, CDCl₃) δ 7.36 – 7.31 (m, 4H), 7.29 – 7.24 (m, 1H), 3.50 (s, 2H), 2.40 (s, 4H), 1.64 – 1.57 (m, 4H), 1.51 – 1.41 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 138.65, 129.23 (2C), 128.09 (2C), 126.82, 63.91, 54.51 (2C), 26.00 (2C), 24.41. HRMS (ES+) *m/z* calcd for C₁₂H₁₈N ([M+H]⁺) 176.1434, found 176.1433.

4-benzylmorpholine (3cb)

Yield: 169.9 mg, 96%. ¹**H NMR** (500 MHz, CDCl₃) δ 7.37 – 7.31 (m, 4H), 7.30 – 7.25 (m, 1H), 3.76 – 3.70 (m, 4H), 3.52 (s, 2H), 2.47 (t, *J* = 4.2 Hz, 4H). ¹³**C NMR** (126 MHz, CDCl₃) δ 137.74, 129.22 (2C), 128.26 (2C), 127.16, 67.02 (2C), 63.48, 53.63 (2C). **HRMS** (ES+) *m/z* calcd for C₁₁H₁₆NO ([M+H]⁺) 178.1226, found 176.1231.

1-benzylpiperazine (3cc)

Yield: 112.6 mg, 64%. ¹H NMR (500 MHz, CDCl₃) δ 7.34 – 7.30 (m, 4H), 7.28 – 7.23 (m, 1H), 3.49 (s, 2H), 2.88 (t, *J* = 4.9 Hz, 4H), 2.42 (s, 4H), 2.22 (s, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 138.01, 129.22 (2C), 128.18 (2C), 127.01, 63.67, 54.40 (2C), 45.99 (2C). HRMS (ES+) *m/z* calcd for C₁₁H₁₇N₂ ([M+H]⁺) 177.1386, found 177.1394.

4-benzyl-2-ethylthiomorpholine (3cd)

Yield: 137.0 mg, 62%. ¹**H NMR** (500 MHz, CDCl₃) δ 7.44 – 7.20 (m, 5H), 3.55 (q, *J* = 13.3 Hz, 2H), 3.08 – 2.94 (m, 2H), 2.89 – 2.80 (m, 2H), 2.64 – 2.53 (m, 1H), 2.42 – 2.33 (m, 1H), 2.18 (dd, *J* = 11.6,

9.4 Hz, 1H), 1.64 – 1.41 (m, 2H), 0.99 (t, J = 7.5 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 138.19, 128.89 (2C), 128.18 (2C), 126.99, 63.44, 60.98, 54.61, 42.75, 27.68, 26.54, 11.53. HRMS (ES+) m/z calcd for C₁₃H₁₉NS ([M+H]⁺) 222.1311, found 222.1319.

4-benzyl-2,2-dimethylthiomorpholine (3ce)

Yield: 150.3 mg, 68%. ¹H NMR (500 MHz, CDCl₃) δ 7.44 – 7.32 (m, 5H), 3.55 (s, 2H), 2.84 – 2.65 (m, 4H), 2.44 (s, 2H), 1.37 (s, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 138.75, 128.61 (2C), 128.16 (2C), 126.91, 67.42, 63.35, 54.83, 39.91, 27.89 (2C), 26.20. HRMS (ES+) *m/z* calcd for C₁₃H₁₉NS ([M+H]⁺) 222.1311, found 222.1319.

4-propyl-3,4-dihydro-2H-benzo[b][1,4]thiazine (3cf)

Yield: 111.9 mg, 58%. ¹**H NMR** (500 MHz, CDCl₃) δ 7.09 (d, J = 7.6 Hz, 1H), 7.07 – 7.00 (m, 1H), 6.72 (d, J = 8.3 Hz, 1H), 6.65 (t, J = 7.4 Hz, 1H), 3.70 – 3.61 (m, 2H), 3.33 – 3.25 (m, 2H), 3.11 – 3.03 (m, 2H), 1.71 (dd, J = 15.0, 7.5 Hz, 2H), 1.02 (td, J = 7.3, 1.0 Hz, 3H). ¹³C **NMR** (126 MHz, CDCl₃) δ 143.21, 127.71, 125.73, 117.26, 116.70, 112.48, 54.25, 49.85, 25.55, 19.47, 11.38. **HRMS** (ES+) *m/z* calcd for C₁₁H₁₅NS ([M+H]⁺) 194.0998, found 194.0996.

4-benzylthiomorpholine 1,1-dioxide (3cg)

Yield: 220.5 mg, 98%. ¹H NMR (500 MHz, CDCl₃) δ 7.40 – 7.20 (m, 5H), 3.65 (s, 2H), 3.13 – 3.03 (m, 4H), 3.00 – 2.93 (m, 4H). ¹³C NMR (126 MHz, CDCl₃) δ 137.18, 128.69 (2C), 128.46 (2C), 127.56, 61.32, 51.35 (2C), 50.44 (2C). HRMS (ES+) *m*/*z* calcd for C₁₁H₁₅NO₂S ([M+H]⁺) 226.0896, found 226.0903.

6-propyl-4,5,6,7-tetrahydrothieno[2,3-c]pyridine (3ch)

Yield: 128.5 mg, 71%. ¹**H NMR** (500 MHz, CDCl₃) δ 7.08 (d, J = 5.1 Hz, 1H), 6.73 (d, J = 5.1 Hz, 1H), 3.57 (t, J = 1.6 Hz, 2H), 2.91 (t, J = 5.7 Hz, 2H), 2.80 (t, J = 5.7 Hz, 2H), 2.56 – 2.48 (m, 2H),

1.67 - 1.57 (m, 2H), 0.97 (dd, J = 8.8, 6.0 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 133.96, 133.43, 125.23, 122.54, 59.91, 53.14, 50.94, 25.48, 20.54, 11.95. HRMS (ES+) *m/z* calcd for C₁₀H₁₅NS ([M+H]⁺) 182.0998, found 182.0994.

6-(2-(methylthio)ethyl)-4,5,6,7-tetrahydrothieno[2,3-c]pyridine (3ci)

Yield: 153.4 mg, 72%. ¹**H NMR** (500 MHz, CDCl₃) δ 7.08 (d, *J* = 5.1 Hz, 1H), 6.73 (d, *J* = 5.1 Hz, 1H), 3.62 (t, *J* = 1.5 Hz, 2H), 2.91 (t, *J* = 5.4 Hz, 2H), 2.87 – 2.78 (m, 4H), 2.75 – 2.70 (m, 2H), 2.16 (s, 3H). ¹³**C NMR** (126 MHz, CDCl₃) δ 133.47, 133.25, 125.12, 122.66, 57.11, 52.90, 50.77, 31.80, 25.30, 15.83. **HRMS** (ES+) *m/z* calcd for C₁₀H₁₅NS₂ ([M+H]⁺) 214.0719, found 214.0725.

3-(4-propylpiperazin-1-yl)benzo[d]isothiazole (3cj)

Yield: 201.0 mg, 77%. ¹**H NMR** (500 MHz, CDCl₃) δ 7.83 (dd, J = 59.3, 8.2 Hz, 2H), 7.37 (dt, J = 15.2, 7.3 Hz, 2H), 3.60 – 3.49 (m, 4H), 2.70 – 2.61 (m, 4H), 2.42 – 2.33 (m, 2H), 1.61 – 1.48 (m, 2H), 0.93 (t, J = 7.4 Hz, 3H). ¹³**C NMR** (126 MHz, CDCl₃) δ 163.83, 152.64, 127.94, 127.35, 123.81, 123.71, 120.41, 60.63, 52.94 (2C), 49.96 (2C), 19.89, 11.87. **HRMS** (ES+) *m/z* calcd for C₁₄H₁₉N₃S ([M+H]⁺) 262.1372, found 262.1384.

4-(4-(benzo[d]isothiazol-3-yl)piperazin-1-yl)butan-1-ol (3ck)

Yield: 209.5 mg, 72%. ¹**H NMR** (500 MHz, CDCl₃) δ 7.89 (d, J = 8.2 Hz, 1H), 7.81 (d, J = 8.1 Hz, 1H), 7.51 – 7.43 (m, 1H), 7.39 – 7.32 (m, 1H), 3.68 – 3.53 (m, 6H), 2.79 – 2.69 (m, 4H), 2.50 (t, J = 5.5 Hz, 2H), 1.77 – 1.66 (m, 4H). ¹³**C NMR** (126 MHz, CDCl₃) δ 163.53, 152.80, 127.93, 127.50, 123.87, 123.77, 120.56, 62.65, 58.64, 52.79 (2C), 49.56 (2C), 32.33, 24.98. **HRMS** (ES+) *m/z* calcd for C₁₅H₂₁N₃₀S ([M+H]⁺) 292.1478, found 292.1475.

N,N-dipropyl-4-((trifluoromethyl)thio)aniline (3cl)

Yield: 257.6 mg, 93%. ¹H NMR (500 MHz, CDCl₃) δ 7.48 – 7.42 (m, 2H), 6.66 – 6.59 (m, 2H), 3.34 – 3.22 (m, 4H), 1.72 – 1.60 (m, 4H), 0.97 (t, J = 7.4 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 149.98,

138.13 (2C), 129.88 (q, ${}^{1}J_{C-F}$ = 309.2 Hz, 1C), 111.90 (2C), 106.98, 52.79 (2C), 20.28 (2C), 11.34 (2C). **HRMS** (ES+) *m/z* calcd for C₁₃H₁₈F₃NS ([M+H]⁺) 278.1185, found 278.1197.

3-(methylthio)-N,N-dipropylaniline (3cm)

Yield: 198.5 mg, 89%. ¹**H NMR** (500 MHz, CDCl₃) δ 7.16 (t, *J* = 8.0 Hz, 1H), 6.59 (d, *J* = 7.0 Hz, 2H), 6.49 (dd, *J* = 9.0, 2.0 Hz, 1H), 3.34 – 3.22 (m, 4H), 2.52 (s, 3H), 1.66 (dd, *J* = 15.1, 7.5 Hz, 4H), 0.98 (t, *J* = 7.4 Hz, 6H). ¹³**C NMR** (126 MHz, CDCl₃) δ 148.45, 138.88, 129.44, 113.49, 110.10, 109.08, 52.80 (2C), 20.38 (2C), 16.01, 11.39 (2C). **HRMS** (ES+) *m/z* calcd for C₁₃H₂₁NS ([M+H]⁺) 224.1467, found 224.1476.

4-((4-nitrophenyl)thio)-N,N-dipropylaniline (3cn)

Yield: 181.5 mg, 55%. ¹H NMR (500 MHz, CDCl₃) δ 8.06 – 8.00 (m, 2H), 7.39 – 7.31 (m, 2H), 7.15 – 7.08 (m, 2H), 6.72 – 6.66 (m, 2H), 3.34 – 3.27 (m, 4H), 1.73 – 1.61 (m, 4H), 0.98 (t, *J* = 7.4 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 151.86, 149.39, 144.66, 137.09 (2C), 125.03 (2C), 123.79 (2C), 112.61 (2C), 111.96, 52.79 (2C), 20.35 (2C), 11.40 (2C). HRMS (ES+) *m/z* calcd for C₁₈H₂₂N₂O₂S ([M+H]⁺) 331.1475, found 331.1483.

N-(2-(methylthio)ethyl)aniline (4a)

Yield: 83.5 mg, 50%. ¹H NMR (500 MHz, CDCl₃) δ 7.24 – 7.12 (m, 2H), 6.71 (t, *J* = 7.3 Hz, 1H), 6.62 (dd, *J* = 8.5, 0.8 Hz, 2H), 4.05 (s, 1H), 3.30 (t, *J* = 6.5 Hz, 2H), 2.73 (t, *J* = 6.5 Hz, 2H), 2.09 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 147.68, 129.19 (2C), 117.60, 112.97 (2C), 41.77, 33.48, 14.87. HRMS (ES+) *m/z* calcd for C₉H₁₃NS ([M+H]⁺) 168.0841, found 168.0844.

(S)-2-(methylthio)-N-(1-phenylethyl)ethan-1-amine (4b)

Yield: 194.3mg, 70%, ee > 99%. The enantiomeric excess was determined by HPLC on Daicel Chiralpak IA-H with hexane/i-PrOH (98:2) as the eluent, Flow: 1 mL/min; UV = 210 nm; t_{minor} =

23.555 min, $t_{major} = 30.272$ min. ¹H NMR (500 MHz, CDCl₃) δ 7.37 – 7.31 (m, 4H), 7.29 – 7.23 (m, 1H), 3.80 (q, J = 6.6 Hz, 1H), 2.77 – 2.57 (m, 4H), 2.04 (s, 3H), 1.72 (s, 1H), 1.39 (d, J = 6.6 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 145.55, 128.47 (2C), 126.95, 126.55 (2C), 57.99, 45.35, 34.58, 24.42, 15.07. HRMS (ES+) m/z calcd for C₁₁H₁₇NS ([M+H]⁺) 196.1154, found 196.1161.

Quetiapine (6)

Yield: 268.1 mg, 70%. ¹**H NMR** (500 MHz, CDCl₃) δ 7.51 (d, J = 7.5 Hz, 1H), 7.39 (dd, J = 7.7, 1.4 Hz, 1H), 7.37 – 3.28 (m, 3H), 7.18 (td, J = 8.0, 1.5 Hz, 1H), 7.08 (dd, J = 8.0, 1.3 Hz, 1H), 6.89 (td, J = 7.6, 1.4 Hz, 1H), 3.78 – 3.74 (m, 2H), 3.73 – 3.69 (m, 2H), 3.69 – 3.65 (m, 3H), 3.64 – 3.58 (m, 5H), 2.71 – 2.62 (m, 3H), 2.61 – 2.51 (m, 2H). ¹³**C NMR** (126 MHz, CDCl₃) δ 160.60, 148.81, 139.89, 134.02, 132.15, 132.13, 130.79, 129.08, 128.93, 128.27, 127.94, 125.26, 122.83, 72.41, 72.33, 67.43, 61.85 (2C), 61.62, 57.93 (2C). **HRMS** (ES+) *m/z* calcd for C₂₁H₂₅N₃O₂S ([M+H]⁺) 384.1740, found 384.1745.

6. ¹H, ¹³C NMR spectra

4-benzylthiomorpholine (3aa)

4-(2-methylbenzyl)thiomorpholine (3ab)

4-(3-methylbenzyl)thiomorpholine (3ac)

4-(4-methylbenzyl)thiomorpholine (3ad)

4-(2-methoxybenzyl)thiomorpholine (3ae)

4-(3-methoxybenzyl)thiomorpholine (3af)

4-(4-methoxybenzyl)thiomorpholine (3ag)

4-(4-(*tert*-butyl)benzyl)thiomorpholine (3ah)

4-(3-phenoxybenzyl)thiomorpholine (3aj)

4-(2-fluorobenzyl)thiomorpholine (3ak)

4-(3-fluorobenzyl)thiomorpholine (3al)

4-(4-fluorobenzyl)thiomorpholine (3am)

S33

4-(3-bromobenzyl)thiomorpholine (3ao)

4-(4-bromobenzyl)thiomorpholine (3ap)

4-(2-iodobenzyl)thiomorpholine (3aq)

4-(3-iodobenzyl)thiomorpholine (3ar)

4-(4-iodobenzyl)thiomorpholine (3as)

4-(2-(trifluoromethyl)benzyl)thiomorpholine (3at)

4-(3-(trifluoromethyl)benzyl)thiomorpholine (3au)

4-(3,5-dimethoxybenzyl)thiomorpholine (3av)

4-(3,5-difluorobenzyl)thiomorpholine (3aw)

S42

4-(pyridin-2-ylmethyl)thiomorpholine (3ax)

4-(naphthalen-1-ylmethyl)thiomorpholine (**3az**)

4-propylthiomorpholine (**3ba**)

4-butylthiomorpholine (**3bb**)

4-pentylthiomorpholine (3bc)

4-hexylthiomorpholine (3bd)

4-(2-methylbutyl)thiomorpholine (**3be**)

4-(cyclohexylmethyl)thiomorpholine (3bf)

4-cyclopentylthiomorpholine (3bg)

4-cyclohexylthiomorpholine (**3bh**)

4-phenethylthiomorpholine (3bi)

4-(3-phenylpropyl)thiomorpholine (3bj)

4-(2-methoxyethyl)thiomorpholine (**3bk**)

4-(2-propoxyethyl)thiomorpholine (3bl)

1-thiomorpholinopropan-2-one (3bn)

tert-butyl 2-(thiomorpholinomethyl)pyrrolidine-1-carboxylate (3bo)

4-(adamantan-1-ylmethyl)thiomorpholine (**3bp**)

4-thiomorpholinobutan-1-ol (**3bq**)

1-benzylpiperidine (3ca)

4-benzylmorpholine (3cb)

1-benzylpiperazine (3cc)

S65

4-benzyl-2-ethylthiomorpholine (3cd)

4-propyl-3,4-dihydro-2H-benzo[b][1,4]thiazine (3cf)

4-benzylthiomorpholine 1,1-dioxide (3cg)

6-(2-(methylthio)ethyl)-4,5,6,7-tetrahydrothieno[2,3-c]pyridine (3ci)

 $\label{eq:constraint} 3-(4-propylpiperazin-1-yl) \\ benzo[d] isothiazole~(3cj)$

4-(4-(benzo[d]isothiazol-3-yl)piperazin-1-yl)butan-1-ol (3ck)

90 80 f1 (ppm)

$N, N-dipropyl-4-((trifluoromethyl) thio) aniline ~ ({\bf 3cl})$

3-(methylthio)-N,N-dipropylaniline (3cm)

4-((4-nitrophenyl)thio)-N,N-dipropylaniline (3cn)

N-(2-(methylthio)ethyl)aniline (4a)

Quetiapine (6)

7. HPLC chromatograms of the compound 4b

(S)-2-(methylthio)-N-(1-phenylethyl)ethan-1-amine

8. Crystallographic data of RuCl₂(H₂O)(CO)(PPh₃)₂

(ellipsoid contour at 50% probability level)

Table 1. Crystal data and structure refineme	nt for wmj18080_0m.	
Identification code	wmj18080_0m	
Empirical formula	C37 H32 Cl2 O2 P2 Ru	
Formula weight	742.53	
Temperature	172.99 K	
Wavelength	1.34139 Å	
Crystal system	Monoclinic	
Space group	C 1 2/c 1	
Unit cell dimensions	a = 24.1640(5) Å	α= 90°.
	b = 9.5229(2) Å	β=116.6
	c = 15.7986(3) Å	$\gamma = 90^{\circ}$.
Volume	3249.53(12) Å ³	

1

L
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta = 53.594°
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F ²
Final R indices [I>2sigma(I)]
R indices (all data)
Extinction coefficient

390(10)°. 4 1.518 Mg/m³ 4.370 mm⁻¹ 1512 0.15 x0.11 x0.10 mm³ 6.270 to 54.924°. -29<=h<=29, -11<=k<=11, -19<=l<=18 19347 3046 [R(int) = 0.0437]98.2 % Semi-empirical from equivalents 0.7508 and 0.5319 Full-matrix least-squares on F² 3046 / 12 / 208 1.059 R1 = 0.0304, wR2 = 0.0804R1 = 0.0310, wR2 = 0.0808

Largest diff. peak and hole

1.285 and -0.850 e.Å-3

	х	у	Z	U(eq)
Ru(1)	5000	3258(1)	7500	16(1)
Cl(1)	5557(1)	3521(1)	9180(1)	33(1)
P(1)	5932(1)	3315(1)	7304(1)	16(1)
O(2)	5000	5502(4)	7500	36(1)
C(1')	5000	5502(4)	7500	36(1)
O(1')	5000	6450(20)	7500	48(3)
C(1)	5000	1095(5)	7500	22(1)
O(1)	5000	212(4)	7500	23(1)
O(2')	5000	1095(5)	7500	22(1)
C(2)	6197(1)	5127(2)	7378(2)	20(1)
C(3)	5832(1)	6084(3)	6674(2)	28(1)
C(4)	5984(1)	7497(3)	6765(2)	37(1)
C(5)	6495(2)	7979(3)	7556(2)	40(1)
C(6)	6864(2)	7047(3)	8245(2)	38(1)
C(7)	6717(1)	5620(3)	8160(2)	27(1)
C(8)	6603(1)	2327(2)	8139(2)	20(1)
C(9)	7149(1)	2334(3)	8040(2)	32(1)
C(10)	7658(1)	1566(3)	8650(2)	39(1)
C(11)	7626(1)	766(3)	9359(2)	32(1)
C(12)	7088(1)	735(3)	9455(2)	27(1)
C(13)	6576(1)	1515(2)	8852(2)	22(1)
C(14)	5889(1)	2664(2)	6186(2)	19(1)
C(15)	6057(1)	3457(3)	5603(2)	30(1)
C(16)	6048(2)	2870(3)	4791(2)	35(1)
C(17)	5879(1)	1499(3)	4555(2)	29(1)
C(18)	5713(2)	697(3)	5131(2)	40(1)
C(19)	5711(2)	1280(3)	5933(2)	35(1)

Table 2. Atomic coordinates $(x \ 10^4)$ and equivalent isotropic displacement parameters (Å²x 10^3) for wmj18080_0m. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Ru(1)-Cl(1)#1	2.3907(7)
Ru(1)-Cl(1)	2.3907(7)
Ru(1)-P(1)	2.4067(6)
Ru(1)-P(1)#1	2.4066(6)
Ru(1)-O(2)	2.137(3)
Ru(1)-C(1')	2.137(3)
Ru(1)-C(1)	2.060(4)
Ru(1)-O(2')	2.060(4)
P(1)-C(2)	1.827(2)
P(1)-C(8)	1.826(2)
P(1)-C(14)	1.831(2)
O(2)-H(2A)	0.9018
O(2)-H(2B)	0.9020
C(1')-O(1')	0.905(17)
C(1)-O(1)	0.841(4)
C(1)-H(2'A)#1	0.781(2)
C(1)-H(2'B)#1	0.781(2)
O(1)-H(2'A)#1	0.842(2)
O(1)-H(2'B)#1	0.842(2)
O(2')-H(2'A)	0.7813
O(2')-H(2'B)	0.7812
C(2)-C(3)	1.402(3)
C(2)-C(7)	1.390(3)
C(3)-H(3)	0.9500
C(3)-C(4)	1.385(4)
C(4)-H(4)	0.9500
C(4)-C(5)	1.383(5)
C(5)-H(5)	0.9500
C(5)-C(6)	1.378(5)
C(6)-H(6)	0.9500
C(6)-C(7)	1.395(4)
C(7)-H(7)	0.9500
C(8)-C(9)	1.397(3)
C(8)-C(13)	1.392(3)
C(9)-H(9)	0.9500
C(9)-C(10)	1.382(4)
C(9) - C(10)	1.382(4)

Table 3. Bond lengths [Å] and angles [°] for wmj18080_0m.

C(10)-H(10)	0.9500
C(10)-C(11)	1.385(4)
С(11)-Н(11)	0.9500
C(11)-C(12)	1.375(4)
C(12)-H(12)	0.9500
C(12)-C(13)	1.391(3)
C(13)-H(13)	0.9500
C(14)-C(15)	1.385(3)
C(14)-C(19)	1.389(4)
C(15)-H(15)	0.9500
C(15)-C(16)	1.390(4)
C(16)-H(16)	0.9500
C(16)-C(17)	1.369(4)
C(17)-H(17)	0.9500
C(17)-C(18)	1.377(4)
C(18)-H(18)	0.9500
C(18)-C(19)	1.387(4)
С(19)-Н(19)	0.9500
Cl(1)#1-Ru(1)-Cl(1)	167.99(4)
Cl(1)-Ru(1)-P(1)#1	87.05(2)
Cl(1)#1-Ru(1)-P(1)#1	92.68(2)
Cl(1)-Ru(1)-P(1)	92.68(2)
Cl(1)#1-Ru(1)-P(1)	87.05(2)
P(1)#1-Ru(1)-P(1)	177.40(3)
O(2)-Ru(1)-Cl(1)	83.993(18)
O(2)-Ru(1)-Cl(1)#1	83.994(18)
O(2)-Ru(1)-P(1)	88.702(13)
O(2)-Ru(1)-P(1)#1	88.702(13)
C(1')-Ru(1)-Cl(1)	83.993(18)
C(1')-Ru(1)-P(1)	88.702(13)
C(1)- $Ru(1)$ - $Cl(1)$	96.007(18)
C(1)-Ru(1)-Cl(1)#1	96.006(18)
C(1)-Ru(1)-P(1)	91.298(13)
C(1)-Ru(1)-P(1)#1	91.298(14)
C(1)-Ru(1)-O(2)	180.0
O(2')-Ru(1)-Cl(1)	
	96.007(18)

O(2')-Ru(1)-C(1')	180.0
C(2)-P(1)-Ru(1)	109.58(7)
C(2)-P(1)-C(14)	104.36(10)
C(8)-P(1)-Ru(1)	118.33(8)
C(8)-P(1)-C(2)	105.53(11)
C(8)-P(1)-C(14)	99.82(10)
C(14)-P(1)-Ru(1)	117.68(8)
Ru(1)-O(2)-H(2A)	127.9
Ru(1)-O(2)-H(2B)	127.9
H(2A)-O(2)-H(2B)	104.1
Ru(1)-C(1')-H(2A)#1	127.937(2)
Ru(1)-C(1')-H(2B)#1	127.928(5)
H(2A)#1-C(1')-H(2B)#1	104.1
O(1')-C(1')-Ru(1)	180.0
H(2A)#1-O(1')-H(2B)#1	127.6
Ru(1)-C(1)-H(2'A)#1	117.6(3)
Ru(1)-C(1)-H(2'B)#1	117.6(3)
O(1)-C(1)-Ru(1)	180.0
O(1)-C(1)-H(2'A)#1	62.4(3)
O(1)-C(1)-H(2'B)#1	62.4(3)
H(2'A)#1-C(1)-H(2'B)#1	124.9
C(1)-O(1)-H(2'A)#1	55.3(2)
C(1)-O(1)-H(2'B)#1	55.3(2)
H(2'A)#1-O(1)-H(2'B)#1	110.7
Ru(1)-O(2')-H(2'A)	117.6
Ru(1)-O(2')-H(2'B)	117.6
H(2'A)-O(2')-H(2'B)	124.9
C(3)-C(2)-P(1)	119.02(19)
C(7)-C(2)-P(1)	121.83(19)
C(7)-C(2)-C(3)	118.8(2)
C(2)-C(3)-H(3)	119.8
C(4)-C(3)-C(2)	120.4(2)
C(4)-C(3)-H(3)	119.8
C(3)-C(4)-H(4)	119.9
C(5)-C(4)-C(3)	120.3(3)
C(5)-C(4)-H(4)	119.9
C(4)-C(5)-H(5)	120.0
C(6)-C(5)-C(4)	119.9(3)

C(6)-C(5)-H(5)	120.0
C(5)-C(6)-H(6)	119.8
C(5)-C(6)-C(7)	120.3(3)
C(7)-C(6)-H(6)	119.8
C(2)-C(7)-C(6)	120.2(3)
C(2)-C(7)-H(7)	119.9
C(6)-C(7)-H(7)	119.9
C(9)-C(8)-P(1)	119.65(18)
C(13)-C(8)-P(1)	121.45(18)
C(13)-C(8)-C(9)	118.8(2)
C(8)-C(9)-H(9)	119.7
C(10)-C(9)-C(8)	120.6(2)
С(10)-С(9)-Н(9)	119.7
C(9)-C(10)-H(10)	120.0
C(9)-C(10)-C(11)	120.0(3)
С(11)-С(10)-Н(10)	120.0
С(10)-С(11)-Н(11)	120.0
C(12)-C(11)-C(10)	120.0(2)
С(12)-С(11)-Н(11)	120.0
С(11)-С(12)-Н(12)	119.8
C(11)-C(12)-C(13)	120.5(2)
С(13)-С(12)-Н(12)	119.8
С(8)-С(13)-Н(13)	120.0
C(12)-C(13)-C(8)	120.1(2)
С(12)-С(13)-Н(13)	120.0
C(15)-C(14)-P(1)	123.39(18)
C(15)-C(14)-C(19)	118.2(2)
C(19)-C(14)-P(1)	118.33(18)
C(14)-C(15)-H(15)	119.8
C(14)-C(15)-C(16)	120.4(2)
С(16)-С(15)-Н(15)	119.8
С(15)-С(16)-Н(16)	119.5
C(17)-C(16)-C(15)	120.9(2)
С(17)-С(16)-Н(16)	119.5
С(16)-С(17)-Н(17)	120.4
C(16)-C(17)-C(18)	119.2(2)
С(18)-С(17)-Н(17)	120.4
C(17)-C(18)-H(18)	119.9

C(17)-C(18)-C(19)	120.3(3)
C(19)-C(18)-H(18)	119.9
С(14)-С(19)-Н(19)	119.5
C(18)-C(19)-C(14)	120.9(2)
С(18)-С(19)-Н(19)	119.5

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,y,-z+3/2

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Ru(1)	15(1)	19(1)	16(1)	0	9(1)	0
Cl(1)	29(1)	41(1)	30(1)	-9(1)	14(1)	-2(1)
P(1)	16(1)	17(1)	17(1)	2(1)	10(1)	1(1)
O(2)	41(2)	20(2)	58(2)	0	33(2)	0
C(1')	41(2)	20(2)	58(2)	0	33(2)	0
O(1')	32(7)	77(11)	39(7)	0	19(6)	0
C(1)	10(1)	48(2)	9(1)	0	6(1)	0
O(1)	17(2)	37(2)	14(1)	0	6(1)	0
O(2')	10(1)	48(2)	9(1)	0	6(1)	0
C(2)	23(1)	18(1)	25(1)	-1(1)	16(1)	-1(1)
C(3)	27(1)	25(1)	34(1)	3(1)	17(1)	2(1)
C(4)	47(2)	24(1)	50(2)	7(1)	31(2)	6(1)
C(5)	63(2)	21(1)	52(2)	-9(1)	40(2)	-9(1)
C(6)	49(2)	36(2)	35(2)	-15(1)	24(1)	-18(1)
C(7)	33(1)	29(1)	23(1)	-3(1)	15(1)	-5(1)
C(8)	21(1)	20(1)	18(1)	2(1)	9(1)	3(1)
C(9)	26(1)	45(2)	30(1)	14(1)	18(1)	10(1)
C(10)	26(1)	58(2)	38(2)	15(1)	20(1)	16(1)
C(11)	26(1)	40(2)	27(1)	8(1)	9(1)	13(1)
C(12)	28(1)	29(1)	23(1)	6(1)	10(1)	3(1)
C(13)	22(1)	23(1)	22(1)	2(1)	11(1)	1(1)
C(14)	19(1)	20(1)	20(1)	1(1)	10(1)	2(1)
C(15)	44(2)	25(1)	26(1)	-4(1)	21(1)	-8(1)
C(16)	53(2)	33(1)	28(1)	-1(1)	27(1)	-7(1)
C(17)	33(1)	34(1)	24(1)	-6(1)	16(1)	0(1)
C(18)	64(2)	25(1)	46(2)	-11(1)	38(2)	-9(1)
C(19)	60(2)	22(1)	40(2)	-3(1)	36(2)	-8(1)

Table 4.Anisotropic displacement parameters $(Å^2x \ 10^3)$ for wmj18080_0m. The anisotropicdisplacement factor exponent takes the form: $-2\pi^2$ [$h^2 \ a^{*2}U^{11} + ... + 2 \ h \ k \ a^* \ b^* \ U^{12}$]

	Х	У	Z	U(eq)
H(2A)	5193	6084	7997	54
H(2B)	4807	6084	7003	54
H(2'A)	4881	715	7011	32
H(2'B)	5120	715	7989	32
H(3)	5480	5760	6130	33
H(4)	5735	8138	6284	44
H(5)	6592	8952	7624	48
H(6)	7220	7377	8781	46
H(7)	6974	4983	8638	33
H(9)	7171	2870	7549	38
H(10)	8029	1588	8583	47
H(11)	7975	239	9778	38
H(12)	7066	176	9937	32
H(13)	6207	1494	8927	26
H(15)	6180	4407	5760	35
H(16)	6160	3429	4394	42
H(17)	5877	1105	4001	35
H(18)	5600	-258	4977	48
H(19)	5585	723	6316	43

Table 5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²The ³) for wmj18080_0m.