Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2021

Electronic Supplementary Information

N,N-Dimethylformamide-stabilised palladium nanoparticles combined with bathophenanthroline as catalyst for transfer vinylation of alcohols from vinyl ether

Kazuki Tabaru,^a Masato Nakatsuji,^a Satoshi Itoh,^a Takeyuki Suzuki,^b and Yasushi Obora^{*a}

^aDepartment of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Osaka 564-8680, Japan ^bThe Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan

Table of Contents

- S2: General Information
- S2: Experimental Procedure
- S4: DLS Curves of Recycled Pd NPs
- S5: Reaction Mechanism
- S6: Spectral Data
- S11: Copies of ¹H and ¹³C NMR Spectra
- S30: References

.....

General Information

GLC analyses were performed on a Shimadzu GC-2010 with flame ionization detector using a 0.22 mm \times 25 m capillary column (BP-5). All NMR spectra were measured at 400 and 100 MHz, in CDCl₃ with TMS as an internal standard. Products were characterized by ¹H NMR, ¹³C NMR, and GC–MS. The product yields were estimated from the peak areas based on the internal standard technique using GC. Transmission electron microscopy (TEM) images were obtained with a JEOL JEM-ARM200F instrument at an acceleration voltage of 200 kV. Dynamic light scattering (DLS) analyses were carried out with a Malvern Zetasizer ZSP instrument at 25°C in *n*-butyl vinyl ether or methanol, which was analysed using a cumulant method.

All starting materials were commercially available and used without purification. Compounds **3a**,¹ **3b**,² **3c**,³ **3d**,² **3e**,⁴ **3f**,⁵ **3h**,³ **3i**,⁶ **3j**,⁷ **3k**,⁸ **3l**,² **3n**,² **3p**,⁴ **3q**,⁹ **4a**,¹⁰ were reported previously and **3g**, **3m**, **3o**, **4c** were characterised by ¹H NMR, ¹³C NMR, GC-MS, IR and HRMS. High-resolution mass spectra were obtained at the Global Facility Center, Hokkaido University.

Experimental Procedure

Typical reaction procedure for Pd NP-catalysed transfer vinylation of benzyl alcohol (1a) from *n*-butyl vinyl ether (2); Table 1, entry 5: Pd NPs (1 mM) in DMF (1 mL) was added to a Schlenk tube and the solvent was evaporated. After evaporation, Cu(OAc)₂ (9.1 mg, 5 mol%) and 1a (108.1 mg, 1.0 mmol) was added, followed by adding bathophenanthroline (33.2 mg, 10 mol%) and 2 (1 mL, 7.9 mmol). The mixture was stirred at 120°C for 24 h under Ar (balloon). The yield of product was estimated from peak areas based on an internal standard (*n*-octane or *n*-pentadecane) using GC. The reaction mixture was evaporated and the product was isolated by silica gel column chromatography (*n*-hexane : EtOAc = 99 : 1). The product was obtained in 73% yield as a colourless oil.

Preparation of 0.1 M aqueous PdCl2 (A): PdCl₂ (177.3 mg, 1.0 mmol) was dissolved in distilled water (9 mL) and HCl (1 mL). The solution stood at room temperature overnight.

Synthesis of DMF-stabilized Pd NPs (1 mM): DMF (50 mL) was added to a 300-mL, three-neck, round-bottom flask, and the solution was preheated at $140^{\circ}C (\pm 2^{\circ}C)$. The resulting yellow solution was used as Pd NPs (1 mM) in DMF for further reactions.

Preparation of samples for DLS

The corresponding Pd NPs were evaporated *in vacuo* and dissolved in *n*-butyl vinyl ether or methanol. The solution was filtered with a Whatman inorganic membrane filter Anotop 25 and transferred to a glass cell.

Preparation of samples for TEM

After the corresponding reaction, DMF (1 mL) was added to the reaction mixture followed by extraction with hexane (8×4 mL). The DMF layer was evaporated *in vacuo* and dissolved in ethanol. A drop of Pd NPs was placed on a Cu grid.

Preparation of the sample for TEM and DLS (Recycled Pd NPs)

Pd NPs (1 mM) in DMF (1 mL) was added to a Schlenk tube and the solvent was evaporated. After evaporation, Cu(OAc)₂ (9.1 mg, 5 mol%) and **1a** (108.1 mg, 1.0 mmol) were added, followed by adding bathophenanthroline (33.2 mg, 10 mol%) and **2** (1 mL, 7.9 mmol). The mixture was stirred at 120°C for 24 h under Ar (balloon). After the reaction, DMF (1 mL) was added to the reaction mixture followed by extraction with hexane (8 mL×4). The solution was evaporated *in vacuo* and Cu(OAc)₂ (9.1 mg, 5 mol%), **1a** (108.1 mg, 1 mmol) and **2** (1 mL, 7.9 mmol) were added in accordance with the aforementioned procedure. After five rounds of recycling, DMF (1 mL) was added to the reaction solution and extracted with hexane (8 mL×4). The DMF layer was diluted with DMF and centrifuged (3000 g, 10 min). After removed the solids, the sample was used in accordance with the aforementioned procedure.

Recycling experiments

Pd NPs (1 mM) in DMF (1 mL) was added to a Schlenk tube and the solvent was evaporated. After evaporation, $Cu(OAc)_2$ (6.8 mg, 3.8 mol%) and **1a** (108.1 mg, 1.0 mmol) were added, followed by adding bathophenanthroline (33.2 mg, 10 mol%) and **2** (1 mL, 7.9 mmol). The mixture was stirred at 120°C for 24 h under Ar (balloon). After the reaction, DMF (1 mL) was added to the reaction mixture followed by extraction with hexane (8 mL×4). The solution was evaporated *in vacuo* and Cu(OAc)₂ (6.8 mg, 3.8 mol%), **1a** (108.1 mg, 1 mmol) and **2** (1 mL, 7.9 mmol) were added in accordance with the aforementioned procedure.

DLS curves

Figure S1 DLS curves of recycled Pd NPs (1mM) measured in *n*-butyl vinyl ether at 25°C

The population of recycled Pd NPs centred at 14–15 nm.

Reaction Mechanism

Figure S2 Palladium-catalysed transfer vinylation of alcohols from vinyl ether

Plausible reaction mechanisms of acetals (4)

Figure S3 Decomposition of Pd-alkyl species followed by production of acetal

Pd-alkyl species generated from vinyl ether and alcohol decomposed in acid, and gave the corresponding acetal.¹¹

Spectra Data

 $3a^1$: yield 73% (97.9 mg), colourless oil.

¹H NMR (400 MHz; CDCl₃) δ : 7.37-7.31 (m, 5H), 6.56 (dd, *J* = 14.3, 6.9 Hz, 1H), 4.75 (s, 2H), 4.30 (dd, *J* = 14.3, 2.1 Hz, 1H), 4.08 (dd, *J* = 6.8, 2.1 Hz, 1H); ¹³C NMR (100 MHz; CDCl₃) δ 151.6 (CH), 136.8 (C), 128.5 (CH), 127.9 (CH), 127.6 (CH), 87.3 (CH₂), 70.0 (CH₂); GC-MS (EI) *m/z* (relative intensity) 134(1) [M]⁺, 91(100), 65(14), 105(9).

3b²: Yield 47% (69.7 mg), colourless oil.

¹H NMR (400 MHz, CDCl₃): δ 7.24 (d, J = 7.7 Hz, 2H), 7.17 (d, J = 8.2 Hz, 2H), 6.55 (dd, J = 14.0, 6.8 Hz, 1H), 4.71 (s, 2H), 4.29 (dd, J = 14.3, 2.0 Hz, 1H), 4.06 (dd, J = 6.8, 1.8 Hz, 1H), 2.34 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 151.7 (CH), 137.7 (C), 133.8 (C) 129.2 (CH), 127.7 (CH), 87.2 (CH₂), 70.0 (CH₂), 21.2 (CH₃); GC-MS (EI) *m/z* (relative intensity) 148 (2) [M]⁺, 105 (100), 79 (11), 77 (10).

 $3c^3$: Yield 64% (121.8 mg), colourless oil.

¹H NMR (400 MHz, CDCl₃): δ 7.39 (d, 2H), 7.29 (d, 2H), 6.56 (dd, *J* = 14.4, 6.8 Hz, 1H), 4.72 (s, 2H), 4.30 (dd, *J* = 14.4, 2.0 Hz, 1H), 4.07 (dd, *J* = 6.9, 2.1 Hz, 1H), 1.31 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 151.7 (CH), 151.0 (C), 133.8 (C), 127.5 (CH), 125.5 (CH), 87.1 (CH₂), 69.9 (CH₂), 34.6 (C), 31.3 (CH₃); GC-MS (EI) *m/z* (relative intensity) 190 (1) [M]⁺, 147 (100), 132 (28), 117 (25).

3d²: Yield 69% (113.3 mg), colourless oil.

¹H NMR (400 MHz, CDCl₃): δ 7.27 (d, J = 8.7 Hz , 2H), 6.89 (d, J = 8.7 Hz, 2H), 6.54 (dd, J = 14.3, 6.9 Hz, 1H), 4.67 (s, 2H), 4.29 (dd, J = 14.3, 2.0 Hz, 1H), 4.06 (dd, J = 6.9, 2.0 Hz, 1H), 3.79(s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 159.4 (C), 151.7 (CH), 129.3 (CH), 128.9 (C), 113.9 (CH), 87.2 (CH₂), 69.9 (CH₂), 55.2 (CH₃); GC-MS (EI) *m/z* (relative intensity) 164 (1) [M]⁺, 121 (100), 77 (10), 122 (9).

 $3e^4$: Yield 48% (80.9 mg), colourless oil.

¹H NMR (400 MHz, CDCl₃): δ 7.33 (d, *J* = 8.6 Hz, 2H), 7.28 (d, *J* = 8.7 Hz, 2H), 6.55 (dd, *J* = 14.3, 6.9 Hz, 1H), 4.72 (s, 2H), 4.28 (dd, *J* = 14.3, 2.3 Hz, 1H), 4.10 (dd, *J* = 6.7, 2.3 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 151.4 (CH), 135.4 (C), 133.7 (C), 128.8 (CH), 128.7 (CH), 87.6 (CH₂), 69.2 (CH₂); GC-MS (EI) *m*/*z* (relative intensity) 168(2) [M]⁺, 125(100), 127(32), 89(19).

 $3f^5$: Yield 35% (70.8 mg), colourless oil.

¹H NMR (400 MHz, CDCl₃): δ 7.62 (d, J = 8.5 Hz, 2H), 7.47 (d, J = 8.0 Hz, 2H), 6.57 (dd, J = 14.3, 6.9 Hz, 1H), 4.82 (s, 2H), 4.30 (dd, J = 14.4, 2.3 Hz, 1H), 4.12 (dd, J = 6.8, 2.3 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 151.3 (CH), 141.0 (CH), 130.0 (q, ² J_{c-f} = 32.4 Hz), 127.4 (CH), 125.5 (q, ³ J_{c-f} = 3.8 Hz), 124.1 (q, ¹ J_{c-f} = 270.7 Hz) 87.8 (CH₂), 69.0 (CH₂); GC-MS (EI) m/z (relative intensity) 202(2) [M]⁺, 159(100), 109(36), 173(10).

3g: Yield 57% (101.6 mg), colourless oil.

¹H NMR (400 MHz, CDCl₃): δ 6.84-6.76 (m, 3H), 6.52 (dd, *J* = 14.3, 6.9 Hz, 1H), 5.94 (s, 2H), 4.64 (s, 2H), 4.28 (dd, *J* = 14.3, 2.1 Hz, 1H), 4.06 (dd, *J* = 6.9, 2.1 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 151.5 (CH), 147.8 (C), 147.4 (C), 130.6 (C), 121.3 (CH), 108.4 (CH), 108.2 (CH), 101.1 (CH₂), 87.4 (CH₂), 70.1 (CH₂); GC-MS (EI) *m/z* (relative intensity) 178(6) [M]⁺, 135 (100), 77 (22), 51 (14); HRMS (EI) *m/z* calcd for C₁₀H₁₀O₃ [M]⁺ 178.0630, found 178.0631; IR (neat, cm⁻¹) 2880, 2783, 1851, 1635, 1490, 1443, 1257, 1037, 926

3h³: Yield 64% (117.9 mg), colourless oil.

¹H NMR (400 MHz, CDCl₃): δ 7.97 (d, J = 8.2 Hz, 1H), 7.86 (d, J = 7.7 Hz, 1H), 7.82 (d, J = 8.1 Hz, 1H), 7.55-7.41 (m, 4H), 6.63 (dd, J = 14.3, 6.8 Hz, 1H), 5.17 (s, 2H), 4.42 (dd, J = 14.3, 2.1 Hz, 1H), 4.14 (dd, J = 6.8, 2.1 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 151.6 (CH), 133.7 (C), 132.2 (C), 131.5 (C), 129.0 (CH), 128.6 (CH), 126.6 (CH), 126.4 (CH), 125.8 (CH), 125.2 (CH), 123.6 (CH), 87.4 (CH₂), 68.6 (CH₂); GC-MS (EI) m/z (relative intensity) 184 (7) [M]⁺, 141 (100), 115 (22), 142 (12).

3i⁶: Yield 76% (140.0 mg), colourless oil.

¹H NMR (400 MHz, CDCl₃): δ 7.84-7.80 (m, 4H), 7.49-7.44 (m, 3H), 6.60 (dd, J = 6.9, 14.3 Hz, 1H), 4.91 (s, 2H), 4.35 (dd, J = 2.2, 14.3 Hz, 1H), 4.10 (dd, J = 2.2, 6.9 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 151.6 (CH), 134.3 (C), 133.3 (C), 133.0 (C), 128.3 (CH), 127.9 (CH), 127.7 (CH), 126.4 (CH), 126.2 (CH), 126.0 (CH), 125.3 (CH), 87.5 (CH₂), 70.2(CH₂); GC-MS (EI) m/z (relative intensity) 184(10) [M]⁺, 141(100), 115(22), 142(13).

3j⁷: Yield 85% (156.7 mg), colourless oil.

¹H NMR (400 MHz, CDCl₃): δ 6.47 (dd, J = 14.6, 6.9 Hz, 1H), 4.17 (dd, J = 14.6, 1.8 Hz, 1H), 3.97 (dd, J = 14.6, 1.8 Hz, 1H), 3.67 (t, J = 6.6 Hz, 2H), 1.65 (quin, J = 6.8 Hz, 2H), 1.39-1.22 (m, 14H), 0.88 (t, J = 7.1 Hz, 3H);¹³C NMR (100 MHz, CDCl₃): δ 152.0 (CH), 86.2 (CH₂), 68.1 (CH₂), 31.9 (CH₂), 29.6 (CH₂), 29.6 (CH₂), 29.4 (CH₂), 29.3 (CH₂), 29.1 (CH₂), 26.0 (CH₂), 22.7 (CH₂), 14.1 (CH₃); GC-MS (EI) *m/z* (relative intensity) 184 (2)

[M]⁺, 43 (100), 57 (81), 41 (46).

3k⁸: Yield 50% (70.1 mg), colourless oil.

¹H NMR (400 MHz, CDCl₃): δ 6.47 (dd, J = 14.4, 6.8 Hz, 1H), 4.15 (dd, J = 14.3, 1.8 Hz, 1H), 3.95 (dd, J = 6.8, 1.8 Hz, 1H), 3.47 (d, J = 6.5 Hz, 2H), 1.79-1.60 (m, 6H), 1.45-1.11 (m, 3H), 1.02-0.90 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 152.2 (CH), 86.0 (CH₂), 73.7 (CH₂), 37.6 (CH), 29.9 (CH₂), 26.5 (CH₂), 25.8 (CH₂); GC-MS (EI) *m/z* (relative intensity) 140(3) [M]⁺, 55(100), 97(39), 81(28).

3l²: Yield 64% (94.9 mg), colourless oil.

¹H NMR (400 MHz, CDCl₃): δ 7.37-7.27 (m, 5H), 6.32 (dd, *J* = 14.2, 6.6 Hz, 1H), 4.90 (q, *J* = 6.5 Hz, 1H), 4.25 (dd, *J* = 14.2, 1.6 Hz, 1H), 3.98 (dd, *J* = 6.6, 1.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 150.5 (CH), 142.9 (C), 128.5 (CH), 127.6 (CH), 125.8 (CH), 89.2 (CH), 77.4 (CH), 23.7 (CH₃); GC-MS (EI) *m*/*z* (relative intensity) 148(1) [M]⁺, 105(100), 79(20), 77(17).

3m: Yield 60% (122.6 mg), colourless oil.

¹H NMR (400 MHz, CDCl₃): δ 7.34-7.21 (m, 5H), 6.30 (dd, *J* = 14.2, 6.6 Hz, 1H), 4.68 (t, *J* = 6.6 Hz, 1H), 4.22 (dq, *J* = 14.2, 0.8 Hz, 1H), 3.94 (dq, *J* = 6.6, 0.8 Hz, 1H), 1.91-1.66 (m, 2H), 1.44-1.23 (m, 6H), 0.86 (t, *J* = 6.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 150.9 (CH), 142.0 (C), 128.4 (CH), 127.5 (CH), 126.2 (CH), 89.1 (CH₂), 81.6 (CH), 37.9 (CH₂), 31.7 (CH₂), 25.3 (CH₂), 22.5 (CH₂), 14.0 (CH₃); GC-MS (EI) *m/z* (relative intensity) 204 (1) [M]⁺, 91 (100), 161 (23), 105 (19); HRMS (EI) *m/z* calcd for C₁₄H₂₀O [M]⁺ 204.1514, found 204.1514; IR (neat, cm⁻¹) 2935, 2862, 1635, 1453, 1319, 1192, 1058, 830, 752, 700.

3n²: Yield 35% (73.6 mg), colourless oil.

¹H NMR (400 MHz, CDCl₃): δ 7.36-7.22 (m, 10H), 6.47 (dd, J = 14.2, 6.6 Hz, 1H), 5.83 (s, 1H), 4.35 (dd, J = 14.1, 1.9 Hz, 1H), 4.07 (dd, J = 6.7, 1.9 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 150.5 (CH), 141.0 (C), 128.5 (CH), 127.7 (CH), 126.9 (CH), 90.0 (CH₂), 82.7 (CH); GC-MS (EI) m/z (relative intensity) 210 (1) [M]⁺, 167 (100), 152 (22), 139 (3).

30: Yield 47% (80.0 mg), colourless oil. ¹H NMR (400 MHz, CDCl₃): δ 6.31 (dd, *J* = 14.1, 6.6 Hz, 1H), 4.26 (dd, *J* = 14.1, 1.0 Hz, 1H), 3.93 (dd, *J* = 6.6, 1.0 Hz, 1H), 3.69 (quin, *J* = 6.0 Hz, 1H), 1.60-1.46 (m, 4H), 1.401.24 (m, 8H), 0.90 (t, J = 6.9 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 151.8 (CH), 87.4 (CH₂), 80.6 (CH), 34.0 (CH₂), 27.5 (CH₂); GC-MS (EI) m/z (relative intensity) 170 (2) [M]⁺, 43 (100), 71 (59), 57 (57); HRMS (EI) m/z calcd for C₁₁H₂₂O [M]⁺ 170.1671, found 170.1671; IR (neat, cm⁻¹) 2936, 2862, 1629, 1461, 1194, 1037, 811.

3p⁴: Yield 61% (69.0 mg), colourless oil.

¹H NMR (400 MHz, CDCl₃): δ 6.47 (dd, J = 14.3, 6.8 Hz, 2H), 4.17 (dd, J = 14.3, 1.8 Hz, 2H), 3.97 (dd, J = 6.8, 1.8 Hz, 2H), 3.67 (t, J = 6.6 Hz, 4H), 1.69-1.60 (m, 4H), 1.39-1.30 (m, 12H); ¹³C NMR (100 MHz, CDCl₃): δ 152.0 (CH), 86.2 (CH₂), 68.1 (CH₂), 29.5 (CH₂), 29.3 (CH₂), 29.1 (CH₂), 26.0 (CH₂); GC-MS (EI) m/z (relative intensity) 226 (0.05) [M]⁺, 55 (100), 69 (64), 83 (44); HRMS (EI) m/z calcd for C₁₄H₂₆O₂ [M]⁺ 226.1933, found 226.1933; IR (neat, cm⁻¹) 2931, 2853, 1611, 1319, 1201, 808.

3q⁹: Yield 30% (42.0 mg), pale yellow oil.

¹H NMR (400 MHz, CDCl₃) δ : 7.31 (dd, J = 5.1, 1.2 Hz, 1H), 7.05-6.99 (m, 2H), 6.53 (dd, J = 14.3, 6.9 Hz, 1H), 4.91 (s, 2H), 4.32 (dd, J = 14.3, 2.2 Hz, 1H), 4.11 (dd, J = 6.7, 2.3 Hz, 1H), ¹³C NMR (100 MHz, CDCl₃) δ : 151.1 (CH), 139.0 (C), 126.9 (CH), 126.8 (CH), 126.3 (CH), 87.8 (CH₂), 64.8 (CH₂); GC-MS (EI) *m/z* (relative intensity) 140 (1) [M]⁺, 97 (100), 45 (12), 53 (10).

4a¹⁰

¹H NMR (400 MHz, CDCl₃): δ 7.35-7.25 (m, 5H), 4.81 (q, J = 5.4 Hz, 1H), 4.65 (d, J = 11.8 Hz, 1H), 4.52 (d, J = 11.8 Hz, 1H), 3.63-3.60 (m, 1H), 3.48-3.45 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 138.5 (C), 128.4 (CH), 127.7 (CH), 127.5 (CH), 99.2 (CH), 67.0 (CH₂), 64.9 (CH₂), 32.0 (CH₂), 19.8 (CH₂), 19.5 (CH₂), 13.9 (CH₃); GC-MS (EI) *m/z* (relative intensity) 193(1) [M-CH₃]⁺, 91(100), 134(27), 92(21).

4c

¹H NMR (400 MHz, CDCl₃): $\delta7.37$ (d, J = 8.4 Hz, 2H), 7.28 (d, J = 8.3 Hz, 2H), 4.81 (q, J = 5.4 Hz, 1H), 4.62 (d, J = 11.6 Hz, 1H), 4.48 (d, J = 11.4 Hz, 1H), 3.62-3.59 (m, 1H), 3.47-3.44 (m, 1H), 1.61-1.39 (m, 4H), 1.36 (d, J = 5.4 Hz, 3H), 1.31 (s, 9H), 0.93 (t, J = 7.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta \delta 150.5$ (C), 135.4 (C), 127.6 (CH), 125.3 (CH), 99.1 (CH), 66.8 (CH₂), 64.8 (CH₂), 34.5 (C), 32.0 (CH₂), 31.4 (CH₃), 19.8 (CH₃), 19.5 (CH₂), 14.0 (CH₃); GC-MS (EI) *m/z* (relative intensity) 249(1) [M-CH₃]⁺, 147(100), 133(95), 190(29); HRMS (EI) *m/z* calcd for C₁₇H₂₈O₂Na [M+Na]⁺ 287.1987, found 287.1982; IR (neat, cm⁻¹) 2962, 2937, 2909, 2872, 1517, 1465, 1394, 1363, 1340, 1270,

1135, 1098, 1019, 918, 816.

Copies of ¹H and ¹³C NMR Spectra 3a

3b

3c

3e

3g

3h

3i

3n

30

3p

References

- (1) G. Werner, K. S. Rodygin, A. A. Kostin, E. G. Gordeev, A. S. Kashin and V. P. Ananikov, *Green Chem.*, 2017, **19**, 3032.
- (2) N. Harada, T. Nishikata and H. Nagashima, Tetrahedron, 2012, 68, 3243.
- (3) R. Matake, Y. Adachi and H. Matsubara, Green Chem., 2016, 18, 2614.
- (4) V. V. Voronin, M. S. Ledovskaya, K. S. Rodyginab and V. P. Ananikov, Org. Chem. Front., 2020, 7, 1334.
- (5) P. Hu, S. Huang, J. Xu, Z. Shi and W. Su, Angew. Chem. Int. Ed., 2011, 50, 9926.
- (6) C. Lu, X. Su and P. E. Floreancig, J. Org. Chem., 2013, 78, 9366.
- (7) K. S.Rodygin, K. A. Lotsman and V. P. Ananikov, ChemSusChem, 2020, 13, 3679.
- (8) Y. Kon, T. Chishiro, D. Imao, T. Nakashima, T. Nagamine, H. Hachiya and K. Sato, *Tetrahedron Letters*, 2011, **52**, 6739.
- (9) N. Palani and K. K. Balasubramanian, Tetrahedron Lett., 1995, 36, 9527.
- (10) E. S. Huyser and D. T. Wang, J. Org. Chem., 1964, 29, 2720.
- (11) (a) J. E. McKeon, P. Fitton and A. A. Griswold, *Tetrahedron*, 1972, 28, 227; (b) J. E. McKeon and P. Fitton, *Tetrahedron*, 1972, 28, 233; (c)W. H. Watanabe and L. E. Conlon, *J. Am. Chem. Soc.*, 1957, 79, 2828.