Transition metal-free formal hydro/deuteromethylthiolation

of unactivated alkenes

Shuangyang Chen $^{\rm a},$ Jia Wang $^{\rm b}$ and Lan-Gui Xie $^{*{\rm a}}$

^a School of Chemistry and Materials Science, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, P. R. China. Email: <u>xielg@njnu.edu.cn</u>.

^b School of Medicine, Jiangsu University, Zhenjiang 212013, P. R. China. Email: <u>wangjia@ujs.edu.cn</u>.

Table of Contents	
1 General Information	1
2 Experimental Procedures	1
General Procedure A	1
Preparation of dimethyl(methylthio) sulfonium triflate (DMTST)	1
General Procedure B	2
General procedure for carbosulfenylation of alkene	2
3 Characterization of prepared starting material and products	3
4 References	37
5 NMR spectra	39

1 General Information

All reactions involving air or moisture sensitive reagents were carried out with flamedried glassware under argon atmosphere using standard Schlenk techniques. Solvents were either freshly distilled or obtained in extra-dry grade from commercial sources, and store over molecular sieve (3 Å). Diethyl ether (Et₂O) was distilled over sodium/benzophenone and stored over activated molecular sieve (3 Å). Dichloromethane (CH₂Cl₂) was refluxed over CaH₂ and used as freshly distilled. Merck silica gel 60 F254 plates were used for thin layer chromatography (TLC) with UV light (254/366 nm) or KMnO₄ as stains. The NMR spectra were recorded on a Bruker Avance 400 spectrometer at 400 MHz (¹H), 101 MHz (¹³C) and 376 MHz (¹⁹F) in CDCl₃ with tetramethylsilane as the internal standard. Chemical shifts (δ) were reported in parts per million (ppm). Splitting patterns were designated as s, singlet; d, doublet; t, triplet; q, quartet; p, pentet; dd, doublet of doublets; td, triplet of doublets; ddd, doublet of doublet; m, multiplet; Infrared (IR) data were recorded on Alpha-P Bruker FT-IR Spectrometer. Absorbance frequencies were reported in reciprocal centimeters (cm⁻¹).

2 Experimental Procedures

General Procedure A

Preparation of dimethyl(methylthio) sulfonium triflate¹ (DMTST)

At 0 °C, to a solution of methyl trifluoromethanesulfonate (0.12 mol, 13.6 mL, 1.2 equiv) in CH₂Cl₂ (100 mL), Me₂S₂ (0.1 mol, 8.85 mL, 1.0 equiv) was added dropwise in 30 min. The mixture was stirred for 1 h at that temperature, following by 18 h at room temperature. Upon completion, the mixture was cooled to -15 °C with a freezer to afford white solid. The precipitation was collected by filtration and washed with fresh distilled Et₂O under nitrogen atmosphere, yielding dimethyl(methylthio) sulfonium triflate (23.1 g, 90%) as a white solid.

General Procedure B

General procedure for formal hydro/deuteromethylthiolation of alkene

A dry flask, charged with MeSSMe₂OTf (1.2 equiv), was vacuumed and refilled with nitrogen (3 cycles). CH₂Cl₂ (3 mL) were added to the flask, following by the corresponding alkene. The reaction was stirred at room temperature, monitored by TLC. Upon the full conversion of the alkene, corresponding NaBH₃CN or NaBD₄ (2.0 equiv) and THF (3 mL) was added. The reaction mixture was then stirred for 18 h at room temperature, before quenched with aqueous NH₄Cl. The mixture was extracted with CH₂Cl₂(10 mL X 3), and the combined organic layer were washed with water and brine, dried over Na₂SO₄, filtrated and concentrated under reduced pressure. The crude product was then purified by column chromatography with silica gel.

3 Characterization of prepared starting material and products

N-Phenyl-4-vinylbenzamide²

Ph

Under nitrogen atmosphere, a 50 mL flamed dried round bottom flask was charged with 4-vinylbenozic acid (533 mg, 3.6 mmol, 1.2 equiv), *N*-(3-dimethylamino-propyl)-*N'*- ethylcarbodiimide hydrochloride (690 mg, 3.6 mmol, 1.2 equiv), DMAP (73 mg, 0.6 mmol, 20 mol%) and benzenamine (279 mg, 3.0 mmol, 1.0 equiv) and DCM (30 mL, 0.1 M). After stirring at 23 °C for 24 hours, the reaction mixture was then concentrated in vacuo. The residue was purified by flash column chromatography on silica gel, eluting with petroleum ether : DCM (3 : 1 (v/v)) to afford the title compound as a white solid (349 mg, 52% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.86–7.83 (m, 2H), 7.79 (s, 1H), 7.66–7.63 (m, 2H), 7.53–7.51 (m, 2H), 7.40–7.36 (m, 2H), 7.18–7.14 (m, 1H), 6.77 (dd, *J* = 17.6, 11.2 Hz, 1H), 5.88 (d, *J* = 17.6 Hz, 1H), 5.39 (d, *J* = 10.8 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 165.3, 141.0, 137.8, 135.8, 133.9, 129.1, 127.3, 126.5, 124.6, 120.1, 116.3.

2-(4-Vinylbenzyl)isoindoline-1,3-dione³

Phthalimide (441 mg, 3.0 mmol), K₂CO₃ (498 mg, 3.6 mmol, 1.2 equiv) and DMF (0.2 M) were added to an 50 mL round flask. After that, 1-(chloromethyl)-4-vinylbenzene

(458mg, 3.0 mmol) was injected. The mixture was stirred overnight at room temperature, before a dilution with Et₂O and water. After separation, the organic layer was washed successively with saturated NaHCO₃, and brine, and was then dried over Na₂SO₄, following by filtration and concentration. The residue was purified by flash column chromatography on silica gel, eluting with petroleum ether : EtOAc (20 : 1 (v/v)) to afford the title compound as a white solid (513 mg, 65% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.87–7.82 (m, 2H), 7.72–7.69 (m, 2H), 7.41–7.34 (m, 4H), 6.67 (dd, J = 17.6, 10.8 Hz, 1H), 5.71 (d, J = 17.6 Hz, 1H), 5.22 (d, J = 10.8 Hz, 1H), 4.83 (s, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 168.0, 137.2, 136.3, 135.8, 134.0, 132.1, 128.8, 126.5, 123.3, 114.1, 41.3.

4,4,5,5-Tetramethyl-2-(4-vinylphenyl)-1,3,2-dioxaborolane³

Pinacol (357 mg, 3.0 mmol) was added in one portion to a suspension of 4vinylphenylboronic acid (445 mg, 3.0 mmol) and MgSO₄ (cat.) in THF (20 mL). The resulting mixture was stirred for 2 h at ambient temperature before filtration and concentration under vacuum. The crude product was then purified by column chromatography on silica gel, eluting with petroleum ether : EtOAc (10 : 1 (v/v)) to afford the title compound as a colourless oil (628 mg, 91%) . ¹H NMR (400 MHz, Chloroform-*d*) δ 7.63 (d, *J* = 8.0 Hz, 2H), 7.27 (d, *J* = 8.0 Hz, 2H), 6.58 (dd, *J* = 17.6, 10.8 Hz, 1H), 5.67 (d, *J* = 18.4 Hz, 1H), 5.15 (d, *J* = 10.8 Hz, 1H), 1.20 (s, 12H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 140.2, 136.8, 135.0, 125.5, 114.9, 83.7, 24.8.

But-3-en-1-yn-1-ylbenzene⁴

Ethynylbenzene (306 mg, 3.0 mmol, 1.0 equiv), vinyl bromide (476 mg, 4.5 mmol, 1.5 equiv), CuI (22.8 mg, 0.12 mmol, 0.04 equiv), Pd(PPh₃)₄ (52 mg, 0.045 mmol, 0.015 equiv) and triethylamine (3.0 mL, 1.0 M) were added to a 50 mL round flask. After 4 h of stirring under nitrogen atmosphere, the reaction mixture was quenched with H₂O (5.0 mL). The aqueous layer was extracted with EtOAc (3×10 mL). The organic layers were combined, dried (MgSO₄), filtrated and concentrated under vacuo. The residue was purified by chromatography on silica gel, eluting with petroleum ether : EtOAc (20 : 1 (v/v)) to afford the title compound as a colorless liquid (230 mg, 60% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.47–7.45 (m, 2H), 7.33–7.31 (m, 3H), 6.03 (dd, J = 17.6, 11.2 Hz, 1H), 5.75 (dd, J = 17.6, 2.0 Hz, 1H), 5.55 (dd, J = 11.2, 2.4 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 131.5, 128.3 (2), 126.9, 123.1, 117.2, 89.9, 88.1.

(3a*R*,5*R*,6*S*,6a*R*)-5-((*R*)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-yl 4-vinylbenzoate⁵

Under nitrogen atmosphere, a 50 mL flamed dried round bottom flask was charged with 4-vinylbenozic acid (445 mg, 3.0 mmol, 1.0 equiv), *N*,*N*'-dicyclohexylcarbodiimide (743 mg, 3.6 mmol, 1.2 equiv), DMAP (73 mg, 0.6 mmol, 20 mol%), diacetone-D-glucose (937 mg, 3.6 mmol, 1.2 equiv) and DCM (30 mL, 0.1 M). The reaction mixture was then stirred at 23 °C for 48 hours and concentrated under vacuo. The residue was purified by flash column chromatography on silica gel, eluting with petroleum ether : EtOAc (10 : 1 (v/v)) to afford the title compound as a colourless oil (550 mg, 47% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.99–7.97 (m, 2H), 7.48–7.46 (m, 2H), 6.75 (dd, *J* = 17.6, 10.8 Hz, 1H), 5.95 (d, *J* = 3.6 Hz, 1H), 5.88 (d, *J* = 17.6 Hz, 1H), 5.49 (d, *J* = 2.8 Hz, 1H), 5.41 (d, *J* = 10.8 Hz, 1H), 4.63 (d, *J* = 4 Hz, 1H), 4.37–4.34 (m, 2H), 4.14–4.07 (m, 2H), 1.56 (s, 3H), 1.41 (s, 3H), 1.32 (s, 3H), 1.27 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 165.0, 142.5, 135.8, 130.0, 128.5, 126.2, 117.0, 112.4, 109.4, 105.1, 83.4, 79.9, 76.6, 72.6, 67.2, 26.8, 26.7, 26.2, 25.2.

(3*S*,8*S*,9*S*,10*R*,13*R*,14*S*,17*R*)-10,13-Dimethyl-17-((*R*)-6-methyl-heptan-2-yl)-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl 4-vinylbenzoate⁶

Me

6

Under nitrogen atmosphere, a 50 mL flamed dried round bottom flask was charged with 4-vinylbenozic acid (445 mg, 3.0 mmol, 1.0 equiv), N,N'-dicyclohexylcarbodiimide (743 mg, 3.6 mmol, 1.2 equiv), DMAP (73 mg, 0.6 mmol, 20 mol%), cholesterol (1.55 g, 3.6 mmol, 1.2 equiv) and DCM (30 mL, 0.1 M). The reaction mixture was then stirred at 23 °C for 48 hours, and concentrated under vacuo after. The residue was purified by flash column chromatography on silica gel, eluting with petroleum ether : EtOAc (10 : 1 (v/v)) to afford the title compound as a white solid (635 mg, 41% yield). ¹H NMR $(400 \text{ MHz}, \text{Chloroform-}d) \delta 8.00 (d, J = 8.0 \text{ Hz}, 2\text{H}), 7.45 (d, J = 8.0 \text{ Hz}, 2\text{H}), 6.75 (dd, J = 8.0 \text{ Hz}, 2\text{Hz}), 6.75 (dd, J = 8.0 \text{ Hz}, 2\text{Hz}), 6.75 (dd, J = 8.0 \text{ Hz}, 2\text{Hz}), 6.75 (dd, J = 8.0 \text{ Hz}), 6.75 (d$ J = 17.6, 11.2 Hz, 1H), 5.86 (d, J = 17.6 Hz, 1H), 5.39 (dd, J = 15.6, 5.2 Hz, 2H), 4.90– 4.81 (m, 1H), 2.46 (d, J = 8.4 Hz, 2H), 2.05–1.89 (m, 4H), 1.86–1.78 (m, 1H), 1.76– 1.68 (m, 1H), 1.62–1.43 (m, 6H), 1.39–1.33 (m, 3H), 1.30–1.09 (m, 5H), 1.07 (s, 3H), 1.04-0.97 (m, 3H), 0.92 (d, J = 6.4 Hz, 3H), 0.87 (dd, J = 6.8, 2.0 Hz, 6H), 0.69 (s, 3H).¹³C NMR (101 MHz, Chloroform-*d*) δ 165.7, 141.7, 139.6, 136.1, 129.9, 129.8, 126.0, 122.8, 116.3, 74.5, 56.7, 56.1, 50.0, 42.3, 39.7, 39.5, 38.0, 37.0, 36.6, 36.2, 35.8, 31.9, 31.8, 28.2, 28.0, 27.9, 24.3, 23.8, 22.8, 22.6, 21.0, 19.4, 18.7, 11.8.

(2S,5R)-2-Isopropyl-5-methylcyclohexyl 4-vinylbenzoate⁷

Under nitrogen atmosphere, a 50 mL flamed dried round bottom flask was charged with 4-vinylbenozic acid (445 mg, 3.0 mmol, 1.0 equiv), *N*,*N*'-dicyclohexylcarbodiimide (743 mg, 3.6 mmol, 1.2 equiv), DMAP (73 mg, 0.6 mmol, 20 mol%), (1*R*,2*S*,5*R*)-5-

methyl-2-(1-methylethyl)cyclohexanol (562 mg, 3.6 mmol, 1.2 equiv) and DCM (30 mL, 0.1 M). The reaction mixture was then stirred at 23 °C for 48 hours, and concentrated under vacuo after. The residue was purified by flash column chromatography on silica gel, eluting with petroleum ether : EtOAc (10 : 1 (v/v)) to afford the title compound as a colourless oil (601 mg, 70% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.00 (d, *J* = 8.4 Hz, 2H), 7.46 (d, *J* = 8.4 Hz, 2H), 6.75 (dd, *J* = 17.6, 10.8 Hz, 1H), 5.86 (d, *J* = 17.6 Hz, 1H), 5.37 (d, *J* = 10.8 Hz, 1H), 4.96–4.89 (m, 1H), 2.15–2.10 (m, 1H), 2.00–1.92 (m, 1H), 1.76–1.70 (m, 2H), 1.60–1.50 (m, 2H), 1.18–1.05 (m, 2H), 0.98–0.87 (m, 7H), 0.79 (d, *J* = 6.8 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 165.8, 141.7, 136.0, 129.9, 129.8, 126.0, 116.3, 74.7, 47.2, 40.9, 34.3, 31.4, 26.4, 23.6, 22.0, 20.8, 16.5.

(*R*)-2,5,7,8-Tetramethyl-2-((4*R*,8*R*)-4,8,12-trimethyltridecyl)-chroman-6-yl 4vinylbenzoate⁸

Under nitrogen atmosphere, a 50 mL flamed dried round bottom flask was charged with 4-vinylbenozic acid (445 mg, 3.0 mmol, 1.0 equiv), N,N'-dicyclohexylcarbodiimide (743 mg, 3.6 mmol, 1.2 equiv), DMAP (73 mg, 0.6 mmol, 20 mol%), (2*R*)-3,4-dihydro-2,5,7,8-tetramethyl-2-[(4*R*,8*R*)-4,8,12-trimethyltridecyl]-2*H*-1-benzo-pyran-6-ol (1.55 g, 3.6 mmol, 1.2 equiv) and DCM (30 mL, 0.1 M). The reaction mixture was then stirred at 23 °C for 48 hours, and concentrated under vacuo after. The residue was purified by

flash column chromatography on silica gel, eluting with petroleum ether : EtOAc (20 : 1 (v/v)) to afford the title compound as a colourless oil (1.08 g, 62% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.22 (d, *J* = 8.4 Hz, 2H), 7.55 (d, *J* = 8.4 Hz, 2H), 6.81 (dd, *J* = 17.6, 10.8 Hz, 1H), 5.92 (d, *J* = 17.6 Hz, 1H), 5.43 (d, *J* = 10.8 Hz, 1H), 2.63 (t, *J* = 6.8 Hz, 2H), 2.13 (s, 3H), 2.07 (s, 3H), 2.03 (s, 3H), 1.87–1.77 (m, 2H), 1.61–1.47 (m, 4H), 1.46–1.35 (m, 4H), 1.31–1.20 (m, 10H), 1.17–1.04 (m, 6H), 0.91–0.85 (m, 12H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 164.9, 149.4, 142.4, 140.6, 136.0, 130.5, 128.7, 126.9, 126.3, 125.1, 123.1, 117.4, 116.8, 75.0, 40.4, 39.6, 39.4, 37.4, 37.3, 32.78, 31.2, 31.0, 28.0, 24.8, 24.4, 24.2, 23.7, 22.7, 22.6, 21.0, 20.6, 19.7, 19.7, 13.0, 12.2, 11.8.

5-Chloro-2-(2,4-dichlorophenoxy)phenyl 4-vinylbenzoate

Under nitrogen atmosphere, a 50 mL flamed dried round bottom flask was charged with 4-vinylbenozic acid (445 mg, 3.0 mmol, 1.0 equiv), *N,N'*-dicyclohexylcarbodiimide (743 mg, 3.6 mmol, 1.2 equiv), DMAP (73 mg, 0.6 mmol, 20 mol%), 3-chloro-5-(3,5-dichlorophenoxy)-phenol (1.04 g, 3.6 mmol, 1.2 equiv) and DCM (30 mL, 0.1 M). The reaction mixture was then stirred at 23 °C for 48 hours, and concentrated under vacuo after. The residue was purified by flash column chromatography on silica gel, eluting with petroleum ether : EtOAc (20 : 1 (v/v)) to afford the title compound as a colourless oil (642 mg, 51% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.02–8.00 (m, 2H),

7.48–7.46 (m, 2H), 7.35 (dd, J = 12.4, 2.4 Hz, 2H), 7.22 (dd, J = 8.4, 2.4 Hz, 1H), 7.15 (dd, J = 8.8, 2.4 Hz, 1H), 6.92 (dd, J = 8.8, 2.0 Hz, 2H), 6.76 (dd, J = 17.6, 10.8 Hz, 1H), 5.90 (d, J = 17.2 Hz, 1H), 5.42 (d, J = 11.2 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 163.7, 151.0, 146.7, 142.8, 141.8, 135.7, 130.5, 130.2, 129.3, 129.2, 128.0, 127.3, 126.9, 126.2, 125.8, 124.6, 120.3, 120.2, 117.1. IR (KBr) v 3087, 2523, 2261, 2062, 1738, 1600, 1480, 1249, 1050, 866, 704, 574, 454. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₂₁H₁₃Cl₃O₃ 440.9828; Found 440.9823.

(1,2-Diphenylethyl)(methyl)sulfane⁹ (1)

According to the general procedure for formal hydromethylthiolation of alkene, 54.1 mg (0.3 mmol, 1.0 equiv) of stilbene was applied. After purification by column chromatography on silica gel (DCM/petroleum ether 1:20), the title compound was obtained as a colourless oil (57.5 mg, 84% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.31–7.19 (m, 8H), 7.11–7.08 (m, 2H), 3.94 (t, *J* = 7.6 Hz, 1H), 3.23–3.12 (m, 2H), 1.87 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 141.7, 139.0, 129.1, 128.3, 128.1, 128.0, 127.1, 126.3, 53.4, 42.8, 14.6.

Methyl(4-methylphenethyl)sulfane (2)

According to the general procedure for formal hydromethylthiolation of alkene, 35.4 mg (0.3 mmol, 1.0 equiv) of 4-methylstyrene was applied. After purification by column chromatography on silica gel (DCM/petroleum ether 1:10), the title compound was obtained as a colourless oil (41.4 mg, 83% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.13 (s, 4H), 2.90–2.86 (m, 2H), 2.78–2.73 (m, 2H), 2.35 (s, 3H), 2.15 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 137.4, 135.8, 129.1, 128.3, 35.9, 35.3, 21.0, 15.6. IR (KBr) v 2919, 1623, 1508, 1424, 1267, 1016, 787, 525. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₀H₁₄S 189.0714; Found 189.0712.

(4-(*Tert*-butyl)phenethyl)(methyl)sulfane⁹ (3)

According to the general procedure for formal hydromethylthiolation of alkene, 48.1 mg (0.3 mmol, 1.0 equiv) of 4-*tert*-butylstyrene was applied. After purification by column chromatography on silica gel (DCM/petroleum ether 1:10), the title compound was obtained as a colourless oil (51.2 mg, 82% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.35 (d, *J* = 8.4 Hz, 2H), 7.17 (d, *J* = 8.0 Hz, 2H), 2.92–2.88 (m, 2H), 2.80–2.75 (m, 2H), 2.16 (s, 3H), 1.34 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 149.1, 137.5, 128.1, 125.3, 35.7, 35.3, 34.3, 31.3, 15.6.

Methyl(2-methylphenethyl)sulfane (4)

According to the general procedure for formal hydromethylthiolation of alkene, 35.4 mg (0.3 mmol, 1.0 equiv) of 2-methylstyrene was applied. After purification by column chromatography on silica gel (DCM/petroleum ether 1:20), the title compound was obtained as a colourless oil (42.8 mg, 86% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.25–7.16 (m, 4H), 2.93–2.89 (m, 2H), 2.74–2.70 (m, 2H), 2.34 (s, 3H), 2.17 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 138.7, 135.8, 130.3, 129.0, 126.4, 126.0, 34.5, 33.3, 19.2, 15.7. IR (KBr) v 2920, 1612, 1476, 1027, 735, 451. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₀H₁₄S 189.0714; Found 189.0713.

Methyl(2-(naphthalen-2-yl)ethyl)sulfane (5)

According to the general procedure for formal hydromethylthiolation of alkene, 46.3 mg (0.3 mmol, 1.0 equiv) of 2-vinylnaphthalene was applied. After purification by column chromatography on silica gel (DCM/petroleum ether 1:20), the title compound was obtained as a white solid (41.8 mg, 69% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.84–7.80 (m, 3H), 7.68 (s, 1H), 7.50–7.43 (m, 2H), 7.38–7.36 (m, 1H), 3.11–3.07 (m, 2H), 2.89–2.85 (m, 2H), 2.17 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 138.0, 133.5, 132.1, 128.0, 127.6, 127.5, 127.0, 126.7, 126.0, 125.3, 36.0, 35.7, 15.7. IR (KBr) v 2952, 2909, 1591, 1414, 1059, 880, 807,463. HRMS (ESI) m/z: [M + Na]⁺ Calcd for

C₁₃H₁₄S 225.0714; Found 225.0713.

(4-Chlorophenethyl)(methyl)sulfane⁹ (6)

According to the general procedure for formal hydromethylthiolation of alkene, 41.6 mg (0.3 mmol, 1.0 equiv) of 4-chlorostyrene was applied. After purification by column chromatography on silica gel (DCM/petroleum ether 1:10), the title compound was obtained as a yellow oil (31.8 mg, 57% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.28–7.25 (m, 2H), 7.16–7.13 (m, 2H), 2.89–2.85 (m, 2H), 2.75–2.71 (m, 2H), 2.12 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 138.9, 132.0, 129.8, 128.5, 35.6, 35.1, 15.7.

(4-Bromophenethyl)(methyl)sulfane (7)

According to the general procedure for formal hydromethylthiolation of alkene, 41.4 mg (0.3 mmol, 1.0 equiv) of 4-bromostyrene was applied. After purification by column chromatography on silica gel (DCM/petroleum ether 1:10), the title compound was obtained as a yellow oil (35.9 mg, 52% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.43–7.40 (m, 2H), 7.10–7.08 (m, 2H), 2.87–2.83 (m, 2H), 2.75–2.70 (m, 2H), 2.11 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 139.4, 131.5, 130.2, 120.1, 35.5, 35.1, 15.7. IR (KBr) v 2899, 1623, 1476, 1059, 1059, 995, 787,514. HRMS (ESI) m/z: [M + Na]⁺

Calcd for C₉H₁₁BrS 252.9663; Found 252.9662.

(4-Fluorophenethyl)(methyl)sulfane (8)

According to the general procedure for formal hydromethylthiolation of alkene, 36.6 mg (0.3 mmol, 1.0 equiv) of 4-fluorostyrene was applied. After purification by column chromatography on silica gel (DCM/petroleum ether 1:10), the title compound was obtained as a yellow oil (29.1 mg, 57% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.18–7.15 (m, 2H), 7.01–6.96 (m, 2H), 2.89–2.85 (m, 2H), 2.75–2.71 (m, 2H), 2.12 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 161.5 (d, *J*_{C-F} = 244.8 Hz), 136.1 (d, *J*_{C-F} = 3.2 Hz), 129.9 (d, *J*_{C-F} = 8.0 Hz), 115.2 (d, *J*_{C-F} = 21.2 Hz), 35.8 (d, *J*_{C-F} = 1.5 Hz), 34.9, 15.7. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -116.9. IR (KBr) v 2930, 1623, 1498, 1215, 1006, 995, 818,536. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₉H₁₁FS 193.0463; Found 193.0452.

Methyl(4-(trifluoromethyl)phenethyl)sulfane (9)

According to the general procedure for formal hydromethylthiolation of alkene, 51.6 mg (0.3 mmol, 1.0 equiv) of 4-(trifluoromethyl)styrene was applied. After purification by column chromatography on silica gel (DCM/petroleum ether 1:10), the title

compound was obtained as a colourless oil (29.7 mg, 45% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.57–7.55 (m, 2H), 7.34–7.31 (m, 2H), 2.98–2.94 (m, 2H), 2.79–2.75 (m, 2H), 2.13 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 144.5 (d, $J_{C-F} = 1.8$ Hz), 128.8, 128.7 (q, $J_{C-F} = 32.4$ Hz), 125.4 (q, $J_{C-F} = 3.8$ Hz), 124.2 (q, $J_{C-F} = 273.0$ Hz), 35.5, 35.4, 15.7. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -62.4. IR (KBr) v 1627, 1324, 1713, 1172, 1127, 1062, 1017, 820. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₀H₁₁F₃S 221.0612; Found 221.0600.

Methyl(4-nitrophenethyl)sulfane (10)

According to the general procedure for formal hydromethylthiolation of alkene, 44.7 mg (0.3 mmol, 1.0 equiv) of 4-nitrostyrene was applied. After purification by column chromatography on silica gel (DCM/petroleum ether 1:10), the title compound was obtained as a yellow oil (31.9 mg, 54% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.16–8.14 (m, 2H), 7.38–7.36 (m, 2H), 3.02–2.98 (m, 2H), 2.80–2.76 (m, 2H), 2.12 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 148.1, 146.6, 129.4, 123.7, 35.4, 35.1, 15.7. IR (KBr) v 2920, 1603, 1498, 1341, 1111, 995, 838, 504. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₉H₁₁NO₂S 220.0408; Found 220.0406.

4-(2-(Methylthio)ethyl)-N-phenylbenzamide (11)

According to the general procedure for formal hydromethylthiolation of alkene, 66.9 mg (0.3 mmol, 1.0 equiv) of *N*-phenyl-4-vinylbenzamide was applied. After purification by column chromatography on silica gel (EtOA_C /petroleum ether 1:5), the title compound was obtained as a white solid (73.2 mg, 90% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.84–7.82 (m, 2H), 7.80 (s, 1H), 7.65–7.62 (m, 2H), 7.39–7.32 (m, 4H), 7.17–7.13 (m, 1H), 2.97 (t, *J* = 7.2 Hz, 2H), 2.78 (t, *J* = 8.4 Hz, 2H), 2.14 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 165.5, 144.7, 137.9, 133.0, 129.1, 129.0, 127.2, 124.5, 120.1, 35.5, 35.4, 15.7. IR (KBr) v 3339, 2899, 1665, 1591, 1525, 1434, 1317, 1251, 1083, 1012, 844, 753, 692, 631, 499. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₆H₁₇NOS 272.1109; Found 272.1106.

2-(4-(2-(Methylthio)ethyl)benzyl)isoindoline-1,3-dione (12)

According to the general procedure for formal hydromethylthiolation of alkene, 78.9 mg (0.3 mmol, 1.0 equiv) of 2-(4-vinylbenzyl)isoindoline-1,3-dione was applied. After purification by column chromatography on silica gel (EtOA_C /petroleum ether 1:20), the title compound was obtained as a white solid (59.7 mg, 64% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.83–7.81 (m, 2H), 7.69–7.67 (m, 2H), 7.37 (d, *J* = 8.0 Hz, 2H),

7.15 (d, J = 8.0 Hz, 2H), 4.81 (s, 2H), 2.86–2.82 (m, 2H), 2.72–2.67 (m, 2H), 2.10 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 167.9, 140.1, 134.3, 133.9, 132.0, 128.7, 128.7, 123.2, 41.2, 35.6, 35.3, 15.6. IR (KBr) v 2928, 1721, 1382, 1068, 942, 702, 515.
HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₈H₁₇NO₂S 312.1058; Found 312.1052.

4,4,5,5-Tetramethyl-2-(4-(2-(methylthio)ethyl)phenyl)-1,3,2-dioxaborolane (13)

According to the general procedure for formal hydromethylthiolation of alkene, 69.0 mg (0.3 mmol, 1.0 equiv) of 4,4,5,5-tetramethyl-2-(4-vinylphenyl)-1,3,2-dioxaborolane was applied. After purification by column chromatography on silica gel (EtOA_C /petroleum ether 1:20), the title compound was obtained as a yellow oil (59.2 mg, 71% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.76 (d, *J* = 8.0 Hz, 2H), 7.23 (d, *J* = 8.0 Hz, 2H), 2.93–2.89 (m, 2H), 2.77–2.73 (m, 2H), 2.12 (s, 3H), 1.34 (s, 12H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 143.8, 135.0, 127.9, 83.6, 36.0, 35.5, 24.8, 15.7. IR (KBr) v 2972, 1623, 1361, 1132, 964, 850, 650. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₅H₂₃BO₂S 279.1590; Found 279.1584.

Methyl(4-phenylbut-3-yn-1-yl)sulfane (14)

According to the general procedure for formal hydromethylthiolation of alkene, 38.4 mg (0.3 mmol, 1.0 equiv) of but-3-en-1-yn-1-ylbenzene was applied. After purification by column chromatography on silica gel (DCM/petroleum ether 1:20), the title compound was obtained as a colourless oil (21.1 mg, 40% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.42–7.38 (m, 2H), 7.30–7.27 (m, 3H), 2.76–2.72 (m, 4H), 2.20 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 131.6, 128.2, 127.8, 123.5, 88.2, 81.5, 33.2, 20.5, 15.7. IR (KBr) v 2920, 1650, 1490, 758, 678, 519. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₁H₁₂S 177.0738; Found 177.0734.

(2,3-Dihydro-1H-inden-2-yl)(methyl)sulfane⁹ (15)

According to the general procedure for formal hydromethylthiolation of alkene, 34.8 mg (0.3 mmol, 1.0 equiv) of indene was applied. After purification by column chromatography on silica gel (DCM/petroleum ether 1:5), the title compound was obtained as a colourless oil (31.0 mg, 63% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.23–7.16 (m, 4H), 3.61–3.57 (m, 1H), 3.37–3.31 (m, 2H), 3.00–2.95 (m, 2H), 2.18 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 141.8, 126.5, 124.3, 44.6, 40.0, 14.5.

(1,2-Dihydroacenaphthylen-1-yl)(methyl)sulfane (16)

According to the general procedure for formal hydromethylthiolation of alkene, 45.7 mg (0.3 mmol, 1.0 equiv) of acenaphthylene was applied. After purification by column chromatography on silica gel (EtOA_C /petroleum ether 1:20), the title compound was obtained as a yellow oil (43.8 mg, 73% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.70–7.64 (m, 2H), 7.56–7.47 (m, 3H), 7.30 (d, *J* = 6.8 Hz, 1H), 4.76 (dd, *J* = 8.0, 2.8 Hz, 1H), 3.93 (dd, *J* = 16.4, 6.8 Hz, 1H), 3.47 (dd, *J* = 18.0, 3.6 Hz, 1H), 1.94 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 144.6, 142.6, 138.2, 131.1, 128.0, 128.0, 123.7, 122.6, 120.1, 119.3, 46.4, 39.9, 12.1. IR (KBr) v 3045, 2899, 1591, 1404, 776, 682. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₃H₁₂S 223.0557; Found 223.0554.

(1-([1,1'-Biphenyl]-4-yl)propan-2-yl)(methyl)sulfane (17)

According to the general procedure for formal hydromethylthiolation of alkene, 58.2 mg (0.3 mmol, 1.0 equiv) of 4-(1-propen-1-yl)-1,1'-biphenyl was applied. After purification by column chromatography on silica gel (DCM /petroleum ether 1:20), the title compound was obtained as a yellow oil (59.6 mg, 82% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.64–7.61 (m, 2H), 7.58–7.56 (m, 2H), 7.48–7.44 (m, 2H), 7.38–7.34 (m, 1H), 7.31–7.29 (m, 2H), 3.07–2.95 (m, 2H), 2.77–2.72 (m, 1H), 2.15 (s, 3H), 1.30 (d, *J* = 6.4 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 140.9, 139.2, 138.6, 129.6, 128.7, 127.0, 127.0, 126.9, 42.8, 42.7, 20.2, 13.7. IR (KBr) v 3026, 2914, 1636, 1503, 1011, 758, 718, 506. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₆H₁₈S 243.1207; Found

243.1203.

(1-(4-Methoxyphenyl)propan-2-yl)(methyl)sulfane (18)

According to the general procedure for formal hydromethylthiolation of alkene, 44.5 mg (0.3 mmol, 1.0 equiv) of 4-methoxyallylbenzene was applied. After purification by column chromatography on silica gel (EtOA_C /petroleum ether 1:10), the title compound was obtained as a colourless oil (49.4 mg, 84% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.11 (d, *J* = 8.4 Hz, 2H), 6.84 (d, *J* = 8.8 Hz, 2H), 3.79 (s, 3H), 2.93–2.82 (m, 2H), 2.68–2.57 (m, 1H), 2.09 (s, 3H), 1.22 (d, *J* = 6.8 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 158.0, 131.6, 130.1, 113.6, 55.2, 43.0, 42.2, 20.1, 13.7. IR (KBr) v 2925, 1610, 1509, 1433, 1244, 1168, 1029, 801, 523. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₁H₁₆OS 219.0820; Found 219.0819.

Cyclohexyl(methyl)sulfane⁹ (19)

According to the general procedure for formal hydromethylthiolation of alkene, 24.6 mg (0.3 mmol, 1.0 equiv) of cyclohexene was applied. After purification by column chromatography on silica gel (DCM/petroleum ether 1:10), the title compound was obtained as a colourless oil (19.9 mg, 51% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 2.57–2.50 (m, 1H), 2.08 (s, 3H), 2.01–1.93 (m, 2H), 1.78–1.74(m, 2H), 1.35–1.23 (m,

6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 44.9, 33.1, 26.1, 25.8, 13.3.

Cyclooctyl(methyl)sulfane¹⁰ (20)

According to the general procedure for formal hydromethylthiolation of alkene, 33.1 mg (0.3 mmol, 1.0 equiv) of cyclooctene was applied. After purification by column chromatography on silica gel (EtOA_C /petroleum ether 1:20), the title compound was obtained as a colourless oil (23.7 mg, 59% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 2.81–2.74 (m, 1H), 2.07 (s, 3H), 1.97–1.90 (m, 2H), 1.77–1.70 (m, 2H), 1.67–1.61 (m, 2H), 1.60–1.47 (m, 8H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 46.1, 32.0, 27.1, 25.8, 25.2, 14.3.

Decan-2-yl(methyl)sulfane¹¹ (21)

Ƴ `⊦ SMe

According to the general procedure for formal hydromethylthiolation of alkene, 42.1 mg (0.3 mmol, 1.0 equiv) of 1-decene was applied. After purification by column chromatography on silica gel (EtOA_C /petroleum ether 1:20), the title compound was obtained as a colourless oil (44.0 mg, 78% yield). Data for the major isomer: ¹H NMR (400 MHz, Chloroform-*d*) δ 2.68–2.59 (m, 1H), 2.05 (s, 3H), 1.39–1.36 (m, 3H), 1.26–1.24 (m, 14H), 0.87 (d, *J* = 6.8 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 41.2, 36.4, 31.9, 29.5 (2), 29.3, 27.1, 22.6, 20.7, 14.1, 13.1.

Methyl(4-phenylbutan-2-yl)sulfane (22)

According to the general procedure for formal hydromethylthiolation of alkene, 39.7 mg (0.3 mmol, 1.0 equiv) of 4-phenyl-1-butene was applied. After purification by column chromatography on silica gel (DCM/petroleum ether 1:10), the title compound was obtained as a colourless oil (47.0 mg, 87% yield). Data for the major isomer: ¹H NMR (400 MHz, Chloroform-*d*) δ 7.32–7.29 (m, 2H), 7.24–7.19 (m, 3H), 2.79–2.75 (m, 2H), 2.71–2.64 (m, 1H), 2.09 (s, 3H), 1.95–1.79 (m, 2H), 1.34 (d, *J* = 6.8 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 141.9, 128.4, 128.3, 125.8, 40.5, 37.9, 33.2, 20.8, 12.8. IR (KBr) v 2020, 1644, 1445, 1278, 1017, 734, 682, 483. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₁H₁₆S 203.0870; Found 203.0871.

Methyl(1-phenylbutan-2-yl)sulfane (23)

According to the general procedure for formal hydromethylthiolation of alkene, 39.7 mg (0.3 mmol, 1.0 equiv) of 1-phenylbut-2-ene was applied. After purification by column chromatography on silica gel (DCM/petroleum ether 1:10), the title compound was obtained as a colourless oil (40.5 mg, 75% yield). Data for the major isomer: ¹H NMR (400 MHz, Chloroform-*d*) δ 7.33–7.28 (m, 2H), 7.25–7.18 (m, 3H), 2.93–2.88 (m, 1H), 2.84–2.65 (m, 2H), 2.02 (s, 3H), 1.68–1.46 (m, 2H), 1.02 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 139.8, 129.2, 128.2, 126.2, 50.1, 40.9, 26.0, 13.3,

11.1. IR (KBr) v 3034, 2973, 2921, 1624, 1502, 1450, 745, 683. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₁H₁₆S 203.0870; Found 203.0860.

(3a*R*,5*R*,6*S*,6a*R*)-5-((*R*)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-yl 4-(2-(methylthio)ethyl)benzoate (24)

According to the general procedure for formal hydromethylthiolation of alkene, 117 mg (0.3 mmol, 1.0 equiv) of (3aR,5R,6S,6aR)-5-((R)-2,2-dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydro-furo[2,3-d][1,3]dioxol-6-yl 4-vinylbenzoate was applied. After purification by column chromatography on silica gel (EtOA_C /petroleum ether 1:10), the title compound was obtained as a colourless oil (46.0 mg, 35% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.95 (d, *J* = 8.0 Hz, 2H), 7.29 (d, *J* = 8.4 Hz, 2H), 5.94 (d, *J* = 3.6 Hz, 1H), 5.48 (d, *J* = 2.4 Hz, 1H), 4.62 (d, *J* = 3.6 Hz, 1H), 4.37–4.31 (m, 2H), 4.13–4.06 (m, 2H), 2.98–2.94 (m, 2H), 2.78–2.75 (m, 2H), 2.12 (s, 3H), 1.55 (s, 3H), 1.41 (s, 3H), 1.31 (s, 3H), 1.26 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 165.1, 146.5, 129.9, 128.7, 127.6, 112.3, 109.3, 105.1, 83.3, 79.9, 76.5, 72.5, 67.2, 35.7, 35.3, 26.8, 26.7, 26.2, 25.2, 15.7. IR (KBr) v 3002, 1745, 1624, 1382, 1276, 1214, 1172, 1084, 1015, 840, 727, 482. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₂₂H₃₀O₇S 461.1610; Found 461.1606.

(3*S*,8*S*,9*S*,10*R*,13*R*,14*S*,17*R*)-10,13-Dimethyl-17-((*R*)-6-methylheptan-2-yl)-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl 4-(2-(methylthio)ethyl)benzoate (25)

According to the general procedure for formal hydromethylthiolation of alkene, 155 mg (0.3 mmol, 1.0 equiv) of (3*S*,8*S*,9*S*,10*R*,13*R*,14*S*,17*R*)-10,13-dimethyl-17-((*R*)-6-methyl-heptan-2-yl)-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenan-thren-3-yl 4-vinylbenzoate was applied. After purification by column chromatography on silica gel (EtOAc /petroleum ether 1:10), the title compound was obtained as a white solid (67.7 mg, 40% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.98 (d, *J* = 8.0 Hz, 2H), 7.27 (d, *J* = 8.0 Hz, 2H), 5.42–5.40 (m, 1H), 4.87–4.80 (m, 1H), 2.97–2.93 (m, 2H), 2.78–2.74 (m, 2H), 2.45 (d, *J* = 8.4 Hz, 2H), 2.12 (s, 3H), 2.04–1.88 (m, 4H), 1.86–1.81 (m, 1H), 1.74–1.70 (m, 1H), 1.61–1.43 (m, 6H), 1.36–1.30 (m, 3H), 1.28–1.23 (m, 2H), 1.21–1.09 (m, 6H), 1.06 (s, 3H), 1.03–0.95 (m, 3H), 0.92 (d, *J* = 6.8 Hz, 3H), 0.87 (d, *J* = 1.6 Hz, 3H), 0.86 (d, *J* = 2 Hz, 3H), 0.68 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 165.9, 145.6, 139.6, 129.8, 129.0, 128.5, 122.7, 74.4, 56.6, 56.1, 50.0, 42.3, 39.7, 39.5, 38.2, 37.0, 36.6, 36.1, 35.8, 35.4, 31.9, 31.8, 28.2, 28.0, 27.9, 24.3, 23.8, 22.8, 22.6, 21.0, 19.4, 18.7, 15.7, 11.8. IR (KBr) v 2937,

2342, 1721, 1627, 1469, 1279, 1100, 762, 483. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₃₇H₅₆O₂S 587.3899; Found 587.3902.

(2S,5R)-2-Isopropyl-5-methylcyclohexyl 4-(2-(methylthio)ethyl)benzoate (26)

According to the general procedure for formal hydromethylthiolation of alkene, 85.9 mg (0.3 mmol, 1.0 equiv) of (2S,5R)-2-isopropyl-5-methylcyclohexyl 4-vinylbenzoate was applied. After purification by column chromatography on silica gel (EtOA_C /petroleum ether 1:20), the title compound was obtained as a colourless oil (77.2 mg, 77% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.98 (d, *J* = 8.4 Hz, 2H), 7.28 (d, *J* = 8.0 Hz, 2H), 4.95–4.88 (m, 1H), 2.97–2.93 (m, 2H), 2.78–2.75 (m, 2H), 2.12 (s, 3H), 2.11–2.09 (m, 1H), 1.99–1.92 (m, 1H), 1.74–1.67 (m, 2H), 1.58–1.50 (m, 2H), 1.17–1.04 (m, 2H), 0.97–0.87 (m, 7H), 0.78 (d, *J* = 6.8 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 165.9, 145.6, 129.7, 128.9, 128.5, 74.6, 47.2, 40.9, 35.7, 35.4, 34.2, 31.4, 26.4, 23.5, 22.0, 20.7, 16.4, 15.7. IR (KBr) v 2930, 1707, 1435, 1267, 1173, 1111, 964, 755, 483. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₀H₃₀O₂S 335.2045; Found 335.2040.

(*R*)-2,5,7,8-Tetramethyl-2-((4*R*,8*R*)-4,8,12-trimethyltridecyl)chroman-6-yl 4-(2-(methylthio)ethyl)benzoate (27)

According to the general procedure for formal hydromethylthiolation of alkene, 168 mg (0.3 mmol, 1.0 equiv) of (*R*)-2,5,7,8-tetramethyl-2-((4*R*,8*R*)-4,8,12-trimethyltridecyl)-chroman-6-yl 4-vinylbenzoate was applied. After purification by column chromatography on silica gel (EtOA_C /petroleum ether 1:20), the title compound was obtained as a yellow oil (133 mg, 73% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.19 (d, *J* = 8.0 Hz, 2H), 7.37 (d, *J* = 8.4 Hz, 2H), 3.02–2.99 (m, 2H), 2.83–2.79 (m, 2H), 2.61 (t, *J* = 6.8 Hz, 2H), 2.16 (s, 3H), 2.12 (s, 3H), 2.05 (s, 3H), 2.01 (s, 3H), 1.85–1.76 (m, 2H), 1.59–1.49 (m, 5H), 1.45 (s, 1H), 1.43–1.33 (m, 4H), 1.29–1.25 (m, 8H), 1.16–1.10 (m, 3H), 1.08–1.04 (m, 2H), 0.87–0.84 (m, 13H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 165.1, 149.4, 146.4, 140.5, 130.4, 128.8, 127.7, 126.9, 125.1, 123.1, 117.4, 75.0, 39.3, 37.4, 37.2, 35.8, 35.4, 32.8, 31.2, 31.0, 30.3, 28.0, 24.8, 24.4, 24.2, 23.7, 22.7, 22.6, 21.0, 20.6, 19.7, 19.6, 15.7, 13.1, 12.2, 11.8. IR (KBr) v 2920, 1731, 1610, 1460, 1245, 1170, 1104, 749. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₃₉H₆₀O₃S 609.4341; Found 609.4337.

Methyl(2-(naphthalen-2-yl)ethyl-2-d)sulfane (28)

MeS

According to the general procedure for formal deuteromethylthiolation of alkene, 46.3

mg (0.3 mmol, 1.0 equiv) of 2-vinylnaphthalene was applied. After purification by column chromatography on silica gel (EtOA_C /petroleum ether 1:20), the title compound was obtained as a white solid (46.9 mg, 77% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.85–7.80 (m, 3H), 7.68–7.67 (m, 1H), 7.51–7.43 (m, 2H), 7.38–7.36 (m, 1H), 3.09–3.05 (m, 1H), 2.87–2.85 (m, 2H), 2.17 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 137.9, 133.5, 132.1, 128.0, 127.6, 127.4, 127.0, 126.7, 126.0, 125.3, 35.6 (t, J =19.8 Hz), 35.6, 15.7. IR (KBr) v 2914, 1583, 1423, 812, 479. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₃H₁₃DS 204.0957; Found 204.0951.

Methyl(2-(o-tolyl)ethyl-2-d)sulfane (29)

According to the general procedure for formal deuteromethylthiolation of alkene, 35.4 mg (0.3 mmol, 1.0 equiv) of 2-methylstyrene was applied. After purification by column chromatography on silica gel (EtOA_C /petroleum ether 1:20), the title compound was obtained as a colourless oil (25 mg, 50% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.16–7.14(m, 4H), 2.90–2.86 (m, 1H), 2.71–2.69 (m, 2H), 2.33 (s, 3H), 2.16 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 138.7, 135.9, 130.3, 129.0, 126.5, 126.1, 34.4, 33.0 (t, *J*=19.9 Hz), 19.3, 15.7. IR (KBr) v 2903, 1624, 1471, 1249, 749. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₀H₁₃DS 190.0777; Found 190.0779.

(2-(4-(*Tert*-butyl)phenyl)ethyl-2-d)(methyl)sulfane (30)

According to the general procedure for formal deuteromethylthiolation of alkene, 48.1 mg (0.3 mmol, 1.0 equiv) of 4-*tert*-butylstyrene was applied. After purification by column chromatography on silica gel (EtOA_C /petroleum ether 1:20), the title compound was obtained as a yellow oil (44.5 mg, 71% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.35–7.33 (m, 2H), 7.17–7.15 (m, 2H), 2.90–2.85 (m, 1H), 2.75 (d, *J* = 8.8 Hz, 2H), 2.15 (s, 3H), 1.32 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 149.1, 137.4, 128.1, 125.3, 35.7, 34.9 (t, *J*=19.8 Hz), 34.4, 31.3, 15.7. IR (KBr) v 2958, 1639, 1513, 1360, 1263, 777, 541. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₃H₁₉DS 210.1427; Found 210.1419.

(2-(4-Chlorophenyl)ethyl-2-d)(methyl)sulfane (31)

According to the general procedure for formal deuteromethylthiolation of alkene, 41.6 mg (0.3 mmol, 1.0 equiv) of 4-chlorostyrene was applied. After purification by column chromatography on silica gel (EtOA_C /petroleum ether 1:20), the title compound was obtained as a yellow oil (28.1 mg, 50% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.28–7.26 (m, 2H), 7.16–7.13 (m, 2H), 2.85 (t, *J* = 8.8 Hz, 1H), 2.72 (d, *J* = 8.4 Hz, 2H), 2.12 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 138.9, 132.1, 129.8, 128.5, 35.6, 34.7 (t, *J* =19.9 Hz), 15.7. IR (KBr) v 2910, 1623, 1498, 1100, 787, 504. HRMS

(ESI) m/z: $[M + H]^+$ Calcd for C₉H₁₀DClS 18.0411; Found 18.0405.

2-(4-(2-(Methylthio)ethyl-1-d)benzyl)isoindoline-1,3-dione (32)

According to the general procedure for formal deuteromethylthiolation of alkene, 78.9 mg (0.3 mmol, 1.0 equiv) of 2-(4-vinylbenzyl)isoindoline-1,3-dione was applied. After purification by column chromatography on silica gel (EtOA_C /petroleum ether 1:20), the title compound was obtained as a white solid (37.5 mg, 40% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.85–7.80 (m, 2H), 7.72–7.67 (m, 2H), 7.37 (d, *J* = 8.4 Hz, 2H), 7.15 (d, *J* = 8.0 Hz, 2H), 4.81 (s, 2H), 2.83 (t, *J* = 8.8 Hz, 1H) 2.69 (d, *J* = 7.6 Hz, 2H), 2.10 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 168.0, 140.1, 134.3, 133.9, 132.0, 128.8, 128.7, 123.3, 41.2, 35.5, 35.0 (t, *J*=19.5 Hz), 15.6. IR (KBr) v 2916, 1707, 1388, 1096, 930, 707, 541. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₈H₁₆DNO₂S 313.1121; Found 313.1115.

4,4,5,5-Tetramethyl-2-(4-(2-(methylthio)ethyl-1-d)phenyl)-1,3,2-dioxaborolane

(33)

SMe

According to the general procedure for formal deuteromethylthiolation of alkene, 69.0

mg (0.3 mmol, 1.0 equiv) of 4,4,5,5-tetramethyl-2-(4-vinylphenyl)-1,3,2dioxaborolane was applied. After purification by column chromatography on silica gel (EtOA_C /petroleum ether 1:20), the title compound was obtained as a colourless oil (50.2 mg, 60% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.75 (d, J = 7.6 Hz, 2H), 7.22 (d, J = 8.0 Hz, 2H), 2.89 (t, J = 8.4 Hz, 1H), 2.74 (d, J = 8.0 Hz, 2H), 2.12 (s, 3H), 1.34 (s, 12H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 143.8, 135.0, 127.9, 83.7, 35.9 (t, J = 15.5 Hz), 35.5, 24.8, 15.7. IR (KBr) v 2972, 1612, 1364, 1152, 1085, 853, 651. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₅H₂₂DBO₂S 280.1653; Found 280.1651.

Methyl(4-phenylbutan-2-yl-1-d)sulfane (34)

According to the general procedure for formal deuteromethylthiolation of alkene, 39.7 mg (0.3 mmol, 1.0 equiv) of 4-phenyl-1-butene was applied. After purification by column chromatography on silica gel (EtOA_C /petroleum ether 1:20), the title compound was obtained as a colourless oil (20.1 mg, 37% yield). Data for the major isomer: ¹H NMR (400 MHz, Chloroform-*d*) δ 7.31–7.27 (m, 2H), 7.22–7.18 (m, 3H), 2.75 (t, *J* = 7.6 Hz, 2H), 2.70–2.63 (m, 1H), 2.08 (s, 3H), 1.94–1.74 (m, 2H), 1.32–1.29 (m, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 141.9, 128.4, 128.3, 125.8, 40.4, 37.9, 33.2, 20.5 (t, *J* = 19.5 Hz), 12.8. IR (KBr) v 2916, 1610, 1458, 1253, 1019, 745. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₁H₁₅DS 182.1114; Found 182.1115.

(1-(4-Methoxyphenyl)propan-2-yl-3-d)(methyl)sulfane (35)

According to the general procedure for formal deuteromethylthiolation of alkene, 44.5 mg (0.3 mmol, 1.0 equiv) of 4-methoxyallylbenzene was applied. After purification by column chromatography on silica gel (EtOA_C /petroleum ether 1:20), the title compound was obtained as a yellow oil (20.1 mg, 34% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.11 (d, *J* = 8.4 Hz, 2H), 6.84 (d, *J* = 8.4 Hz, 2H), 3.79 (s, 3H), 2.93–2.83 (m, 2H), 2.64–2.59 (m, 1H), 2.09 (s, 3H), 1.23–1.19 (m, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 158.0, 131.6, 130.1, 113.6, 55.2, 43.0, 42.2, 19.8 (t, *J*=19.6 Hz), 13.7. IR (KBr) v 2903, 1624, 1513, 1221, 1040, 819. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₁H₁₅DOS 220.0882; Found 220.0882.

(1-([1,1'-Biphenyl]-4-yl)propan-2-yl-1-d)(methyl)sulfane (36)

According to the general procedure for formal deuteromethylthiolation of alkene, 58.2 mg (0.3 mmol, 1.0 equiv) of 4-(1-propen-1-yl)-1,1'-biphenyl was applied. After purification by column chromatography on silica gel (DCM /petroleum ether 1:30), the title compound was obtained as a yellow oil (59.8 mg, 82% yield, d.r. > 20:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.62–7.60 (m, 2H), 7.57–7.54 (m, 2H), 7.47–7.43 (m, 2H), 7.38–7.32 (m, 1H), 7.30–7.27 (m, 2H), 3.02–2.94 (m, 2H), 2.14 (s, 3H), 1.28 (d, *J* = 6.4 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 140.9, 139.2, 138.6, 129.6, 128.7, 127.1,

127.0, 127.0, 42.7, 42.4 (t, *J* =19.8 Hz), 20.2, 13.7. IR (KBr) v 2930, 1610, 1486, 1082, 694, 513. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₆H₁₇DS 244.1270; Found 244.1263.

(1,2-Diphenylethyl-2-d)(methyl)sulfane (37)

According to the general procedure for formal deuteromethylthiolation of alkene, 54.1 mg (0.3 mmol, 1.0 equiv) of stilbene was applied. After purification by column chromatography on silica gel (EtOA_C /petroleum ether 1:20), the title compound was obtained as a colourless oil (41.2 mg, 60% yield, d.r. > 20:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.35–7.21 (m, 8H), 7.13–7.10 (m, 2H), 3.95 (d, *J* = 7.2 Hz, 1H), 3.20 (d, *J* = 7.2 Hz, 1H), 1.90 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 141.7, 138.9, 129.1, 128.3, 128.1, 127.9, 127.1, 126.3, 53.3, 42.4 (t, *J* =19.8 Hz), 14.6. IR (KBr) v 3026, 2910, 1621, 1456, 1068, 710, 516. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₅H₁₅DS 230.1114; Found 230.1116.

5-Chloro-2-(2,4-dichlorophenoxy)phenyl 4-(2-(methylthio)ethyl-1-d)benzoate (38)

According to the general procedure for formal deuteromethylthiolation of alkene, 125 mg (0.3 mmol, 1.0 equiv) of 5-chloro-2-(2,4-dichlorophenoxy)phenyl 4-vinylbenzoate was applied. After purification by column chromatography on silica gel (EtOA_C

/petroleum ether 1:20), the title compound was obtained as a colourless oil (86.9 mg, 62% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.98 (d, *J* = 8.0 Hz, 2H), 7.33–7.29 (m, 4H), 7.21 (dd, *J* = 8.8, 2.8 Hz, 1H), 7.14 (dd, *J* = 8.8, 2.4 Hz, 1H), 6.92 (d, *J* = 4 Hz, 1H), 6.89 (d, *J* = 4 Hz, 1H), 2.96 (t, *J* = 7.6 Hz, 1H), 2.77 (d, *J* = 8.0 Hz, 2H), 2.13 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 163.9, 151.1, 147.0, 146.8, 141.8, 130.5, 130.3, 129.3, 129.2, 128.7, 128.0, 127.0, 126.5, 125.9, 124.6, 120.4, 120.3, 35.4 (t, *J* = 19.7 Hz), 35.2, 15.7. IR (KBr) v 3077, 2920, 1748, 1613, 1476, 1267, 1059, 800, 743, 563, 471. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₂₂H₁₆DCl₃O₃S 489.9924; Found 489.9918.

(*R*)-2,5,7,8-Tetramethyl-2-((4*R*,8*R*)-4,8,12-trimethyltridecyl)chroman-6-yl 4-(2-(methylthio)ethyl-1-d)benzoate (39)

According to the general procedure for formal deuteromethylthiolation of alkene, 168 mg (0.3 mmol, 1.0 equiv) of (*R*)-2,5,7,8-tetramethyl-2-((4*R*,8*R*)-4,8,12-trimethyltridecyl)-chroman-6-yl 4-vinylbenzoate was applied. After purification by column chromatography on silica gel (EtOA_C /petroleum ether 1:20), the title compound was obtained as a colourless oil (96.9 mg, 53% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.20 (d, *J* = 8.0 Hz, 2H), 7.38 (d, *J* = 8.0 Hz, 2H), 3.00 (t, *J* = 7.6 Hz, 1H), 2.81 (d, *J* = 7.6 Hz, 2H), 2.65–2.60 (m, 2H), 2.17 (s, 3H), 2.13 (s, 3H), 2.07 (s, 3H), 2.02 (s, 3H),

1.90–1.74 (m, 2H), 1.61–1.49 (m, 4H), 1.46–1.37 (m, 4H), 1.33–1.21 (m, 10H), 1.18– 1.05 (m, 6H), 0.89–0.86 (m, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 165.0, 149.4, 146.4, 140.5, 130.4, 128.7, 127.7, 126.9, 125.1, 123.0, 117.4, 75.0, 40.3, 39.5, 39.3, 37.4, 37.2, 35.6 (t, *J* = 15.1 Hz), 35.3, 32.8, 32.7, 32.6, 31.2, 31.0, 28.0, 24.8, 24.4, 24.2, 23.7, 22.7, 22.6, 21.0, 20.6, 19.7, 19.6, 15.7, 13.0, 12.2, 11.8. IR (KBr) v 2899, 2261, 1937, 1728, 1603, 1446, 1257, 1079, 902, 723. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₃₉H₅₉DO₃S 610.4404; Found 610.4396.

1-Methoxy-4-(2-(methylsulfinyl)propyl)benzene (40)

MeO O^{__S} Me

At -78 °C (liquid nitrogen and acetone), to a solution of (1-(4-methoxyphenyl)propan-2-yl)(methyl)sulfane (196 mg, 1.0 mmol, 1.0 equiv) in dichloromethane (10 mL) was added dropwise a solution of *m*-CPBA (173 mg, 1.0 mmol, 1.0 equiv) in dichloromethane (5 mL). After one hour stirring at that temperature, dichloromethane (5 mL) and saturated aqueous sodium bicarbonate solution (5 mL) were added, the layers were separated and the aqueous layer was extracted with dichloromethane (3 × 5 mL). The combined organic layers were dried over sodium sulfate, filtered and concentrated. The crude was purified by flash column chromatography on silica gel (methanol), the title compound was obtained as a colourless oil (180 mg, 85% yield, dr 1:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.02–6.99 (m, 2H), 6.75–6.70 (m, 2H), 3.66 (s, 3H), 3.11–2.98 (m, 1H), 2.67–2.59 (m, 1H), 2.53–2.47(m, 1H), 2.37 (d, *J* = 30.4 Hz, 3H), 1.05 (dd, *J* = 39.2, 6.8 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 158.2, 130.1, 129.9, 113.8, 57.3, 55.0, 35.2, 34.2, 10.4. IR (KBr) v 2919, 2533, 2041, 1591, 1497, 1247, 1016, 535. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₁H₁₆O₂S 235.0769; Found 235.0766.

1-Methoxy-4-(2-(methylsulfonyl)propyl)benzene (41)

MeO O^{-S}Me

To a solution of (1-(4-methoxyphenyl)propan-2-yl)(methyl)sulfane (196 mg, 1.0 mmol, 1.0 equiv) in dichloromethane (10 mL) was added dropwise a solution of m-CPBA (346 mg, 2.0 mmol, 2.0 equiv) in dichloromethane (5 mL) at room temperature. After one hour, dichloromethane (5 mL) and saturated aqueous sodium bicarbonate solution (5 mL) were added, the layers were separated and the aqueous layer was extracted with dichloromethane $(3 \times 5 \text{ mL})$. The combined organic layers were dried over sodium sulfate, filtered and concentrated. The crude product was purified by flash column chromatography on silica gel (EtOA_C /petroleum ether 1:3), the title compound was obtained as a colourless oil (203 mg, 89% yield). ¹H NMR (400 MHz, Chloroform-d) δ 7.11 (d, J = 8.4 Hz, 2H), 6.86 (d, J = 8.4 Hz, 2H), 3.79 (s, 3H), 3.38 (dd, J = 14.0, 4.4Hz, 1H), 3.17-3.10 (m, 1H), 2.80 (s, 3H), 2.63 (dd, J = 13.6, 10.4 Hz, 1H), 1.30 (d, J = 13.6, 10.4 Hz, 1H), 1.30 (d, J = 13.6, 10.4 Hz, 10.46.8 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-d) δ 158.6, 130.1, 128.5, 114.2, 60.8, 55.2, 38.0, 34.5, 12.8. IR (KBr) v 2930, 2261, 2052, 1728, 1591, 1498, 1268, 1111, 1037, 954, 776, 494. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₁H₁₆O₃S 229.0898; Found 229.0895.
N-(((1-(4-Methoxyphenyl)propan-2-yl)thio)methyl)-*N*-(phenylsulfonyl)benzenesulfonamide (42)

To a 10 mL reaction tube was sequentially added (1-(4-methoxyphenyl)propan-2yl)(methyl)sulfane (58.8 mg, 0.3 mmol, 1.0 equiv), dry acetonitrile (2 mL), and *N*-fluorobis(benzenesulfonyl)imide (113 mg, 0.36 mmol, 1.2 equiv). The system was heated to 80 °C with an oil bath. After stirring for 1 h, dichloromethane (5 mL) was added, and the solution was transferred to a 25 mL flask. The solvent was removed under reduced pressure. After purification by column chromatography on silica gel (EtOA_C /petroleum ether 1:20), the title compound was obtained as a colourless oil (60.4 mg, 41%). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.12–8.09 (m, 4H), 7.67–7.63 (m, 2H), 7.58–7.52 (m, 4H), 7.12–7.10 (m, 2H), 6.84–6.81 (m, 2H), 4.84 (d, *J* = 3.2 Hz, 2H), 3.79 (s, 3H), 3.22–3.16 (m, 1H), 2.85 (dd, *J* = 13.2, 6.0 Hz, 1H), 2.55 (dd, *J* = 13.6, 8.4 Hz, 1H), 1.09 (d, *J* = 6.8 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 158.1, 139.9, 133.9, 131.0, 130.4, 128.9, 128.5, 113.6, 55.2, 50.9, 43.0, 41.2, 20.4. IR (KBr) v 2940, 1633, 1351, 1162, 577, 431. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₂₃H₂₅NO₅S₃ 514.0793; Found 514.0791.

```
2-(4-(Ethyl-1-d)phenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (43)
```


A solution of 4,4,5,5-tetramethyl-2-(4-(2-(methylthio)ethyl-1-d)phenyl)-1,3,2dioxaborolane (55.8 mg, 0.2 mmol) in 3 mL of EtOH was heated to 60 °C with an oil bath in the presence of approximately 500 mg of Raney nickel for overnight with stirring. The mixture was then filtrated, dissolved in water, extracted with ether, dried over Na₂SO₄, filtrated and concentrated. After purification by column chromatography on silica gel (EtOA_C /petroleum ether 1:20), the title compound was obtained as a colourless oil (26.1 mg, 56%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.74 (d, *J* = 8.0 Hz, 2H), 7.22 (d, *J* = 8.0 Hz, 2H), 2.65 (q, *J* = 7.6 Hz, 1H), 1.34 (s, 12H), 1.23 (d, *J* = 7.6 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 147.7, 134.9, 127.3, 83.6, 28.7 (t, *J* = 19.6 Hz), 24.8, 15.4. IR (KBr) v 2972, 1603, 1351, 1152, 838, 650. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₄H₂₀DBO₂ 234.1776; Found 234.1771.

4 References

- K. Okuma, T. Koike, S. Yamamoto, K. Yonekura, H. Ohta, *Chem. Lett.*, 1989, 11, 1953-1956.
- [2] T. Chatterjee, R. Dey, B. C. Ranu, New. J. Chem., 2011, 35, 1103-1110.
- [3] M. Li, Y.-F. Qiu, C.-T. Wang, X.-S. Li, W.-X. Wei, Y.-Z. Wang, Q.-F. Bao, Y. N. Ding, W.-Y. Shi, Y.-M. Liang, *Org. Lett.*, **2020**, *22*, 6288-6293.
- [4] Z. Lei, A. Banerjee, E. Kusevska, E. Rizzo, P. Liu, M. Y. Ngai, *Angew. Chem. Int. Ed.*, 2019, 58, 7318-7323.
- [5] S. Menon, R. M. Ongungal, S. Das, *Polym. Chem.*, **2013**, *4*, 623-628.

[6] J.-L. Tu, J.-L. Liu, W. Tang, M. Su, F. Liu, Org. Lett., 2020, 22, 1222-1226.

[7] M. Teraguchi, M. Ohtake, H. Inoue, A. Yoshida, T. Aoki, T. Kaneko, K. Yamanaka, *Journal of Polymer Science Part A: Polymer Chemistry*, **2005**, *43*, 2348-2357.

[8] A. Deb, S. Manna, A. Modak, T. Patra, S. Maity, D. Maiti, Angew. Chem. Int.
 Ed., 2013, 52, 9747-9750.

[9] S. K. Kristensen, S. L. R. Laursen, E. Taarning, T. Skrydstrup, *Angew. Chem. Int. Ed.*, 2018, 57, 13887-13891.

[10] M. Teders, C. Henkel, L. Anhauser, F. Strieth-Kalthoff, A. Gomez-Suarez, R.
Kleinmans, A. Kahnt, A. Rentmeister, D. Guldi, F. Glorius, *Nat. Chem.*, 2018, 10, 981-988.

[11] J. Polster, P. Schieberle, J. Agric. food chem., 2015, 63, 1419-1432.

5 NMR spectra

Electronic Supplementary Information

Electronic Supplementary Information

Electronic Supplementary Information

Electronic Supplementary Information

Electronic Supplementary Information

Electronic Supplementary Information

Electronic Supplementary Information

Electronic Supplementary Information

Electronic Supplementary Information

Electronic Supplementary Information

Electronic Supplementary Information

Electronic Supplementary Information

Electronic Supplementary Information

Electronic Supplementary Information

Electronic Supplementary Information

Electronic Supplementary Information

Electronic Supplementary Information

