Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Two Approaches for the Synthesis of Levo-Praziquantel

Haowen Shou,^a Zhaoting He,^b Gang Peng,^c Weike Su^a and Jingbo Yu^{*,a}

^a National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China. E-mail: yjb@zjut.edu.cn

^b Beijing Fukangren Bio-pharm Tech Co., Ltd., 102627, P. R. China

^{c.}Huadong Medicine Co., Ltd., Hangzhou 310011, P. R. China

Table of contents

1. Mechanochemical Parameters Screening of Aza-Henry Reaction	2
2. Reaction Conditions Optimization of Reduction Reaction	3
3. Recovery and Reuse of the Resolution Agent	4
4 Mechanochemical Parameters Screening of Acylation/Ring Closing Reaction	5
5. NMR Spectra	6
5. HPLC Spectra	9
6. References	15

1. Mechanochemical Parameters Screening of Aza-Henry Reaction

Table S1. Screening of Mechanochemical Parameters of Aza-Henry Reaction^a

	1	1) CH ₃ NO ₂ (1.5 eq.) Et ₃ N (1.1 eq.) 2) CICH ₂ COCI (2.0 eq.) NaCI (4.64 g) Ball milling		
entry	$v_{\rm rot}$	$\Phi_{ m MB}$	time (min)	yield $(\%)^b$
1	100	0.13	30+10	72
2	150	0.13	30+10	75
3	200	0.13	30+10	83
4	250	0.13	30+10	77
5	300	0.13	30+10	76
6	200	0.05	30+10	54
7	200	0.09	30+10	79
8	200	0.17	30+10	65
9	200	0.13	10+10	78
10	200	0.13	50+10	82
11	200	0.13	70+10	81
12	200	0.13	30+2	74
13	200	0.13	30+6	80
14	200	0.13	30+14	81
15	200	0.13	30+18	80

^{*a*} Reaction conditions: **1** (1 mmol), nitromethane (1.5 mmol), Et₃N (1.1 mmol), and NaCl (4.64 g) were placed in a 50 mL stainless steel vessel with stainless-steel ball ($d_{MB} = 6$ mm) on a planetary mill, milling at a certain rotation speed for certain minutes, then chloracetyl chloride was added and milling for certain minutes. ^{*b*} Yield of **2** based on **1**.

Figure S1. Screening of the Grinding Auxiliary of Aza-Henry Reaction^a

^{*a*} **1** (1 mmol), nitromethane (1.5 mmol), Et₃N (1.1 mmol) and grinding auxiliary ($V_{ga} = 2.15 \text{ cm}^3$) were placed in a 50 mL stainless steel vessel with stainless-steel ball on a planetary mill, milling at 200 rpm for 30 min, then chloracetyl chloride was added and milling for 10 min. Yield of **2** based on **1**.

2. Reaction Conditions Optimization of Reduction Reaction

Table S2. Screening of	Reduction Reaction	Condition
------------------------	---------------------------	-----------

^{*a*} Yield of **3** based on **2** (1 mmol).

entry	solvent/additive (mL)	temperature (°C)	time (h)	yield $(\%)^b$
1	EtOH/NH ₃ ·H ₂ O = $10/1$ (11)	r.t.	4	47
2	THF/NH ₃ ·H ₂ O = $10/1$ (11)	r.t.	4	44
3	PhCH ₃ /NH ₃ ·H ₂ O = $10/1$ (11)	r.t.	4	58
4	MeOH/NH ₃ ·H ₂ O = $10/1$ (11)	r.t.	4	74
5	MeOH/NH ₃ ·H ₂ O = $10/1$ (11)	40	4	62
6	MeOH/NH ₃ ·H ₂ O= $10/1$ (11)	50	4	43
7	$MeOH/NH_3 \cdot H_2O = 10/1$ (11)	r.t.	3	75
8	MeOH/NH ₃ ·H ₂ O = $10/1$ (8)	r.t.	3	70
9	MeOH/NH ₃ ·H ₂ O = $10/1$ (15)	r.t.	3	73

Table S3. Screening of Raney Ni Catalyzed Reduction Condition^a

^{*a*} Reaction conditions: **2** (1 mmol), Raney Ni (0.5 mL, 100 g solid/125 mL water) were placed in a 25 mL two-necked flask with solution, stirring under an atmosphere of H_2 (15 psi) for certain hours. ^{*b*} Yield of **3** based on **2**.

3. Recovery and Reuse of the Resolution Agent

Figure S1. Recovery and Reuse of *L*-tartaric acid ^{*a*}

^a Reaction conditions were consistent to those in Table 2, _L-tartaric acid (0.5 eq) was used in each reaction.

4 Mechanochemical Parameters Screening of Acylation/Ring Closing Reaction

Table S4. Screening of Mechanochemical Parameters of Acylation/Ring Closing Reaction^a

N_O	C ₆ H ₁₁ COOH (1.0 eq.) EDCI/HOBt (1.1/1.0 eq.)	
	Ball milling	A A
H ₂ N ² CI		0
R- 3		<i>R</i> -PZQ

entry	$\mathcal{V}_{\mathrm{rot}}$	$\Phi_{ m MB}$	time (min)	yield $(\%)^b$	<i>ee</i> (%) ^c
1	100	0.13	30+30	73	99.0
2	200	0.13	30+30	84	99.7
3	300	0.13	30+30	77	99.6
4	400	0.13	30+30	71	98.4
5	200	0.05	30+30	53	99.1
6	200	0.09	30+30	64	99.2
7	200	0.17	30+30	72	98.7
8	200	0.13	10+30	78	99.2
9	200	0.13	50+30	74	99.4
10	200	0.13	70+30	74	99.2
11	200	0.13	30+10	75	99.0
12	200	0.13	30+50	83	99.3
13	200	0.13	30+70	79	98.5

^a Reaction conditions: cyclohexanecarboxylic acid (1.0 mmol), EDCI (1.0 mmol) and HOBt (1.0 mmol) were placed in a 50 mL stainless steel vessel with stainless-steel ball (dMB = 6 mm), milling at a certain rotation speed for certain minutes, then R-3 (1.0 mmol) was added and milling for certain minutes.^b Yield of R-PZQ based on *R*-3.^{*c*} Determined by HPLC analysis.

5. NMR Spectra

2-chloro-1-(1-(nitromethyl)-3,4-dihydroisoquinolin-2(1H)-yl)ethan-1-one (2)

1-(1-(aminomethyl)-3,4-dihydroisoquinolin-2(1H)-yl)-2-chloroethan-1-one (**3**)

(*R*)-2-(cyclohexanecarbonyl)-1,2,3,6,7,11b-hexahydro-4H-pyrazino[2,1-a]isoquinolin-4-one (*R*-PZQ)

5. HPLC Spectra

2-chloro-1-(1-(nitromethyl)-3,4-dihydroisoquinolin-2(1H)-yl)ethan-1-one (2)

Racemic 2

R-2 (After recrystallization)

R-2 (Up-scale)

1-(1-(aminomethyl)-3,4-dihydroisoquinolin-2(1H)-yl)-2-chloroethan-1-one (3)

Racemic 3

R-**3**

(*R*)-2-(cyclohexanecarbonyl)-1,2,3,6,7,11b-hexahydro-4H-pyrazino[2,1-a]isoquinolin-4-one (*R*-PZQ)

Racemic PZQ

R-PZQ

R-**PZQ (Up-scale)**

6. References

- [1] W. P. Gallagher, M. Marlatt, R. Livingston, S. Kiau, J. Muslehiddinoglu, Org. Process Res. Dev., 2012, 16, 1665–1668.
- [2] R. C. Schoenfeld, D. L. Bourdet, K. A. Brameld, E. Chin, J. de Vicente, A. Fung, S. F. Harris, E. K. Lee, S. L. Pogam, V. Leveque, J. Li, A. S.-T. Lui, I. Najera, S. Rajyaguru, M. Sangi, S. Steiner, F. X. Talamas, J. P. Taygerly, J.-P. Zhao, *J. Med. Chem.*, 2013, 56, 8163–8182.