Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2021

Supplementary Information

A versatile iodo(III)etherification of terminal ethynylsilanes using BF₃–O^{*i*}Pr₂ and alkyl benzyl ether

Takuya Matsumoto,^a Hiroshi Hagiyama,^b Kanetsugu Kuribayashi,^a Kazuhito Hioki,^b Hikaru Fujita,^a Masahito Ochiai^c and Munetaka Kunishima^{*a}

^a Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical, and Health Sciences, Kanazawa

University, Kakuma-machi, Kanazawa 920-1192, Japan

^b Faculty of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe 650-8586, Japan

^c Graduate School of Pharmaceutical Sciences, Tokushima University, 1-78 Shomachi, Tokushima 770-8505, Japan

Table of Contents

1.	General	S2
2.	Preparation of boron trifluoride diisopropyl etherate (BF ₃ –O ⁱ Pr ₂)	S2
3.	Procedure for the reactions in Table 1	S2-3
4.	Procedure for the reactions in Tables 2, 3, 4	S3
5.	Characterization Data of λ^3 -iodonium salts	S4–6
6.	References	S7
7.	¹ H and ¹³ C NMR spectra	S8–25

General

Unless otherwise noted, all reactions were performed under an atmosphere of dinitrogen. Solvents were dehydrated according to standard methods. Materials were obtained from common commercial suppliers, stored under dinitrogen, and used as received. ¹H and ¹³C NMR spectra were recorded on a BRUKER DPX400 spectrometer (¹H: 400 MHz; ¹³C: 100.5 MHz) or a JEOL JNM-ECS400 (¹H: 400 MHz; ¹³C: 100.5 MHz) in CDCl₃. Chemical shift values (δ ppm) for ¹H and ¹³C are referenced to the resonances of the residual non-deuterated solvent as the internal standard (¹H: CDCl₃, δ 7.26; ¹³C: CDCl₃, δ 77.16). NMR data is reported as follows: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet; coupling constants in Hz; integration. Mass spectra were recorded on a JEOL D-300 mass spectrometer (FAB-MS) or a JMS-T100TD (ESI+). IR spectra were recorded on JEOL JIR-100 FT-IR or HORIBA FT-IR 720 spectrometer. GC data were obtained from a HITACHI 263-50 gas chromatograph (column: 10% SE-30.2 mm × 2 m). Melting points were measured on a Yanaco MP-J3 apparatus.

Iodosylbenzene was prepared from iodobenzene diacetate according to a reported procedure.¹ Benzyl isopropyl ether,² benzyl *tert*-butyl ether,² benzyl 2-phenylethyl ether,³ and benzyl 3-phenylpropyl ether⁴ were prepared according to reported procedures. Benzyl cyclohexylmethyl ether was prepared using a method similar to that of other alkyl benzyl ethers. The spectra of the thus obtained product were in good agreement with reported values.⁵

Preparation of boron trifluoride diisopropyl etherate (BF₃-O'Pr₂)

An ice-cooled solution of ${}^{i}Pr_{2}O$ (7.00 g, 68.5 mmol) in CH₂Cl₂ (30 mL) was aerated with BF₃ gas generated from a mixture of NaBF₄ (30.0 g, 273 mmol), B₂O₃ (6.00 g, 86.2 mmol), and conc. H₂SO₄ (30 mL) heated to 180 °C⁶ for approximately 10 min. Removal of all volatiles under reduced pressure afforded BF₃–O^{*i*}Pr₂ (7.90 g, 68% yield) as a colorless, hygroscopic, crystalline solid. ¹H NMR (400 MHz, CDCl₃) δ 1.43 (d, *J* = 6.5 Hz, 6*H*), 4.47–4.61 (m, 1*H*). ¹³C NMR (100.5 MHz, CDCl₃) δ 21.2, 76.1.

Procedure for the reactions in Table 1

A solution of the BF₃–ether complex (1.6–3.2 eq.) in CH₂Cl₂ (3.5 mL) was added dropwise to an ice-cooled suspension of trialkylethynylsilane (0.50 mmol, 1.0 eq.) and iodosylbenzene (1.6–3.2 eq.) in CH₂Cl₂ (3.5 mL). The reaction mixture was allowed to warm to room temperature. After the disappearance of trialkylethynylsilane was confirmed by GC, the reaction was quenched with a saturated aqueous solution of NaBF₄ (2 mL). The organic phase was separated and the aqueous phase was extracted with CH₂Cl₂ (3 × 3 mL). The combined organic phases were washed with water (2 mL), filtered, and the solvent was removed under reduced pressure. Trituration of the residue with hexane afforded spectroscopically pure products. Recrystallization was performed for data collection.

The procedure was slightly modified for entry 6: The reaction was quenched with cold water. The organic phase was separated and the aqueous phase was extracted with CH_2Cl_2 (3 × 3 mL). The combined organic phase was washed with a cold saturated aqueous solution of NaBr (3 × 2 mL), followed by a saturated aqueous solution of

NaBF₄ (3×2 mL), and water (2 mL). The organic phase was filtered, and all volatiles were removed under reduced pressure. Trituration of the residue with hexane afforded spectroscopically pure products. Recrystallization was performed for data collection.

Procedure for the reactions in Tables 2, 3, 4

Method A: A solution of the BF₃–ether complex (1.5 mmol, 3.0 eq.) and the dialkylether (5.1 mmol, 10 eq.) in CH₂Cl₂ (3.5 mL) was added dropwise to an ice-cooled suspension of ethynyltrimethylsilane (50 mg, 0.51 mmol, 1.0 eq.) and iodosylbenzene (336 mg, 1.5 mmol, 3.0 eq.) in CH₂Cl₂ (3.5 mL). The reaction solution was allowed to warm to room temperature. After the disappearance of ethynyltrimethylsilane was confirmed by GC, the reaction was quenched with a saturated aqueous solution of NaBF₄ (2 mL). The organic phase was separated and the aqueous phase was extracted by CH₂Cl₂ (3 × 3 mL). The combined organic phase was washed with water (2 mL), filtered, and the solvent was removed under reduced pressure. Trituration of the residue with hexane afforded the iodonium salts. In the cases where the product was a mixture, the yield was calculated based on the ¹H NMR integration values. Recrystallization was performed for data collection.

Method B: A solution of the BF₃-ether complex (1.5 mmol, 3.0 eq.) and the dialkylether (5.1 mmol, 10 eq.) in CH_2Cl_2 (3.5 mL) was heated to 50 °C under a dinitrogen atmosphere at ambient pressure until all CH_2Cl_2 was evaporated. Another portion of CH_2Cl_2 (3.5 mL) was added to the residue and removed again. More CH_2Cl_2 (3.5 mL) was added to the residue, and this solution was added dropwise to an ice-cold mixture of ethynyltrimethylsilane (50 mg, 0.51 mmol, 1.0 eq.) and iodosylbenzene (336 mg, 1.5 mmol, 3.0 eq.) in CH_2Cl_2 (3.5 mL). The subsequent operations were the same as in Method A.

Characterization Data of λ³-iodanes

(*E*)-(2-Ethoxy-1-(trimethylsilyl)vinyl)(phenyl)iodonium tetrafluoroborate $(1a)^7$ and (*E*)-(2-Phenylehoxy-1-(trimethylsilyl)vinyl)(phenyl)iodonium tetrafluoroborate $(1b)^8$ are known compounds.

(E)-(2-Butoxy-1-(trimethylsilyl)vinyl)(phenyl)iodonium tetrafluoroborate (1c)

[†]Ph BF₄ ⁿBuO SiMe₃

colorless crystalline solid (CH₂Cl₂ / hexane); **mp** 118.5–119°C; ¹**H NMR** (400 MHz, CDCl₃) δ 0.17 (s, 9*H*), 0.95 (t, *J* = 7.4Hz, 3*H*), 1.36–1.46 (m, 2*H*), 1.67–1.74 (m, 2*H*), 4.28 (t, *J* = 6.5Hz, 2*H*), 7.42–7.47 (m, 2*H*), 7.55–7.59 (m, 1*H*), 7.90–7.93 (m, 2*H*), 8.22 (s, 1*H*); ¹³**C NMR** (100.5 MHz, CDCl₃) δ 0.0, 13.6, 18.8, 31.7, 76.6, 94.4, 110.7, 132.0, 132.2, 133.8, 176.1; **IR** (KBr) 1577, 1083, 842 cm⁻¹; **HRMS-FAB** (*m/z*) Calcd for C₁₅H₂₄OSiI [(M–BF₄)+] 375.0641, Found 375.0643; *Anal.* Calcd for C₁₅H₂₄BF₄IOSi: C, 38.98; H, 5.23; I, 27.46. Found: C, 38.68; H, 5.26; I, 27.49.

(E)-(2-Isopropoxy-1-(trimethylsilyl)vinyl)(phenyl)iodonium tetrafluoroborate (1d)

O SiMe₃

colorless crystalline solid (CH₂Cl₂ / hexane); **mp** 154–155°C (decomp.); ¹**H NMR** (400 MHz, CDCl₃) δ 0.17 (s, 9*H*), 1.36 (d, *J* = 6.2 Hz, 6*H*), 4.56–4.62 (m, 1*H*), 7.43–7.48 (m, 2*H*), 7.56–7.61 (m, 1*H*), 7.88–7.92 (m, 2*H*), 8.26 (s, 1*H*); ¹³C **NMR** (100.5 MHz, CDCl₃) δ 0.0, 22.5, 80.6, 94.5, 110.6, 132.0, 132.2, 133.7, 174.8; **IR** (KBr) 1577, 1083, 842 cm⁻¹; **HRMS-FAB** (*m*/*z*) Calcd for C₁₄H₂₂OSiI [(M–BF₄)+] 361.0485, Found 361.0485; *Anal.* Calcd for C₁₄H₂₂BF₄IOSi: C, 37.52; H, 4.95; I, 28.32. Found: C, 37.23; H, 4.93; I, 28.30.

(E)-(1-(tert-Butyldimethylsilyl)-2-ethoxyvinyl)(phenyl)iodonium tetrafluoroborate (1e)

colorless crystalline solid (CH₂Cl₂ / hexane); **mp** 164–165°C (decomp.); ¹**H NMR** (400 MHz, CDCl₃) δ 0.19 (s, 6*H*), 0.80 (s, 9*H*), 1.37 (t, *J* = 7.1 Hz, 3*H*), 4.36 (q, *J* = 7.1 Hz, 2*H*), 7.45–7.49 (m, 2*H*), 7.59–7.62 (m, 1*H*), 7.91–7.93 (m, 2*H*), 8.38 (s, 1*H*); ¹³**C NMR** (100.5 MHz, CDCl₃) δ – 3.5, 15.3, 18.5, 26.6, 72.6, 93.3, 111.5, 132.0, 132.3, 134.3, 177.2; **IR** (KBr) 1573, 1216, 1051, 844, 825 cm⁻¹; **HRMS-FAB** (*m*/*z*) Calcd for C₁₆H₂₆OSiI [(M–BF₄)+] 389.07976, Found 389.07916.

Phenyl(4-phenoxyphenyl)iodonium tetrafluoroborate (3)

colorless crystalline solid (CH₂Cl₂ / Et₂O); **mp** 136–137°C; ¹**H NMR** (400 MHz, CDCl₃) δ 6.96–7.00 (m, 2*H*), 7.02–7.06 (m, 2*H*), 7.21–7.26 (m, 1*H*), 7.38–7.43 (m, 2*H*), 7.43–7.48 (m, 2*H*), 7.58–7.63 (m, 1*H*), 7.95–7.98 (m, 2*H*), 7.99–8.03 (m, 2*H*); ¹³**C NMR** (100.5 MHz, CDCl₃) δ 102.0, 112.9, 120.6, 121.0, 125.6, 130.4, 132.5, 132.7, 134.9, 137.8, 154.4, 162.2; **HRMS-FAB** (*m*/*z*) Calcd for C₁₈H₁₄OI [(M–BF₄)+] 373.0089, Found 373.0045.

(E)-(2-Methoxy-1-(trimethylsilyl)vinyl)(phenyl)iodonium tetrafluoroborate (1f)

MeO SiMe₃

colorless crystalline solid (CH₂Cl₂ / hexane); **mp** 131–133°C; ¹**H NMR** (400 MHz, CDCl₃) δ 0.16 (s, 9*H*), 4.05 (s, 3*H*), 7.42–7.47 (m, 2*H*), 7.55–7.60 (m, 1*H*), 7.90–7.94 (m, 2*H*), 8.17 (s, 1*H*); ¹³**C NMR** (100.5 MHz, CDCl₃) δ 0.1, 63.2, 95.3, 110.6, 132.1, 132.3, 133.9, 177.0; **IR** (KBr) 1573, 1083, 844 cm⁻¹; **HRMS-FAB** (*m/z*) Calcd for C₁₂H₁₈OSiI [(M–BF₄)+] 333.0172, Found 333.0173.

(E)-(2-Cyclohexylmethyloxy-1-(trimethylsilyl)vinyl)(phenyl)iodonium tetrafluoroborate (1g)

colorless crystalline solid (CH₂Cl₂ / hexane); **mp** 134–136°C (decomp.); ¹**H** NMR (400 MHz, CDCl₃) δ 0.19 (s, 9*H*), 0.97–1.07 (m, 2*H*), 1.13–1.32 (m, 3*H*), 1.66–1.79 (m, 6*H*), 4.09 (d, *J* = 6.0 Hz, 2*H*), 7.44–7.49 (m, 2*H*), 7.58–7.62 (m, 1*H*), 7.87–7.91 (m, 2*H*), 8.18 (s, 1*H*); ¹³C NMR (100.5 MHz, CDCl₃) δ 0.0, 25.6, 26.2, 29.2, 82.2, 94.2, 110.7, 132.0, 132.2, 133.7, 176.3; **IR** (KBr) 1577, 1083, 842 cm⁻¹; **HRMS-FAB** (*m*/*z*) Calcd for C₁₈H₂₈OSiI [(M–BF₄)+] 415.0954, Found 415.0965.

(E)-(2-Benzyloxy-1-(trimethylsilyl)vinyl)(phenyl)iodonium tetrafluoroborate (1h)

orange oil (CH₂Cl₂ / hexane); ¹**H NMR** (400 MHz, CDCl₃) δ 0.12 (s, 9*H*), 5.27 (s, 2*H*), 7.31–7.41 (m, 7*H*), 7.51 (t, J = 7.4Hz, 1*H*), 7.85 (d, J = 7.5 Hz, 2*H*), 8.27 (s, 1*H*) ; ¹³**C NMR** (100.5 MHz, CDCl₃) δ 0.0, 77.6, 95.9, 110.8, 128.4, 128.8, 128.9, 131.9, 132.1, 133.8, 135.4, 175.3; **IR** (neat) 1571, 1066, 848 cm⁻¹; **HRMS-FAB**

(m/z) Calcd for C₁₈H₂₂OSiI [$(M-BF_4)+$] 409.0485, Found 409.0499.

(E)-(2-(3-Phenylpropyloxy)-1-(trimethylsilyl)vinyl)(phenyl)iodonium tetrafluoroborate (1i)

orange oil (CH₂Cl₂ / hexane); ¹**H NMR** (400 MHz, CDCl₃) δ 0.20 (s, 9*H*), 1.99–2.06 (m, 2*H*), 2.71 (t, *J* = 7.8 Hz, 2*H*), 4.30 (t, *J* = 6.4 Hz, 2*H*), 7.16–7.21 (m, 3*H*), 7.26–7.31 (m, 2*H*), 7.39–7.44 (m, 2*H*), 7.51–7.56 (m, 1*H*), 7.90–7.94 (m, 2*H*), 8.23 (s, 1*H*); ¹³**C NMR** (100.5 MHz, CDCl₃) δ 0.1, 31.5, 31.8, 75.8, 94.6, 110.9, 126.2, 128.5, 128.6, 132.0, 132.2, 133.9, 141.0, 175.8; **HRMS-FAB** (*m/z*) Calcd for C₂₀H₂₆OSiI [(M–BF₄)+] 437.0798, Found 437.0772.

References

- (1) H. Shalzman and J. G. Sharefskin, Org. Synth., 1963, 43, 60.
- (2) N. Yasukawa, T. Kanie, M. Kuwata, Y. Monguchi, H. Sajiki and Y. Sawama, *Chem. Eur. J.*, 2017, 23, 10974–10977.
- (3) G. Urgoitia, R. SanMartin, M. T. Herrero and E. Domínguez, *Adv. Synth. Catal.*, 2016, **358**, 3307–3312.
- (4) T. Kurita, K. Hattori, S. Seki, T. Mizumoto, F. Aoki, Y. Yamada, K. Ikawa, T. Maegawa, Y. Monguchi and H. Sajiki, *Chem. Eur. J.*, 2008, **14**, 664–673.
- (5) A. Gellert, N. Kahlcke, M. Feurer and S. Roth, Chem. Eur. J., 2011, 17, 12203–12209.
- (6) W. Kwasnik, Handb. Prep. Inorg. Chem., 1963, 150–271.
- (7) M. Ochiai, M. Kunishima, K. Fuji, M. Shiro and Y. Nagao, J. Chem. Soc., Chem. Commun., 1988, 1076–1077.
- (8) K. Miyamoto, T. Okubo, M. Hirobe, M. Kunishima and M. Ochiai, *Tetrahedron*, 2010, 66, 5819–5826.

S12

¹H NMR: **1e** (CDCl₃)

¹H NMR: **1f** (CDCl₃)

¹H NMR: **1h** (CDCl₃)

³ C NMR: 1h (CDCl ₃)					
175.299	135.355 133.843 132.139 131.938 131.938 131.938 132.139 138.885 128.412		77,565 77,421 76,796		0.000
, IPh BF₄	JIY F		Yr		Y
SiMe ₃					
•					
	1				
			\$		
	Sull is a sub-			nen vezeren autoren datuen datuen datuen datuen datuen datuen autoren datuen autoren datuen autoren datuen auto	
nna 180 160 4	10 420	400	en	·····	

S23

¹H NMR: **1i** (CDCl₃)

