Supplementary Material

Enantioselective synthesis of 3-aryl-phthalides through a nickel-catalyzed stereoconvergent cross-coupling reaction

Si-Yu Xu\(^a\), Rui Zhang\(^a\), Shu-Sheng Zhang\(^{**a}\) and Chen-Guo Feng\(^{**a,b,c}\)

\(^a\) Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China. E-mail: zhangss@shutcm.edu.cn; fengcg@shutcm.edu.cn

\(^b\) CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China

\(^c\) Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, China

Table of Contents

1. General Information S2
2. Preparation of 3-Bromoisobenzofuran-1(3H)-ones 1 S2
3. Asymmetric Nickel-Catalyzed Cross-Coupling of 3-Bromophthalides and Arylboronic Acids S2
4. Copies of \(^1\)H NMR, \(^{13}\)C NMR and \(^{19}\)F NMR Spectras S27
5. References S54
1. General Information

All reagents were obtained commercially unless otherwise noted. Anhydrous solvents were obtained using standard drying techniques. Commercial grade reagents were used without further purification. Flash chromatography was performed on 300-400 mesh silica gel with the indicated solvent systems. High-resolution mass spectra were determined on an Agilent 6545 Accurate-Mass Q-TOF spectrometer. Nuclear Magnetic Resonance (NMR) spectra were acquired on a Bruker Avance-600 HD instrument operating at 600, 150 and 565 MHz for 1H, 13C and 19F. Chemical shifts are reported in δ ppm referenced to an internal SiMe4 standard for 1H NMR, chloroform-d (δ 77.00) for 13C NMR. Multiplicities are reported using the following abbreviations: s = singlet, d = doublet, t = triplet, m = multiplet, br = broad resonance.

2. Preparation of 3-Bromoisobenzofuran-1(3H)-ones 1

All 3-bromoisobenzofuran-1(3H)-ones 3 were prepared as the following general procedures according to the known literature.\(^1\),\(^2\)

Under N$_2$ atmosphere, a mixture of alkylbenzoic acid (20.0 mmol), Na$_2$S$_2$O$_8$ (60.0 mmol) and TBAB (40.0 mmol) in MeCN (250 mL) was stirred at 80 °C for 18 h in a 500 mL three-necked, round-bottomed flask. The reaction mixture was diluted with water and extracted with EtOAc. The organic layer was washed with brine and dried over MgSO$_4$. The solvent was removed under reduced pressure and the residue was purified by silica-gel column chromatography to afford isobenzofuran-1(3H)-one.

Isobenzofuran-1(3H)-one (15.0 mmol), N-bromosuccinimide (18 mmol) and azo-bisisobutyronitrile (1.5 mmol) were combined in 100 mL of CCl$_4$ and refluxed under N$_2$ atmosphere for 4 h. The reaction mixture was cooled to room temperature, filtered and concentrated under reduced pressure. The residue was purified by silica-gel column chromatography (petroleum ether/EtOAc = 10/1) to yield 3-bromoisobenzofuran-1(3H)-one.

3. Asymmetrice Nickel-Catalyzed Cross-Coupling of 3-Bromophthalides and Arylboronic Acids

General Procedures: A 20 mL Schlenk tube was charged with 3-bromophthalide 1 (0.30 mmol), arylboronic acids 2 (0.6 mmol), K$_2$CO$_3$ (0.6 mmol), NiCl$_2$•glyme (0.03 mmol, 10 mol%), chiral ligand (0.036 mmol, 12 mol%) under N$_2$ atmosphere. THF (3 mL) was added and the mixture was stirred at rt for 10 min. The reaction mixture was then heated at 70 °C for additional 12 h. The mixture was concentrated under reduced pressure, and the residue was purified by silica-gel column chromatography (petroleum ether/EtOAc = 10/1 to 3/1) to afford pure 3-aryl-phthalides 3.
(R)-3-phenylisobenzofuran-1(3H)-one (3a)³

\[\text{\textit{H} NMR (600 MHz, Chloroform-}d\text{\textit{)}} \delta 7.96 (d, J = 7.7 \text{ Hz}, 1H), 7.65 (t, J = 7.5 \text{ Hz}, 1H), 7.55 (t, J = 7.5 \text{ Hz}, 1H), 7.43 – 7.35 (m, 3H), 7.34 (d, J = 7.7 \text{ Hz}, 1H), 7.28 (dd, J = 6.7, 2.9 Hz, 2H), 6.41 (s, 1H). \text{\textit{C} NMR (150 MHz, Chloroform-}d\text{\textit{)}} \delta 170.48, 149.66, 136.39, 134.29, 129.33, 129.27, 128.94, 126.94, 125.62, 125.58, 122.83, 82.69. [\alpha]^{25}_D = -37.30 \text{ (c=1.0 in CHCl}_3\text{, 84\% ee sample). HRMS (ESI): calcld for C}_{14}H_{11}O_2 ([M+ H]^+) 211.0754, found 211.0756. HPLC analysis: Daicel CHIRALPAK AD-3; hexane: i-PrOH = 80:20; detection wavelength = 220 nm; flow rate = 5.0 mL/min. t_R = 7.07 min (major) and 8.90 min (minor), 84\% ee.}

(R)-3-(p-tolyl)isobenzofuran-1(3H)-one (3b)³

\[\text{\textit{H} NMR (600 MHz, Chloroform-}d\text{\textit{)}} \delta 7.96 (d, J = 7.7 \text{ Hz}, 1H), 7.64 (t, J = 7.5 \text{ Hz}, 1H), 7.54 (t, J = 7.5 \text{ Hz}, 1H), 7.43 – 7.35 (m, 3H), 7.34 (d, J = 7.7 \text{ Hz}, 1H), 7.28 (dd, J = 6.7, 2.9 Hz, 2H), 6.41 (s, 1H). \text{\textit{C} NMR (150 MHz, Chloroform-}d\text{\textit{)}} \delta 170.48, 149.66, 136.39, 134.29, 129.33, 129.27, 128.94, 126.94, 125.62, 125.58, 122.83, 82.69. [\alpha]^{25}_D = -37.30 \text{ (c=1.0 in CHCl}_3\text{, 84\% ee sample). HRMS (ESI): calcld for C}_{14}H_{11}O_2 ([M+ H]^+) 211.0754, found 211.0756. HPLC analysis: Daicel CHIRALPAK AD-3; hexane: i-PrOH = 80:20; detection wavelength = 220 nm; flow rate = 5.0 mL/min. t_R = 7.07 min (major) and 8.90 min (minor), 84\% ee.}
7.55 (t, $J = 7.5$ Hz, 1H), 7.32 (d, $J = 7.7$ Hz, 1H), 7.21 – 7.13 (m, 4H), 6.38 (s, 1H), 2.35 (s, 3H). 13C NMR (150 MHz, Chloroform-d) δ 170.55, 149.81, 139.32, 134.23, 133.40, 129.62, 129.26, 127.04, 125.74, 125.59, 122.85, 82.75, 21.21 [α]$^{D}_{[a]}$ = -16.22 (c=1.0 in CHCl$_3$, 79% ee sample). HRMS (ESI): calcd for C$_{15}$H$_{13}$O$_2$ ([M+ H]$^+$) 225.0910, found 225.0912. HPLC analysis: Daicel CHIRALPAK AD-3; hexane: i-PrOH = 80:20; detection wavelength = 220 nm; flow rate = 5.0 mL/min. $t_R = 7.12$ min (major) and 9.33 min (minor), 79% ee.
(R)-3-(4-methoxyphenyl)isobenzofuran-1(3H)-one (3c)

1H NMR (600 MHz, Chloroform-d) δ 7.96 (d, J = 7.7 Hz, 1H), 7.65 (t, J = 7.4 Hz, 1H), 7.59 – 7.53 (m, 1H), 7.32 (d, J = 7.7 Hz, 1H), 7.18 (d, J = 8.7 Hz, 2H), 6.89 (d, J = 8.9 Hz, 2H), 6.37 (s, 1H), 3.81 (s, 3H). 1C NMR (150 MHz, Chloroform-d) δ 170.49, 160.42, 149.75, 134.22, 129.28, 128.78, 128.29, 125.95, 125.57, 122.92, 114.32, 82.71, 55.33.

[α]$^D_{25} = +7.08$ (c=1.0 in CHCl$_3$, 85% ee sample). HRMS (ESI): calcd for C$_{15}$H$_{13}$O$_3$ ([M+ H]$^+$) 241.0859, found 241.0863. HPLC analysis: Daicel CHIRALPAK AD-3; hexane: i-PrOH = 80:20; detection wavelength = 220 nm; flow rate = 5.0 mL/min. t_R = 9.34 min (major) and 11.39 min (minor), 85% ee.
(R)-3-(4-fluorophenyl)isobenzofuran-1(3H)-one (3d)

1H NMR (600 MHz, Chloroform-d) δ 7.97 (d, J = 7.7 Hz, 1H), 7.67 (td, J = 7.5, 1.1 Hz, 1H), 7.58 (t, J = 7.5 Hz, 1H), 7.32 (dq, J = 7.7, 0.9 Hz, 1H), 7.29 – 7.22 (m, 2H), 7.10 – 7.03 (m, 2H), 6.40 (s, 1H).

13C NMR (150 MHz, Chloroform-d) δ 170.22, 163.19 (d, J = 248.6 Hz), 149.35, 134.39, 132.25 (d, J = 3.2 Hz), 129.50, 129.06 (d, J = 8.4 Hz), 125.70, 125.63, 122.80, 116.00 (d, J = 21.8 Hz), 81.97.

19F NMR (565 MHz, Chloroform-d) δ -111.77.

$[\alpha]_{25}^{25D}$ = -25.1 (c=1.0 in CHCl$_3$, 82% ee sample).

HRMS (ESI): calcd for C$_{14}$H$_{10}$FO$_2$ ([M+ H]$^+$) 229.0659, found 229.0660. HPLC analysis: Daicel CHIRALPAK AD-3; hexane: i-PrOH = 80:20; detection wavelength = 220 nm; flow rate = 5.0 mL/min. t_R = 8.06 min (major) and 10.15 min (minor), 82% ee.
(R)-3-(4-chlorophenyl)isobenzofuran-1(3H)-one (3c)

1H NMR (600 MHz, Chloroform-d) δ 7.96 (d, $J = 7.5$ Hz, 1H), 7.70 – 7.64 (m, 1H), 7.58 (d, $J = 7.5$ Hz, 1H), 7.39 – 7.34 (m, 2H), 7.34 – 7.30 (m, 1H), 7.25 – 7.19 (m, 2H), 6.38 (s, 1H).

13C NMR (150 MHz, Chloroform-d) δ 170.19, 149.19, 135.26, 134.95, 134.44, 129.56, 129.20, 128.34, 125.76, 125.47, 122.74, 81.80. [α]$^2_{D}$ = -34.52 (c=1.0 in CHCl$_3$, 79% ee sample).

HRMS (ESI): calcd for C$_{14}$H$_{10}$ClO$_2$ ([M+ H]$^+$) 245.0364, found 245.0368. HPLC analysis: Daicel CHIRALPAK OD-3; hexane: i-PrOH = 95:5; detection wavelength = 220 nm; flow rate = 5.0 mL/min. t_R = 13.60 min (minor) and 15.85 min (major), 79% ee.
Peak RetTime Type Width Area Height Area %
[min] [min] [mAU*] [mAU] %
1 13.598 MM R 0.3161 339.75607 17.91339 10.7013
2 15.850 MM R 0.3338 2835.13403 141.54086 89.2987
(R)-3-(4-bromophenyl)isobenzofuran-1(3H)-one (3f)

1H NMR (600 MHz, Chloroform-d) δ 7.96 (d, $J = 7.7$ Hz, 1H), 7.66 (t, $J = 7.6$ Hz, 1H), 7.57 (t, $J = 7.3$ Hz, 1H), 7.54 – 7.48 (m, 2H), 7.32 (d, $J = 7.7$ Hz, 1H), 7.16 (d, $J = 6.8$ Hz, 2H), 6.36 (s, 1H).

13C NMR (150 MHz, Chloroform-d) δ 170.17, 149.11, 135.46, 134.44, 132.15, 129.56, 128.57, 125.75, 125.43, 123.42, 122.72, 81.82. $[\alpha]_{D}^{25}$ = -25.10 (c=1.0 in CHCl$_3$, 88% ee sample).

HRMS (ESI): calcd for C$_{14}$H$_{10}$BrO$_2$ ([M+ H]$^+$) 288.9859, found 288.9861.

HPLC analysis: Daicel CHIRALPAK OD-3; hexane: i-PrOH = 95:5; detection wavelength = 220 nm; flow rate = 5.0 mL/min. t_R = 13.87 min (minor) and 15.99 min (major), 88% ee.
(R)-3-(4-(trifluoromethyl)phenyl)isobenzofuran-1(3H)-one (3g)

\(^1\)H NMR (600 MHz, Chloroform-d) \(\delta\) 7.99 (d, \(J = 7.7\) Hz, 1H), 7.71 – 7.64 (m, 3H), 7.59 (t, \(J = 7.5\) Hz, 1H), 7.44 (d, \(J = 7.8\) Hz, 2H), 7.34 (dd, \(J = 7.7, 0.9\) Hz, 1H), 6.46 (s, 1H). \(^1\)C NMR (150 MHz, Chloroform-d) \(\delta\) 170.08, 148.94, 140.27, 134.60, 131.46 (q, \(J = 32.6\) Hz), 129.74, 127.09, 126.03 (q, \(J = 3.8\) Hz), 125.96, 125.30, 123.74 (q, \(J = 272.4\) Hz), 122.67, 81.54. \(^19\)F NMR (565 MHz, Chloroform-d) \(\delta\) -62.77. \([\alpha]_{D}^{25} = -57.30\) (c=1.0 in CHCl\(_3\), 78% ee sample).

HRMS (ESI): calcd for C\(_{15}\)H\(_{10}\)F\(_3\)O\(_2\) ([M+ H]+) 279.0627, found 279.0629. HPLC analysis: Daicel CHIRALPAK OD-3; hexane: i-PrOH = 95:5; detection wavelength = 220 nm; flow rate = 5.0 mL/min.

\(t_R = 12.19\) min (minor) and 15.61 min (major), 78% ee.

(R)-4-(3-oxo-1,3-dihydroisobenzofuran-1-yl)benzaldehyde (3h)

\[\text{Peak RetTime Type Width Area Height Area} \]
\[\text{\# [min] [min] [mAU*] [mAU] }\%
\]
\[1 12.187 VB R 0.2537 8834.08594 525.94617 10.9389\]
\[2 15.611 MM R 0.4293 7.19240e4 2792.57861 89.0611\]
1H NMR (600 MHz, Chloroform-d) δ 10.03 (s, 1H), 7.99 (dd, $J = 7.6$, 2.7 Hz, 1H), 7.92 (d, $J = 7.8$ Hz, 2H), 7.68 (t, $J = 7.5$ Hz, 1H), 7.59 (t, $J = 7.5$ Hz, 1H), 7.50 (d, $J = 8.0$ Hz, 2H), 7.36 (d, $J = 7.7$ Hz, 1H), 6.47 (s, 1H). 13C NMR (150 MHz, Chloroform-d) δ 191.43, 170.07, 148.87, 142.89, 136.87, 134.58, 130.30, 129.73, 127.22, 125.96, 125.20, 122.63, 81.60. $[\alpha]_{D}^{25} = -108.56$ (c=1.0 in CHCl$_3$, 77% ee sample). HRMS (ESI): calcd for C$_{15}$H$_{11}$O$_3$ ([M+ H]$^+$) 239.0703, found 239.0705. HPLC analysis: Daicel CHIRALPAK AD-3; hexane: i-PrOH = 80:20; detection wavelength = 220 nm; flow rate = 5.0 mL/min. t_R = 16.18 min (major) and 24.28 min (minor), 77% ee.
methyl (R)-4-(3-oxo-1,3-dihydroisobenzofuran-1-yl)benzoate (3i)

1H NMR (600 MHz, Chloroform-d) δ 8.06 (dt, J = 8.5, 1.6 Hz, 2H), 7.98 (d, J = 7.7 Hz, 1H), 7.67 (td, J = 7.5, 1.2 Hz, 1H), 7.58 (t, J = 7.5 Hz, 1H), 7.39 (d, J = 8.4 Hz, 2H), 7.34 (d, J = 7.7 Hz, 1H), 6.45 (s, 1H), 3.92 (s, 3H). 13C NMR (150 MHz, Chloroform-d) δ 170.20, 166.38, 149.12, 141.30, 134.50, 131.01, 130.28, 129.63, 126.65, 125.90, 125.32, 122.68, 81.81, 52.27. $[\alpha]_D^{25}$ = -79.48 (c=1.0 in CHCl$_3$, 81% ee sample). HRMS (ESI): calcd for C$_{16}$H$_{13}$O$_4$ ([M+ H]$^+$) 269.0808, found 269.0811. HPLC analysis: Daicel CHIRALPAK OD-3; hexane: i-PrOH = 95:5; detection wavelength = 220 nm; flow rate = 5.0 mL/min. t_R = 19.91 min (minor) and 23.76 min (major), 81% ee.
\([R]-3-(m\text{-}tolyl)\text{isobenzofuran-1}(3\text{H})\text{-one (3)}^8\)

\(^1\text{H NMR}\) (600 MHz, Chloroform-\(d\)) \(\delta\) 7.97 (d, \(J = 7.7\) Hz, 1H), 7.65 (td, \(J = 7.5, 1.1\) Hz, 1H), 7.55 (t, \(J = 7.5\) Hz, 1H), 7.36 – 7.31 (m, 1H), 7.27 (t, \(J = 7.6\) Hz, 1H), 7.18 (d, \(J = 7.6\) Hz, 1H), 7.11 – 7.05 (m, 2H), 6.37 (s, 1H), 2.33 (s, 3H).

\(^{13}\text{C NMR}\) (150 MHz, Chloroform-\(d\)) \(\delta\) 170.57, 149.79, 138.82, 136.31, 134.26, 130.04, 129.28, 128.81, 127.45, 125.61, 125.58, 124.04, 122.83, 82.79, 21.34. \([\alpha]_{25}^D = -42.26\) (c=1.0 in CHCl\(_3\), 82% ee sample).

\textit{HRMS} (ESI): calcd for C\(_{15}\)H\(_{13}\)O\(_2\) ([M+ H]+) 225.0910, found 225.0912.

\textit{HPLC analysis:}\n
Daicel CHIRALPAK AD-3; hexane: i-PrOH = 95:5; detection wavelength = 220 nm; flow rate = 5.0 mL/min. \(t_R = 11.17\) min (minor) and 14.09 min (major), 82% ee.
(R)-3-(o-tolyl)isobenzofuran-1(3H)-one (3k)

1H NMR (600 MHz, Chloroform-d) δ 7.98 (d, $J = 7.7$ Hz, 1H), 7.67 (td, $J = 7.5$, 1.1 Hz, 1H), 7.58 (tt, $J = 7.5$, 0.8 Hz, 1H), 7.35 (dd, $J = 7.6$, 0.9 Hz, 1H), 7.31 – 7.23 (m, 2H), 7.16 – 7.10 (m, 1H), 6.92 (d, $J = 7.6$ Hz, 1H), 6.69 (s, 1H), 2.50 (s, 3H).

13C NMR (150 MHz, Chloroform-d) δ 170.58, 149.27, 137.15, 134.16, 134.08, 131.11, 129.35, 129.30, 127.25, 126.43, 126.40, 125.74, 123.00, 80.51, 19.32. $\left[\alpha\right]D_{25}^{25} = +48.28$ (c=1.0 in CHCl$_3$, 75% ee sample). HRMS (ESI): calcd for C$_{15}$H$_{13}$O$_2$ ([M+ H]$^+$) 225.0910, found 225.0912.

HPLC analysis: Daicel CHIRALPAK OD-3; hexane: i-PrOH = 90:10; detection wavelength = 220 nm; flow rate = 5.0 mL/min. $t_R = 9.74$ min (minor) and 13.28 min (major), 75% ee.
(R)-3-(naphthalen-2-yl)isobenzofuran-1(3H)-one (3l)

1H NMR (600 MHz, Chloroform-d) δ 8.00 (d, $J = 7.7$ Hz, 1H), 7.84 (m, 4H), 7.64 (td, $J = 7.5$, 1.2 Hz, 1H), 7.57 (t, $J = 7.5$ Hz, 1H), 7.55 – 7.49 (m, 2H), 7.34 (s, 1H), 7.23 (dd, $J = 7.5$, 0.9 Hz, 1H). 1C NMR (150 MHz, Chloroform-d) δ 170.55, 149.70, 134.35, 133.67, 133.57, 133.06, 129.41, 129.06, 128.06, 127.78, 126.81, 126.68, 126.67, 125.70, 125.61, 123.76, 122.90, 82.89. $[\alpha]_{D}^{25}$ = -52.72 (c=1.0 in CHCl$_3$, 77% ee sample).

HRMS (ESI): calcd for C$_{16}$H$_{13}$O$_2$ ([M+ H]$^+$) 261.0910, found 261.0913.

HPLC analysis: Daicel CHIRALPAK OD-3; hexane: i-PrOH = 95:5; detection wavelength = 220 nm; flow rate = 5.0 mL/min. t_R = 15.37 min (minor) and 18.84 min (major), 77% ee.
(S)-3-(thiophen-3-yl)isobenzofuran-1(3H)-one (3m)

1H NMR (600 MHz, Chloroform-d) δ 7.96 (d, $J = 7.6$ Hz, 1H), 7.69 (t, $J = 7.5$ Hz, 1H), 7.57 (t, $J = 7.5$ Hz, 1H), 7.42 (d, $J = 7.7$ Hz, 1H), 7.36 – 7.32 (m, 2H), 6.94 (d, $J = 4.9$ Hz, 1H), 6.51 (s, 1H). 13C NMR (150 MHz, Chloroform-d) δ 170.17, 148.99, 137.19, 134.25, 129.45, 127.19, 125.89, 125.80, 125.73, 124.45, 122.81, 78.41. $[\alpha]_D^{25}$ = +59.36 (c=1.0 in CHCl$_3$, 85% ee sample). HRMS (ESI): calcd for C$_{12}$H$_9$O$_2$S ([M+ H]$^+$) 217.0318, found 217.0320.

HPLC analysis: Daicel CHIRALPAK AD-3; hexane: i-PrOH = 80:10; detection wavelength = 220 nm; flow rate = 5.0 mL/min. t_R = 9.21 min (major) and 11.61 min (minor), 85% ee.
<table>
<thead>
<tr>
<th>Peak</th>
<th>RetTime</th>
<th>Type</th>
<th>Width [min]</th>
<th>Area [mAU*s]</th>
<th>Height [mAU]</th>
<th>Area %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9.206</td>
<td>VB</td>
<td>0.2968</td>
<td>3.5537964</td>
<td>1654.22009</td>
<td>92.3880</td>
</tr>
<tr>
<td>2</td>
<td>11.605</td>
<td>BB</td>
<td>0.3816</td>
<td>2928.02173</td>
<td>1055.5782</td>
<td>7.6120</td>
</tr>
</tbody>
</table>
(S)-3-(6-methoxypyridin-3-yl)isobenzofuran-1(3H)-one (3n)

1H NMR (600 MHz, Chloroform-d) δ 8.21 (d, $J = 2.5$ Hz, 1H), 7.98 (d, $J = 7.7$ Hz, 1H), 7.69 (td, $J = 7.5$, 1.1 Hz, 1H), 7.59 (t, $J = 7.5$ Hz, 1H), 7.32 (dd, $J = 7.7$, 0.9 Hz, 1H), 7.28 (dd, $J = 8.7$, 2.6 Hz, 1H), 6.73 (d, $J = 8.6$ Hz, 1H), 6.39 (s, 1H), 3.95 (s, 3H).

13C NMR (150 MHz, Chloroform-d) δ 170.11, 164.98, 148.92, 146.48, 137.39, 134.46, 129.64, 125.97, 125.78, 124.91, 122.86, 111.72, 80.40, 53.69.

$[\alpha]_{D}^{25}$ = +17.12 (c=1.0 in CHCl$_3$, 85% ee sample).

HRMS (ESI): calcd for C$_{14}$H$_{12}$NO$_3$ ([M+H]$^+$) 242.0812, found 242.0814.

HPLC analysis: Daicel CHIRALPAK AD-3; hexane: i-PrOH = 80:20; detection wavelength = 220 nm; flow rate = 5.0 mL/min. t_R = 9.00 min (major) and 10.84 min (minor), 85% ee.
(3S)-3-(3a,7a-dihydrobenzofuran-2-yl)isobenzofuran-1(3H)-one (3o)

\[^1\text{H NMR}\] (600 MHz, Chloroform-\text{d}) \quad \delta \quad 8.01 \ (d, J = 7.7 \ Hz, 1H), 7.73 \ (td, J = 7.5, 1.1 \ Hz, 1H), 7.63 \ (t, J = 7.5 \ Hz, 1H), 7.59 \to 7.53 \ (m, 2H), 7.44 \ (dd, J = 8.3, 0.9 \ Hz, 1H), 7.32 \ (ddd, J = 8.4, 7.2, 1.3 \ Hz, 1H), 7.24 \ (td, J = 7.6, 1.0 \ Hz, 1H), 6.79 \ (s, 1H), 6.58 \ (s, 1H).

\[^{13}\text{C NMR}\] (150 MHz, Chloroform-\text{d}) \quad \delta \quad 169.72, 155.49, 151.21, 146.28, 134.39, 129.97, 127.34, 126.06, 125.95, 125.35, 123.22, 123.04, 121.54, 111.58, 106.74, 75.83.

\[^{[\alpha]}_{25D}^B\] = +77.46 \ (c=1.0 \ in \ CHCl_3, 82\% \ ee \ sample). HRMS (ESI): calcd for C_{16}H_{11}O_3 ([M+ H]^+) 251.0703, found 251.0705.

HPLC analysis: Daicel CHIRALPAK OD-3; hexane: i-PrOH = 95:5; detection wavelength = 220 nm; flow rate = 5.0 mL/min. \(t_R = 15.11 \ \text{min (minor)} \) and 21.81 min (major), 82\% ee.
(R)-5-fluoro-3-phenylisobenzofuran-1(3H)-one (3p)
1H NMR (600 MHz, Chloroform-d) δ 7.95 (dd, $J = 8.3, 4.8$ Hz, 1H), 7.38 – 7.41 (m, 3H), 7.28 – 7.23 (m, 3H), 7.00 (dd, $J = 7.7, 2.2$ Hz, 1H), 6.36 (s, 1H). 13C NMR (150 MHz, Chloroform-d) δ 169.22, 166.65 (d, $J = 256.7$ Hz), 152.46 (d, $J = 9.96$ Hz), 135.76, 129.50, 129.07, 128.00 (d, $J = 10.4$ Hz), 126.82, 121.60, 117.65 (d, $J = 24.1$ Hz), 110.14 (d, $J = 24.5$ Hz), 81.97 (d, $J = 2.7$ Hz). 19F NMR (565 MHz, Chloroform-d) δ -102.15. $[\alpha]^{25}_D$ = -41.00 ($c = 1.0$ in CHCl$_3$, 76% ee sample). HRMS (ESI): calcd for C$_{14}$H$_{10}$FO$_2$ ([M+ H$^+$]) 229.0659, found 229.0667. HPLC analysis: Daicel CHIRALPAK AD-3; hexane: i-PrOH = 80:20; detection wavelength = 220 nm; flow rate = 5.0 mL/min. t_R = 6.72 min (major) and 13.93 min (minor), 76% ee.
\textbf{H NMR} (600 MHz, Chloroform-\textit{d}) δ 7.89 (d, $J = 8.2$ Hz, 1H), 7.52 (ddd, $J = 8.2$, 1.7, 0.7 Hz, 1H), 7.44 – 7.37 (m, 3H), 7.33 – 7.30 (m, 1H), 7.32 – 7.26 (m, 2H), 6.37 (s, 1H). \textbf{C NMR} (150 MHz, Chloroform-\textit{d}) δ 169.28, 151.27, 141.05, 135.67, 130.17, 129.54, 129.10, 126.85, 126.81, 124.03, 123.24, 82.07. $[\alpha]^{25}_D = +30.52$ (c=1.0 in CHCl$_3$, 77% ee sample). \textbf{HRMS} (ESI): calcd for C$_{14}$H$_{10}$ClO$_2$ ([M+ H]$^+$) 245.0364, found 245.0371. \textbf{HPLC analysis}: Daicel CHIRALPAK AD-3; hexane: i-PrOH = 80:20; detection wavelength = 220 nm; flow rate = 5.0 mL/min. $t_R = 7.04$ min (major) and 12.56 min (minor), 77% ee.
(R)-5-bromo-3-phenylisobenzofuran-1(3H)-one (3r)

1H NMR (600 MHz, Chloroform-\textit{d}) δ 7.81 (d, J = 8.1 Hz, 1H), 7.71 – 7.66 (m, 1H), 7.49 (dt, J = 1.5, 0.7 Hz, 1H), 7.44 – 7.37 (m, 3H), 7.29 – 7.23 (m, 2H), 6.37 (s, 1H). 1C NMR (150 MHz, Chloroform-\textit{d}) δ 169.41, 151.36, 135.63, 133.00, 129.56, 129.54, 129.10, 126.90, 126.85, 126.25, 124.48, 82.03. $[\alpha]_{D}^{25}$ = +50.16 (c=1.0 in CHCl$_3$, 74% ee sample). **HRMS** (ESI): calcd for C$_{14}$H$_{10}$BrO$_2$ ([M+ H$^+$]) 288.9859, found 288.9868. **HPLC analysis**: Daicel CHIRALPAK AD-3; hexane: i-PrOH = 80:20; detection wavelength = 220 nm; flow rate = 5.0 mL/min. t_R = 7.39 min (major) and 11.58 min (minor), 74% ee.
methyl (R)-1-oxo-3-phenyl-1,3-dihydroisobenzofuran-5-carboxylate (3s)

1H NMR (600 MHz, Chloroform-d) δ 8.23 (dd, $J = 8.2, 3.8$ Hz, 1H), 8.05 – 8.01 (m, 1H), 8.00 (s, 1H), 7.42 – 7.38 (m, 3H), 7.29 – 7.27 (m, 2H), 6.46 (s, 1H), 3.93 (s, 3H).

13C NMR (150 MHz, Chloroform-d) δ 169.39, 165.59, 149.65, 135.69, 135.63, 130.62, 129.50, 129.14, 129.07, 126.90, 125.67, 124.20, 82.73, 52.68. [α]$^D_{25}$ = +43.38 ($c = 1.0$ in CHCl$_3$, 74% ee sample).

HRMS (ESI): calcld for C$_{16}$H$_{13}$O$_4$ ([M+H]$^+$) 269.0808, found 269.0818.

HPLC analysis: Daicel CHIRALPAK AD-3; hexane: i-PrOH = 80:20; detection wavelength = 220 nm; flow rate = 5.0 mL/min. $t_R = 8.63$ min (major) and 10.87 min (minor), 74% ee.
(R)-5-methyl-3-phenylisobenzofuran-1(3H)-one (3t)

1H NMR (600 MHz, Chloroform-d) δ 7.83 (d, $J = 7.9$ Hz, 1H), 7.41 – 7.34 (m, 3H), 7.37 – 7.32 (m, 1H), 7.31 – 7.25 (m, 2H), 7.11 (d, $J = 0.7$ Hz, 1H), 6.34 (s, 1H), 2.43 (s, 3H). 1C NMR (150 MHz, Chloroform-d) δ 170.54, 150.26, 145.60, 136.65, 130.51, 129.18, 128.92, 126.90, 125.36, 123.06, 122.98, 82.41, 22.02. $[\alpha]_{D}^{25}$ = +3.16 (c=1.0 in CHCl$_3$, 83% ee sample). HRMS (ESI): calcd for C$_{15}$H$_{13}$O$_2$ ([M+ H]$^+$) 225.0910, found 225.0914. HPLC analysis: Daicel CHIRALPAK AD-3; hexane: i-PrOH = 80:20; detection wavelength = 220 nm; flow rate = 5.0 mL/min. $t_R = 7.53$ min (major) and 9.61 min (minor), 83% ee.
Peak RetTime Type Width Area Height Area
[min] [min] [mAU*s] [mAU] %
1 7.525 BV R 0.2099 6527.70068 426.89026 91.4560
2 9.614 MM 0.2896 609.82953 35.09508 8.5440
(R)-5-methoxy-3-phenylisobenzofuran-1(3H)-one (3u)

1H NMR (600 MHz, Chloroform-d) δ 7.86 (d, $J = 8.5$ Hz, 1H), 7.38 (dd, $J = 5.2$, 1.9 Hz, 3H), 7.32 – 7.25 (m, 2H), 7.05 (dd, $J = 8.5$, 2.2 Hz, 1H), 6.72 (d, $J = 2.0$ Hz, 1H), 6.31 (s, 1H), 3.83 (s, 3H).

13C NMR (150 MHz, Chloroform-d) δ 170.20, 164.90, 152.50, 136.58, 129.25, 128.96, 127.12, 127.01, 117.89, 116.84, 106.64, 82.08, 55.82. $[\alpha]^25_D = +34.44$ (c=1.0 in CHCl$_3$, 76% ee sample).

HRMS (ESI): calcd for C$_{15}$H$_{13}$O$_3$ ([M+ H]$^+$) 241.0859, found 241.0860.

HPLC analysis: Daicel CHIRALPAK AD-3; hexane: i-PrOH = 80:20; detection wavelength = 220 nm; flow rate = 5.0 mL/min. $t_R = 10.41$ min (major) and 12.77 min (minor), 76% ee.
(R)-6-methyl-3-phenylisobenzofuran-1(3H)-one (3v)\textsuperscript{\textbf{6}}

\textbf{1H NMR} (600 MHz, Chloroform-\textit{d}) \(\delta\) 7.75 (dt, \(J = 1.7, 0.8\) Hz, 1H), 7.45 (dd, \(J = 7.8, 0.8\) Hz, 1H), 7.41 – 7.33 (m, 3H), 7.29 – 7.24 (m, 2H), 7.21 (d, \(J = 7.9\) Hz, 1H), 6.37 (s, 1H), 2.47 (s, 3H).

\textbf{13C NMR} (150 MHz, Chloroform-\textit{d}) \(\delta\) 170.64, 147.11, 139.66, 136.67, 135.46, 129.19, 128.91, 126.94, 125.80, 125.57, 122.53, 82.61, 21.24. \([\alpha]_{D}^{25} = -31.14\) (c=1.0 in CHCl\textsubscript{3}, 81\% ee sample). \textbf{HRMS} (ESI): calcld for C\textsubscript{15}H\textsubscript{13}O\textsubscript{2} ([M+ H+]+) 225.0910, found 225.0914. \textbf{HPLC analysis}: Daicel CHIRALPAK OD-3; hexane: i-PrOH = 95:5; detection wavelength = 220 nm; flow rate = 5.0 mL/min. \(t_{R}\) = 11.60 min (minor) and 15.00 min (major), 81\% ee.
(R)-4-methyl-3-phenylisobenzofuran-1(3H)-one (3w)

1H NMR (600 MHz, Chloroform-d) δ 7.82 (d, $J = 7.6$ Hz, 1H), 7.49 (t, $J = 7.5$ Hz, 1H), 7.43 (d, $J = 7.4$ Hz, 1H), 7.42 - 7.31 (m, 3H), 7.22 - 7.17 (m, 2H), 6.33 (s, 1H), 2.03 (s, 3H).

13C NMR (150 MHz, Chloroform-d) δ 170.72, 147.55, 135.57, 135.27, 133.43, 129.77, 129.50, 128.92, 128.14, 126.12, 123.05, 82.98, 17.87. $[\alpha]_D^{25} = +1.66$ (c=1.0 in CHCl$_3$, 7% ee sample). HRMS (ESI): calcd for C$_{15}$H$_{13}$O$_2$ ([M+ H]$^+$) 225.0910, found 225.0912. HPLC analysis: Daicel CHIRALPAK OD-3; hexane: i-PrOH = 90:10; detection wavelength = 220 nm; flow rate = 5.0 mL/min. $t_R = 9.25$ min (minor) and 12.58 min (major), 7% ee.
| Peak RetTime Type Width Area Height Area % |
|--|---------|----------|---------|---------|--------|
| 1 9.247 BB 0.1808 2388.39209 203.70879 46.4553 | | | | | |
| 2 12.576 BB 0.2669 2752.87988 157.91391 53.5447 | | | | | |
(R)-7-methyl-3-phenylisobenzofuran-1(3H)-one (3x)

1H NMR (600 MHz, Chloroform-d) δ 7.49 (t, $J = 7.6$ Hz, 1H), 7.41 – 7.33 (m, 3H), 7.32 – 7.25 (m, 3H), 7.12 (d, $J = 7.6$ Hz, 1H), 6.33 (s, 1H), 2.75 (s, 3H). 13C NMR (150 MHz, Chloroform-d) δ 170.68, 150.21, 139.68, 136.84, 133.97, 130.89, 129.14, 128.90, 126.95, 123.03, 120.17, 81.79, 17.38. $[\alpha]_{D}^{25} = -90.18$ ($c = 1.0$ in CHCl$_3$, 81% ee sample). HRMS (ESI): calcd for C$_{15}$H$_{13}$O$_2$ ([M+ H$^+$]) 225.0910, found 225.0912. HPLC analysis: Daicel CHIRALPAK OD-3; hexane:i-PrOH = 95:5; detection wavelength = 220 nm; flow rate = 5.0 mL/min. $t_R = 9.86$ min (minor) and 12.66 min (major), 81% ee.
<table>
<thead>
<tr>
<th>Peak RetTime</th>
<th>Type</th>
<th>Width [min]</th>
<th>Area [mAU*s]</th>
<th>Height [mAU]</th>
<th>Area %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9.856</td>
<td>0.1899</td>
<td>1817.01855</td>
<td>148.11800</td>
<td>9.3975</td>
</tr>
<tr>
<td>2</td>
<td>12.658</td>
<td>0.2485</td>
<td>1.76145e4</td>
<td>1087.42371</td>
<td>90.6025</td>
</tr>
</tbody>
</table>
4. Copies of 1H NMR, 13C NMR and 19F NMR Spectras
3i
5. References

