N -glycosylation of sulfoxides donors for the synthesis of peptidonucleosides

Margaux Beretta, Emilie Rouchaud, Lionel Nicolas, Jean-Pierre Vors, Thomas Dröge, Mazen Es-Sayed, JeanMarie Beau,* and Stéphanie Norsikian*

Supplementary Information

EXPERIMENTAL PROCEDURES 1
${ }^{1} \mathrm{H}$-NMR AND ${ }^{13} \mathbf{C}$-NMR SPECTRA 12

Experimental procedures

Abstract

General All non-aqueous reactions were run under an inert atmosphere (argon), by using standard techniques for manipulating air-sensitive compounds and the glassware was stored in the oven prior to use. All reagents and solvents were commercially available and were used without further purification. Molecular sieves $4 \AA$ were used as a powder and were activated overnight at $250^{\circ} \mathrm{C}$ and under reduced pressure, in a Kugelrohr apparatus or with a micro-wave for 45 seconds. Reactions were monitored with analytical Merck TLC silica gel 60 F254 plates and visualized under UV $(254 \mathrm{~nm})$ and stained with KMNO_{4} or vanillin. Column chromatography was done with Merck Geduran silical gel Si $60(40-63 \mu \mathrm{~m})$ and Redisep Rf columns (silica gel Si $60,40-63 \mu \mathrm{~m}$) on an Interchim puriFlash ${ }^{\circledR}$ apparatus and on a Teledyne Isco combiflash Rf. Preparative thin-layer chromatography was performed on silica gel 60 F254 $0.5 \mathrm{~mm} 20 \times 20 \mathrm{~cm}$ plates and visualised under UV (254 nm). Deuterated chloroform used for NMR analyses was generally neutralized by addition of anhydrous and granular $\mathrm{K}_{2} \mathrm{CO}_{3}$. NMR spectra were recorded with AM 300, AVANCE 300 and AVANCE 500 Brüker spectrometers. Chemical shifts are given in parts per million, referenced to the solvent peak of CDCl_{3}, defined at $77.2 \mathrm{ppm}\left({ }^{13} \mathrm{C} \mathrm{NMR}\right)$ and $7.26 \mathrm{ppm}\left({ }^{1} \mathrm{H} N M R\right)$ or to the solvent peak of $\mathrm{CD}_{3} \mathrm{OD}$, defined at $49.9 \mathrm{ppm}\left({ }^{13} \mathrm{C} \mathrm{NMR}\right)$ and $3.34 \mathrm{ppm}\left({ }^{1} \mathrm{H} \mathrm{NMR}\right)$ or to the solvent peak of $\mathrm{D}_{2} \mathrm{O}$, defined at $4.79 \mathrm{ppm}\left({ }^{1} \mathrm{H} N \mathrm{NR}\right)$ or to the solvent peak of DMSO- d_{6}, defined at $39.5 \mathrm{ppm}\left({ }^{13} \mathrm{C} \mathrm{NMR}\right)$ and 2.50 $\mathrm{ppm}\left({ }^{1} \mathrm{H}\right.$ NMR $)$. Data are reported as follow: chemical shifts, multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quadruplet, $\mathrm{m}=$ multiplet, $\mathrm{bs}=$ broad singlet), coupling constant (in Hz) and integration. IR spectra were recorded on a Perkin-Elmer Spectrum BX instrument with an FT-IR system. Optical rotation were measured on an Anton Paar MCP300 polarimeter using a cell of 1-dm-length path. Mass spectra were recorded with Waters Micromass LCT Premier mass spectrometer.

Methyl 2,3-di- \boldsymbol{O}-acetyl-4,6- \boldsymbol{O}-benzylidene- $\boldsymbol{\alpha}$-d-galactopyranoside 2a. According to the procedure of Ferro et al, ${ }^{1}$ a suspension of methyl α-D-galactopyranoside ($5.0 \mathrm{~g}, 25.75 \mathrm{mmol}, 1.0 \mathrm{eq}$.), camphor-10-sulfonic acid (119.6 mg , $0.52 \mathrm{mmol}, 0.02 \mathrm{eq}$.) and benzaldehyde dimethyl acetal ($5.4 \mathrm{~mL}, 36.05 \mathrm{mmol}, 1.4 \mathrm{eq}$.) in dry chloroform (400 mL) under argon atmosphere was stirred for 24 h at $80^{\circ} \mathrm{C}$. Solvent was then removed and the residue was diluted in EtOAc (75 mL), neutralized with triethylamine then washed with water $(75 \mathrm{~mL})$. Aqueous phase was extracted with EtOAc ($10 \times 50 \mathrm{~mL}$). The organic layers were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure to afford the pure $4,6-O$-benzylidene acetal intermediate ($6.52 \mathrm{~g}, 23.12 \mathrm{mmol}, 90 \%$) as a white powder. 1H-NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.53-7.46\left(\mathrm{~m}, 2 \mathrm{H}, H_{\mathrm{Ar}}\right), 7.41-7.34\left(\mathrm{~m}, 3 \mathrm{H}, H_{\mathrm{Ar}}\right), 5.56(\mathrm{~s}, 1 \mathrm{H}, \mathrm{PhCH}), 4.94$ (d, $1 \mathrm{H}, J=1.0,3.0 \mathrm{~Hz}, H 1$), 4.34-4.25 (m, 2H, H6, H4), 4.09 (dd, 1H, $J=2.0$ and $12.6 \mathrm{~Hz}, \mathrm{~Hz}, \mathrm{H} 6 \mathrm{a}$), 3.95-3.87 (m, $\left.2 \mathrm{H}, H 2, H 3), 3.73-3.70(\mathrm{~m}, 1 \mathrm{H}, H 5), 3.48(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH})_{3}\right), 2.37(\mathrm{bs}, 1 \mathrm{H}, \mathrm{OH}), 2.11(\mathrm{bs}, 1 \mathrm{H}, \mathrm{OH}) .^{2}$ To a stirred

[^0]solution of the 4,6-O-benzylidene acetal ($2.47 \mathrm{~g}, 8.76 \mathrm{mmol}, 1 \mathrm{eq}$.) in pyridine (14 mL) was added acetic anhydride $(6.62 \mathrm{~mL}, 70.1 \mathrm{mmol}, 8$ eq.). The resulting mixture was stirred at room temperature for 12 h . Solvent was then removed and the residue was co-evaporated with toluene ($3 \times 20 \mathrm{~mL}$). The crude product was purified by flash chromatography on silica gel (Heptane/EtOAc $70: 30$ to $60: 40$) to afford product 2a ($3.20 \mathrm{~g}, 8.74 \mathrm{mmol}$, quantitative) as a white powder. $[\alpha]_{\mathrm{D}}{ }^{25}+202.3\left(c=0.6, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.53-7.46(\mathrm{~m}, 2 \mathrm{H}$, H_{Ar}), 7.41-7.31 (m, 3H, H_{Ar}), $5.50(\mathrm{~s}, 1 \mathrm{H}, H 7), 5.35\left(\mathrm{dd}, 1 \mathrm{H}, J_{2, I}=3.0 \mathrm{~Hz}, J_{2,3}=10.5 \mathrm{~Hz}, H 2\right), 5.30\left(\mathrm{dd}, 1 \mathrm{H}, J_{3,4}=2.5\right.$ $\left.\mathrm{Hz}, J_{3,2}=10.5 \mathrm{~Hz}, H 3\right), 5.07\left(\mathrm{~d}, 1 \mathrm{H}, J_{l, 2}=3.0 \mathrm{~Hz}, H 1\right), 4.45\left(\mathrm{~d}, 1 \mathrm{H}, J_{4,3}=2.5 \mathrm{~Hz}, H 4\right), 4.27\left(\mathrm{dd}, 1 \mathrm{H}, J_{6,5}=1.5 \mathrm{~Hz}\right.$, $\left.\left.J_{6,6^{\prime}}=12.5 \mathrm{~Hz}, H 6\right), 4.05\left(\mathrm{dd}, 1 \mathrm{H}, J_{6^{\prime}, 5}=1.5 \mathrm{~Hz}, J_{6^{\prime}, 6}=12.5 \mathrm{~Hz}, H 6^{\prime}\right), 3.74(\mathrm{~m}, 1 \mathrm{H}, H 5), 3.40(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH})^{2}\right), 2.07(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{OCOCH}_{3}\right), 2.06\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCOCH}_{3}\right)$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.9(\mathrm{C}=\mathrm{O}), 170.4(\mathrm{C}=\mathrm{O}), 137.7\left(\mathrm{Cq}_{\mathrm{Ar}}\right)$ $129.2\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.4\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.4\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, $101.1(\mathrm{C} 7), 98.0(\mathrm{C} 1), 74.1(\mathrm{C} 4), 69.3(\mathrm{C} 6), 68.8(C 3), 68.3(C 2), 62.2$ (C5), $55.7\left(\mathrm{OCH}_{3}\right), 21.2\left(\mathrm{OCOCH}_{3}\right), 21.1\left(\mathrm{OCOCH}_{3}\right)$. IR $v\left(\right.$ film, $\left.\mathrm{cm}^{-1}\right) 2914(=\mathrm{C}-\mathrm{H}), 2866\left(\mathrm{CH}_{3}\right), 1746(\mathrm{C}=\mathrm{O})$; ESIHRMS $m / z=389.1214[\mathrm{M}+\mathrm{Na}]^{+} . \mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{8} \mathrm{Na}$ requires 389.1212.

Methyl 2,3-di- \boldsymbol{O}-acetyl-6- \boldsymbol{O}-benzyl- $\boldsymbol{\alpha}$-d-galactopyranoside 3a. A solution of $\mathbf{2 a}$ ($2.72 \mathrm{~g}, 7.4 \mathrm{mmol}, 1 \mathrm{eq}$.) and $4 \AA$ molecular sieves (5 g) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ was stirred for 1 h at room temperature under argon atmosphere. The mixture was cooled to $-78{ }^{\circ} \mathrm{C}$ and $\mathrm{Et}_{3} \mathrm{SiH}(1.18 \mathrm{~mL}, 7.4 \mathrm{mmol}, 1 \mathrm{eq}$.) and TfOH ($330 \mu \mathrm{~L}, 3.7 \mathrm{mmol}, 0.5$ eq.) were added successively. After being stirred for 15 min at $-78{ }^{\circ} \mathrm{C}, \mathrm{Et}_{3} \mathrm{SiH}$ (1eq.) and $\mathrm{TfOH}(0.5$ eq) were added again. After 15 min on same conditions, new additions of $\mathrm{Et}_{3} \mathrm{SiH}$ (0.5 eq .) and TfOH (0.5 eq.) were done. Finally, after again 15 min , a final addition of TfOH (0.5 eq.) was realized. The resulting mixture was stirred at $-78^{\circ} \mathrm{C}$ for 30 min then diluted with $\mathrm{CHCl}_{3}(20 \mathrm{~mL})$ and poured in saturated aqueous solution of sodium bicarbonate (40 mL). The organic layer was extract with $\mathrm{CHCl}_{3}(3 \times 25 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under vacuum. The crude mixture was directly dissolved in $\mathrm{MeCN}(25 \mathrm{~mL})$ and treated with a diluted aqueous solution of $\mathrm{HBF}_{4}(0.25$ $\mathrm{M}, 25 \mathrm{~mL}$). The resulting solution was stirred at room temperature for 1 h 30 and then quenched with saturated solution of NaHCO_{3} until neutralization. Aqueous layer was extracted with EtOAc ($3 \times 15 \mathrm{~mL}$). Organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under vacuum. The crude product was purified by flash chromatography on silica gel (Heptane/EtOAc 90:10 to $60: 40$) to afford the clean product 3a ($1.52 \mathrm{~g}, 4.1 \mathrm{mmol}$, $63 \%)$ as a colorless oil. $[\alpha]_{\mathrm{D}}{ }^{25}+119.6\left(c=0.9, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36-7.26\left(\mathrm{~m}, 5 \mathrm{H}, H_{\mathrm{Ar}}\right), 5.30$ $\left(\mathrm{dd}, 1 \mathrm{H}, J_{2, I}=3.0 \mathrm{~Hz}, J_{2,3}=10.5 \mathrm{~Hz}, H 2\right), 5.24\left(\mathrm{dd}, 1 \mathrm{H}, J_{3,4}=2.5 \mathrm{~Hz}, J_{3,2}=10.5 \mathrm{~Hz}, H 3\right), 5.00\left(\mathrm{~d}, 1 \mathrm{H}, J_{l, 2}=3.0 \mathrm{~Hz}\right.$, $H 1), 4.60\left(\mathrm{~d}, 1 \mathrm{H}, J_{H, H}=12.0 \mathrm{~Hz}, \mathrm{CH} H_{2} \mathrm{Ph}\right) 4.54\left(\mathrm{~d}, 1 \mathrm{H}, J_{H, H}=12.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.24(\mathrm{~m}, 1 \mathrm{H}, H 4), 3.97\left(\mathrm{t}, 1 \mathrm{H}, J_{5,4}=\right.$ $\left.J_{5,6}=4.5 \mathrm{~Hz}, H 5\right), 3.78\left(\mathrm{dd}, 1 \mathrm{H}, J_{6,5}=4.5 \mathrm{~Hz}, J_{6,6}=10.0 \mathrm{~Hz}, H 6\right), 3.73\left(\mathrm{dd}, 1 \mathrm{H}, J_{6,5}=4.5 \mathrm{~Hz}, J_{6 ; 6}=10.0 \mathrm{~Hz}, H 6^{\prime}\right)$, $3.38\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.01(\mathrm{bs}, 1 \mathrm{H}, \mathrm{OH}), 2.08\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCOCH}_{3}\right), 2.06\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCOCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 170.6(C=\mathrm{O}), 170.3(C=\mathrm{O}), 137.5\left(C \mathrm{q}_{\mathrm{Ar}}\right), 128.7\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.1\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.9\left(C \mathrm{H}_{\mathrm{Ar}}\right), 97.6(C 1), 74.1\left(C \mathrm{H}_{2} \mathrm{Ph}\right)$, $70.4(C 2), 70.4(C 6), 69.4(C 4), 68.5(C 3), 68.1(C 5), 55.6\left(\mathrm{OCH}_{3}\right), 21.2\left(\mathrm{OCOCH}_{3}\right), 21.1\left(\mathrm{OCOCH}_{3}\right)$; IR v (film, $\left.\mathrm{cm}^{-1}\right) 3466(\mathrm{O}-\mathrm{H}), 2934(=\mathrm{C}-\mathrm{H}), 1738(\mathrm{C}=\mathrm{O}) ;$ ESIHRMS $m / z=391.1369[\mathrm{M}+\mathrm{Na}]^{+} . \mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{8} \mathrm{Na}$ requires 391.1369.

Methyl 2,3-di- \boldsymbol{O}-acetyl-4-azido-6- \boldsymbol{O}-benzyl- $\boldsymbol{\alpha}$-d-glucopyranoside 4a. Galactopyranose 3a ($77 \mathrm{mg}, 0.209 \mathrm{mmol}, 1$ eq.) was co-evaporated 2 times with toluene (5 mL) and then diluted in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{C}=0.1 \mathrm{M}, 2 \mathrm{~mL})$ under argon atmosphere. Pyridine ($0.18 \mathrm{~mL}, 2.29 \mathrm{mmol}, 11$ eq.) was added and the mixture was cooled to $0{ }^{\circ} \mathrm{C}$. Triflic anhydride ($70 \mu \mathrm{~L}, 0.418 \mathrm{mmol}, 2$ eq.) was added and the mixture stirred for 90 min at $0{ }^{\circ} \mathrm{C}$. The mixture was quenched by addition of 10% aqueous NaHCO_{3} solution (20 mL), the phases were separated and the organic layer was extracted with 3% hydrochloric acid ($3 \times 10 \mathrm{~mL}$), with water (10 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and was concentrated under vacuum. The resulting crude product was co-evaporated with toluene (3 x) to remove all traces of pyridine and dried for 1 h under vacuum. The yellow residue was dissolved in dry DMF (2.4 mL), sodium azide (332 mg , $5.12 \mathrm{mmol}, 12$ eq.) was added, and the reaction mixture was stirred overnight. The mixture was diluted with water and EtOAc $(15 \mathrm{~mL})$ and the phases were separated. The organic phase was washed with brine ($3 \times 15 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuum. The residue was purified by flash chromatography on silica gel (Heptane/EtOAc 90:10 to 80:20) to afford $\mathbf{4 a}(69 \mathrm{mg}, 0.175 \mathrm{mmol}, 84 \%)$ as a colorless oil. $[\alpha]_{\mathrm{D}}{ }^{25}+136.2(c=0.6$, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.39-7.26\left(\mathrm{~m}, 5 \mathrm{H}, H_{\mathrm{Ar}}\right), 5.41\left(\mathrm{t}, 1 \mathrm{H}, J_{3,2}=10.0 \mathrm{~Hz}, H 3\right), 4.91\left(\mathrm{~d}, 1 \mathrm{H}, J_{l, 2}=\right.$ $4.0 \mathrm{~Hz}, H 1), 4.85\left(\mathrm{dd}, 1 \mathrm{H}, J_{2, I}=4.0 \mathrm{~Hz}, J_{2,3}=10.0 \mathrm{~Hz}, H 2\right), 4.65\left(\mathrm{~d}, 1 \mathrm{H}, J_{H, H}=12.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right) 4.54\left(\mathrm{~d}, 1 \mathrm{H}, J_{H, H}=\right.$ $\left.12.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.79\left(\mathrm{t}, 1 \mathrm{H}, J_{4,3}=J_{4,5}=10.0 \mathrm{~Hz}, H 4\right), 3.74-3.41(\mathrm{~m}, 3 \mathrm{H}, H 5, H 6, H 6$ '), $3.36(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}$) , 2.08 $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{OCOCH}_{3}\right), 2.05\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCOCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.5(\mathrm{C}=\mathrm{O}), 170.0(\mathrm{C}=\mathrm{O}), 137.8\left(\mathrm{Cq}_{\mathrm{Ar}}\right)$, $128.7\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.0\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.0\left(\mathrm{CH}_{\mathrm{Ar}}\right), 97.3(\mathrm{C} 1), 73.8\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 71.2(\mathrm{C} 2), 70.9(\mathrm{C} 3), 69.3(C 5), 68.5(\mathrm{Cb}), 60.2$ (C4), $55.6\left(\mathrm{O}-\mathrm{CH}_{3}\right), 21.0\left(\mathrm{OCOCH}_{3}\right), 21.0\left(\mathrm{OCOCH}_{3}\right)$; IR $v($ film, cm ESIHRMS $m / z=457.1712\left[\mathrm{M}+\mathrm{CH}_{3} \mathrm{CN}+\mathrm{Na}\right]^{+} . \mathrm{C}_{20} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{7} \mathrm{Na}$ requires 457.1699.
$\mathbf{1 , 2 , 3 , 6}$-Tetra-O-acetyl-4-azido- $\boldsymbol{\alpha}$-D-glucopyranose $\mathbf{5}$. To a stirred solution of $\mathbf{4 a}$ ($57 \mathrm{mg}, 0.16 \mathrm{mmol}, 1 \mathrm{eq}$.) in acetic anhydride (0.5 mL) was added dropwise at $0{ }^{\circ} \mathrm{C} \mathrm{H}_{2} \mathrm{SO}_{4}(10 \mu \mathrm{~L})$. The resulting mixture was stirred overnight at room temperature and then diluted by cold water. After being stirred for 1 h , the phases were separated and the
aqueous phase was extracted with EtOAc ($3 \times 2 \mathrm{~mL}$). Organic layers were combined, neutralized with aqueous $\mathrm{NaHCO}_{3}(4 \mathrm{~mL})$, then washed with brine $(2 \times 3 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under vacuum. The residue was then purified by flash chromatography on silica gel (Heptane/EtOAc 70:30 to 60:40) to afford clean product 5 $(\alpha / \beta 8: 2)(43 \mathrm{mg}, 0.12 \mathrm{mmol}, 73 \%)$ as a colorless oil. For the major α anomer: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 6.31$ $(\mathrm{d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}, H 1), 5.49(\mathrm{t}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}, H 4), 5.07(\mathrm{dd}, J=10.5$ and $3.5 \mathrm{~Hz}, 1 \mathrm{H}, H 2), 4.37(\mathrm{dd}, J=12.0$ and $4.5 \mathrm{~Hz}, 1 \mathrm{H}, H 6), 4.29(\mathrm{dd}, J=12.0$ and $4.0 \mathrm{~Hz}, 1 \mathrm{H}, H 6), 3.95-3.85(\mathrm{~m}, H 5), 3.71(\mathrm{t}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}, H 3)$, $2.19-2.04\left(4 \mathrm{~s}, 12 \mathrm{H}, \mathrm{COCH}_{3}\right) .^{3}$

2,3,6-Tri- \boldsymbol{O}-acetyl-4-azido-D-glucopyranose $\mathbf{5 - O H}$. To a stirred solution of $\mathbf{5}$ ($1 \mathrm{eq} ., 50 \mathrm{mg}, 0.13 \mathrm{mmol}$) in THF $(1.3 \mathrm{~mL})$ was added benzylamine ($1.5 \mathrm{eq} ., 22 \mu \mathrm{~L}, 0.20 \mathrm{mmol}$) and the resulting mixture was stirred at room temperature for 14 h under inert atmosphere. After addition of $1 \mathrm{~N} \mathrm{HCl}(0.1 \mathrm{~mL})$, the reaction mixture was stirred for one more hour. The reaction mixture was diluted with $1 \mathrm{~N} \mathrm{HCl}(6 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 8 \mathrm{~mL})$. The combined extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduce pressure. The residue was purified by flash chromatography on silica gel (Heptane/EtOAc $70: 30$ to $40: 60$) to give the corresponding hemiacetal 5-OH ($28 \mathrm{mg}, 0.085 \mathrm{mmol}, 63 \%, \alpha / \beta=70: 30$) as a colorless oil. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.51(\mathrm{t}$, $\left.0.7 \mathrm{H}, J_{3,2}=J_{3,4}=10.0 \mathrm{~Hz}, H 3 \alpha\right), 5,38(\mathrm{bs}, 0.7 \mathrm{H}, H 1 \alpha), 5.19\left(\mathrm{t}, 0.3 \mathrm{H}, J_{3,2}=J_{3,4}=9.5 \mathrm{~Hz}, H 3 \beta\right), 4.82\left(\mathrm{dd}, 0.7 \mathrm{H}, J_{2,3}=\right.$ $\left.10.0 \mathrm{~Hz}, J_{2, I}=3.5 \mathrm{~Hz}, H 2 \alpha\right), 4.80\left(\mathrm{dd}, 0.3 \mathrm{H}, J_{2,3}=9.5 \mathrm{~Hz}, J_{2,1}=8.0 \mathrm{~Hz}, H 2 \beta\right), 4.70\left(\mathrm{t}, 0.3 \mathrm{H}, J_{1,2}=7.0 \mathrm{~Hz}, H 1 \beta\right)$, $4.39\left(\mathrm{dd}, 0.3 \mathrm{H}, J_{6,6}=12.0 \mathrm{~Hz}, J_{6,5}=2.5 \mathrm{~Hz}, H 6 \beta\right), 4.37\left(\mathrm{dd}, 0.7 \mathrm{H}, J_{6,6}=12.0 \mathrm{~Hz}, J_{6,5}=2.5 \mathrm{~Hz}, H 6 \alpha\right), 4.22(\mathrm{dd}, 1 \mathrm{H}$, $\left.J_{6^{\prime}, 6}=12.0 \mathrm{~Hz}, J_{6^{\prime}, 5}=4.0 \mathrm{~Hz}, H 6^{\prime} \beta, H 6^{\prime} \alpha\right), 4.02\left(\mathrm{ddd}, 0.7 \mathrm{H}, J_{5,4}=10.0 \mathrm{~Hz}, J_{5,6}=4.0 \mathrm{~Hz}, J_{5,6}=2.5 \mathrm{~Hz}, H 5 \alpha\right), 3.63(\mathrm{t}$, $\left.0.3 \mathrm{H}, J_{4,3}=J_{4,5}=10 \mathrm{~Hz}, H 4 \beta\right), 3.58\left(\mathrm{t}, 0.7 \mathrm{H}, J_{4,3}=J_{4,5}=10.0 \mathrm{~Hz}, H 4 \alpha\right), 3.48\left(\mathrm{ddd}, 0.3 \mathrm{H}, J_{5,4}=10.0 \mathrm{~Hz}, J_{5,6}=4.0\right.$ $\left.\mathrm{Hz}, J_{5,6}=2.5 \mathrm{~Hz}, H 5 \beta\right), 2.10\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCOCH}_{3}\right), 2.09\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCOCH}_{3}\right), 2.06\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCOCH}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 170.9(C=\mathrm{O}), 170.8(C=\mathrm{O}), 170.7(C=\mathrm{O}), 170.4(C=\mathrm{O}), 169.9(C=\mathrm{O}), 95.5(C 1 \beta), 90.6(C 1 \alpha), 73.5(C 2 \beta)$, $73.2(C 3 \beta), 72.5(C 5 \beta), 71.5(C 2 \alpha), 70.6(C 3 \alpha), 67.8(C 5 \alpha), 63.0(C 6 \beta), 62.8(C 6 \alpha), 60.4(C 4 \beta), 60.3(C 4 \alpha), 21.0$ $\left(\mathrm{COCH}_{3}\right) 20.9\left(\mathrm{COCH}_{3}\right), 20.8\left(\mathrm{COCH}_{3}\right)$; IR v (film, cm $\left.{ }^{-1}\right) 3458(\mathrm{O}-\mathrm{H}), 2960\left(\mathrm{CH}_{3}\right), 2108\left(\mathrm{~N}_{3}\right), 1739(\mathrm{C}=\mathrm{O})$; ESIHRMS $m / z=354.0903[\mathrm{M}+\mathrm{Na}]^{+} . \mathrm{C}_{12} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{8} \mathrm{Na}$ requires 354.0913.

1-O-(ortho-Hexynylbenzoyl)-2,3,4-tri-O-acetyl-4-azido-D-glucopyranose 6. To a stirred solution of 5-OH (1 eq., $28 \mathrm{mg}, 0.08 \mathrm{mmol}$) and ortho-(hex-1-yn-1-yl)benzoic acid (1.2 eq., $20 \mathrm{mg}, 0.10 \mathrm{mmol}$), in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.3 \mathrm{~mL})$ were added DCC (1.5 eq., $26 \mathrm{mg}, 0.13 \mathrm{mmol}$) and DMAP (1.5 eq., $15 \mathrm{mg}, 0.13 \mathrm{mmol}$) under inert atmosphere. After being stirred for 3 h at room temperature, the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ and washed with saturated aqueous $\mathrm{NaHCO}_{3}(1 \mathrm{~mL})$ and brine $(1 \mathrm{~mL})$. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and then concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (Heptane/EtOAc 90:10 to 70:30) to provide $6(36 \mathrm{mg}, 84 \% ; \alpha / \beta=3: 6)$ as a white solid. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.93-7.79\left(\mathrm{~m}, 1 \mathrm{H}, H_{\mathrm{Ar}} \alpha, H_{\mathrm{Ar}} \beta\right), 7.53-7.21\left(\mathrm{~m}, 3 \mathrm{H}, H_{\mathrm{Ar}} \alpha, H_{\mathrm{Ar}} \beta\right), 6.51\left(\mathrm{~d}, 0.4 \mathrm{H}, J_{1,2}=3.5 \mathrm{~Hz}, H 1 \alpha\right), 5.86(\mathrm{~d}, 0.6 \mathrm{H}$, $\left.J_{1,2}=8.0 \mathrm{~Hz}, H 1 \beta\right), 5.55\left(\mathrm{t}, 0.4 \mathrm{H}, J_{3,2}=J_{3,4}=10.0 \mathrm{~Hz}, H 3 \alpha\right), 5.23\left(\mathrm{t}, 0.6 \mathrm{H}, J_{3,2}=J_{3,4}=9.0 \mathrm{~Hz}, H 3 \beta\right), 5.16(\mathrm{dd}, 0.6 \mathrm{H}$, $\left.J_{2,1}=8.0 \mathrm{~Hz}, J_{2,3}=9.0 \mathrm{~Hz}, H 2 \beta\right), 5.09\left(\mathrm{dd}, 0.4 \mathrm{H}, J_{2,1}=3.5 \mathrm{~Hz}, J_{2,3}=10.0 \mathrm{~Hz}, H 2 \alpha\right), 4.37-4.20\left(\mathrm{~m}, 2 \mathrm{H}, H 6 \alpha, H 6^{\prime} \alpha\right.$, $\left.H 6 \beta, H 6^{\prime} \beta\right), 4.03-3.94(\mathrm{~m}, 0.4 \mathrm{H}, H 5 \alpha), 3.72\left(\mathrm{t}, 0.6 \mathrm{H}, J_{4,3}=J_{4,5}=9.0 \mathrm{~Hz}, H 4 \beta\right), 3.69\left(\mathrm{t}, 0.4 \mathrm{H}, J_{4,3}=J_{4,5}=10.0 \mathrm{~Hz}\right.$, $H 4 \alpha), 3.65-3.58(\mathrm{~m}, 0.6 \mathrm{H}, H 5 \beta), 2.50-2.36(\mathrm{~m}, 2 \mathrm{H}, H 7), 2.07\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 2.04(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}), 1.93(\mathrm{~s}, 1.2 \mathrm{H}$, $\left.\mathrm{COCH}_{3} \alpha\right), 1.92\left(\mathrm{~s}, 1.8 \mathrm{H}, \mathrm{COCH}_{3} \beta\right), 1.64-1.49(\mathrm{~m}, 2 \mathrm{H}, H 8), 1.49-1.34(\mathrm{~m}, 2 \mathrm{H}, H 9), 0.88\left(\mathrm{t}, 3 \mathrm{H}, J_{C H 3,9}=7.0 \mathrm{~Hz}\right.$, $\left.\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.7(\mathrm{C}=\mathrm{O}), 170.2(\mathrm{C}=\mathrm{O}), 170.0(\mathrm{C}=\mathrm{O}), 169.9(\mathrm{C}=\mathrm{O}), 164.2(\mathrm{Cq}), 163.3$ $(C \mathrm{q}), 135.4\left(\mathrm{CH}_{\mathrm{Ar}}\right), 135.0\left(\mathrm{CH}_{\mathrm{Ar}}\right), 132.8\left(\mathrm{CH}_{\mathrm{Ar}}\right), 132.7\left(\mathrm{CH}_{\mathrm{Ar}}\right), 130.9\left(\mathrm{CH}_{\mathrm{Ar}}\right), 129.8\left(\mathrm{Cq}_{\mathrm{Ar}}\right), 129.2\left(C \mathrm{q}_{\mathrm{Ar}}\right), 127.6$ $\left(C H_{\mathrm{Ar}}\right), 127.4\left(C H_{\mathrm{Ar}}\right), 126.1\left(\mathrm{Cq}_{\mathrm{Ar}}\right), 125.5\left(\mathrm{Cq}_{\mathrm{Ar}}\right), 97.7\left(\mathrm{Cq}_{\text {alkyne }}\right), 97.5\left(C \mathrm{q}_{\text {alkyne }}\right), 92.1(C 1 \beta), 90.1(C 1 \alpha), 79.8$ $\left(C_{\text {alkyne }}\right), 79.1($ qqalkyne $), 73.7(C 3 \beta), 73.1(C 5 \beta), 70.8(C 3 \alpha), 70.6(C 2 \beta, C 5 \alpha), 69.7(C 2 \alpha), 62.7(C 6 \beta), 62.5(C 6 \alpha)$, $60.2(C 4 \beta), 60.0(C 4 \alpha), 30.9(C 8 \beta), 30.8(C 8 \alpha), 22.3(C 9 \beta, C 9 \alpha), 20.9\left(\mathrm{COCH}_{3}\right), 20.9\left(\mathrm{COCH}_{3}\right), 20.8\left(\mathrm{COCH}_{3}\right)$, $20.7\left(\mathrm{COCH}_{3}\right), 20.7\left(\mathrm{COCH}_{3}\right), 19.8(\mathrm{C} 7 \beta), 19.7(\mathrm{C} 7 \alpha), 13.9\left(\mathrm{CH}_{3} \beta\right), 13.8\left(\mathrm{CH}_{3} \alpha\right)$; IR $v\left(\right.$ film, $\left.\mathrm{cm}^{-1}\right) 2959\left(\mathrm{CH}_{3}\right)$, $2935\left(\mathrm{CH}_{2}\right), 2229$ (alkyne), $2110\left(\mathrm{~N}_{3}\right), 1745(\mathrm{C}=\mathrm{O})$; ESIHRMS $m / z=538.1804[\mathrm{M}+\mathrm{Na}]^{+} . \mathrm{C}_{25} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{9} \mathrm{Na}$ requires 538.1801.

Phenyl 2,3-di- \boldsymbol{O}-acetyl-4,6- \boldsymbol{O}-benzylidene-thio- $\boldsymbol{\beta}$-D-galactopyranoside $\mathbf{2 b}$. To a stirred solution of Na ($52 \mathrm{mg}, 20$ $\mathrm{mol} \%$) in dry $\mathrm{MeOH}(113 \mathrm{~mL})$ was added phenyl 2,3,4,6-tetra- O-acetyl-thio- β-D-galactoside ($5 \mathrm{~g}, 11.35 \mathrm{mmol}, 1$ eq.) under argon atmosphere. The resulting mixture was stirred at room temperature for 2 h and then neutralized with Dowex ${ }^{\circledR} \mathrm{H}^{+}$, filtered on celite ${ }^{\circledR}$, concentrated under reduced pressure and co-evaporated with toluene to afford the deprotected adduct $\mathbf{1 b}$. This latter ($3.03 \mathrm{~g}, 11.3 \mathrm{mmol}, 1$ eq.) was then dissolved in dry $\mathrm{MeCN}(24 \mathrm{~mL})$ then benzaldehyde dimethyl acetal ($2.7 \mathrm{~mL}, 17.8 \mathrm{mmol}, 1.6$ eq.) and $p-\mathrm{TsOH}(15 \mathrm{~mol} \%, 300 \mathrm{mg})$ were added. The mixture was stirred at room temperature for 2 h under argon atmosphere and then neutralized with $\mathrm{Et}_{3} \mathrm{~N}(2 \mathrm{~mL})$.

[^1]Water (30 mL) and EtOAc (50 mL) were added and the aqueous layer was extracted with EtOAc (2 x 50 mL). Organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The crude product was recrystallized with heptane/EtOAc $70: 30$ to afford the desired compound ($3.3 \mathrm{~g}, 82 \%$) as a white solid. ${ }^{4}$ The obtained product ($3.27 \mathrm{~g}, 11.1 \mathrm{mmol}, 1 \mathrm{eq}$.) was dissolved in pyridine (12 mL). $\mathrm{Ac}_{2} \mathrm{O}(6 \mathrm{~mL})$ was added and the mixture was stirred at room temperature overnight. Pyridine was co-evaporated with toluene. The crude product was recrystallized with Heptane/EtOAc $55 / 45$ to afford $\mathbf{2 b}(3.61 \mathrm{~g}, 73 \%)$ as a white solid. 1 H NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.70-7.19$ $\left(\mathrm{m}, 10 \mathrm{H}_{\mathrm{Ar}}\right), 5.49(\mathrm{~s}, 1 \mathrm{H}, \mathrm{PhCH}), 5.36(\mathrm{t}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}, H 2), 5.02(\mathrm{dd}, J=10.0$ and $3.5 \mathrm{~Hz}, 1 \mathrm{H}, H 3), 4.73(\mathrm{~d}, J=$ $10.0 \mathrm{~Hz}, 1 \mathrm{H}, H 1$), 4.44-4.36 (m, 2H, H4 and H6), $4.04(\mathrm{dd}, J=12.5$ and $1.5 \mathrm{~Hz}, 1 \mathrm{H}, H 6), 3.64-3.60(\mathrm{~m}, 1 \mathrm{H}, H 5)$, $2.08,2.02\left(2 \mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{COCH}_{3}\right) .{ }^{5}$

Phenyl 2,3-di- \boldsymbol{O}-acetyl-6-O-benzyl-thio- $\boldsymbol{\beta}$-d-galactopyranoside 3b. A solution of $\mathbf{2 b}$ ($5.0 \mathrm{~g}, 11.2 \mathrm{mmol}, 1 \mathrm{eq}$.) in dry $\mathrm{MeCN}(110 \mathrm{~mL})$ was cooled to $0{ }^{\circ} \mathrm{C}$ and $\mathrm{Et}_{3} \mathrm{SiH}(10.8 \mathrm{~mL}, 67.4 \mathrm{mmol}, 1 \mathrm{eq}$.$) was added, followed by the$ addition of $\mathrm{Cu}(\mathrm{OTf})_{2}\left(200 \mathrm{mg}, 0.56 \mathrm{mmol}, 0.05 \mathrm{eq}\right.$.). The resulting mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h and then hydrolysed with a saturated solution of $\mathrm{NaHCO}_{3}(60 \mathrm{~mL})$. The phases were separated and organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under vacuum. The desired product was obtained in mixture with the silylated one (6.28 g , ratio $30: 70$). The crude mixture was directly dissolved in $\mathrm{MeCN}(20 \mathrm{~mL})$ and treated with a diluted aqueous solution of $\mathrm{HBF}_{4}(\mathrm{C}=0.25 \mathrm{M}, 20 \mathrm{~mL})$. The resulting solution was stirred at room temperature for 1.5 h and then quenched with saturated solution of NaHCO_{3} until neutralization. Aqueous layer was extracted with EtOAc ($3 \times 15 \mathrm{~mL}$). Organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under vacuum. The crude product was purified by flash chromatography (Heptane/EtOAc 90:10 to $40: 60$) to afford product $\mathbf{3 b}$ ($4.43 \mathrm{~g}, 9.93$ $\mathrm{mmol}, 88 \%$) as a colorless oil. 1 H NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.54$ (dd, $\left.J=6.5,3.0 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.41-7.11(\mathrm{~m}, 8 \mathrm{H})$, $5.33(\mathrm{t}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{dd}, J=10.0$ and $3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.64-4.22(\mathrm{~m}, 2 \mathrm{H}), 4.25-$ $4.16(\mathrm{~m}, 1 \mathrm{H}), 3.84-3.72(\mathrm{~m}, 2 \mathrm{H}), 2.64(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{~s}, 6 \mathrm{H}){ }^{6}$

Phenyl 2,3-di- \boldsymbol{O}-acetyl-4-azido-6- \boldsymbol{O}-benzyl-thio- $\boldsymbol{\beta}$-d-glucopyranoside $\mathbf{4 b}$. $\mathbf{3 b}$ ($500 \mathrm{mg}, 1.12 \mathrm{mmol}, 1 \mathrm{eq}$.) was coevaporated 2 times with toluene (5 mL) and then diluted in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{C}=0.1 \mathrm{M}, 11.2 \mathrm{~mL})$ under argon atmosphere. Pyridine ($1.0 \mathrm{~mL}, 12.32 \mathrm{mmol}, 11 \mathrm{eq}$.) was added and the mixture was cooled to $0{ }^{\circ} \mathrm{C}$. Triflic anhydride ($280 \mu \mathrm{~L}, 1.68 \mathrm{mmol}, 2$ eq.) was added and the mixture stirred for 90 min at $0{ }^{\circ} \mathrm{C}$. The mixture was quenched by addition of 10% aqueous NaHCO_{3} solution (50 mL), the phases were separated and the organic layer was extracted with 3% hydrochloric acid ($3 \times 20 \mathrm{~mL}$), with water (20 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and was concentrated under vacuum. The resulting crude product was co-evaporated with toluene (3 x) to remove all traces of pyridine and dried for 1 h under vacuum. The yellow residue was dissolved in dry DMF (10 mL), sodium azide ($1.6 \mathrm{~g}, 25.0$ $\mathrm{mmol}, 12$ eq.) was added, and the reaction mixture was stirred overnight. The mixture was diluted with water and EtOAc (20 mL) and the phases were separated. The organic phase was washed with brine ($3 \times 30 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuum. The residue was purified by flash chromatography on silica gel (Heptane/EtOAc 90:10 to 80:20) to afford product $\mathbf{4 b}(347 \mathrm{mg}, 0.736 \mathrm{mmol}, 66 \%)$ as a colorless oil. $[\alpha]_{\mathrm{D}}{ }^{25}-4.4$ (c $\left.=1.1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.42-7.34\left(\mathrm{~m}, 2 \mathrm{H}, H_{\mathrm{Ar}}\right), 7.30-7.09\left(\mathrm{~m}, 8 \mathrm{H}, H_{\mathrm{Ar}}\right), 5.04\left(\mathrm{dd}, 1 \mathrm{H}, J_{3,2}=\right.$ 9.5 Hz and $\left.J_{3,4}=10.0 \mathrm{~Hz}, H 3\right), 4.79\left(\mathrm{dd}, 1 \mathrm{H}, J_{2,1}=10.0 \mathrm{~Hz}\right.$ and $\left.J_{2,3}=9.5 \mathrm{~Hz}, H 2\right), 4.56\left(\mathrm{~d}, 1 \mathrm{H}, J_{l, 2}=10.0 \mathrm{~Hz}, H 1\right)$, $4.52\left(\mathrm{~d}, 1 \mathrm{H}, J_{H, H}=12.0 \mathrm{~Hz}, \mathrm{C} H_{2} \mathrm{Ph}\right), 4.45\left(\mathrm{~d}, 1 \mathrm{H}, J_{H, H}=12.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.69\left(\mathrm{dd}, 1 \mathrm{H}, J_{6,6}=11.0 \mathrm{~Hz}\right.$ and $J_{6,5}=$ $2.0 \mathrm{~Hz}, H 6), 3.64\left(\mathrm{t}, 1 \mathrm{H}, J_{4,3}=J_{4,5}=10.0 \mathrm{~Hz}, H 4\right) 3.62\left(\mathrm{dd}, 1 \mathrm{H}, J_{6 ; 6}=11.0 \mathrm{~Hz}, J_{6 ; 5}=4.0 \mathrm{~Hz}, H 6^{\prime}\right), 3.31(\mathrm{ddd}, 1 \mathrm{H}$, $J_{5,4}=10.0 \mathrm{~Hz}, J_{5,6}=4.0 \mathrm{~Hz}$ and $\left.J_{5,6}=2.0 \mathrm{~Hz}, H 5\right), 1.96\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.2(\mathrm{C}=\mathrm{O})$, $169.7(C=\mathrm{O}), 138.0\left(\mathrm{Cq}_{\mathrm{Ar}}\right), 133.3\left(\mathrm{CH}_{\mathrm{Ar}}\right), 132.0\left(C \mathrm{q}_{\mathrm{Ar}}\right), 129.2\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.6\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.5\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.0\left(\mathrm{CHC}_{\mathrm{Ar}}\right)$, $127.9\left(\mathrm{CH}_{A r}\right), 85.9(\mathrm{C} 1), 78.4(\mathrm{C5}) 75.0(\mathrm{C} 3), 73.8\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 70.4(\mathrm{C} 2), 69.0(\mathrm{C} 6), 60.0(\mathrm{C} 4), 21.0\left(\mathrm{COCH}_{3}\right), 20.9$ $\left(\mathrm{COCH}_{3}\right)$; IR $v\left(\right.$ film, $\left.\mathrm{cm}^{-1}\right) 3122(=\mathrm{C}-\mathrm{H}), 2926\left(-\mathrm{CH}_{2}\right), 2110\left(\mathrm{~N}_{3}\right), 1752(\mathrm{C}=\mathrm{O})$; ESIHRMS $\mathrm{m} / \mathrm{z}=494.1360$ $[\mathrm{M}+\mathrm{Na}]^{+} . \mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{SNa}$ requires 494.1362.

Phenyl 2,3,6-tri- \boldsymbol{O}-acetyl-4-azido-thio- $\boldsymbol{\beta}$-d-glucopyranoside. To a stirred solution of $\mathbf{4 b}$ ($1.48 \mathrm{~g}, 3.14 \mathrm{mmol}, 1 \mathrm{eq}$.) in dry acetic anhydride (5.6 mL) at $0^{\circ} \mathrm{C}$ was added dropwise a solution of $\mathrm{NaI}(471 \mathrm{mg}, 3.14 \mathrm{mmol}, 1 \mathrm{eq})$ in MeCN $(1.9 \mathrm{~mL})$ followed by $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(1.16 \mathrm{~mL}, 4.71 \mathrm{mmol}, 1.5 \mathrm{eq})$. After completion of the reaction, the reaction mixture was quenched with aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ until neutralization and extracted with $\mathrm{EtOAc}(15 \mathrm{~mL})$. The organic layer was washed with water ($3 \times 15 \mathrm{~mL}$), brine ($3 \times 15 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuum. The crude product was purified by flash chromatography (Heptane/EtOAc 90:10 to 75:25) to afford the desired

[^2]clean product ($0.8242 \mathrm{~g}, 62 \%$) as a colorless oil. $[\alpha]_{\mathrm{D}}{ }^{25}-2.80\left(c=1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : 7.56$7.44\left(\mathrm{~m}, 2 \mathrm{H}, H_{\mathrm{Ar}}\right), 7.37-7.28\left(\mathrm{~m}, 3 \mathrm{H}, H_{\mathrm{Ar}}\right), 5.21\left(\mathrm{t}, 1 \mathrm{H}, J_{2,3}=J_{3,4}=10.5 \mathrm{~Hz}, H_{3}\right), 4.91\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}_{1,2}=\mathrm{J}_{2,3}=10.5 \mathrm{~Hz}, H_{2}\right)$, $4.68\left(\mathrm{~d}, 1 \mathrm{H}, J_{1,2}=10.5 \mathrm{~Hz}, H_{1}\right), 4.52-4.45\left(\mathrm{dd}, 1 \mathrm{H}, J_{6,6}=12.5 \mathrm{~Hz}\right.$ and $\left.J_{6,5}=2.0 \mathrm{~Hz}, H_{6}\right), 4.30-4.21\left(\mathrm{dd}, 1 \mathrm{H}, J_{6,6}=12.5\right.$ Hz and $J_{6,5}=5.0 \mathrm{~Hz}, \mathrm{H}_{6}$) $3.64\left(\mathrm{t}, 1 \mathrm{H}, J_{4,5}=J_{3,4}=10.0 \mathrm{~Hz}, H_{4}\right), 3.54-3.46\left(\mathrm{ddd}, 1 \mathrm{H}, J_{4,5}=10.2 \mathrm{~Hz}, J_{6}, 5=5.0 \mathrm{~Hz}\right.$ and $\left.\mathrm{J}_{6,5}=2.0 \mathrm{~Hz}, H_{5}\right), 2.13\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.12\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C} H_{3}\right), 2.11\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH} H_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : 170.38 $(C=\mathrm{O}), 169.87(C=\mathrm{O}), 169.48(C=\mathrm{O}), 133.4\left(2 * C \mathrm{H}_{\mathrm{Ar}}\right), 128.9\left(2 * C \mathrm{H}_{\mathrm{Ar}}\right), 128.5\left(C \mathrm{q}_{\mathrm{Ar}}\right), 85.6(C 1), 75.9(C 5), 74.7$ (C3), $69.8(C 2), 62.8(C 6), 59.9(C 4), 20.8\left(\mathrm{COCH}_{3}\right), 20.6\left(\mathrm{COCH}_{3}\right)$; IR $v\left(f i l m, \mathrm{~cm}^{-1}\right): 2952(-\mathrm{CH} 2), 2109(\mathrm{~N} 3)$, $1745(\mathrm{C}=\mathrm{O})$; ESIHRMS $m / z=446.1004[\mathrm{M}+\mathrm{Na}]^{+} . \mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{SNa}$ requires 446.0998.

2,3,6-Tri- \boldsymbol{O}-acetyl-4-azido- $\boldsymbol{\beta}$-d-glucopyranosyl phenyl sulfoxide 7. To a stirred solution the previous described sulfide compound ($1.4 \mathrm{~g}, 3.27 \mathrm{mmol}, 1 \mathrm{eq}$.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(31 \mathrm{~mL})$ was added $m-\mathrm{CPBA}(75 \%, 0.85 \mathrm{~g}, 3.92 \mathrm{mmol}, 1.2$ eq.) at $-78{ }^{\circ} \mathrm{C}$ under argon atmosphere. The resulting mixture was stirred at $-30^{\circ} \mathrm{C}$ overnight and a solution of aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} / \mathrm{NaHCO}_{3} 50: 50(20 / 20 \mathrm{~mL})$ was then added. The solution was allowed to warm at room temperature, extracted with EtOAc ($2 \times 30 \mathrm{~mL}$). Organics layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under vacuum. The crude product was purified by flash chromatography (Heptane/EtOAc 80:20 to 50:50) to afford the clean product 7 as a mixture of two diastereoisomers ($\mathrm{dr}=1: 1,1.2 \mathrm{~g}, 84 \%$) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): 7.71-7.50\left(\mathrm{~m}, 10 \mathrm{H}, H_{\mathrm{Ar}}\right), 5.40-5.14\left(\mathrm{~m}, 4 \mathrm{H}, H_{2}, H_{3}\right), 4.51-4.44\left(\mathrm{~m}, 2 \mathrm{H}, H_{6}\right), 4.31\left(\mathrm{dd}, 1 \mathrm{H}, J_{6,6}=12.0\right.$ Hz and $\left.J_{6,5}=1.5 \mathrm{~Hz}, H_{6}\right), 4.24\left(\mathrm{~d}, 1 \mathrm{H}, J_{2,1}=9.5 \mathrm{~Hz}, \mathrm{H}_{1}\right), 4.22-4.09\left(\mathrm{~m}, 2 \mathrm{H}, H_{1}, H_{6}\right), 3.70-3.56\left(\mathrm{~m}, 2 \mathrm{H}, H_{4}\right), 3.52-3.47$ $\left(\mathrm{m}, 1 \mathrm{H}, H_{5}\right), 3.43-3.33\left(\mathrm{~m}, 1 \mathrm{H}, H_{5}\right), 2.14\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.12\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH} H_{3}\right), 2.11\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH} H_{3}\right), 2.08\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH} H_{3}\right), 2.02$ $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.86\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $170.2(\mathrm{C}=\mathrm{O}), 170.1(\mathrm{C}=\mathrm{O}), 169.9(\mathrm{C}=\mathrm{O}), 169.5$ $(C=O), 169.2(C=O), 131.7\left(C_{\mathrm{Ar}}\right), 131.5\left(C_{\mathrm{Ar}}\right), 129.0\left(C_{\mathrm{Ar}}\right), 128.9\left(C_{\mathrm{Ar}}\right), 125.7\left(C_{\mathrm{Ar}}\right), 125.4\left(C_{\mathrm{Ar}}\right), 92.4(C 1), 90.1$ (C1), 77.5 (C5), 77.0 (C5), 74.9 (C3), 74.6 (C3), 67.5 (C2), 67.1 (C2), 62.4 (C6), 62.2 (C6), 59.6 (C4), 59.3 (C4), $20.7\left(\mathrm{COCH}_{3}\right), 20.6\left(\mathrm{COCH}_{3}\right), 20.5\left(\mathrm{COCH}_{3}\right)$; IR $v\left(\right.$ film, $\left.\mathrm{cm}^{-1}\right): 2942(-\mathrm{CH} 2), 2110(\mathrm{~N} 3), 1741(\mathrm{C}=\mathrm{O})$; ESIHRMS $m / z=901.2006[2 \mathrm{M}+\mathrm{Na}]^{+} . \mathrm{C}_{36} \mathrm{H}_{42} \mathrm{~N}_{6} \mathrm{O}_{16} \mathrm{~S}_{2} \mathrm{Na}$ requires 901.2006.

2,3-Di- \boldsymbol{O}-acetyl-4-azido-6- \boldsymbol{O}-benzyl- $\boldsymbol{\beta}$-d-glucopyranosyl phenyl sulfoxide $\mathbf{8}$. To a stirred solution of $\mathbf{4 b}$ (1.0 g , $2.12 \mathrm{mmol}, 1$ eq.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(21 \mathrm{~mL})$ was added m-CPBA (above $75 \%, 550 \mathrm{mg}, 3.18 \mathrm{mmol}, 1.5 \mathrm{eq}$.) at $-78{ }^{\circ} \mathrm{C}$ under argon atmosphere. The resulting mixture was stirred at $-30^{\circ} \mathrm{C}$ overnight and dimethylsulfide (0.2 mL) was then added. The solution was allowed to warm at room temperature, diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, washed with water (8 mL), with a saturated aqueous solution of $\mathrm{NaHCO}_{3}(8 \mathrm{~mL})$, with water again (8 mL) and finally with brine $(8 \mathrm{~mL})$. The organic phase was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under vacuum. The crude product was purified by flash chromatography on silica gel (Heptane/EtOAc 80:20 to 60:40) to afford product $\mathbf{8}$ (914 mg, 1.875 $\mathrm{mmol}, 89 \%$) as a colorless oil and as a mixture of two diastereoisomers ($\mathrm{dr}=2: 3$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.71-7.59 (m, 2H, $\left.H_{\mathrm{Ar}}\right), 7.55-7.42\left(\mathrm{~m}, 3 \mathrm{H}, H_{\mathrm{Ar}}\right), 7.42-7.21\left(\mathrm{~m}, 5 \mathrm{H}, H_{\mathrm{Ar}}\right), 5.29\left(\mathrm{t}, 0.4 \mathrm{H}, J_{2 x, 1 x}=J_{2 x, 3 x}=9.5 \mathrm{~Hz}, H 2 \mathrm{x}\right)$, $5.24\left(\mathrm{t}, 0.6 \mathrm{H}, J_{2 y, 1 y}=J_{2 y, 3 y}=9.0 \mathrm{~Hz} H 2 \mathrm{y}\right), 5.19\left(\mathrm{t}, 0.4 \mathrm{H}, J_{3 x, 2 x}=J_{3 x, 4 x}=9.5 \mathrm{~Hz}, H 3 \mathrm{x}\right), 5.16\left(\mathrm{t}, 0.6 \mathrm{H}, J_{3 y, 2 y}=J_{3 y, 4 y}=\right.$ $9.0 \mathrm{~Hz}, H 3 \mathrm{y}), 4.56-4.36\left(\mathrm{~m}, 2.6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}, H 1 \mathrm{y}\right), 4.25\left(\mathrm{~d}, 0.4 \mathrm{H}, J_{l x, 2 x}=9.5 \mathrm{~Hz}, H 1 \mathrm{x}\right), 3.82-3.69(\mathrm{~m}, 2.2 \mathrm{H}, H 6, H 6$ '), $3.69-3.56(\mathrm{~m}, 1 \mathrm{H}, H 4), 3.48-3.38\left(\mathrm{dt}, 0.6 \mathrm{H}, J b_{5 y, 4 y}=10.0 \mathrm{~Hz}, J_{5 y, 6}=5.0 \mathrm{~Hz}\right.$ and $\left.J_{5 y, 6 y}=2.5 \mathrm{~Hz}, H 5 \mathrm{y}\right), 3.36-3.24$ (ddd, $0.4 \mathrm{H}, J b_{5 x, 4 x}=10.0 \mathrm{~Hz}, J_{5 x, \sigma^{\prime} x}=6.0 \mathrm{~Hz}$ and $\left.J_{5 x, 6 x}=4.0 \mathrm{~Hz}, H 5 \mathrm{x}\right), 2.10\left(\mathrm{~s}, 1.2 \mathrm{H}, \mathrm{OCOCH}_{3} \mathrm{x}\right), 2.08(\mathrm{~s}, 1.8 \mathrm{H}$, $\left.\mathrm{OCOCH}_{3} \mathrm{y}\right), 2.06\left(\mathrm{~s}, 1.2 \mathrm{H}, \mathrm{OCOCH}_{3} \mathrm{x}\right), 1.83\left(\mathrm{~s}, 1.8 \mathrm{H}, \mathrm{OCOCH}_{3} \mathrm{y}\right) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.4(\mathrm{C}=\mathrm{O})$, $170.3(C=O)$, $169.7(C=\mathrm{O}), 169.4(C=\mathrm{O}), 139.6\left(C \mathrm{q}_{\mathrm{Ar}}\right), 139.0\left(C \mathrm{q}_{\mathrm{Ar}}\right), 137.8\left(\mathrm{Cq}_{\mathrm{Ar}}\right), 137.7\left(C \mathrm{q}_{\mathrm{Ar}}\right), 131.8\left(C \mathrm{H}_{\mathrm{Ar}}\right)$, $131.7\left(\mathrm{CH}_{\mathrm{Ar}}\right), 129.2\left(\mathrm{CH}_{\mathrm{Ar}}\right), 129.1\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.6\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.5\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.1\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.0\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.9\left(C \mathrm{H}_{\mathrm{Ar}}\right)$, $127.9\left(\mathrm{CH}_{\mathrm{Ar}}\right), 125.8\left(\mathrm{CH}_{\mathrm{Ar}}\right), 125.6\left(\mathrm{CH}_{\mathrm{Ar}}\right), 93.0(C 1 \mathrm{y}), 90.5(\mathrm{Clx}), 79.3(C 5 \mathrm{x}), 79.0(C 5 \mathrm{y}), 75.1(C 2 \mathrm{y}), 74.8(C 3 \mathrm{y})$, $73.8\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 68.6(\mathrm{C6x}), 68.4(\mathrm{C6y}), 67.8(\mathrm{C} 2 \mathrm{x}), 67.4(\mathrm{C} 3 \mathrm{x}), 59.4(\mathrm{C4y}), 59.2(\mathrm{C4x}), 20.9\left(\mathrm{COCH}_{3}\right), 20.8$ $\left(\mathrm{COCH}_{3}\right), 20.7\left(\mathrm{COCH}_{3}\right)$; IR $v\left(\right.$ film, $\left.\mathrm{cm}^{-1}\right) 2988(=\mathrm{C}-\mathrm{H}), 2901\left(-\mathrm{CH}_{2}\right), 2110\left(\mathrm{~N}_{3}\right), 1755(\mathrm{C}=\mathrm{O})$; ESIHRMS $m / z=$ $510.1312[\mathrm{M}+\mathrm{Na}]^{+} . \mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{SNa}$ requires 510.1311.
N-Acetyl-cytosine 9. To a stirred solution of cytosine ($500 \mathrm{mg}, 4.5 \mathrm{mmol}$, 1eq.) in pyridine (2.5 mL) was added acetic anhydride ($2.1 \mathrm{~mL}, 22.05 \mathrm{mmol}, 5$ eq.). The resulting mixture was stirred overnight at room temperature then diluted with EtOAc (2.0 mL) and stirred again for 30 min at room temperature. The resulting white solid was filtered, washed with EtOAc, co-evaporated with toluene and dried under vacuum to afford clean product $9(0.6521 \mathrm{~g}, 95 \%)$ as a white solid. ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$) $\delta 11.50(\mathrm{bs}, 1 \mathrm{H}, \mathrm{N} H), 10.75(\mathrm{bs}, 1 \mathrm{H}, \mathrm{NH}), 7.80(\mathrm{~d}, J=7 \mathrm{~Hz}, \mathrm{C} H$-cytosine), 7.09 , (d, $J=7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}-$ cytosine), $2.08\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)^{7}$
N-Benzoyl-5-methyl-cytosine $10 .{ }^{8}$ To a suspension of 5-methyl-cytosine ($1.5 \mathrm{~g}, 12 \mathrm{mmol}$, 1eq.) in dry MeCN (40 mL) was added benzoic anhydride ($3.25 \mathrm{~g}, 14.4 \mathrm{mmol}, 1.2$ eq.) followed by DMAP ($293 \mathrm{mg}, 2.4 \mathrm{mmol}, 0.2 \mathrm{eq}$.) under argon atmosphere. The resulting mixture was refluxed for 24 h then EtOH (25 mL) was added to the hot

[^3]solution. The solution was cooled to room temperature and the resulting solid was filtered, washed with EtOH (15 $\mathrm{mL})$ and $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$ and dried under vacuum to afford clean product $\mathbf{1 0}(1.913 \mathrm{~g}, 70 \%)$ as a white solid.
\boldsymbol{N}-Benzoyl-5-fluoro-cytosine 13. To a suspension of 5 -fluoro-cytosine ($1.5 \mathrm{~g}, 11.6 \mathrm{mmol}, 1$ eq.) in dry MeCN (15 mL) was added benzoic anhydride ($3.15 \mathrm{~g}, 13.9 \mathrm{mmol}, 1.2 \mathrm{eq}$.) followed by DMAP ($283 \mathrm{mg}, 2.32 \mathrm{mmol}, 0.2 \mathrm{eq}$.) under argon atmosphere. The resulting mixture was refluxed for 24 h then $\mathrm{EtOH}(2 \mathrm{~mL})$ was added to the hot solution. The solution was cooled to room temperature and the resulting solid was filtered, washed with EtOH (15 $\mathrm{mL})$ and $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$ and dried under vacuum to afford clean product $\mathbf{1 3}(1.9 \mathrm{~g}, 70 \%)$ as a white solid. 1 H NMR (DMSO-d6, 300 MHz$) \delta 8.01(\mathrm{bd}, \mathrm{J}=7.4,3 \mathrm{H}), 7.60(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{9}$
$\mathbf{2 , 3 , 6}$-Tri- \boldsymbol{O}-acetyl-4-azido-1- \boldsymbol{N}-thymine- $\boldsymbol{\beta}$-D-glucopyranoside 16. The general procedure was followed using $\mathbf{7}$ ($70 \mathrm{mg}, 0.16 \mathrm{mmol}$), $10(32 \mathrm{mg}, 0.256 \mathrm{mmol})$, BSA ($0.16 \mathrm{~mL}, 0.64 \mathrm{mmol}$), TMSOTf ($43 \mu \mathrm{~L}, 0.24 \mathrm{mmol}, 1.5 \mathrm{eq}),$. \AA molecular sieves $(150 \mathrm{mg})$ in dry $\mathrm{MeCN}(3 \mathrm{~mL})$. The residue was purified by preparative TLC (Hept/EtOAc $20: 80)$ to afford product $16(63 \mathrm{mg}, 89 \%)$ as a white powder. $[\alpha]_{\mathrm{D}}{ }^{25}+8.7\left(c=0.9, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.68(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N} H), 7.05\left(\mathrm{~d}, 1 \mathrm{H}, J_{H A r, C H 3}=1.3 \mathrm{~Hz}, H_{\mathrm{Ar}}\right), 5.82\left(\mathrm{~d}, 1 \mathrm{H}, J_{l, 2}=9.5 \mathrm{~Hz}, H 1\right), 5.35\left(\mathrm{t}, 1 \mathrm{H}, J_{3,2}=\right.$ $\left.J_{3,4}=9.5 \mathrm{~Hz}, H 3\right), 5.10\left(\mathrm{t}, 1 \mathrm{H}, J_{2,1}=J_{2,3}=9.5 \mathrm{~Hz}, H 2\right), 4.37\left(\mathrm{dd}, 1 \mathrm{H}, J_{6,6}=12.5 \mathrm{~Hz}\right.$ and $\left.J_{6,5}=1.5 \mathrm{~Hz}, H 6\right), 4.25(\mathrm{dd}$, $\left.1 \mathrm{H}, J_{6 ; 6}=12.5 \mathrm{~Hz}, J_{6 ; 5}=4.5 \mathrm{~Hz}, H 6^{\prime}\right), 3.71-3.64(\mathrm{~m}, 2 \mathrm{H}, H 4, H 5), 2.11\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right), 2.10\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(\mathrm{O}) \mathrm{C} H_{3}\right)$, $1.97\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right), 1.92\left(\mathrm{~d}, 3 \mathrm{H}, J_{C H 3, H A r}=1.0 \mathrm{~Hz}, \mathrm{C}_{\mathrm{Ar}} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.4(\mathrm{C}=\mathrm{O}), 169.7$ $(C=\mathrm{O}), 169.4(C=\mathrm{O}), 162.9\left(C \mathrm{q}_{\mathrm{Ar}}\right), 150.2\left(C \mathrm{q}_{\mathrm{Ar}}\right), 134.3\left(\mathrm{CH}_{\mathrm{Ar}}\right), 112.3\left(\mathrm{Cq}_{\mathrm{Ar}}, 80.2(C 1), 75.1(C 5), 73.5(C 3), 69.3\right.$ (C2), $62.6(\mathrm{C} 6), 59.9(\mathrm{C} 4), 20.8\left(\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right), 20.6\left(\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right), 20.4\left(\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right), 12.6\left(\mathrm{CArCH}_{3}\right)$; IR $v\left(f i l m, \mathrm{~cm}^{-1}\right)$ $3220(\mathrm{~N}-\mathrm{H}), 3075(=\mathrm{C}-\mathrm{H}), 2931\left(\mathrm{CH}_{3}\right), 2111\left(\mathrm{~N}_{3}\right), 1748(\mathrm{C}=\mathrm{O}), 1690(\mathrm{NH}-\mathrm{C}=\mathrm{O})$; ESIHRMS $m / z=440.1418$ $[\mathrm{M}+\mathrm{H}]^{+} . \mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~N}_{5} \mathrm{O}_{9}$ requires 440.1409.
$\mathbf{2 , 3 , 6}$-Tri- \boldsymbol{O}-acetyl-4-azido-1- \boldsymbol{N}-(5-fluoro-uracil)- $\boldsymbol{\beta}$-d-glucopyranoside $\mathbf{1 7}$. The general procedure was followed using 7 ($70 \mathrm{mg}, 0.16 \mathrm{mmol}$), $11(33 \mathrm{mg}, 0.256 \mathrm{mmol}$), BSA ($0.16 \mathrm{~mL}, 0.64 \mathrm{mmol}$), TMSOTf ($43 \mu \mathrm{~L}, 0.24 \mathrm{mmol}$, 1.5 eq .), $4 \AA$ molecular sieves (150 mg) in dry $\mathrm{MeCN}(3 \mathrm{~mL})$. The residue was purified by preparative TLC (Hept/EtOAc 30:70) to afford product $17(49 \mathrm{mg}, 68 \%)$ as a yellow powder. $[\alpha]_{\mathrm{D}}{ }^{25}+23.0\left(c=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.48\left(\mathrm{~d}, 1 \mathrm{H}, J_{N H, F}=4.5 \mathrm{~Hz}, \mathrm{NH}\right), 7.34\left(\mathrm{~d}, 1 \mathrm{H}, J_{H A r, F}=5.5 \mathrm{~Hz}, H_{\mathrm{Ar}}\right), 5.84\left(\mathrm{~d}, 1 \mathrm{H}, J_{l, 2}=9.5 \mathrm{~Hz}\right.$, $H 1), 5.39\left(\mathrm{t}, 1 \mathrm{H}, J_{3,2}=J_{3,4}=9.5 \mathrm{~Hz}, H 3\right), 5.03\left(\mathrm{t}, 1 \mathrm{H}, J_{2,3}=J_{2, I}=9.5 \mathrm{~Hz}, H 2\right), 4.39\left(\mathrm{dd}, 1 \mathrm{H}, J_{6,6}=12.5 \mathrm{~Hz}\right.$ and $J_{6,5}=$ $1.5 \mathrm{~Hz}, H 6), 4.25\left(\mathrm{dd}, 1 \mathrm{H}, J_{6^{\prime}, 6}=12.5 \mathrm{~Hz}\right.$ and $J_{6,5}=4.5 \mathrm{~Hz}, H 6$), $3.80-3.71(\mathrm{~m}, 1 \mathrm{H}, H 5), 3.66\left(\mathrm{dd}, 1 \mathrm{H}, J_{4,5}=10.5\right.$ Hz and $\left.J_{4,3}=9.5 \mathrm{~Hz}, H 4\right), 2.11\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.10\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.98\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $170.4(C=O), 169.9(C=O), 169.5(C=O), 156.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=27 \mathrm{~Hz}, C \mathrm{q}_{\mathrm{Ar}}\right), 142.4\left(C \mathrm{q}_{\mathrm{Ar}}\right), 139.3\left(\mathrm{Cq}_{\mathrm{Ar}}\right), 123.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=\right.$ $\left.34 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right), 80.5(\mathrm{C} 1), 75.0(\mathrm{C5})$, $73.1(\mathrm{C} 3), 69.5(\mathrm{C} 2), 62.4(\mathrm{C}), 59.7(\mathrm{C} 4), 20.8\left(\mathrm{C}(\mathrm{O}) C \mathrm{H}_{3}\right), 20.6\left(\mathrm{C}(\mathrm{O}) C \mathrm{H}_{3}\right)$, $20.4\left(\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right)$; IR $v\left(\right.$ film, $\left.\mathrm{cm}^{-1}\right) 3222(\mathrm{~N}-\mathrm{H}), 3096(=\mathrm{C}-\mathrm{H}), 2116\left(\mathrm{~N}_{3}\right), 1712(\mathrm{C}=\mathrm{O}), 1673(\mathrm{NH}-\mathrm{C}=\mathrm{O})$; ESIHRMS $m / z=444.1167[\mathrm{M}+\mathrm{H}]^{+} . \mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{O}_{9} \mathrm{~F}$ requires 444.1180.

2,3,6-Tri- O-acetyl-4-azido-1- \boldsymbol{N}-(4- \boldsymbol{N}-benzoyl-5-methyl-cytosine)- $\boldsymbol{\beta}$-d-glucopyranoside $\mathbf{1 8}$. The general procedure was followed using $7(70 \mathrm{mg}, 0.16 \mathrm{mmol}), 12(59 \mathrm{mg}, 0.256 \mathrm{mmol})$, BSA ($0.16 \mathrm{~mL}, 0.64 \mathrm{mmol}$), TMSOTf ($43 \mu \mathrm{~L}, 0.24 \mathrm{mmol}, 1.5$ eq.), $4 \AA$ molecular sieves (150 mg) in dry MeCN (3 mL). The residue was purified by preparative TLC (Hept/EtOAc 30:70) to afford product $18(76 \mathrm{mg}, 88 \%)$ as a white powder. $[\alpha]_{\mathrm{D}}{ }^{25}+4.1$ $\left(c=1.2, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.39-8.19\left(\mathrm{~m}, 2 \mathrm{H}, H_{\mathrm{Ar}}\right), 7.59-7.36\left(\mathrm{~m}, 3 \mathrm{H}, H_{\mathrm{Ar}}\right), 7.20(\mathrm{~d}, 1 \mathrm{H}$, $\left.J_{H A r, C H 3}=1.5 \mathrm{~Hz}, H_{\mathrm{Ar}}\right), 5.85\left(\mathrm{~d}, 1 \mathrm{H}, J_{l, 2}=9.5 \mathrm{~Hz}, H 1\right), 5.35(\mathrm{~m}, 1 \mathrm{H}, H 3), 5.12\left(\mathrm{t}, 1 \mathrm{H}, J_{2, l}=J_{2,3}=9.5 \mathrm{~Hz}, H 2\right), 4.38$ $\left(\mathrm{d}, 1 \mathrm{H}, J_{6,6^{\prime}}=12.5 \mathrm{~Hz}, H 6\right), 4.27\left(\mathrm{dd}, 1 \mathrm{H}, J_{\sigma^{\prime}, 6}=12.5 \mathrm{~Hz}\right.$ and $\left.J_{\sigma^{\prime}, 5}=3.5 \mathrm{~Hz}, H 6^{\prime}\right), 3.79-3,61(\mathrm{~m}, 2 \mathrm{H}, H 4, H 5), 2.12(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{CH} H_{3}\right), 2.11\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 1.98\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 180.0(\mathrm{C}=\mathrm{O}), 170.5(\mathrm{C}=\mathrm{O})$, $170.0(C=O), 169.6(C=O), 159.0\left(C q_{\mathrm{Ar}}\right), 148.2\left(C q_{\mathrm{Ar}}\right), 136.9\left(\mathrm{Cq}_{\mathrm{Ar}}\right), 135.5\left(C \mathrm{H}_{\mathrm{Ar}}\right), 133.0\left(C \mathrm{H}_{\mathrm{Ar}}\right), 130.2\left(C \mathrm{H}_{\mathrm{Ar}}\right)$, $128.4\left(\mathrm{CH}_{\mathrm{Ar}}\right), 113.3\left(\mathrm{Cq}_{\mathrm{Ar}}\right), 80.6(\mathrm{C} 1), 75.4(\mathrm{C} 5), 73.8(\mathrm{C} 3), 69.8(\mathrm{C} 2), 62.9(\mathrm{C} 6), 60.1(\mathrm{C} 4), 20.8\left(\mathrm{C}(\mathrm{O}) C \mathrm{H}_{3}\right), 20.6$ $\left(\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right), 14.0\left(\mathrm{CH}_{3}\right)$; IR $v\left(\right.$ film, $\left.\mathrm{cm}^{-1}\right) 3072(=\mathrm{C}-\mathrm{H}), 2959(\mathrm{C}-\mathrm{H}), 2110\left(\mathrm{~N}_{3}\right), 1740(\mathrm{C}=\mathrm{O}), 1707(\mathrm{C}=\mathrm{O}), 1656$ $(\mathrm{NH}-\mathrm{C}=\mathrm{O})$; ESIHRMS $m / z=543.1835[\mathrm{M}+\mathrm{H}]^{+} . \mathrm{C}_{24} \mathrm{H}_{27} \mathrm{~N}_{6} \mathrm{O}_{9}$ requires 543.1840.

2,3,6-Tri- O-acetyl-4-azido-1- \boldsymbol{N}-(4- \boldsymbol{N}-benzoyl-5-fluoro-cytosine)- $\boldsymbol{\beta}$-d-glucopyranoside $\mathbf{1 9}$. The general procedure was followed using $7(70 \mathrm{mg}, 0.16 \mathrm{mmol}), \mathbf{1 3}(56 \mathrm{mg}, 0.256 \mathrm{mmol})$, BSA ($0.16 \mathrm{~mL}, 0.64 \mathrm{mmol}$), TMSOTf ($43 \mu \mathrm{~L}$, $0.24 \mathrm{mmol}, 1.5 \mathrm{eq}.), 4 \AA$ molecular sieves $(150 \mathrm{mg})$ in dry $\mathrm{MeCN}(3 \mathrm{~mL})$. The residue was purified by preparative TLC (Hept/EtOAc 20:80) to afford product $19(75 \mathrm{mg}, 75 \%)$ as a white powder. $[\alpha]_{\mathrm{D}}{ }^{20}=+37.4(\mathrm{c}=0.5, \mathrm{MeOH})$; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.26\left(\mathrm{~d}, 2 \mathrm{H}, J_{H A r, H A r}=7.5 \mathrm{~Hz}, H_{\mathrm{Ar}}\right), 7.55\left(\mathrm{t}, 1 \mathrm{H}, J_{H A r, H A r}=7.5 \mathrm{~Hz} H_{\mathrm{Ar}}\right), 7.47-7.39(\mathrm{~m}$, $\left.3 \mathrm{H}, H_{\mathrm{Ar}}\right), 5.82\left(\mathrm{~d}, 1 \mathrm{H}, J_{1,2}=9.5 \mathrm{~Hz}, H 1\right), 5.37\left(\mathrm{t}, 1 \mathrm{H}, J_{3,2}=J_{3,4}=9.5 \mathrm{~Hz}, H 3\right), 5.03\left(\mathrm{t}, 1 \mathrm{H}, J_{2,3}=J_{2, I}=9.5 \mathrm{~Hz}, H 2\right)$, $4.39\left(\mathrm{~d}, 1 \mathrm{H}, J_{H 6, H 6^{\prime}}=12.5 \mathrm{~Hz}, H 6\right), 4.27\left(\mathrm{dd}, 1 \mathrm{H}, J_{H \sigma^{\prime}, H 6}=12.5 \mathrm{~Hz}\right.$ and $\left.J_{H \sigma^{\prime}, H 5}=4.0 \mathrm{~Hz}, \mathrm{H} 6^{\prime}\right), 3.72-3.63(\mathrm{~m}, 2 \mathrm{H}, H 4$,

[^4]H5), $2.12\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.11\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.99\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.5(\mathrm{C}=\mathrm{O}), 170.1$ $(C=O), 169.5(C=O), 151.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=19 \mathrm{~Hz}, C \mathrm{q}_{\mathrm{Ar}}\right), 146.8\left(C \mathrm{q}_{\mathrm{Ar}}\right), 141.8\left(\mathrm{Cq}_{\mathrm{Ar}}\right), 138.7\left(\mathrm{CH}_{\mathrm{Ar}}\right), 135.7\left(C \mathrm{H}_{\mathrm{Ar}}\right), 133.7$ $\left(C H_{\mathrm{Ar}}\right), 130.4\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.6\left(\mathrm{CH}_{\mathrm{Ar}}\right), 124.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=35 \mathrm{~Hz}, C \mathrm{H}_{\mathrm{Ar}}\right), 81.1(C 1), 75.5(C 5), 73.4(C 3), 69.8(C 2), 62.7$ (C6), $60.0(C 4), 21.0\left(\mathrm{C}(\mathrm{O}) C \mathrm{H}_{3}\right), 20.7\left(\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right), 20.6\left(\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right)$; IR $v\left(\right.$ film, $\left.\mathrm{cm}^{-1}\right) 3100(=\mathrm{C}-\mathrm{H}), 2113\left(\mathrm{~N}_{3}\right), 1754$ $(\mathrm{C}=\mathrm{O}), 1674(\mathrm{NH}-\mathrm{C}=\mathrm{O})$ ESIHRMS $m / z=547.1589[\mathrm{M}+\mathrm{H}]^{+} . \mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~N}_{6} \mathrm{O}_{9} \mathrm{~F}$ requires 547.1589.

2,3,6-Tri- \boldsymbol{O}-acetyl-4-azido-1- \boldsymbol{N}-uracil- $\boldsymbol{\beta}$-d-glucopyranoside 20. The general procedure was followed using 7 (70 $\mathrm{mg}, 0.16 \mathrm{mmol}), 14(29 \mathrm{mg}, 0.256 \mathrm{mmol})$, $\operatorname{BSA}(0.16 \mathrm{~mL}, 0.64 \mathrm{mmol})$, $\operatorname{TMSOTf}(43 \mu \mathrm{~L}, 0.24 \mathrm{mmol}, 1.5 \mathrm{eq}),. 4 \AA$ molecular sieves $(150 \mathrm{mg})$ in dry $\mathrm{MeCN}(3 \mathrm{~mL})$. The residue was purified by preparative TLC (Hept/EtOAc 20:80) to afford product $20(63 \mathrm{mg}, 94 \%)$ as a white powder. $[\alpha]_{\mathrm{D}}{ }^{25}+24.1\left(c=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $9.13(\mathrm{bs}, 1 \mathrm{H}, \mathrm{N} H), 7.21\left(\mathrm{~d}, 1 \mathrm{H}, J_{H A r, H A r}=8.5 \mathrm{~Hz}, H_{\mathrm{Ar}}\right), 5.77\left(\mathrm{~d}, 1 \mathrm{H}, J_{l, 2}=9.5 \mathrm{~Hz}, H 1\right), 5.74\left(\mathrm{~d}, 1 \mathrm{H}, J_{H A r, H A r}=8.5\right.$ $\left.\mathrm{Hz}, H_{\mathrm{Ar}}\right), 5.32\left(\mathrm{t}, 1 \mathrm{H}, J_{3,2}=J_{3,4}=9.0 \mathrm{~Hz}, H 3\right), 5.03\left(\mathrm{dd}, 1 \mathrm{H}, J_{2,1}=9.5 \mathrm{~Hz}, J_{2,3}=9.0 \mathrm{~Hz}, H 2\right), 4.33\left(\mathrm{~d}, 1 \mathrm{H}, J_{6,6^{\prime}}=12.5\right.$ $\mathrm{Hz}, H 6), 4.20\left(\mathrm{dd}, 1 \mathrm{H}, J_{6,6}=12.5 \mathrm{~Hz}\right.$ and $\left.J_{6,5}=3.0 \mathrm{~Hz}, H 6^{\prime}\right), 3.72-3.53(\mathrm{~m}, 2 \mathrm{H}, H 4, H 5), 2.05(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}$), 1.93 $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.5(\mathrm{C}=\mathrm{O}), 169.9(\mathrm{C}=\mathrm{O}), 169.6(\mathrm{C}=\mathrm{O}), 162.4\left(\mathrm{Cq}_{\mathrm{Ar}}\right), 150.3\left(\mathrm{Cq}_{\mathrm{Ar}}\right)$, $139.1\left(\mathrm{CH}_{\mathrm{Ar}}\right), 104.0\left(\mathrm{CH}_{\mathrm{Ar}}\right), 80.5(\mathrm{C} 1), 75.4(\mathrm{C} 5), 73.6(\mathrm{C} 3), 69.6(\mathrm{C} 2), 62.7(\mathrm{C} 6), 60.1(\mathrm{C} 4), 21.0\left(\mathrm{CH}_{3}\right), 20.8$ $\left(\mathrm{CH}_{3}\right), 20.5\left(\mathrm{CH}_{3}\right)$; IR $v\left(\right.$ film, $\left.\mathrm{cm}^{-1}\right) 2960(=\mathrm{C}-\mathrm{H}), 2111\left(\mathrm{~N}_{3}\right), 1748(\mathrm{C}=\mathrm{O}), 1689(\mathrm{NH}-\mathrm{C}=\mathrm{O})$; ESIHRMS $m / z=$ $426.1260[\mathrm{M}+\mathrm{H}]^{+} . \mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{O}_{9} \mathrm{~F}$ requires 426.1261.

2,3-Di- O-acetyl-4-azido-6- O-benzyl-1- \boldsymbol{N}-(\boldsymbol{N}-acetyl-cytosine)- $\boldsymbol{\beta}$-d-glucopyranoside 21. The General Procedure was followed using $\mathbf{8}(50 \mathrm{mg}, 0.10 \mathrm{mmol}), 9(25 \mathrm{mg}, 0.16 \mathrm{mmol})$, BSA ($0.1 \mathrm{~mL}, 0.41 \mathrm{mmol})$, TMSOTf ($22 \mu \mathrm{~L}, 0.12$ $\mathrm{mmol}), 4 \AA$ molecular sieves $(50 \mathrm{mg})$ in dry $\mathrm{MeCN}(1 \mathrm{~mL})$. The residue was purified by preparative TLC (Heptane/EtOAc 1:1) to afford product $21(28 \mathrm{mg}, 0.05 \mathrm{mmol}, 54 \%)$ as a colorless oil. $[\alpha]_{\mathrm{D}}{ }^{25}+47.5(c=1.0$, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7,67\left(\mathrm{~d}, 1 \mathrm{H}, J_{H A r, H A r}=7.5 \mathrm{~Hz}, H_{\mathrm{Ar}}\right), 7.47\left(\mathrm{~d}, 1 \mathrm{H}, J_{H A r, H A r}=7.5 \mathrm{~Hz}, H_{\mathrm{Ar}}\right) 7.36-$ $7.27\left(\mathrm{~m}, 5 \mathrm{H}, H_{\mathrm{Ar}}\right), 5.99\left(\mathrm{~d}, 1 \mathrm{H}, J_{l, 2}=9.5 \mathrm{~Hz}, H 1\right), 5.32\left(\mathrm{dd}, 1 \mathrm{H}, J_{3,2}=9.5 \mathrm{~Hz}\right.$ and $\left.J_{3,4}=10.0 \mathrm{~Hz}, H 3\right), 5.03(\mathrm{t}, 1 \mathrm{H}$, $\left.J_{2,3}=J_{2, I}=9.5 \mathrm{~Hz}, H 2\right), 4.57\left(\mathrm{~d}, 1 \mathrm{H}, J_{H, H}=12.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.52\left(\mathrm{~d}, 1 \mathrm{H}, J_{H, H}=12.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.94\left(\mathrm{t}, 1 \mathrm{H}, J_{4,3}=\right.$ $\left.J_{4,5}=10.0 \mathrm{~Hz}, H 6\right), 3.80-3.67(\mathrm{~m}, 2 \mathrm{H}, H 6), 3.60\left(\mathrm{ddd}, 1 \mathrm{H}, J_{5,4}=10.0 \mathrm{~Hz}\right.$ and $\left.J_{5,6}=3.5 \mathrm{~Hz}, J_{5,6^{\prime}}=2.0 \mathrm{~Hz}, H 5\right), 2.23$ (s, $3 \mathrm{H}, \mathrm{NHCOCH}_{3}$), $2.08\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCOCH}_{3}\right), 1.92\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCOCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($\left.75 \mathrm{MHz}, \mathrm{MeOD}\right) \delta 170.0(\mathrm{C}=\mathrm{O})$, $169.7(C=O), 163.1\left(C q_{A \mathrm{~A}}\right), 155.3\left(C \mathrm{q}_{\mathrm{Ar}}\right), 144.5\left(C \mathrm{H}_{\mathrm{Ar}}\right), 137.6\left(C \mathrm{q}_{\mathrm{Ar}}\right), 128.7\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.2\left(C \mathrm{H}_{\mathrm{Ar}}\right), 128.1\left(C \mathrm{H}_{\mathrm{Ar}}\right)$, $98.0\left(\mathrm{CH}_{\mathrm{Ar}}\right), 81.5(\mathrm{C} 1), 77.3(\mathrm{C} 5), 73.9\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 73.5(\mathrm{C} 2), 71.0(\mathrm{C} 3), 68.2(\mathrm{C6}), 59.7(\mathrm{C} 4), 25.2\left(\mathrm{COCH}_{3}\right)$, $20.8\left(\mathrm{COCH}_{3}\right), 20.6\left(\mathrm{COCH}_{3}\right)$; IR $v\left(\right.$ film, $\left.\mathrm{cm}^{-1}\right) 3148(=\mathrm{C}-\mathrm{H}), 2110\left(\mathrm{~N}_{3}\right), 1754(\mathrm{C}=\mathrm{O}), 1667(\mathrm{NH}-\mathrm{C}=\mathrm{O})$; ESIHRMS $m / z=515.1878[\mathrm{M}+\mathrm{H}]^{+} . \mathrm{C}_{23} \mathrm{H}_{27} \mathrm{~N}_{6} \mathrm{O}_{8}$ requires 515.1890.

2,3-Di- \boldsymbol{O}-acetyl-4-azido-6- \boldsymbol{O}-benzyl-1- \boldsymbol{N}-thymine- $\boldsymbol{\beta}$-d-glucopyranoside 22. The General Procedure was followed using 8 ($581 \mathrm{mg}, 1.2 \mathrm{mmol}$), Thymine $10(267 \mathrm{mg}, 2.1 \mathrm{mmol})$, BSA ($1.3 \mathrm{~mL}, 5.29 \mathrm{mmol}$), TMSOTf ($1.6 \mathrm{~mL}, 1.9$ $\mathrm{mmol})$ in dry MeCN (25 mL). The residue was purified by flash chromatography on silica gel (Heptane/EtOAc $70: 30$ to $60: 40)$ to afford product $22(496 \mathrm{mg}, 77 \%)$ as a white powder. $[\alpha]_{\mathrm{D}}{ }^{25}+11.1\left(c=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.42-7.25\left(\mathrm{~m}, 5 \mathrm{H}, H_{\mathrm{Ar}}\right), 7.11\left(\mathrm{~d}, 1 \mathrm{H}, J_{H A r, C H 3}=1.0 \mathrm{~Hz}, H_{\mathrm{Ar}}\right), 5.79\left(\mathrm{~d}, 1 \mathrm{H}, J_{1,2}=9.5 \mathrm{~Hz}, H 1\right)$, $5.29\left(\mathrm{dd}, 1 \mathrm{H}, J_{3,2}=9.5 \mathrm{~Hz}\right.$ and $\left.J_{3,4}=10.0 \mathrm{~Hz}, H 3\right), 5.07\left(\mathrm{t}, 1 \mathrm{H}, J_{2, I}=J_{2,3}=9.5 \mathrm{~Hz}, H 2\right), 4.59\left(\mathrm{~d}, 1 \mathrm{H}, J_{H, H}=12.0 \mathrm{~Hz}\right.$, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 4.52\left(\mathrm{~d}, 1 \mathrm{H}, J_{H, H}=12.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.90\left(\mathrm{t}, 1 \mathrm{H}, J_{4,3}=J_{4,5}=10.0 \mathrm{~Hz}, H 4\right), 3.79-3.66(\mathrm{~m}, 2 \mathrm{H}, H 6, H 6$) , $2.08\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right), 1.95\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right), 1.91\left(\mathrm{~d}, 3 \mathrm{H}, J_{C H 3, H A r}=1.0 \mathrm{~Hz}, \mathrm{C}_{\mathrm{Ar}} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 169.9(C=O), 169.8(C=O), 163.5\left(C q_{\mathrm{Ar}}\right), 150.6\left(C q_{\mathrm{Ar}}\right), 137.6\left(C \mathrm{q}_{\mathrm{Ar}}\right), 134.6\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.7\left(C \mathrm{H}_{\mathrm{Ar}}\right), 128.2\left(C \mathrm{H}_{\mathrm{Ar}}\right)$, $128.0\left(\mathrm{CH}_{\mathrm{Ar}}\right), 112.3\left(\mathrm{Cq}_{\mathrm{Ar}}\right), 80.2(\mathrm{C} 1), 76.9(\mathrm{C5}), 73.8\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 73.7(\mathrm{C} 3), 69.8(\mathrm{C} 2), 68.2(\mathrm{C6}), 59.7(\mathrm{C4}), 20.8$ $\left(\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right), 20.6\left(\mathrm{C}(\mathrm{O}) C \mathrm{H}_{3}\right), 12.6\left(\mathrm{CArCH}_{3}\right)$; IR $v\left(\right.$ film, $\left.\mathrm{cm}^{-1}\right) 3675(\mathrm{~N}-\mathrm{H}), 2988(=\mathrm{C}-\mathrm{H}), 2901\left(\mathrm{CH}_{2}\right), 2111\left(\mathrm{~N}_{3}\right)$, $1754(\mathrm{C}=\mathrm{O}), 1697(\mathrm{NH}-\mathrm{C}=\mathrm{O})$; ESIHRMS $m / z=487.1783[\mathrm{M}+\mathrm{H}]^{+} . \mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{5} \mathrm{O}_{8}$ requires 487.1781.

2,3-Di- O-acetyl-4-azido-6- O-benzyl-1- \boldsymbol{N}-(5-fluoro-uracil)- $\boldsymbol{\beta}$-d-glucopyranoside 23. A mixture of 5-fluoro-uracil $11(42 \mathrm{mg}, 0.31 \mathrm{mmol}, 1.5 \mathrm{eq}$.), hexamethyldisilazane ($77 \mu \mathrm{~L}, 0.37 \mathrm{mmol}, 1.8$ eq.) and saccharine ($3 \mathrm{mg}, 0.01$ $\mathrm{mmol}, 6.5 \mathrm{~mol} \%$) in anhydrous $\mathrm{MeCN}(1.5 \mathrm{~mL})$ was refluxed for 30 min under inert atmosphere. 8 ($100 \mathrm{mg}, 0.21$ $\mathrm{mmol}, 1 \mathrm{eq}$.$) and TMSOTf (56 \mu \mathrm{~L}, 0.37 \mathrm{mmol}, 1.5$ eq.) were then added and the resulting mixture was refluxed for 6 h , cooled to room temperature, neutralized with saturated aqueous sodium bicarbonate (3 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$. The organic extract was dried over anhydrous sodium sulfate, filtered and concentrated under reduced pressure. The residue was purified by flash chromatography (Heptane/EtOAc 90:10 to 50:50) to afford the clean product $23(80 \mathrm{mg}, 0.16 \mathrm{mmol}, 76 \%)$ as a yellow powder. $[\alpha]_{\mathrm{D}}{ }^{25}+25.6\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.41-7.26\left(\mathrm{~m}, 6 \mathrm{H}, H_{\mathrm{Ar}}\right), 5.75\left(\mathrm{dd}, 1 \mathrm{H}, J_{l, 2}=9.5 \mathrm{~Hz}\right.$ and $\left.J_{l, H A r}=1.5 \mathrm{~Hz}, H 1\right), 5.30\left(\mathrm{t}, 1 \mathrm{H}, J_{3,2}=J_{3,4}=9.5\right.$ $\mathrm{Hz}, H 3), 4.97\left(\mathrm{t}, 1 \mathrm{H}, J_{2,3}=J_{2, I}=9.5 \mathrm{~Hz}, H 2\right), 4.58\left(\mathrm{~d}, 1 \mathrm{H}, J_{H, H}=12.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.53\left(\mathrm{~d}, 1 \mathrm{H}, J_{H, H}=12.0 \mathrm{~Hz}\right.$, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 3.89\left(\mathrm{t}, 1 \mathrm{H}, J_{4,3}=J_{4,5}=10.0 \mathrm{~Hz}, H 4\right), 3.80-3.66\left(\mathrm{~m}, 2 \mathrm{H}, H 6, H 6\right.$) , $3.59\left(\mathrm{dt}, 1 \mathrm{H}, J_{5,4}=10.0 \mathrm{~Hz}, J_{5,6}=5.0 \mathrm{~Hz}\right.$, $\left.J_{5,6^{\prime}}=2.0 \mathrm{~Hz}, H 5\right), 2.09\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH} H_{3}\right), 1.97\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH} H_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($\left.75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.0(\mathrm{C}=\mathrm{O}), 169.7(\mathrm{C}=\mathrm{O})$, $156.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=27 \mathrm{~Hz}, C \mathrm{q}_{\mathrm{Ar}}\right), 149.1\left(C \mathrm{q}_{\mathrm{Ar}}\right), 142.6\left(C \mathrm{q}_{\mathrm{Ar}}\right), 139.4\left(\mathrm{Cq}_{\mathrm{Ar}}\right), 137.4\left(C \mathrm{q}_{\mathrm{Ar}}\right), 128.7\left(C \mathrm{H}_{\mathrm{Ar}}\right), 128.3\left(C \mathrm{H}_{\mathrm{Ar}}\right)$,
$123.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=34 \mathrm{~Hz}, C \mathrm{H}_{\mathrm{Ar}}\right), 80.9(C 1), 77.0(C 5), 73.8\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 73.3(C 3), 69.9(C 2), 68.1(C 6), 59.5(C 4), 20.8$ $\left(\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right), 20.5\left(\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right)$; IR $v\left(\right.$ film, $\left.\mathrm{cm}^{-1}\right) 3089(\mathrm{NH}), 2112\left(\mathrm{~N}_{3}\right), 1710(\mathrm{C}=\mathrm{O}), 1670(\mathrm{NH}-\mathrm{C}=\mathrm{O})$; ESIHRMS m / z $=514.1348[\mathrm{M}+\mathrm{Na}]^{+} . \mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{5} \mathrm{O}_{8} \mathrm{FNa}$ requires 514.1350.

2,3-Di- O-acetyl-4-azido-6-O-benzyl-1- N-(4- N -benzoyl5-methyl-cytosine)- $\boldsymbol{\beta}$-d-glucopyranoside 24 . The General Procedure was followed using 8 ($45 \mathrm{mg}, 0.092 \mathrm{mmol}$), $12(34 \mathrm{mg}, 0.148 \mathrm{mmol}$), BSA ($90 \mu \mathrm{~L}, 0.37 \mathrm{mmol}$), TMSOTf $(20 \mu \mathrm{~L}, 0.11 \mathrm{mmol}), 4 \AA$ molecular sieves $(50 \mathrm{mg})$ in dry $\mathrm{MeCN}(0.9 \mathrm{~mL})$. The residue was purified by preparative TLC (Heptane/EtOAc 1:1) to afford product $24(36 \mathrm{mg}, 66 \%)$ as a yellow powder. $[\alpha]_{\mathrm{D}}{ }^{25}-12.7$ ($c=1.2$, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.33-8.25\left(\mathrm{~m}, 2 \mathrm{H}, H_{\mathrm{Ar}}\right), 7.57-7.26\left(\mathrm{~m}, 9 \mathrm{H}, H_{\mathrm{Ar}}\right), 5.82\left(\mathrm{~d}, 1 \mathrm{H}, J_{l, 2}=9.5 \mathrm{~Hz}\right.$, $H 1), 5.30\left(\mathrm{dd}, 1 \mathrm{H}, J_{3,2}=9.5 \mathrm{~Hz}, J_{3,4}=10.0 \mathrm{~Hz}, H 3\right), 5.10\left(\mathrm{t}, 1 \mathrm{H}, J_{2,1}=J_{2,3}=9.5 \mathrm{~Hz}, H 2\right), 4.60\left(\mathrm{~d}, 1 \mathrm{H}, J_{H, H}=12.0 \mathrm{~Hz}\right.$, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 4.53\left(\mathrm{~d}, 1 \mathrm{H}, J_{H, H}=12.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.95\left(\mathrm{t}, 1 \mathrm{H}, J_{4,3}=J_{4,5}=10.0 \mathrm{~Hz}, H 4\right), 3.81-3.68(\mathrm{~m}, 2 \mathrm{H}, H 6, H 6$) , $\left.3.50\left(\mathrm{ddd}, 1 \mathrm{H}, J_{5,4}=10.0 \mathrm{~Hz}, J_{5,6}=4.5 \mathrm{~Hz}, J_{5,6^{\prime}}=2.0 \mathrm{~Hz}, H 5\right), 2.10\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH} H_{3}\right), 2.09(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH})_{3}\right), 1.96(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{COCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 180.0(C=\mathrm{O}), 170.0(C=\mathrm{O}), 169.7(C=\mathrm{O}), 159.2\left(\mathrm{Cq}_{\mathrm{Ar}}\right), 148.2\left(\mathrm{Cq}_{\mathrm{Ar}}\right), 137.6$ $\left(C \mathrm{q}_{\mathrm{Ar}}\right), 137.0\left(\mathrm{Cq}_{\mathrm{Ar}}\right), 135.9\left(\mathrm{CH}_{\mathrm{Ar}}\right), 132.9\left(\mathrm{CH}_{\mathrm{Ar}}\right), 130.2\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.7\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.4\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.2\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.0$ $\left(\mathrm{CH}_{\mathrm{Ar}}\right), 113.1(\mathrm{CqAr}), 80.7(\mathrm{C} 1), 77.0(\mathrm{C5}), 73.8\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 73.7(\mathrm{C} 3), 69.9(\mathrm{C} 2), 68.2(\mathrm{C}), 59.6(\mathrm{C} 4), 20.8$ $\left(\mathrm{C}(\mathrm{O}) C \mathrm{H}_{3}\right), 20.6\left(\mathrm{C}(\mathrm{O}) C \mathrm{H}_{3}\right), 13.9\left(\mathrm{CH}_{3}\right)$; IR $v\left(\right.$ film, $\left.\mathrm{cm}^{-1}\right) 2109\left(\mathrm{~N}_{3}\right), 1753(\mathrm{C}=\mathrm{O}), 1709(\mathrm{C}=\mathrm{O}) 1656(\mathrm{NH}-\mathrm{C}=\mathrm{O})$; ESIHRMS $m / z=591.2208[\mathrm{M}+\mathrm{H}]^{+} . \mathrm{C}_{29} \mathrm{H}_{31} \mathrm{~N}_{6} \mathrm{O}_{8}$ requires 591.2203.

2,3-Di- O-acetyl-4-azido-6- O-benzyl-1- N-(4- N-benzoyl-5-fluoro-cytosine)- β-d-glucopyranoside 25 . The General Procedure was followed using $\mathbf{8}(1.49 \mathrm{~g}, 3.05 \mathrm{mmol}), \mathbf{1 3}(1.14 \mathrm{~g}, 4.89 \mathrm{mmol})$, BSA ($2.27 \mathrm{~mL}, 9.16 \mathrm{mmol}$), TMSOTf $(0.66 \mathrm{~mL}, 3.66 \mathrm{mmol})$ in dry $\mathrm{MeCN}(30 \mathrm{~mL})$. The residue was purified by preparative HPLC, gradient from 30 to $100 \% \mathrm{MeCN}$ in 15 min , to afford product $25(918 \mathrm{mg}, 1.54 \mathrm{mmol}, 50 \%)$ as a yellow powder. $[\alpha]_{\mathrm{D}}{ }^{20}+22.9(c=0.84$, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.29\left(\mathrm{~d}, 2 \mathrm{H}, J_{H A r, H A r}=7.0 \mathrm{~Hz}, H_{\mathrm{Ar}}\right), 7.57-7.43\left(\mathrm{~m}, 4 \mathrm{H}, H_{\mathrm{Ar}}\right), 7.42-7.30(\mathrm{~m}$, $\left.5 \mathrm{H}, H_{\mathrm{Ar}}\right), 5.79\left(\mathrm{~d}, 1 \mathrm{H}, J_{l, 2}=9.0 \mathrm{~Hz}, H 1\right), 5.32\left(\mathrm{t}, 1 \mathrm{H}, J_{3,2}=J_{3,4}=9.5 \mathrm{~Hz}, H 3\right), 5.00\left(\mathrm{t}, 1 \mathrm{H}, J_{2,3}=J_{2,1}=9.5 \mathrm{~Hz}, H 2\right), 4.61$ $\left(\mathrm{d}, 1 \mathrm{H}, J_{H, H}=12.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.56\left(\mathrm{~d}, 1 \mathrm{H}, J_{H, H}=12.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.94\left(\mathrm{t}, 1 \mathrm{H}, J_{4,3}=J_{4,5}=10.0 \mathrm{~Hz}, \mathrm{H} 4\right), 3.81-3.71$ (m, 2H, H6, H6'), $3.59\left(\mathrm{~d}, 1 \mathrm{H}, J_{5,4}=10.0 \mathrm{~Hz}, H 5\right), 2.12\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH} H_{3}\right), 2.00\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 170.1(C=\mathrm{O}), 169.7(C=\mathrm{O}), 152.2\left(C \mathrm{q}_{\mathrm{Ar}}\right), 147.0\left(C_{\mathrm{q}_{\mathrm{Ar}}}\right), 141.5\left(C \mathrm{q}_{\mathrm{Ar}}\right), 139.5\left(C \mathrm{q}_{\mathrm{Ar}}\right), 137.5\left(C \mathrm{q}_{\mathrm{Ar}}\right), 133.5$ $\left(\mathrm{CH}_{\mathrm{Ar}}\right), 130.4\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.8\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.6\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.3\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.1\left(\mathrm{CH}_{\mathrm{Ar}}\right), 81.1(\mathrm{C} 1), 77.1(C 5), 73.9\left(C H_{2} \mathrm{Ph}\right)$, $73.3(\mathrm{C} 3), 70.1(\mathrm{C} 2), 68.1(\mathrm{C} 6), 59.5(\mathrm{C} 4), 20.8\left(\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right), 20.6\left(\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right)$; IR $v\left(\right.$ film, $\left.\mathrm{cm}^{-1}\right) 3089(=\mathrm{C}-\mathrm{H}), 2111$ $\left(\mathrm{N}_{3}\right), 1753(\mathrm{C}=\mathrm{O}), 1672(\mathrm{NH}-\mathrm{C}=\mathrm{O})$; ESIHRMS $m / z=595.1951[\mathrm{M}+\mathrm{H}]^{+} . \mathrm{C}_{28} \mathrm{H}_{28} \mathrm{~N}_{6} \mathrm{O}_{8} \mathrm{~F}$ requires 595.1953.

2,3-Di- \boldsymbol{O}-acetyl-4-azido-6- \boldsymbol{O}-benzyl-1- \boldsymbol{N}-uracil- $\boldsymbol{\beta}$-D-glucopyranoside 26. The General Procedure was followed using $8(400 \mathrm{mg}, 0.82 \mathrm{mmol}), 14(147 \mathrm{mg}, 1.31 \mathrm{mmol})$, BSA $(0.80 \mathrm{~mL}, 3.28 \mathrm{mmol})$, TMSOTf $(0.18 \mathrm{~mL}, 0.98$ $\mathrm{mmol})$ in dry MeCN (8.2 mL). The residue was purified by flash chromatography (Heptane/EtOAc 90:10 to 50:50) to afford product $26(314 \mathrm{mg}, 0.66 \mathrm{mmol}, 81 \%)$ as a yellow powder. $[\alpha]_{\mathrm{D}}{ }^{25}+20.6\left(c=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.78(\mathrm{bs}, 1 \mathrm{H}, \mathrm{N} H), 7.43-7.29\left(\mathrm{~m}, 6 \mathrm{H}, H_{\mathrm{Ar}}\right), 5.81\left(\mathrm{~d}, 1 \mathrm{H}, J_{I, 2}=9.0 \mathrm{~Hz}, H 1\right), 5.80\left(\mathrm{~d}, 1 \mathrm{H}, J_{H A r, H A r}=\right.$ $\left.8.0 \mathrm{~Hz}, H_{\mathrm{Ar}}\right), 5.33\left(\mathrm{t}, 1 \mathrm{H}, J_{3,2}=J_{3,4}=9.5 \mathrm{~Hz}, H 3\right), 5.07\left(\mathrm{dd}, 1 \mathrm{H}, J_{2, I}=9.0 \mathrm{~Hz}, J_{2,3}=9.5 \mathrm{~Hz}, H 2\right), 4.62\left(\mathrm{~d}, 1 \mathrm{H}, J_{H, H}=\right.$ $\left.12.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.55\left(\mathrm{~d}, 1 \mathrm{H}, J_{H, H}=12.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.94\left(\mathrm{dd}, 1 \mathrm{H}, J_{4,3}=9.5 \mathrm{~Hz}, J_{4,5}=10.0 \mathrm{~Hz}, H 4\right), 3.82-3.70$ $\left(\mathrm{m}, 2 \mathrm{H}, H 6, H 6^{\prime}\right), 3.61\left(\mathrm{ddd}, 1 \mathrm{H}, J_{5,4}=10.0 \mathrm{~Hz}, J_{5,6}=3.0 \mathrm{~Hz}, J_{5,6}=2.0 \mathrm{~Hz}, H 5\right), 2.13\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH} H_{3}\right), 1.99(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($\left.75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.9(\mathrm{C}=\mathrm{O}), 169.7(\mathrm{C}=\mathrm{O}), 162.5\left(\mathrm{Cq}_{\mathrm{Ar}}\right), 150.3\left(\mathrm{Cq}_{\mathrm{Ar}}\right), 139.4\left(\mathrm{CH}_{\mathrm{Ar}}\right), 137.5$ $\left(\mathrm{Cq}_{\mathrm{Ar}}\right), 128.7\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.3\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.0\left(\mathrm{CH}_{\mathrm{Ar}}\right), 103.8\left(\mathrm{CH}_{\mathrm{Ar}}\right), 80.6(C 1), 77.0(C 5), 73.9\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 73.5(C 3)$, $69.8(\mathrm{C} 2), 68.2(\mathrm{C} 6), 59.6(\mathrm{C} 4), 20.8\left(\mathrm{CH}_{3}\right), 20.6\left(\mathrm{CH}_{3}\right)$; IR $v\left(f i l m, \mathrm{~cm}^{-1}\right) 2109\left(\mathrm{~N}_{3}\right), 1752(\mathrm{C}=\mathrm{O}), 1688(\mathrm{NH}-\mathrm{C}=\mathrm{O})$; ESIHRMS $m / z=474.1626[M+H]^{+} . \mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{5} \mathrm{O}_{8}$ requires 474.1625.

Boc-sarcosinyl-O-tert-butyl-L-serine methyl ester 29-L. To a stirred solution of O-tert-butyl-L-serine methyl ester hydrochloride ($250 \mathrm{mg}, 1.18 \mathrm{mmol}, 1$ eq.) and Boc-sarcosine ($290 \mathrm{mg}, 1,55 \mathrm{mmol}, 1.3$ eq.) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10 mL) were added $4 \AA$ molecular sieves (335 mg), hydroxybenzotriazole ($240 \mathrm{mg}, 1.77 \mathrm{mmol}, 1.5$ eq.) and 1-ethyl-3-(3dimethylaminopropyl)carbodiimide ($453 \mathrm{mg}, 0.47 \mathrm{mmol}, 2 \mathrm{eq}$.). The resulting mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and $\mathrm{Et}_{3} \mathrm{~N}$ ($0.5 \mathrm{~mL}, 2.36 \mathrm{mmol}, 3$ eq.) was added. After being stirred overnight at room temperature, the mixture was diluted with aqueous saturated $\mathrm{NaHCO}_{3}(6 \mathrm{~mL})$. Aqueous phase was then extracted with EtOAc ($3 \times 5 \mathrm{~mL}$). Organic layers were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under vacuum. The residue was purified by flash chromatography on silica gel (Heptane/EtOAc 50:50 to $30: 70$) to afford product 29-L ($400 \mathrm{~g}, 1.16 \mathrm{mmol}, 98 \%$) as a colorless oil. $[\alpha]_{\mathrm{D}}{ }^{25}+32.9\left(c=0.82, \mathrm{CHCl}_{3}\right)$.

Boc-sarcosinyl-O-tert-butyl-L-serine 30-L. To a stirred solution of 29-L ($320 \mathrm{mg}, 0.92 \mathrm{mmol}, 1 \mathrm{eq}$.) in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$ mixture ($7.7 \mathrm{~mL} / 1.5 \mathrm{~mL} 5: 1$) was added lithium hydroxide ($29 \mathrm{mg}, 1.20 \mathrm{mmol}, 1.3$ eq.). The resulting mixture was stirred for 1 h at room temperature and then concentrated under vacuum until THF was evaporated. HCl 1 N was then added until pH 2. The aqueous layer was extracted with EtOAc ($3 \times 10 \mathrm{~mL}$). The organic layers were
combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuum to afford the clean product 30-L ($305 \mathrm{mg}, 0.92 \mathrm{mmol}$, quantitative). The product is used without further purification. $[\alpha]_{\mathrm{D}}{ }^{25}+27.3\left(c=1.0, \mathrm{CHCl}_{3}\right)$.

Peptidonucleoside 31-L. The solution 1 was prepared with $\mathrm{Na}(10 \mathrm{mg})$ in dry $\mathrm{MeOH}(2 \mathrm{~mL}, \mathrm{C}=0.22 \mathrm{M})$. To a stirred solution of the protected nucleoside $27(503 \mathrm{mg}, 0.96 \mathrm{mmol})$ in dry $\mathrm{MeOH}(16 \mathrm{~mL})$ was added the solution 1 $(0.88 \mathrm{~mL}, 20 \mathrm{~mol} \%)$. The resulting mixture was stirred at room temperature for 1 h and then neutralized with Dowex® H^{+}, filtered on celite and concentrated under reduce pressure to afford clean product without further purification. The obtained product (355 mg) was then hydrogenolysed at atmospheric pressure in the presence of $\mathrm{Pd}(\mathrm{OH})_{2}-\mathrm{C}(40 \% \mathrm{w} / \mathrm{w}, 142 \mathrm{mg})$ in $\mathrm{MeOH}(8.9 \mathrm{~mL})$ for 12 h . The resulting mixture was then filtered on celite ${ }^{\circledR}$ and concentrated under reduced pressure to afford the clean corresponding amine (318 mg). To a stirred solution of the latter ($150 \mathrm{mg}, 0.40 \mathrm{mmol}$) in DMF (6 mL) was added the dipeptide ($174 \mathrm{mg}, 0.52 \mathrm{mmol}, 1.3 \mathrm{eq}$.) and DIPEA (0.28 $\mathrm{mL}, 1.61 \mathrm{mmol}, 4 \mathrm{eq}$.). After 1 min , HATU ($184 \mathrm{mg}, 0.48 \mathrm{mmol}, 1.5 \mathrm{eq}$.) was added and the resulting mixture was stirred at room temperature for 18 h . Solvent was removed and the crude product was purified by flash chromatography on silica gel (EtOAc/EtOH 99:1 to $92: 8$) to afford product 31-L ($158 \mathrm{mg}, 0.23 \mathrm{mmol}, 57 \%$) as a yellow powder. $[\alpha]_{\mathrm{D}}{ }^{20}-99.0\left(c=0.34, \mathrm{H}_{2} \mathrm{O} / \mathrm{MeOH} 1: 1\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)^{10} \delta 8.15\left(\mathrm{~d}, 1 \mathrm{H}, J_{H A r, H A r}=\right.$ $\left.7.5 \mathrm{~Hz}, H_{\mathrm{Ar}}\right), 7.37\left(\mathrm{~d}, 1 \mathrm{H}, J_{H A r, H A r}=7.5 \mathrm{~Hz}, H_{\mathrm{Ar}}\right), 5.81\left(\mathrm{~d}, 1 \mathrm{H}, J_{l, 2}=9.0 \mathrm{~Hz}, H 1\right), 4.60-4.49(\mathrm{~m}, 1 \mathrm{H}, H 7), 4.10-3.97$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H} 9$), $3.95\left(\mathrm{t}, 1 \mathrm{H}, J_{4,3}=J_{4,5}=10.0 \mathrm{~Hz}, H 4\right), 3.87-3.71(\mathrm{~m}, 2 \mathrm{H}, H 3, H 6), 3.71-3.58(\mathrm{~m}, 5 \mathrm{H}, H 2, H 5, H 6$ ', H8), 3.03-2.91 (bs, 3H, NCH $)_{3}$, $1.58\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.55-1.47\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.25\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($\left.75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)^{11} \delta 173.4(C=\mathrm{O}), 171.9(C=\mathrm{O}), 165.3(C q), 158.6(C q), 153.6(C=\mathrm{O}), 146.5\left(C \mathrm{H}_{\mathrm{Ar}}\right), 97.7$ $\left(\mathrm{CH}_{\mathrm{Ar}}\right), 85.3(\mathrm{C} 1), 83.4\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 81.8\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 80.2(\mathrm{C} 5), 75.8(\mathrm{C} 3), 75.0\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 74.5(\mathrm{C} 2), 62.8(\mathrm{C} 6), 58.6$ (C8), $55.7(\mathrm{C} 7), 53.2(\mathrm{C} 4), 52.9(\mathrm{C} 9), 36.4\left(\mathrm{NCH}_{3}\right), 28.8\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 28.5\left(\mathrm{C}_{(}\left(\mathrm{CH}_{3}\right)_{3}\right), 27.8\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$; IR v (film, cm^{-} $\left.{ }^{1}\right) 3310(\mathrm{O}-\mathrm{H}), 3282(\mathrm{~N}-\mathrm{H}), 2976\left(\mathrm{CH}_{3}\right), 2933\left(\mathrm{CH}_{2}\right), 1744(\mathrm{C}=\mathrm{O}), 1653(\mathrm{NH}-\mathrm{C}=\mathrm{O})$; ESIHRMS $\mathrm{m} / \mathrm{z}=687.3566$ $[\mathrm{M}+\mathrm{H}]^{+} . \mathrm{C}_{30} \mathrm{H}_{51} \mathrm{~N}_{6} \mathrm{O}_{12}$ requires 687.3565 .

Analogue 32-L. To a stirred solution of 31-L ($90 \mathrm{mg}, 0.131 \mathrm{mmol}, 1$ eq.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(2: 1 \mathrm{v} / \mathrm{v}, 1.3 \mathrm{~mL})$ was added a solution of 4 M HCl in dioxane ($0.23 \mathrm{~mL}, 0.92 \mathrm{mmol}, 7 \mathrm{eq}$.). The resulting mixture was stirred at room temperature for 2 days and then diluted with $\mathrm{H}_{2} \mathrm{O}$ and then neutralized with DOWEX ${ }^{\circledR}$ MONOSPHERE ${ }^{\circledR}$ 550A (OH) anion exchange resin. The mixture was filtered on celite and then concentrated under vaccum. The crude product was purified by preparative TLC $\left(\mathrm{H}_{2} \mathrm{O} / \mathrm{EtOH} / \mathrm{EtOAc} 4: 4: 2, \mathrm{pH} 9\right)$ to afford clean product 32-L as a white powder ($10.3 \mathrm{mg}, 0.024 \mathrm{mmol}, 28 \%$). $[\alpha]_{\mathrm{D}}{ }^{25}+278.3\left(c=1.0, \mathrm{H}_{2} \mathrm{O}\right) ;{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 7.80(\mathrm{~d}, 1 \mathrm{H}$, $\left.J_{H A r, H A r}=7.5 \mathrm{~Hz}, H_{\mathrm{Ar}}\right), 6.14\left(\mathrm{~d}, 1 \mathrm{H}, J_{H A r, H A r}=7.5 \mathrm{~Hz}, H_{\mathrm{Ar}}\right), 5.71\left(\mathrm{~d}, 1 \mathrm{H}, J_{l, 2}=9.0 \mathrm{~Hz}, H 1\right), 4.52\left(\mathrm{t}, 1 \mathrm{H}, J_{7,8}=J_{7,8^{\prime}}=\right.$ $5.5 \mathrm{~Hz}, H 7), 3.99\left(\mathrm{t}, 1 \mathrm{H}, J_{4,3}=J_{4,5}=10.0 \mathrm{~Hz}, H 4\right), 3.92\left(\mathrm{~d}, 2 \mathrm{H}, J_{8,7}=5.5 \mathrm{~Hz}, H 8\right), 3.85\left(\mathrm{dd}, 1 \mathrm{H}, J_{3,2}=9.0 \mathrm{~Hz}\right.$ and $J_{3,4}$ $=10.0 \mathrm{~Hz}, H 3), 3.82\left(\mathrm{t}, 1 \mathrm{H}, J_{2,3}=J_{2, I}=9.0 \mathrm{~Hz}, H 2\right), 3.80-3.70(\mathrm{~m}, 2 \mathrm{H}, H 5, H 6), 3.66-3.60(\mathrm{~m}, 3 \mathrm{H}, H 6, H 9), 2.54(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{NCH}_{3}\right)$; ${ }^{13} \mathrm{C}$ NMR ($\left.75 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 172.2(C=\mathrm{O}), 171.1(C=\mathrm{O}), 166.1(C=\mathrm{O}), 158.0\left(C \mathrm{q}_{\mathrm{Ar}}\right), 141.8\left(C \mathrm{H}_{\mathrm{Ar}}\right), 97.1$ $\left(\mathrm{CH}_{\mathrm{Ar}}\right), 83.1(\mathrm{C} 1), 77.5(C 5), 73.8(C 3), 71.7(C 2), 61.2(C 8), 60.7(C 6), 55.8(C 7), 51.4(C 4), 51.3(C 9), 33.8$ $\left(\mathrm{NCH}_{3}\right)$; IR $v\left(\right.$ film, $\left.\mathrm{cm}^{-1}\right) 3310(\mathrm{O}-\mathrm{H}), 3282(\mathrm{~N}-\mathrm{H}), 2976\left(\mathrm{CH}_{3}\right), 2933\left(\mathrm{CH}_{2}\right), 1744(\mathrm{C}=\mathrm{O}), 1653(\mathrm{NH}-\mathrm{C}=\mathrm{O})$; ESIHRMS $m / z=431.1890[M+H]^{+} . \mathrm{C}_{16} \mathrm{H}_{27} \mathrm{~N}_{6} \mathrm{O}_{8}$ requires 431.1901.

Peptidonucleoside 33. The same Procedure as described for 31-D was followed using 16 ($315 \mathrm{mg}, 0.72 \mathrm{mmol}$), solution $1(0.65 \mathrm{~mL}, \mathrm{C}=0.44 \mathrm{M}, 40 \mathrm{~mol} \%)$ in $\mathrm{MeOH}(10 \mathrm{~mL})$ to obtain the deacetylated compound (227 mg). The obtained product was hydrogenolysed with $\mathrm{Pd}(\mathrm{OH})_{2}-\mathrm{C}(68 \mathrm{mg})$ in $\mathrm{MeOH}(3.8 \mathrm{~mL})$ to give the corresponding amine $(110 \mathrm{mg}, 0.38 \mathrm{mmol})$. Then, the peptide coupling was carried out with the amine (110 mg), 30-D ($195 \mathrm{mg}, 0.59$ $\mathrm{mmol})$, DIPEA ($0.3 \mathrm{~mL}, 1.8 \mathrm{mmol}$) and HATU ($206 \mathrm{mg}, 0.54 \mathrm{mmol}$) in DMF $(7.5 \mathrm{~mL})$. The residue was purified by flash chromatography on silica gel (EtOAc/EtOH 99:1 to 92:8) to afford clean product 33 ($204 \mathrm{mg}, 0.34 \mathrm{mmol}$, $47 \%)$ as a yellow powder. $[\alpha]_{\mathrm{D}}{ }^{25}+24.4(c=0.55, \mathrm{MeOH}) .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)^{10} \delta 7.60\left(\mathrm{~s}, 1 \mathrm{H}, H_{\mathrm{Ar}}\right), 5.55$ $\left(\mathrm{d}, 1 \mathrm{H}, J_{l, 2}=9.0 \mathrm{~Hz}, H 1\right), 4.45\left(\mathrm{t}, 1 \mathrm{H}, J_{7,8}=J_{7,8^{\prime}}=5.0 \mathrm{~Hz}, H 7\right), 4.01-3.91(\mathrm{~m}, 2 \mathrm{H}, H 9), 3.89-3.55(\mathrm{~m}, 7 \mathrm{H}, H 2, H 3$, $H 4, H 5, H 6, H 8), 2.99-2.88\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{NCH} 3\right.$), $1.91\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.57-1.35\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.21(\mathrm{~s}, 9 \mathrm{H}$, $\left.\mathrm{CO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($\left.75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)^{11} \delta 172.0(\mathrm{C}=\mathrm{O}), 170.6(\mathrm{C}=\mathrm{O}), 170.5(\mathrm{C}=\mathrm{O}), 164.7(\mathrm{C}=\mathrm{O}), 151.5$ $(C=\mathrm{O}), 136.7\left(\mathrm{CH}_{\mathrm{Ar}}\right), 110.5\left(C q_{\mathrm{Ar}}\right), 85.5(\mathrm{Cl}), 80.3\left(C\left(\mathrm{CH}_{3}\right)_{3}\right), 78.3(\mathrm{CH}), 74.0(\mathrm{CH}), 73.5\left(C\left(\mathrm{CH}_{3}\right)_{3}\right), 71.9(\mathrm{CH})$, $61.4\left(\mathrm{CH}_{2}\right)$, $54.3(\mathrm{C} 7), 51.7(\mathrm{CH}), 51.5\left(\mathrm{CH}_{2}\right)$, $35.1\left(\mathrm{NCH}_{3}\right)$, $27.2\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $26.2\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $10.8\left(\mathrm{CH}_{3}\right)$; IR v (film, $\left.\mathrm{cm}^{-1}\right) 3295(\mathrm{~N}-\mathrm{H}), 2974(\mathrm{CH}), 1654(\mathrm{NH}-\mathrm{C}=\mathrm{O}) ;$ ESIHRMS $m / z=602.4783[\mathrm{M}+\mathrm{H}]^{+} . \mathrm{C}_{26} \mathrm{H}_{44} \mathrm{~N}_{5} \mathrm{O}_{11}$ requires 602.3037 .

Peptidonucleoside 35. To a stirred solution of 33 ($30 \mathrm{mg}, 0.05 \mathrm{mmol}, 1$ eq.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(2: 1 \mathrm{v} / \mathrm{v}, 0.6 \mathrm{~mL}$) was added a solution of 4 M HCl in dioxane ($0.3 \mathrm{~mL}, 1.2 \mathrm{mmol}, 25 \mathrm{eq}$.). The resulting mixture was stirred at room

[^5]temperature for 2 days and then diluted with $\mathrm{H}_{2} \mathrm{O}$ and then neutralized with $\mathrm{NEt}_{3}(0.2 \mathrm{~mL})$. The mixture was concentrated under vaccum and the crude product was purified by preparative TLC $\left(\mathrm{H}_{2} \mathrm{O} / \mathrm{EtOH} / \mathrm{EtOAc} 2: 2: 1\right.$, with 1% of $\mathrm{NH}_{4} \mathrm{OH}$) to afford clean product 35 as a white powder ($10 \mathrm{mg}, 0.022 \mathrm{mmol}, 45 \%$); $[\alpha]_{\mathrm{D}}{ }^{20}+8.9(c=1.0$, $\mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 7.62\left(\mathrm{~s}, 1 \mathrm{H}, H_{\mathrm{Ar}}\right), 5.61-5.54(\mathrm{~m}, 1 \mathrm{H}, H 1), 4.44\left(\mathrm{t}, 1 \mathrm{H}, J_{7,8}=J_{7,8}=5.5 \mathrm{~Hz}\right.$, H7), 3.92-3.79 (m, 4H, $1 \times \mathrm{CH}$ and $\mathrm{CH} \mathrm{H}_{2}$), 3.79-3.64 (m, $5 \mathrm{H}, 3 \times \mathrm{CH}$ and CH_{2}), 3.63-3.54 (m, $1 \mathrm{H}, \mathrm{CH} \mathrm{H}_{2}$), $2.67(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{NCH}_{3}\right), 1.86\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($\left.75 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 172.1(\mathrm{C}=\mathrm{O}), 167.8(\mathrm{C}=\mathrm{O}), 166.3(\mathrm{C}=\mathrm{O}), 152.2(\mathrm{C}=\mathrm{O})$, $137.3\left(\mathrm{CH}_{\mathrm{Ar}}\right), 111.1\left(\mathrm{Cq}_{\mathrm{Ar}}\right), 82.5(\mathrm{C1}), 77.5(\mathrm{CH}), 73.6(\mathrm{CH}), 71.6(\mathrm{CH}), 61.1\left(\mathrm{CH}_{2}\right), 60.7\left(\mathrm{CH}_{2}\right), 56.0(\mathrm{C} 7), 51.4$ $(\mathrm{CH}), 49.4\left(\mathrm{CH}_{2}\right), 33.1\left(\mathrm{NCH}_{3}\right), 11.4\left(\mathrm{CH}_{3}\right)$; IR $v\left(\right.$ film, $\left.\mathrm{cm}^{-1}\right) 3288(\mathrm{~N}-\mathrm{H}), 2923(\mathrm{CH}), 2854(\mathrm{CH}), 1664(\mathrm{NH}-\mathrm{C}=\mathrm{O})$; ESIHRMS $m / z=446.1867[M+H]^{+} . \mathrm{C}_{18} \mathrm{H}_{27} \mathrm{~N}_{5} \mathrm{O}_{9}$ requires 446.1887.

Peptidonucleoside 36. The same Procedure as described for 31-D was followed using $\mathbf{1 7}$ ($194 \mathrm{mg}, 0.72 \mathrm{mmol}$), solution $1(1.2 \mathrm{~mL}, \mathrm{C}=0.22 \mathrm{M}, 40 \mathrm{~mol} \%$ of Na) in $\mathrm{MeOH}(7 \mathrm{~mL})$. The obtained product (125 mg) was hydrogenolysed with $\mathrm{Pd}(\mathrm{OH})_{2}-\mathrm{C}(50 \mathrm{mg})$ in $\mathrm{MeOH}(4 \mathrm{~mL})$ to give the corresponding amine $(107 \mathrm{mg})$. Then, the peptide coupling was carried out using the amine ($107 \mathrm{mg}, 0.37 \mathrm{mmol}$), 30-d ($158 \mathrm{mg}, 0.48 \mathrm{mmol}$), DIPEA (0.25 $\mathrm{mL}, 1.48 \mathrm{mmol})$ and HATU ($167 \mathrm{mg}, 0.44 \mathrm{mmol}$) in DMF (6 mL). The residue was purified by chromatography on silica gel (DCM/MeOH 96:4 to 92:8) to afford $34(124 \mathrm{mg}, 0.20 \mathrm{mmol}, 56 \%$ over three steps). ESIHRMS $\mathrm{m} / \mathrm{z}=$ $606.2786[\mathrm{M}+\mathrm{H}]^{+} . \mathrm{C}_{25} \mathrm{H}_{41} \mathrm{~N}_{5} \mathrm{O}_{11} \mathrm{~F}$ requires 606.2787 . As 34 was not very clean, it was not fully characterized and then engaged in the next step. To a stirred solution of $34\left(124 \mathrm{mg}, 0.2 \mathrm{mmol}, 1 \mathrm{eq}\right.$.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(2: 1 \mathrm{v} / \mathrm{v}, 2.3$ mL) was added a solution of 4 M HCl in dioxane ($0.35 \mathrm{~mL}, 1.4 \mathrm{mmol}, 6.8 \mathrm{eq}$.$) . The resulting mixture was stirred at$ room temperature for 3 days and then diluted with $\mathrm{H}_{2} \mathrm{O}$ and then neutralized with $\mathrm{NEt}_{3}(0.2 \mathrm{~mL})$. The mixture was concentrated under vaccum and the crude product was purified by preparative TLC $\left(\mathrm{H}_{2} \mathrm{O} / \mathrm{EtOH} / \mathrm{EtOAc} 3: 1: 1\right.$, with 1% of $\mathrm{NH}_{4} \mathrm{OH}$) to afford clean product 36 as a white powder ($54 \mathrm{mg}, 0.013 \mathrm{mmol}, 63 \%$). $[\alpha]_{\mathrm{D}}{ }^{20}-73.3(c=0.15$, $\left.\mathrm{H}_{2} \mathrm{O} / \mathrm{MeOH}: 1: 1\right) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 7.94\left(\mathrm{~d}, 1 \mathrm{H}, J_{H A r, F}=6.0 \mathrm{~Hz}, H_{\mathrm{Ar}}\right), 5.59\left(\mathrm{~d}, 1 \mathrm{H}, J_{l, 2}=9.0 \mathrm{~Hz}, H 1\right)$, 4.51-4.38 (m, 1H, H7), 3.99-3.46 (m, 10H, H2, H3, H4, H5, H6, H8, H9), $\left.2.72(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH})_{3}\right), 2.72(\mathrm{~s}, 9 \mathrm{H}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 181.4(\mathrm{C}=\mathrm{O}), 172.3(\mathrm{C}=\mathrm{O}), 166.7(\mathrm{C}=\mathrm{O}), 161.2\left(\mathrm{~d}, J=23.6 \mathrm{~Hz}, C \mathrm{H}_{\mathrm{Ar}}\right), 152.2$ (CO), $125.3(\mathrm{~d}, J=23.6 \mathrm{~Hz}, C \mathrm{CAr}), 125.2(\mathrm{CH}), 82.9(\mathrm{C1}), 77.5(\mathrm{CH}), 75.0\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 73.3(\mathrm{CH}), 71.7(\mathrm{CH}), 61.0$ $\left(\mathrm{CH}_{2}\right), 60.7\left(\mathrm{CH}_{2}\right), 56.0(\mathrm{C} 7), 51.3(\mathrm{CH}), 49.4\left(\mathrm{CH}_{2}\right), 32.8\left(\mathrm{NCH}_{3}\right), 26.4\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$; IR $v\left(\right.$ film, $\left.\mathrm{cm}^{-1}\right) 3288(\mathrm{~N}-\mathrm{H})$, $2923(\mathrm{CH}), 2854(\mathrm{CH}), 1664(\mathrm{NH}-\mathrm{C}=\mathrm{O})$; ESIHRMS $m / z=506.2249[\mathrm{M}+\mathrm{H}]^{+} . \mathrm{C}_{20} \mathrm{H}_{33} \mathrm{~N}_{5} \mathrm{O}_{9} \mathrm{~F}$ requires 506.2262.
tert-butyl (R)-(2-((1-(tert-butoxy)-3-hydroxypropan-2-yl)amino)-2-oxoethyl)(methyl)carbamate 37. To a stirred solution of 29-d ($193 \mathrm{mg}, 0.557 \mathrm{mmol}, 1 \mathrm{eq}$.) in THF (2 mL) was added at $0^{\circ} \mathrm{C} \mathrm{LiBH}_{4}(21 \mathrm{mg}, 0.95 \mathrm{mmol}, 1.7 \mathrm{eq}$.). The resulting mixture was stirred at room temperature for 4 h and then hydrolyzed with a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$. Water $(10 \mathrm{~mL})$ was added and the aqueous phase was extracted with EtOAc ($3 \times 15 \mathrm{~mL}$). The organic phase was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under vacuum. The crude product was purified by flash chromatography on silica gel (Heptane/EtOAc 30:70 to 0:100) to afford product 37 ($160 \mathrm{mg}, 0.5 \mathrm{mmol}, 90 \%$) as a colorless oil. $[\alpha]_{\mathrm{D}}{ }^{20}-5.4\left(c=0.24, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)^{10} \delta 6.81-6.58(\mathrm{bs}, 1 \mathrm{H}, \mathrm{N} H), 4.03-3.93$ $(\mathrm{m}, 1 \mathrm{H}, \mathrm{C} H \mathrm{~N}), 3.91-3.81\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{COCH}_{2} \mathrm{~N}\right), 3.80\left(\mathrm{dd}, 1 \mathrm{H}, J=11.5\right.$ and $\left.3.5 \mathrm{~Hz}, \mathrm{CH} H_{2}\right), 3.69-3.58\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH} H_{2}\right)$, 3.57-3.50 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$), 3.25-3.09 (m, $\left.1 \mathrm{H}, \mathrm{OH}\right), 2.91\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 1.43\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.15\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$; ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)^{11} \delta \quad 169.5(\mathrm{C}=\mathrm{O}), 80.7\left(C\left(\mathrm{CH}_{3}\right)_{3}\right), 73.8\left(C\left(\mathrm{CH}_{3}\right)_{3}\right), 64.4\left(\mathrm{CH}_{2}\right), 63.0\left(\mathrm{CH}_{2}\right), 53.1$
 $2875(\mathrm{CH}), 1662(\mathrm{NH}-\mathrm{C}=\mathrm{O})$; ESIHRMS $m / z=419.2219[\mathrm{M}+\mathrm{H}]^{+} . \mathrm{C}_{15} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{5}$ requires 419.2233.
tert-butyl (\boldsymbol{R})-(2-((1-(tert-butoxy)but-3-yn-2-yl)amino)-2-oxoethyl)(methyl)carbamate 38. To a stirred solution of alcohol $37\left(0.130 \mathrm{~g}, 0.408 \mathrm{mmol}, 1.0\right.$ eq.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added saturated aqueous $\mathrm{NaHCO}_{3}(4$ mL), $\mathrm{KBr}(49 \mathrm{mg}, 0.408 \mathrm{mmol}, 1.0$ eq.) and TEMPO ($3 \mathrm{mg}, 0.02 \mathrm{mmol}, 0.05 \mathrm{eq}$.). $\mathrm{NaOCl}(0.5 \mathrm{M}, 1.6 \mathrm{~mL}, 2.0 \mathrm{eq}$.) was then added with a syringe pump over 30 min . Saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(4 \mathrm{~mL})$ was added, the phases were separated and the aqueous layer was extracted with DCM ($3 \times 15 \mathrm{~mL}$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure to afford the corresponding crude α-amino aldehyde (95 mg) which was used directly in the next step. To the latter ($90 \mathrm{mg}, 0.284 \mathrm{mmol}, 1$ eq.) and dimethyl (1-diazo-2oxopropyl)phosphonate ($96 \mathrm{mg}, 0.498 \mathrm{mmol}, 1.75$ eq.) in $\mathrm{MeOH}(2 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}(83 \mathrm{mg}, 0.597$ $\mathrm{mmol}, 2.1 \mathrm{eq}$.). The resulting mixture was stirred at $0^{\circ} \mathrm{C}$ for 3 h and was hydrolyzed with a sat. aq. solution of $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$. Water (10 mL) was added and the aqueous phase was extracted with EtOAc ($3 \times 15 \mathrm{~mL}$). The organic phase was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under vacuum pressure. The crude product was purified by flash chromatography on silica gel (Heptane/EtOAc 70:30 to 50:50) to afford product 38 ($51 \mathrm{mg}, 0.163$ mmol, 42% over the two steps) as a colorless oil. $[\alpha]_{\mathrm{D}}{ }^{20}+2.5\left(c=0.32, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)^{10} \delta$ 6.65-6.26 (bs, $1 \mathrm{H}, \mathrm{N} H$), 4.83-4.69 (m, $1 \mathrm{H}, \mathrm{CHN}$), 3.90-3.67 (m, $2 \mathrm{H}, \mathrm{COCH}_{2} \mathrm{~N}$), 3.50-3.37 (m, $2 \mathrm{H}, \mathrm{CH} \mathrm{H}_{2}$), $2.86(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{C} H_{3}\right), 2.17\left(\mathrm{~d}, 1 \mathrm{H}, J=2.5 \mathrm{~Hz}, \mathrm{C} H_{\text {Alkyne }}\right), 1.41\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.09 \mathrm{~s}, 9 \mathrm{H},\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right)^{11} \delta 168.5(\mathrm{C}=\mathrm{O}), 81.4\left(\mathrm{Cq}_{\text {Alkyne }}\right)$, $80.7\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $73.6\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 70.8\left(\mathrm{CH}_{\text {Alkyne }}\right), 63.5\left(\mathrm{CH}_{2}\right), 53.1\left(\mathrm{CH}_{2}\right)$,
 $(\mathrm{CH}), 1666(\mathrm{NH}-\mathrm{C}=\mathrm{O})$; ESIHRMS $m / z=335.1947[\mathrm{M}+\mathrm{Na}]^{+} . \mathrm{C}_{16} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires 335.1947.

Peptidonucleoside 39. To a stirred solution of azid $\mathbf{1 8}(78 \mathrm{mg}, 0.144 \mathrm{mmol}, 1.0$ eq.) and alkyne $\mathbf{3 8}(45 \mathrm{mg}, 0.144$ mmol, 1.0 eq.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ at r.t. was added $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(4 \mathrm{mg}, 0.014 \mathrm{mmol}, 0.1$ eq.) in water (1 mL) followed by sodium ascorbate ($3 \mathrm{mg}, 0.014 \mathrm{mmol}, 0.1 \mathrm{eq}$.) in water (1 mL). After stirring for 18 h , water (10 mL) and EtOAc $(15 \mathrm{~mL})$ were added. The phases were separated and the aqueous layer was extracted with EtOAc (3 x 15 mL). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The crude product was purified by flash chromatography on silica gel (Heptane/EtOAc $50: 50$ to $0: 100$) to afford product $39(94 \mathrm{mg}, 0.163 \mathrm{mmol}, 76 \%)$ as a colorless oil. $[\alpha]_{\mathrm{D}}{ }^{20}-26.9\left(c=0.58, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right)^{10} \delta 8.28\left(\mathrm{~d}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}, H_{\mathrm{Ar}}\right), 7.57\left(\mathrm{~s}, 1 \mathrm{H}, H_{\text {triazole }}\right), 7.54-7.46\left(\mathrm{~m}, 1 \mathrm{H}, H_{\mathrm{Ar}}\right), 7.42\left(\mathrm{t}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}, H_{\mathrm{Ar}}\right)$, $7.27\left(\mathrm{~s}, 1 \mathrm{H}, H_{\mathrm{Ar}}\right), 6.94-6.77(\mathrm{bs}, 1 \mathrm{H}, \mathrm{N} H), 6.09\left(\mathrm{~d}, 1 \mathrm{H}, J_{l, 2}=9.5 \mathrm{~Hz}, H 1\right), 5.79\left(\mathrm{t}, 1 \mathrm{H}, J_{3,4}=J_{3,2}=9.5 \mathrm{~Hz}, H 3\right), 5.27$ $\left(\mathrm{t}, 1 \mathrm{H}, J_{2,3}=J_{2,1}=9.5 \mathrm{~Hz}, H 2\right), 5.23-5.12(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} H \mathrm{~N}), 4.73\left(\mathrm{t}, 1 \mathrm{H}, J_{4,5}=J_{4,3}=9.5 \mathrm{~Hz}, H 4\right), 4.62-4.61(\mathrm{~m}, 1 \mathrm{H}$, $H 5), 4.08\left(\mathrm{dd}, 1 \mathrm{H}, J=2.0\right.$ and $\left.12.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.94-3.73\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 3.62-3.49\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH} \mathrm{C}_{2}\right), 2.92\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right)$, $2.12\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.04\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 1.97\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 1.85\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 1.45\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.09(\mathrm{~s}$, $\left.9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($\left.75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)^{11} \delta 179.9(\mathrm{C}=\mathrm{O}), 169.9(\mathrm{C}=\mathrm{O}), 169.7(\mathrm{C}=\mathrm{O}), 169.0(\mathrm{C}=\mathrm{O}), 168.5$ $(C=\mathrm{O}), 158.8(C=\mathrm{O}), 148.0(C \mathrm{Cq}), 136.7(C \mathrm{q}), 135.1\left(\mathrm{CH}_{\mathrm{Ar}}\right), 132.8\left(\mathrm{CH}_{\mathrm{Ar}}\right), 130.0\left(C \mathrm{H}_{\mathrm{Ar}}\right), 128.1\left(\mathrm{CH}_{\mathrm{Ar}}\right), 122.6$ $\left(\mathrm{CH}_{\text {Triazole }}\right)$, $113.2\left(\mathrm{CH}_{\mathrm{Ar}}\right), 80.6(\mathrm{Cl})$, $77.2(\mathrm{Cq}), 74.9(\mathrm{C} 5), 73.5(\mathrm{Cq}), 72.2(\mathrm{C} 3), 69.7(\mathrm{C} 2), 62.8\left(\mathrm{CH}_{2}\right), 61.8\left(\mathrm{CH}_{2}\right)$,
 $20.1\left(\mathrm{COCH}_{3}\right), 13.7\left(\mathrm{CH}_{3}\right)$; IR $v\left(\right.$ film, $\left.\mathrm{cm}^{-1}\right) 2973(\mathrm{CH}), 2854(\mathrm{CH}), 1750(\mathrm{CO}), 1704(\mathrm{CO}), 1659(\mathrm{NH}-\mathrm{C}=\mathrm{O})$; ESIHRMS $m / z=855.3889[\mathrm{M}+\mathrm{H}]^{+} . \mathrm{C}_{40} \mathrm{H}_{55} \mathrm{~N}_{8} \mathrm{O}_{13}$ requires 855.13889.

Peptidonucleoside 40. The solution 1 was prepared with $\mathrm{Na}(20 \mathrm{mg})$ in dry $\mathrm{MeOH}(2 \mathrm{~mL})$. To a stirred solution of the protected nucleoside $39(70 \mathrm{mg}, 0.028 \mathrm{mmol})$ in dry $\mathrm{MeOH}(0.2 \mathrm{~mL})$ was added the solution $\mathbf{1}(0.4 \mathrm{~mL}, 1 \mathrm{eq}$.$) .$ The resulting mixture was stirred at room temperature for 5 h and a solution of 4 M HCl in dioxane (0.6 mL , $2.4 \mathrm{mmol}, 30$ eq.) was added. The resulting mixture was stirred at room temperature for 8 h and neutralized with $\mathrm{NEt}_{3}(0.35 \mathrm{~mL})$. The mixture was concentrated under vaccum and the crude product was purified by preparative TLC $\left(\mathrm{H}_{2} \mathrm{O} / \mathrm{EtOH} / \mathrm{EtOAc} 1: 2: 2\right.$, with 1% of $\left.\mathrm{NH}_{4} \mathrm{OH}\right)$ to afford product 40 as a white powder, which was washed several times with $\mathrm{CHCl}_{3}(25 \mathrm{mg}, 0.047 \mathrm{mmol}, 58 \%) .[\alpha]_{\mathrm{D}}{ }^{20}-43.4\left(c=0.35, \mathrm{H}_{2} \mathrm{O} / \mathrm{MeOH}: 1 / 1\right) ;{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.15\left(\mathrm{~s}, 1 \mathrm{H}, H_{\text {triazole }}\right), 7.91\left(\mathrm{~s}, 1 \mathrm{H}, H_{\mathrm{Ar}}\right), 7.62-7.24(\mathrm{bs}, 1 \mathrm{H}, \mathrm{N} H), 5.89\left(\mathrm{~d}, 1 \mathrm{H}, J_{l, 2}=9.5 \mathrm{~Hz}, H 1\right)$, $5.31(\mathrm{t}, 1 \mathrm{H}, J=5.5 \mathrm{~Hz}, \mathrm{CHN}), 4.74\left(\mathrm{t}, 1 \mathrm{H}, J_{3,4}=J_{3,2}=9.5 \mathrm{~Hz}, H 3\right), 5.34-4.24(\mathrm{~m}, 2 \mathrm{H}, H 4$ and $H 5), 3.97-3.88(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{CH} H_{2}\right), 3.85\left(\mathrm{t}, 1 \mathrm{H}, J_{2, I}=J_{2,3}=9.5 \mathrm{~Hz}, H 2\right), 3.82-3.71\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C} H_{2}\right), 3.52(\mathrm{dd}, 1 \mathrm{H}, J=1.5$ and $12.0 \mathrm{~Hz}, H 6), 3.52$ (dd, $1 \mathrm{H}, J=4.0$ and $\left.12.0 \mathrm{~Hz}, H 6^{\prime}\right), 2.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.10\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C} H_{3}\right), 1.21\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.09\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$; ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta \quad 164.9(C=\mathrm{O}), 163.4(C=\mathrm{O}), 153.5(C \mathrm{q}), 145.8(C \mathrm{q}), 140.6\left(C \mathrm{H}_{\mathrm{Ar}}\right), 124.0$ $\left(\mathrm{CH}_{\text {Triazole }}\right), 100.7(\mathrm{Cq}), 83.7(\mathrm{Cl}), 77.5$ and $74.4(\mathrm{C} 4$ and $C 5)$, $73.4(\mathrm{Cq}), 72.4(\mathrm{C} 2), 63.0\left(\mathrm{CH}_{2}\right), 61.7(C 3), 60.0$
 $1666(\mathrm{NH}-\mathrm{C}=\mathrm{O})$; ESIHRMS $m / z=525.2787[\mathrm{M}+\mathrm{H}]^{+} . \mathrm{C}_{22} \mathrm{H}_{37} \mathrm{~N}_{8} \mathrm{O}_{7}$ requires 525.2785.
${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}$-NMR spectra

[^0]: ${ }^{1}$ V. Ferro, M. Mocerino, R. V. Stick and D. M. G. Tilbrook, Austr. J. Chem., 1988, 41, 813.
 ${ }^{2}$ Experimental data are in agreement with those reported in the literature : A. H. Viuff, L. M. Besenbacher, A. Kamori, M. T. Jensen, M. Kilian, A. Kato and H. H. Jensen, Org. Biomol. Chem., 2015, 13, 9637.

[^1]: ${ }^{3}$ Experimental data agree with those reported in the literature : Z. Lei, J. Wang, G. Mao, Y. Wen, Y. Tian, H. Wu, Y. Li and H. Xu, J Agric Food Chem, 2014, 62, 6065.

[^2]: ${ }^{4}$ Experimental data agree with those reported in the literature: M. C. Andersen, S. K. Kracun, M. G. Rydahl, W. G. Willats and M. H. Clausen, Chem. Eur. J., 2016, 22, 11543.
 ${ }^{5}$ Experimental data agree with those reported in the literature: P. Tiwari and A. K. Misra, Carbohydr. Res., 2006, 341, 339.
 ${ }^{6}$ Experimental data agree with those reported in the literature: S. Dara, V. Saikam, M. Yadav, P. P. Singh and R. A. Vishwakarma, Carbohydr Res, 2014, 391, 93.

[^3]: ${ }^{7}$ Prepared following H. Pelissier, J. Rodriguez and K. P. C. Vollhardt, Chem. Eur. J., 1999, 5, 3549.
 ${ }^{8}$ Prepared following S. Buchini and C. J. Leumann, Eur. J. Org. Chem., 2006, 2006, 3152.

[^4]: ${ }^{9}$ Prepared following M. F. Caso, D. D’Alonzo, S. D’Errico, G. Palumbo and A. Guaragna, Org. Lett., 2015, 17, 2626.

[^5]: ${ }^{10}$ Peaks in ${ }^{1} \mathrm{H}$-NMR spectrum broad and split due to the presence of N -Boc rotamers.
 ${ }^{11}$ Peaks in ${ }^{13} \mathrm{C}$-NMR spectrum broad and split due to the presence of N-Boc rotamers.

