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Material and methods

Experimental procedures

Unless otherwise indicated, reactions were carried out under an argon atmosphere in flame-dried
glassware with magnetic stirring. Air and/or moisture-sensitive liquids were transferred via syringe.
When required, solutions were degassed by argon bubbling through a needle. Organic solutions were
concentrated by rotary evaporation at 25-80 °C and 15-30 torr. Volume ratios are indicated when
referring to mixtures of solvents (e.g. DCM/MeOH 95:5).

Material

All reagents used in the experiments were purchased from Sigma-Aldrich, Alfa Aesar, Acros or TCl and
were used without any further purification. Anhydrous solvents used in experiments were obtained from
Sigma-Aldrich or Alfa Aesar. Analytical thin layer chromatography (TLC) was performed using plates cut
from aluminium sheets (ALUGRAM Xtra SIL G/UV254 from Macherey-Nagel). Visualization was
achieved under a 254 or 365 nm UV light and by immersion in an appropriate staining solution. Silica
gel for column chromatography was purchased from Merck (Geduran® Si 60, 40-63 um). Column flash
chromatography was carried out using silica gel G-25 (40- 63 pm) from Macherey-Nagel or Bichi.
Human plasma was obtained from Etablissement Francais du Sang Alsace — Lorraine — Champagne —
Ardenne (EFS — French Blood Agency) within the framework of a service contract for the transfer of
products derived from blood or its components for non-therapeutic and research purposes, in
accordance with French laws and regulations.

Instrumentation and methods associated

IH and *C NMR spectra were recorded at 23 °C on a Bruker 400 spectrometer. Recorded shifts are
reported in parts per million (8) and calibrated using residual non-deuterated solvent. Data are
represented as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, g = quartet, quint
= quintet, m = multiplet, br = broad, app = apparent), coupling constant (J, Hz) and integration.

HPLC analyses were conducted on a Shimadzu UFLC system, composed of two LC-20AC pumps, one
DGU 20 A3 degasser, a SPD 20A detector and a SIL 20AC HT autosampler. We used a Waters Sunfire®
C18 5 pm, 4.6 x 150 mm column. Elution was performed with a mixture of mQ water (with 0.05% TFA
v/v) and acetonitrile (ACN), under a flow rate of 1 mL.min"! with two different gradients (see table S1
and S2 in kinetic experiments section for details). Samples were kept at 15 °C in autosampler before
injection. 50 pL of each sample were injected and the different compounds were detected by UV
absorbance at 256 nm.

High-resolution mass spectra were obtained using an Agilent Q-TOF (time of flight) 6520.
LC-MS/MS analyses for plasma proteins binding studies were performed using a Triple Quadrupole
Liquid Chromatograph Mass Spectrometer (LCMS 8030, Shimadzu) in multiple reaction-monitoring
mode (MRM). See appropriate section for detailed procedure.

Purification by preparative HPLC were carried out on a Waters 600 controller system (pumps: Waters
Delta 600; detector: Waters 2489 UV/Vis) equipped with a SunFire™ Prep C18 OBD 5 uM 19%150 mm
column (Waters), using water (0.1% TFA, solvent A) and acetonitrile (solvent B) as a solvent system
with a flow rate of 17 mL.min! and a linear gradient of B going from 5% to 95% over 25 min.
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Figure S1. Synthetic overview of all BCN and azide compounds used in this work.
(Bicyclo[6.1.0]non-4-yn-9-yl)methanol (BCN-OH) 6

/ BCN-OH 6 was prepared following a procedure adapted from Dommerholt et al.® In
H . : .
order to favour the formation of the endo isomer over the exo at the cyclopropanation
-+, OH step, we followed a procedure developed by O’Brien et al. where diRhodium
H tetraacetate was replaced with diRhodium tetra S-BHTL.2 All other steps followed the
initial report from Dommerholt et al.

(Bicyclo[6.1.0]non-4-yn-9-yl)methyl (4-nitrophenyl) carbonate (BCN-OPNP) S1

@H BCN-OPNP S1 was synthesized according to a reported procedure.3
0

(Bicyclo[6.1.0]non-4-yn-9-yl)methyl (16-hydroxy-2,5,8,11,14-pentaoxahexadecyl)carbamate 3

BCN derivative 3 was synthesized according to a reported procedure.?

an

H

H
o Mfo Ao
o) 5
(Bicyclo[6.1.0]non-4-yn-9-yl)methyl (benzo[d][1,3]dioxol-5-yImethyl)carbamate 7

/ Piperonylamine (2.0 equiv., 79.2 pL, 0.63 mmol) and triethylamine

H\/@{ >7 (3.0 equiv., 0.13 mL, 0.95 mmol) were dissolved in DMF (1.6 mL).

1 o, O_N g This solution was then added dropwise to a solution of BCN-OPNP
bl S1 (1.0 equiv., 100.0 mg, 0.32 mmol) in DMF (1.6 mL). The mixture

was stirred for 16 h at 25 °C before being concentrated to dryness.

The crude was then suspended in water and extracted three times with ethyl acetate. Organic phases
were combined, dried over MgSOs, filtered and concentrated under vacuum. The product was finally
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purified by flash column chromatography (cHex/EtOAc 8:2 to 6:4 over 40 min) to give the title product
(89.2 mg, 0.26 mmol, 82%) as a yellow oil.

IH NMR (400 MHz, CDCls) & 6.79 — 6.75 (m, 3H, HAr), 5.94 (s, 2H, H7), 4.93 (br s, 1H, NH), 4.27 (d, J
= 6.0 Hz, 2H, H6), 4.19 (d, J = 8.4 Hz, 2H, H5), 2.32 — 2.19 (m, 6H, 4xH1 + 2xH2), 1.63 — 1.53 (M, 2H;
2xH2), 1.37 (app quint, J = 8.4 Hz, 1H, H4), 0.99 — 0.90 (m, 2H, H3).

13C NMR (100 MHz, CDCl3) & 156.7, 147.9, 147.0, 132.5, 126.1, 120.8, 115.6, 108.3, 108.2, 101.1,
98.9, 63.0, 44.9, 29.1, 21.4, 20.2,17.8

HRMS (ESI*, m/z) calculated for C19H22NO4 (M+H)*: 328.1549, found 328.1544.

(Bicyclo[6.1.0]non-4-yn-9-yl)methyl (3-(dimethylamino)propyl)carbamate 8

/ A solution of 3-dimethylpropylamine (1.1 equiv., 44.0 pL, 0.35 mmol)

H |9 and triethylamine (3.0 equiv., 0.13 mL, 0.95 mmol) in DMF (1.60 mL)
N
H
3

H
"',/OTN\/\/ ~ Wwas added dropwise to a solution of BCN-OPNP S1 (1.0 equiv.,
5 o &8 &8 100.0 mg, 0.32 mmol) in DMF (1.60 mL). The mixture was stirred for
16 h at 25 °C before being concentrated to dryness. The crude was
then purified by flash column chromatography (DCM/MeOH 10:0 to 8:2 over 25 min) to give the title
product (84.2 mg, 0.30 mmol, 95%) as a colorless oil.

IH NMR (400 MHz, CDCl3) & 5.50 (br s, 1H, NH), 4.13 (d, J = 8.1 Hz, 2H, H5), 3.28 — 3.25 (m, 2H, H6),
2.48 — 2.46 (m, 2H, H8), 2.32 — 2.18 (M, 12H, H9 + 4xH1 + 2xH2), 1.76 — 1.71 (m, 2H, H7), 1.63 — 1.53
(m, 2H; 2xH2), 1.35 (app quint, J = 8.6 Hz, 1H, H4), 0.99 — 0.92 (m, 2H, H3).

13C NMR (100 MHz, CDCls) 8 156.9, 98.8, 62.6, 57.7, 53.4, 45.2, 40.0, 29.1, 27.0, 21.4, 20.1, 17.8.
HRMS (ESI*, m/z): calculated for C16H27N202 [M+H]*: 279.2067; found: 279.2062

4-((((Bicyclo[6.1.0]non-4-yn-9-yl)methoxy)carbonyl)amino)butanoic acid 9

1. BCN-OPNP 81, NEt;  //
0 SOCl, o) DMF H u o)
1 ., 6
HZN\/\)J\OH MeOH HC"HZN\/\)J\O/ 2. LiOH, MeOH "/O\"/N\/\)J\OH

quant. s3 55% (over 2 steps) 3 O 9

BCN 9 was obtained in three steps from commercially available y-aminobutyric acid.

Step 1 — Formation of methyl 4-aminobutanoate hydrochloride S3. 4-Aminobutyric acid (1.0 equiv.,
200.0 mg, 1.94 mmol) was dissolved in MeOH (10.0 mL) and cooled to 0°C. Thionyl chloride (1.5 equiv.,
0.21 mL, 2.91 mmol) was then added dropwise. The mixture was warmed back to room temperature
and stirred for 4 h before being evaporated to dryness. The product was engaged in step 2 without
further purification.

Step 2 — Carbamate formation. Methyl 4-aminobutanoate hydrochloride S3 (3.0 equiv., 177.0 mg, 1.16
mmol) and triethylamine (3.0 equiv., 0.16 mL, 1.16 mmol) were dissolved in DMF (1.95 mL). This solution
was then added dropwise to a solution of BCN-OPNP S1 (1.0 equiv., 122.0 mg, 0.39 mmol) in DMF
(1.95 mL). The mixture was stirred for 1.5 h at 25 °C before being concentrated to dryness. The crude
was then suspended in water and extracted three times with ethyl acetate. Organic phases were
combined, dried over MgSOsa, filtered and concentrated under vacuum. The crude was finally purified
by flash column chromatography (cHex/EtOAc 8:2 to 6:4 over 40 min) to give the title product (71.6 mg,
0.24 mmol, 63%) as a colorless oil.

Step 3 — Saponification / formation of 4-((((-bicyclo[6.1.0]non-4-yn-9-yl)methoxy)carbonyl)amino)
butanoic acid 9. Previously obtained BCN (71.6 mg, 0.24 mmol, 1.0 equiv.) was dissolved in MeOH
(0.86 mL) and water (0.57 mL) before LiOH (89.5 mg, 3.66 mmol, 15.0 equiv.) was added in one portion.
The resulting solution was stirred for 16 h at room temperature before water (5.0 mL) was added to the
reaction mixture. The reaction mixture was extracted three times with DCM (15 mL), before the aqueous
layer was acidified with a 5% aqueous solution of KHSO4 until pH~2 (aqueous layer turns from yellow
to white upon acidification). The aqueous layer was extracted six times with DCM (30 mL). The organic
layers were combined, dried over Na2SOu, filtered and concentrated. The resulting crude was finally
purified by flash column chromatography (DCM/MeOH 95:5 + 0.2%o. formic acid) to give the title product
(60.0 mg, 0.21 mmol, 88%) as a colorless oil.

IH NMR (400 MHz, CD30D) & 4.16 (d, J = 8.1 Hz, 2H, H5), 3.16 (t, J = 6.9 Hz, 2H, H6), 2.34 (t, J =
7.4 Hz, 2H, H8), 2.30 — 2.17 (m, 6H, 4xH1 + 2xH2), 1.79 (app quint., J = 7.2 Hz, 2H, H7), 1.67 — 1.59
(m, 2H, 2xH2), 1.40 (app quint., J = 8.8 Hz, 1H, H4), 1.00-0.92 (m, 2H, H3).
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13C NMR (100 MHz, CDs0D) & 175.7, 158.0, 127.3, 98.1, 62.2, 39.7, 30.7, 29.3, 28.8, 25.0, 20.5, 20.0,
17.6.
HRMS (ESI*, m/z): calculated for CisH22NO4 [M+H]* : 280.1543; found: 280.1540.

3-(4-Azidophenyl)propan-1-ol 2
i) HCI conc., NaNO,, 2 3 5

/©/\/\OH H,, Pd/C /©/\/\OH H,0, 0 °C 1/©/\/\OH
—_—

O,N MeOH H,N ii) NaN3, H,0, 0 °C N3

4-nitrocinnamyl alcohol quant. S4 58% 2

Azide 2 was obtained in two steps from commercially available 4-nitrocinnamyl alcohol:

Step 1 — Catalytic hydrogenation. 4-Nitrocinnamyl alcohol (1.0 equiv., 500.0 mg, 2.79 mmol) was
dissolved in MeOH (5.0 mL) under an atmosphere of argon. Palladium on activated charcoal (10 wt%,
0.05 equiv., 81.9 mg, 0.14 mmol) was then added to the solution. The reaction medium was placed
under an atmosphere of hydrogen by three consecutive purge-and-refill cycles stirred for 16 h at 25 °C.
The suspension was then filtered over Celite® and the filtrate was concentrated under vacuum to afford
the title compound, which was used in the next step without further purification.

Step 2 — Azide formation. 3-(4-Aminophenyl)propan-1-ol S4 (1.0 equiv., 303.0 mg, 2.0 mmol) was
dissolved in water (9.0 mL) and cooled at 0 °C. HCI 37% in water (5.0 equiv., 0.83 mL, 10.0 mmol) was
added to this solution followed by a solution of NaNO:z (1.0 equiv., 138.0 mg, 2.0 mmol) in water (2.8 mL).
The resulting mixture was stirred at 0 °C for 10 min before NaNs (1.8 equiv., 234.0 mg, 3.6 mmol) was
added. After stirring at 0 °C for 1.5 h, the agueous medium was extracted three times with EtOAc.
Organic phases were combined, dried over MgSOys, filtered and concentrated in vacuo to afford the title
product (205 mg, 1.16 mmol, 58%) as a colorless oil.

IH NMR (400 MHz, CD30D) & 7.22 — 7.20 (m, 2H, H2), 7.00 — 6.96 (m, 2H, H1), 3.57 (t, J = 6.5 Hz, 2H,
H5), 2.68 (brt, J = 7.5 Hz, 2H, H3), 1.83 — 1.76 (m, 2H, H4).

3C NMR (100 MHz, CD3;0OD) & 146.1, 133.3, 130.0, 117.0, 62.3, 35.8, 32.2.

HRMS (ESI¥, m/z): calculated for CoH12NO [M-N2+H]*: 150.0919; found: 150.0920

3-(4-Azidophenyl)propyl (4-nitrophenyl) carbonate S2

o NO,  4-Nitrophenol chloroformate (1.5 equiv., 332.0 mg, 1.65 mmol) and
PS /©/ pyridine (10.0 equiv., 0.89 mL, 11.0 mmol) were sequentially added

/@MO 0 to a solution of 3-(4-azidophenyl)propan-1-ol 2 (1.0 equiv.,
N3 195.0 mg, 1.1 mmol) in dichloromethane (3.98 mL). The reaction
mixture was stirred for 5 h at 25 °C before being quenched with a

saturated solution of NH4Cl and extracted three times with dichloromethane. Organic phases were
combined, dried over MgSOu, filtered and concentrated under vacuum. The crude was quickly flushed

through a short pad of silica (cHex/AcOEt 8:2) to afford the title product, which was used in the next
steps with no further purification.

3-(4-Azidophenyl)propyl (17-hydroxy-3,6,9,12,15-pentaoxaheptadecyl)carbamate 10

s 3 s o A solution of 17-amino-3,6,9,12,15-pentaoxaheptadecan-1-ol
1 N/\,QO\/}OH (1.1 equiv., 219.7 mg, 0.71 mmol) and triethylamine (3.0 equiv.,
/©/\/\ 0.30 mL, 2.13 mmol) in DMF (1.0 mL) was added to a solution
of 3-(4-azidophenyl)propyl (4-nitrophenyl) carbonate S2 (1.0
equiv., 243.0 mg, 0.71 mmol) in dichloromethane (3.1 mL). The mixture was stirred for 16 h at 25 °C
before being concentrated to dryness. The crude was then suspended in water and extracted three
times with ethyl acetate. Organic phases were combined, dried over MgSOu, filtered and concentrated
under vacuum. The crude was finally purified by flash column chromatography (100% DCM to
DCM/MeOH 85:15) to afford the title compound (273.0 mg, 0.56 mmol, 79%) as a yellowish oil.
IH NMR (400 MHz, CDCl3) & 7.17 — 7.15 (m, 2H, H2), 6.95 — 6.93 (m, 2H, H1), 4.06 (t, J = 6.6 Hz, 2H,
H5), 3.73 — 3.71 (m, 2H, H7), 3.66 — 3.59 (m, 18 H, HOEG), 3.55 (t, J = 4.9 Hz, 2H, HOEG), 3.36 (br t,
J =4.8 Hz, 2H, H6), 2.68 (t, J = 7.5 Hz, 2H, H3), 1.94 — 1.87 (m, 2H, H4).
13C NMR (100 MHz, CDCl3) & 216.9, 156.8, 138.2, 137.7, 129.7, 72.6, 70.6 (3C), 70.5 (3C), 70.3, 70.2
(2C), 63.9, 61.7, 40.8, 31.5, 30.7
HRMS (ESI*, m/z): calculated for C22H3sN4Os [M+H]*: 485.2606; found: 485.2600

N3
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3-(4-Azidophenyl)propyl (3-(dimethylamino)propyl)carbamate 11

s, 3 5 O 4 8 o A solution of 3-dimethylaminopropylamine (1.1 equiv., 20.3 uL,
1 OJ\N/\/\N/ 0.16 mmol) and triethylamine (3.0 equiv., 60.9 pL, 0.44 mmol) in
/©/\/\ H I DMF (0.21 mL) was added to a solution of 3-(4-azidophenyl)propyl
(4-nitrophenyl) carbonate S2 (1.0 equiv., 50.0 mg, 0.15 mmol) in
DMF (0.21 mL). The mixture was stirred for 16 h at 25 °C before being concentrated to dryness. The
crude was then suspended in water and extracted three times with ethyl acetate. Organic phases were
combined, dried over MgSOQOsa, filtered and concentrated under vacuum. The crude was finally purified
by flash column chromatography (100% DCM to DCM/MeOH 85:15) to afford the title compound
(37.7 mg, 0.12 mmol, 85%) as a yellowish oil.
IH NMR (400 MHz, CDClz) & 7.18 — 7.16 (m, 2H, H2), 6.96 — 6.93 (m, 2H, H1), 5.66 (br s, 1H, NH), 4.05
(t, J = 6.5 Hz, 2H, H5), 3.34 — 3.30 (m, 2H, H6), 2.77 (br t, J = 6.2 Hz, 2H, H8), 2.66 (t, J = 7.5 Hz, 2H,
H3), 2.56 (s, 6H, H9), 1.94 — 1.87 (m, 4H, H4 + H7).
13C NMR (100 MHz, CDCl3) & 157.0, 138.2, 137.7, 129.8, 119.0, 77.2, 64.1, 56.4, 53.4, 44.0, 38.6, 31.5,
30.6, 25.8.
HRMS (ESI*, m/z): calculated for Ci6H27N202 [M+H]* : 306.1930 ; found: 306.1936.

General procedure for the synthesis of SPAAC products 13, 14, and S3-S15

A solution of BCN (1.0 equiv.) and azide (1.1 equiv.) in MeOH (0.1 mM) was stirred at room temperature
until complete conversion to the expected triazole was observed (typically 16 h). The mixture was then
concentrated to dryness under vacuum and the resulting crude dissolved in 4 mL of a 1:1 mixture of
acetonitrile and water containing 0.1% of TFA and purified by preparative HPLC (see Material and
methods).

(1-(4-(3-(((3-(dimethylamino)propyl)carbamoyl)oxy)propyl)phenyl)-1,4,5,5a,6,6a,7,8-
octahydrocyclopropa[5,6]cycloocta[1,2-d][1,2,3]triazol-6-yl)methyl (17-hydroxy-3,6,9,12,15-
pentaoxaheptadecyl)carbamate 13

IH NMR (700 MHz, MeOD)

N/N 2 3
o 5 7.46 (2H, d, J = 8.1 Hz,
s H e H3), 7.37 (2H, d, J = 8.1 Hz,
., O 0. H2),4.19-4.14 (2H, m, H10),
12 H g o\/\/@ TRl Vfoﬁ O 409 (2H, 1, J = 6.4 Hz, HY),
\ AN 3.67-3.50 (18H, m, H14-21 +
/T 0 H23), 3.57-3.55 (2H, m,

H22), 3.52 (2H, t, J = 5.4 Hz,
H13), 3.27 (2H, t, J = 5.4 Hz, H12), 3.21 (2H, t, J = 6.4 Hz, H9), 3.20-3.15 (1H, m, H8), 3.17-3.14 (2H,
m, H11), 2.97-2.93 (1H, m, H3), 2.94-2.91 (1H, m, H8), 2.89 (6H, s, H12), 2.82 (2H, t, J = 7.5 Hz, H5),
2.69 (1H, ddd, J = 13.6, 10.4, 3.4 Hz, H3), 2.27 (1H, dddd, J = 15.3, 11.9, 8.2, 4.3 Hz, H7), 2.16 (1H,
dddd, J = 14.8, 10.4, 7.3, 3.9 Hz, H4), 2.00 (2H, app. quint., J = 6.9 Hz, H6), 1.91 (2H, tt, J =7.9, 6.4
Hz, H10), 1.69-1.62 (2H, m, H4 + H7), 1.27 (1H, app. quint., J = 8.5 Hz, H9), 1.15-1.09 (1H, m, H6),
1.10-1.04 (1H, m, H5).
13C NMR (176 MHz, MeOD) & 159.4 (C8), 159.2 (C11), 146.0 (C1), 145.2 (C4), 136.8 (C2), 135.7 (C1),
130.7 (C3), 127.2 (C2), 117.8, 73.6 (C23), 71.6-71.3 (8C, C14-C22)*, 71.0 (C13), 65.2 (C7), 63.5 (C10),
62.2 (1C, C14-C22)*,56.7 (C11), 43.5 (C12), 41.7 (C12), 38.4 (C9), 32.7 (C5), 31.7 (C6), 26.5 (2C, C10
+ C8), 24.3 (C3), 23.7 (C7), 23.3 (C4), 21.1 (C5), 20.8 (C6), 19.1 (C9).
*: undistinguishable from each other.
HRMS (ESI*, m/z) calculated for CasHsaNeO10 (M+2H)2*: 382.2343, found 382.2348.

3-(4-(-6-(21-hydroxy-3-0x0-2,7,10,13,16,19-hexaoxa-4-azahenicosyl)-5,5a,6,6a,7,8-
hexahydrocyclopropa[5,6]cycloocta[1,2-d][1,2,3]triazol-1(4H)-yl)phenyl)propanoic acid 14

W s 1H NMR (700 MHz, MeOD) & 7.48 (2H, d,
21N/ J =82 Hz, H3), 7.38 (2H, d, J = 8.2 Hz,
A - 13 | H2), 4.16 (2H, d, J = 8.0 Hz, H10), 3.66-

) T &} \/\OH 3.59 (18H, m, H14-21 + H23), 3.55 (2H, ,

o J=5.1 Hz, H22), 3.52 (2H, t, J = 5.4 Hz,

H13), 3.27 (2H, t, J = 5.4 Hz, H12), 3.17
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(1H, dddd, J = 15.4, 10.9, 7.4, 3.3 Hz, H8), 3.04 (2H, t, J = 7.5 Hz, H5), 2.97-2.92 (1H, m, H3), 2.95-
2.91 (1H, m, H8), 2.72 (2H, t, J = 7.5 Hz, H6), 2.71-2.66 (1H, m, H3), 2.27 (1H, dddd, J = 15.4, 11.7,
8.1, 4.3 Hz, H7), 2.16 (1H, dddd, J = 14.4, 10.3, 6.9, 3.7 Hz, H4), 1.69-1.62 (2H, m, H4 + H7), 1.27 (1H,
app. quint., J = 8.5 Hz, H9), 1.14-1.05 (2H, m, H6 + H5).

3C NMR (176 MHz, MeOD) & 176.1 (C7), 159.1 (C11), 145.8 (C1), 144.5 (C4), 137.0 (C2), 135.8 (C1),
130.7 (C3), 127.2 (C2), 73.7 (C23), 71.6-71.2 (8C, C14-C22)*, 71.0 (C13), 63.5 (C10), 62.2 (1C, C14-
C22)*,41.7 (C12), 36.1 (C6), 31.4 (C5), 26.4 (C8), 24.4 (C3), 23.6 (C7), 23.2 (C4), 21.0 (C5), 20.8 (C6),
19.2 (C9).

*: undistinguishable from each other.

Remark. Peaks corresponding to the deuterated methyl ester derivative of 14 can be seen in the 'H and
13C NMR spectra — this compound likely results from an in-situ esterification between 14 and deuterated
methanol catalysed by the residual TFA from the preparative HPLC purification. This was confirmed by
the HRMS analysis of 14, where m/z 666.3799 [M+H]* and m/z 685.3414 [M+Na]* are also visible.
Similar side products were consistently observed with carboxylic acid derivatives, which should not be
considered as impurities.

HRMS (ESI*, m/z) calculated for Cs2H49N4O10 (M+H)*: 649.3457, found 649.3458.

(2-(4-(1-hydroxy-19-o0x0-3,6,9,12,15,20-hexaoxa-18-azatricosan-23-yl)phenyl)-1,4,5,5a,6,6a,7,8-
octahydrocyclopropa[5,6]cycloocta[l,2-d][1,2,3]triazol-6-yl)methyl (17-hydroxy-3,6,9,12,15-
pentaoxaheptadecyl)carbamate S3

'H NMR (700

MHz, MeOD) &
H 13, 1421 23 7.47 (2H,d, J =
- ',;O/O%Nﬁoa}o\n/\% 8.2 Hz, H3),
re 10 H\« 4 0 4 228 (ElH, d,HJZ):
- . Z, ,

%OVOXF 0 4.16 (2H, d, J =

HO 19 8.0 Hz, H10),
4.08 (2H, t, J = 6.3 Hz, H7), 3.70-3.59 (36H, m, H14-21 + H23 + H11-18 + H20), 3.56-3.52 (8H, m, H22
+ H13 + H10 + H19), 3.30-3.26 (4H, m, H12 + H9), 3.17 (1H, dddd, J = 15.6, 10.9, 7.4, 3.4 Hz, H8),
2.97-2.93 (1H, m, H3), 2.94-2.91 (1H, m, H8), 2.83 (2H, t, J = 7.5 Hz, H5), 2.70 (1H, ddd, J = 13.7, 10.3,
3.2 Hz, H3), 2.27 (1H, dddd, J = 15.6, 11.7, 8.0, 4.2 Hz, H7), 2.16 (1H, dddd, J = 14.5, 10.3, 7.0, 3.8 Hz,
H4), 2.00 (2H, app quint, J = 6.9 Hz, H6), 1.70-1.63 (2H, m, H4 + H7), 1.27 (1H, app quint, J = 8.5 Hz,
H9), 1.15-1.04 (2H, m, H6 + H5).
13C NMR (176 MHz, MeOD) & 159.1 (C8), 159.0 (C11), 145.7 (C1), 145.4 (C4), 137.0 (C2), 135.5 (C1),
130.8 (C3), 127.1 (C2), 73.6 (2C, C23 + C20), 71.5-71.2 (16C, C14-C22 + C11-C19)*, 70.9 (2C, C10 +
C13), 64.9 (C7), 63.5 (C10), 62.2 (2C, C14-C22 + C11-C19)*, 41.7 (2C, C12 + C9), 32.7 (C5), 31.7
(C6), 26.4 (C8), 24.4 (C3), 23.6 (C7), 23.2 (C4), 21.0 (C5), 20.8 (C6), 19.1 (C9).
*: undistinguishable from each other.
HRMS (ESI*, m/z) calculated for CasH76NsO16 (M+H)*: 942.5266, found 942.5245.

H

(1-(4-(2-hydroxy-2-methyl-5-o0xo0-3,4-dihydro-2H,5H-pyrano[3,2-c]chromen-4-yl)phenyl)-
1,4,5,5a,6,6a,7,8-octahydrocyclopropa[5,6]cycloocta[1,2-d][1,2,3]triazol-6-yl)methyl
(benzo[d][1,3]dioxol-5-yImethyl)carbamate S4

Compound S4 was isolated as a mixture of lactol diastereomers (1:0.56 ratio major/minor; C7
diastereomers).

Major diastereomer
1H NMR (700 MHz, MeOD) & 7.94 (1H, dd, J
>19 = 8.0, 1.0 Hz, H14), 7.63-7.60 (1H, m, H16),
o 7.47 (2H, d, J = 8.2 Hz, H3), 7.40-7.37 (1H,
1 m, H15), 7.37-7.35 (2H, m, H2), 7.34-7.32
(1H, m, H17), 6.78-6.75 (1H, m, H18), 6.75-
6.70 (2H, m, H14 + H15), 5.90-5.87 (2H, m,
H19), 4.24 (1H, dd, J = 11.8, 6.9 Hz, H5),
4.19-4.14 (4H, m, H10 + H12), 3.20-3.13 (1H, m, H8), 2.99-2.94 (1H, m, H3), 2.94-2.90 (1H, m, H8),
2.72-2.68 (1H, m, H3), 2.48 (1H, dd, J = 13.9, 6.9 Hz, H6), 2.29-2.24 (1H, m, H7), 2.18-2.13 (1H, m,
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H4), 2.03 (1H, app t, J = 12.8, H6), 1.77 (3H, s, H8), 1.69-1.62 (2H, m, H4 + H7), 1.31-1.26 (1H, m, HI),
1.13-1.03 (2H, m, H6 + H5).

13C NMR (176 MHz, MeOD) & 163.6 (C9), 161.7 (C11), 159.3 (C11), 154.2 (C12), 149.2 (C17), 148.2
(C4), 148.1 (C16),145.3 (C1), 137.6 (C2), 135.5 (C1), 134.7 (C13), 133.2 (C16), 129.7 (C3), 127.2 (C2),
125.3 (C15), 124.2 (C14), 121.6 (C14), 117.4 (2C, C17 + C13), 109.0 (C15), 108.8 (C18), 104.4 (C10),
102.3 (C19), 100.9 (C7), 63.6 (C10), 45.3 (C12), 43.8 (C6), 36.9 (C5), 27.7 (C8), 26.2 (C8), 24.4 (C3),
23.5(C7), 23.2 (C4), 21.1 (C5), 20.9 (C6), 19.2 (C9).

Minor diastereomer

IH NMR (700 MHz, MeOD) & 7.96 (1H, dd, J = 8.0, 1.1 Hz, H14), 7.65-7.63 (1H, m, H16), 7.48 (2H, d,
J = 8.3 Hz, H3), 7.40-7.37 (1H, m, H15), 7.37-7.34 (1H, m, H17), 7.33-7.31 (2H, m, H2), 6.78-6.75 (1H,
m, H18), 6.75-6.70 (2H, m, H14 + H15), 5.90-5.87 (2H, m, H19), 4.23-4.20 (1H, m, H5), 4.19-4.14 (4H,
m, H10 + H12), 3.20-3.13 (1H, m, H8), 2.99-2.94 (1H, m, H3), 2.94-2.90 (1H, m, H8), 2.72-2.68 (1H, m,
H3), 2.47-2.43 (1H, m, H6), 2.37 (1H, dd, J = 14.1, 5.4 Hz, H6), 2.29-2.24 (1H, m, H7), 2.18-2.13 (1H,
m, H4), 1.70 (3H, s, H8), 1.69-1.62 (2H, m, H4 + H7), 1.31-1.26 (1H, m, H9), 1.13-1.03 (2H, m, H6 +
H5).

13C NMR (176 MHz, MeOD) & 164.2 (C9), 162.2 (C11), 159.3 (C11), 154.2 (C12), 149.2 (C17), 148.1
(C16), 147.9 (C4), 145.3 (C1), 137.6 (C2), 135.1 (C1), 134.7 (C13), 133.4 (C16), 130.1 (C3), 126.7 (C2),
125.4 (C15), 124.2 (C14), 121.6 (C14), 117.5 (C17), 117.2 (C13), 109.0 (C15), 108.8 (C18), 102.7
(C10), 102.3 (2C, C7 + C19), 63.6 (C10), 45.3 (C12), 41.8 (C6), 37.2 (C5), 26.9 (C8), 26.2 (C8), 24.4
(C3), 23.5 (C7), 23.2 (C4), 21.1 (C5), 20.9 (C6), 19.2 (C9).

Remark. Peaks corresponding to the products resulting from the hydrolysis of the carbamate group —
probably in the course of the purification by preparative HPLC or by prolonged exposure to the residual
TFA — can also be seen in the 'H and 3C NMR spectra.

HRMS (ESI*, m/z) calculated for CasH37N4Os (M+H)*: 629.2606, found 629.2624.

(1-(4-(2-hydroxy-2-methyl-5-0x0-3,4-dihydro-2H,5H-pyrano[3,2-c]chromen-4-yl)phenyl)-
1,4,5,5a,6,6a,7,8-octahydrocyclopropa[5,6]cycloocta[1,2-d][1,2,3]triazol-6-yl)methy! (3-
(dimethylamino)propyl)carbamate S5

Compound S5 was isolated as a mixture of lactol diastereomers (1:0.49 ratio major/minor; C7
diastereomers).

Major diastereomer

H NMR (700 MHz, MeOD) & 7.94 (1H, brd, J =
7.9 Hz, H14), 7.62-7.59 (1H, m, H16), 7.46 (2H,
d, J =8.2 Hz, H3), 7.40-7.37 (1H, m, H15), 7.37-
7.35 (2H, m, H2), 7.32 (1H, d, J = 8.1 Hz, H17),
4.23 (1H, dd, J = 11.9, 6.8 Hz, H5), 4.17 (2H, d,
J =7.9 Hz, H10), 3.19 (2H, d, J = 6.1 Hz, H12),
3.18-3.13 (1H, m, H8), 3.14-3.12 (2H, m, H14),
2.98-2.93 (1H, m, H3), 2.92-2.89 (1H, m, H8), 2.87 (6H, s, H15), 2.72-2.67 (1H, m, H3), 2.47 (1H, dd, J
=13.7, 6.8 Hz, H6), 2.27-2.23 (1H, m, H7), 2.17-2.12 (1H, m, H4), 2.03 (1H, app t, J = 12.3 Hz, H6),
1.92-1.87 (2H, m, H13), 1.77 (3H, s, H8), 1.67-1.59 (2H, m, H4 + H7), 1.29-1.23 (1H, m, H9), 1.14-1.04
(2H, m, H6 + H5).

13C NMR (176 MHz, MeOD) & 163.6 (C9), 161.7 (C11), 159.5 (C11), 154.2 (C12), 147.9 (C4), 145.9
(C1), 136.9 (C2), 135.7 (C1), 133.2 (C16), 129.6 (C3), 127.2 (C2), 125.4 (C15), 124.2 (C14), 117.4 (2C,
C17 + C13), 104.4 (C10), 100.9 (C7), 63.8 (C10), 56.7 (C14), 43.8 (C6), 43.5 (C15), 38.4 (C12), 36.8
(Ch), 27.7 (C8), 26.5 (C13), 26.4 (C8), 24.3 (C3), 23.8 (C7), 23.4 (C4), 21.1 (C5), 20.9 (C6), 19.1 (C9).
Minor diastereomer

IH NMR (700 MHz, MeOD) & 7.96 (1H, br d, J = 8.3 Hz, H14), 7.65-7.62 (1H, m, H16), 7.47 (2H, d, J =
8.3 Hz, H3), 7.40-7.37 (1H, m, H15), 7.37-7.34 (1H, m, H17), 7.31 (2H, d, J = 8.3 Hz, H2), 4.23-4.19
(1H, m, H5), 4.17 (2H, d, J = 7.9 Hz, H10), 3.19 (2H, d, J = 6.1 Hz, H12), 3.18-3.13 (1H, m, H8), 3.14-
3.12 (2H, m, H14), 2.98-2.93 (1H, m, H3), 2.92-2.89 (1H, m, H8), 2.87 (6H, s, H15), 2.72-2.67 (1H, m,
H3), 2.47-2.43 (1H, m, H6), 2.37 (1H, dd, J = 14.1, 5.3 Hz, H6), 2.27-2.23 (1H, m, H7), 2.17-2.12 (1H,
m, H4), 1.92-1.87 (2H, m, H13), 1.70 (3H, s, H8), 1.67-1.59 (2H, m, H4 + H7), 1.29-1.23 (1H, m, H9),
1.14-1.04 (2H, m, H6 + H5).

13C NMR (176 MHz, MeOD) & 164.1 (C9), 162.2 (C11), 159.5 (C11), 154.2 (C12), 147.5 (C4), 145.8
(C1), 136.9 (C2), 135.4 (C1), 133.4 (C16), 130.1 (C3), 126.7 (C2), 125.4 (C15), 124.2 (C14), 1175
(C17),117.2 (C13), 102.7 (C10), 102.3 (C7), 63.8 (C10), 56.7 (C14), 43.5 (C15), 41.8 (C6), 38.4 (C12),
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37.2 (C5), 26.9 (C8), 26.5 (C13), 26.4 (C8), 24.3 (C3), 23.8 (C7), 23.4 (C4), 21.1 (C5), 20.9 (C6), 19.1
(C9).
HRMS (ESI*, m/z) calculated for CssH42NsOe (M+H)*: 628.3130, found 628.3158.

4-((((-1-(4-(2-hydroxy-2-methyl-5-ox0-3,4-dihydro-2H,5H-pyrano[3,2-c]chromen-4-yl) phenyl)-
1,4,5,5a,6,6a,7,8-octahydrocyclopropa[5,6]cycloocta[1,2-d][1,2,3]triazol-6-
yl)methoxy)carbonyl)amino)butanoic acid S6

Compound S6 was isolated as a mixture of lactol diastereomers (1:0.48 ratio major/minor; C7
diastereomers).

Major diastereomer

IH NMR (700 MHz, MeOD) & 7.93 (1H, dd, J =
7.9, 1.0 Hz, H14), 7.61-7.59 (1H, m, H16), 7.45
(2H, d, J =8.3 Hz, H3), 7.40-7.37 (1H, m, H15),
7.37-7.35 (2H, m, H2), 7.33-7.30 (1H, m, H17),
4.23 (1H, dd, J=11.8, 6.7 Hz, H5), 4.15 (2H, d,
J = 7.5 Hz, H10), 3.19-3.13 (1H, m, H8), 3.12
(2H, t, J =6.8 Hz, H12), 2.99-2.94 (1H, m, H3),
2.94-2.90 (1H, m, H8), 2.72-2.67 (1H, m, H3), 2.47 (1H, dd, J = 13.7, 6.7 Hz, H6), 2.31 (2H, d, J = 7.3
Hz, H14), 2.28-2.24 (1H, m, H7), 2.18-2.13 (1H, m, H4), 2.02 (1H, dd, J = 13.7, 11.8 Hz, H6), 1.78-1.74
(2H, m, H13), 1.76 (3H, s, H8), 1.69-1.62 (2H, m, H4 + H7), 1.26 (1H, app. quint., J = 8.2 Hz, H9), 1.13-
1.03 (2H, m, H6 + H5).

13C NMR (176 MHz, MeOD) & 176.9 (C15), 163.6 (C9), 161.7 (C11), 159.2 (C11), 154.2 (C12), 148.0
(C4),145.5(C1),137.4(C2),135.5(C1), 133.2(C16), 129.6 (C3), 127.2 (C2), 125.3 (C15), 124.2 (C14),
117.4 (2C, C17 + C13), 104.4 (C10), 100.9 (C7), 63.4 (C10), 43.8 (C6), 41.1 (C12), 36.8 (C5), 32.0
(C14), 27.7 (C8), 26.3 (C8), 26.2 (C13), 24.4 (C3), 23.5 (C7), 23.2 (C4), 21.0 (C5), 20.8 (C6), 19.2 (C9).
Minor diastereomer

IH NMR (700 MHz, MeOD) & 7.95 (1H, dd, J = 8.0, 1.2 Hz, H14), 7.64-7.62 (1H, m, H16), 7.48 (2H, d,
J = 8.4 Hz, H3), 7.40-7.37 (1H, m, H15), 7.37-7.34 (1H, m, H17), 7.33-7.31 (2H, m, H2), 4.23-4.20 (1H,
m, H5), 4.15 (2H, d, J = 7.5 Hz, H10), 3.19-3.13 (1H, m, H8), 3.12 (2H, t, J = 6.8 Hz, H12), 2.99-2.94
(1H, m, H3), 2.94-2.90 (1H, m, H8), 2.72-2.67 (1H, m, H3), 2.47-2.43 (1H, m, H6), 2.37 (1H, dd, J =
14.1, 5.1 Hz, H6), 2.31 (2H, d, J = 7.3 Hz, H14), 2.28-2.24 (1H, m, H7), 2.18-2.13 (1H, m, H4), 1.78-
1.74 (2H, m, H13), 1.69 (3H, s, H8), 1.69-1.62 (2H, m, H4 + H7), 1.26 (1H, app. quint., J = 8.2 Hz, H9),
1.13-1.03 (2H, m, H6 + H5).

13C NMR (176 MHz, MeOD) & 176.9 (C15), 164.1 (C9), 162.1 (C11), 159.2 (C11), 154.2 (C12), 147.7
(C4), 145.4 (C1), 137.5(C2),135.2 (C1), 133.4 (C16), 130.1 (C3), 126.7 (C2), 125.4 (C15), 124.2 (C14),
117.5 (C17), 117.2 (C13), 102.7 (C10), 102.3 (C7), 63.4 (C10), 41.8 (C6), 41.1 (C12), 37.2 (C5), 32.0
(C14), 26.9 (C8), 26.3 (C8), 26.2 (C13), 24.4 (C3), 23.5 (C7), 23.2 (C4), 21.0 (C5), 20.8 (C6), 19.2 (C9).
HRMS (ESI*, m/z) calculated for Cs4H37N4Osg (M+H)*: 629.2606, found 629.2624.

(1-(4-(1-hydroxy-19-0x0-3,6,9,12,15,20-hexaoxa-18-azatricosan-23-yl)phenyl)-1,4,5,5a,6,6a,7,8-
octahydrocyclopropa[5,6]cycloocta[1,2-d][1,2,3]triazol-6-yl)methyl (benzo[d][1,3]dioxol-5-
ylmethyl)carbamate S7

WNG 3 H NMR (500 MHz,

. )Y MeOD) & 7.47 (2H, d, J
1 N H 14 QO

, K . H&CE Vo =8.3Hz, H3),7.36 (2H,

8 g'w/OTN 0  d,J=8.3Hz H2),6.77

w Hso g e (1H, s, H18), 6.75-6.71

1 X\/NT( 7 (2H, m, H14 + H15)

20 oV\O 9 o) ' ' ’

2 4 5.89 (2H, s, H19), 4.18

HO 1 (2H, d, J = 8.2 Hz, H10),

4.16 (2H, s, H12), 4.08 (2H, t, J = 6.1 Hz, H7), 3.66-3.61 (18H, m, H11-18 + H20), 3.56-3.52 (4H, m,

H10 + H19), 3.30-3.27 (2H, m, H9), 3.20-3.12 (1H, m, H8), 2.97-2.93 (1H, m, H3), 2.94-2.89 (1H, m,

H8), 2.83 (2H, t, J = 7.5 Hz, H5), 2.71-2.64 (1H, m, H3), 2.31-2.22 (1H, m, H7), 2.19-2.11 (1H, m, H4),

2.05-1.97 (2H, m, H6), 1.71-1.61 (2H, m, H4 + H7), 1.28 (1H, app. quint., J = 8.6 Hz, H9), 1.15-1.02
(2H, m, H6 + H5).

13C NMR (126 MHz, MeOD) & 159.3 (C11), 159.1 (C8), 149.2 (C17), 148.1 (C16), 145.9 (C1), 145.3

(C4), 136.8 (C2), 135.6 (C1), 134.7 (C13), 130.8 (C3), 127.2 (C2), 121.6 (C14), 109.0 (C15), 108.8

10
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(C18), 102.3 (C19), 73.6 (C20), 71.5-71.3 (8C, C11-C19)*, 71.0 (C10), 65.0 (C7), 63.6 (C10), 62.2 (C11-
C19)*, 45.2 (C12), 41.7 (C9), 32.7 (C5), 31.7 (C6), 26.4 (C8), 24.3 (C3), 23.7 (C7), 23.3 (C4), 21.1 (CH),
20.9 (C6), 19.2 (C9).

*. undistinguishable from each other.

HRMS (ESI*, m/z) calculated for C41HssNsO12 (M+H)*: 812.4076, found 812.4087.

(2-(4-(3-(((3-(dimethylamino)propyl)carbamoyl)oxy)propyl)phenyl)-1,4,5,5a,6,6a,7,8-
octahydrocyclopropa|5,6]cycloocta[1,2-d][1,2,3]triazol-6-yl)methyl (benzo[d][1,3]dioxol-5-
ylmethyl)carbamate S8

N, 3 'H NMR (700 MHz, MeOD) & 7.45
(2H,d, J=8.2 Hz, H3), 7.35 (2H, d,

/
. - ) oo 0>19 J=8.2 Hz, H2), 6.77 (1H, s, H18),
S 9-',,/0{(N 0  6.74-6.71 (2H, m, H14 + H15), 5.89
o Hoto 0 12 4 (2H, s, H19), 4.18-4.15 (4H, m, H10

H 8
N~ +H12), 4.08 (2H, t, J = 6.3 Hz, H7),
7m0 O 3.21 (2H, t, J = 6.5 Hz, H9), 3.17-
3.13 (3H, m, H8 + H11), 2.94-2.88 (2H, m, H3 + H8), 2.88 (6H, s, H12), 2.82 (2H, t, J = 7.3 Hz, H5),
2.66 (1H, ddd, J = 13.5, 9.9, 3.1 Hz, H3), 2.25 (1H, dddd, J = 15.2, 11.8, 7.9, 4.3 Hz, H7), 2.16 (1H,
dddd, J = 13.5, 10.4, 7.1, 3.8 Hz, H4), 2.00 (2H, app. quint., J = 6.8 Hz, H6), 1.91 (2H, tt, J =7.9, 6.5
Hz, H10), 1.67-1.51 (2H, m, H4 + H7), 1.26 (1H, app. quint., J = 8.6 Hz, H9), 1.13-1.08 (1H, m, H6),
1.09-1.03 (1H, m, H5).
13C NMR (126 MHz, MeOD) & 159.4 (C11), 159.2 (C8), 149.1 (C17), 148.1 (C16), 146.0 (C1), 145.2
(C4), 136.7 (C2), 135.6 (C1), 134.7 (C13), 130.7 (C3), 127.1 (C2), 121.6 (C14), 109.0 (C15), 108.8
(C18), 102.2 (C19), 65.2 (C7), 63.6 (C10), 56.6 (C11), 45.2 (C12), 43.5 (C12), 38.4 (C9), 32.7 (C5),
31.6 (C6), 26.5 (C8), 26.4 (C10), 24.3 (C3), 23.7 (C7), 23.3 (C4), 21.1 (C5), 20.9 (C6), 19.1 (C9).
HRMS (ESI*, m/z) calculated for Cz4H4sNsOs (M+H)*: 633.3395, found 633.3421.

3-(4-(-6-((((benzo[d][1,3]dioxol-5-yImethyl)carbamoyl)oxy)methyl)-5,5a,6,6a,7,8-
hexahydrocyclopropa[5,6]cycloocta[l,2-d][1,2,3]triazol-1(4H)-yl)phenyl)propanoic acid S9

IH NMR (700 MHz, MeOD) & 7.48 (2H, d, J=8.3
o Hz, H3), 7.37 (2H, d, J = 8.3 Hz, H2), 6.77 (1H,
Y1 S H18),6.74-6.72 (2H, m, H14 + H15), 5.89 (2H,
s, H19), 4.19 (2H, d, J = 8.1 Hz, H10), 4.16 (2H,
s, H12), 3.16 (1H, dddd, J = 15.7, 10.7, 7.2, 3.2
0 Hz, H8), 3.04 (2H, t, J = 7.5 Hz, H5), 2.95-2.89
(2H, m, H3 + H8), 2.73 (2H, t, J = 7.5 Hz, H6),
2.71-2.66 (1H, m, H3), 2.29-2.24 (1H, m, H7), 2.17-2.12 (1H, m, H4), 1.69-1.62 (2H, m, H4 + H7), 1.28
(1H, app. quint., J = 8.7 Hz, H9), 1.14-1.05 (2H, m, H6 + H5).
13C NMR (126 MHz, MeOD) & 176.3 (C7), 159.3 (C11), 149.2 (C17), 148.1 (C16), 145.8 (C1), 144.5
(C4), 137.0 (C2), 135.8 (C1), 134.7 (C13), 130.7 (C3), 127.2 (C2), 121.6 (C14), 109.0 (C15), 108.8
(C18), 102.3 (C19), 63.6 (C10), 45.2 (C12), 36.1 (C6), 31.4 (C5), 26.4 (C8), 24.3 (C3), 23.7 (C7), 23.3
(C4), 21.1 (C5), 20.9 (C6), 19.2 (C9).
HRMS (ESI*, m/z) calculated for C2sH31N4Os (M+H)*: 519.2238, found 519.2236.

w

HO

(1-(4-(1-hydroxy-19-0x0-3,6,9,12,15,20-hexaoxa-18-azatricosan-23-yl)phenyl)-1,4,5,5a,6,6a,7,8-
octahydrocyclopropal5,6]cycloocta[1,2-d][1,2,3]triazol-6-yl)methyl (3-
(dimethylamino)propyl)carbamate S10

!H NMR (700 MHz, MeOD)
5 7.47 (2H, d, J = 7.9 Hz,
H3), 7.37 (2H, d, J = 7.9 Hz,
H2), 4.18 (2H, d, J = 7.9 Hz,

o Mo H10), 4.07 (2H, t, J = 6.2 Hz,
11-180XV ~ H7), 3.66-3.61 (18H, m,
g\/ov PRI H11-18 + H20), 3.56-3.52
HO™ 19 (4H, m, H10 + H19), 3.29

11



Plasma Induced Acceleration and Selectivity in Strain-Promoted Azide-Alkyne Electronic Supporting
Cycloadditions Information

(2H, t, J = 5.4 Hz, H9), 3.20 (2H, t, J = 6.3 Hz, H12), 3.18-3.13 (1H, m, H8), 3.16-3.12 (2H, m, H14),
2.99-2.95 (1H, m, H3), 2.97-2.93 (1H, m, H8), 2.88 (6H, s, H15), 2.83 (2H, t, J = 7.4 Hz, H5), 2.70 (1H,
ddd, J = 13.2, 10.2, 2.9 Hz, H3), 2.27 (1H, dddd, J = 14.7, 11.2, 7.6, 3.9 Hz, H7), 2.16 (1H, dddd, J =
14.4,10.2, 7.0, 3.6 Hz, H4), 2.03-1.98 (2H, m, H6), 1.91 (2H, app quint, J = 6.7 Hz, H13), 1.69-1.61 (2H,
m, H4 + H7), 1.27 (1H, app. quint., J = 8.4 Hz, H9), 1.15-1.06 (2H, m, H6 + H5).

13C NMR (126 MHz, MeOD) & 159.5 (C11), 159.1 (C8), 145.9 (C1), 145.3 (C4), 136.9 (C2), 135.6 (C1),
130.8 (C3), 127.2 (C2), 73.6 (C20), 71.5-71.3 (8C, C11-C19)*, 71.0 (C10), 65.0 (C7), 63.8 (C10), 62.2
(C11-C19)*, 56.7 (C14), 43.5 (C15), 41.7 (C9), 38.4 (C12), 32.7 (C5), 31.7 (C6), 26.5 (C13), 26.4 (C8),
24.4 (C3), 23.7 (C7), 23.3 (C4), 21.1 (C5), 20.9 (C6), 19.1 (C9).

*. undistinguishable from each other.

HRMS (ESI*, m/z) calculated for CasHssNeO10 (M+H)*: 763.4606, found 763.4581.

(2-(4-(3-(((3-(dimethylamino)propyl)carbamoyl)oxy)propyl)phenyl)-1,4,5,5a,6,6a,7,8-
octahydrocyclopropal5,6]cycloocta[1,2-d][1,2,3]triazol-6-yl)methyl (3-
(dimethylamino)propyl)carbamate S11

IH NMR (700 MHz, MeOD) & 7.46 (2H,
d, J=8.0 Hz, H3), 7.37 (2H, d, J = 8.0
Hz, H2), 4.20-4.15 (2H, m, H10), 4.09
(2H, t, J = 6.2 Hz, H7), 3.23-3.18 (4H,
m, H12 + H9), 3.18-3.13 (1H, m, H8),
3.17-3.13 (4H, m, H14 + H11), 2.99-
2.90 (2H, m, H3 + H8), 2.89 (6H, s, H15
/ H12), 2.88 (6H, s, H12 / H15), 2.83
(2H, t, J = 7.5 Hz, H5), 2.70 (1H, ddd, J = 13.6, 10.4, 3.3 Hz, H3), 2.27 (1H, dddd, J = 15.2, 11.8, 8.0,
4.3 Hz, H7), 2.16 (1H, dddd, J = 14.5, 10.4, 7.0, 3.8 Hz, H4), 2.01 (2H, app. quint., J = 6.8 Hz, H6),1.94-
1.88 (4H, m, H10 + H13), 1.69-1.62 (2H, m, H4 + H7), 1.27 (1H, app. quint., J = 8.3 Hz, H9), 1.15-1.06
(2H, m, H6 + H5).

3C NMR (126 MHz, MeOD) & 159.5 (C11), 159.4 (C8), 146.0 (C1), 145.3 (C4), 136.8 (C2), 135.7 (C1),
130.7 (C3), 127.2 (C2), 65.2 (C7), 63.8 (C10), 56.7 (2C, C11 + C14), 43.5 (2C, C12 + C15), 38.4 (C9 +
C12), 32.7 (C5), 31.7 (C6), 26.5 (C10 + C13), 26.4 (C8), 24.3 (C3), 23.7 (C7), 23.3 (C4), 21.1 (C5), 20.8
(C6), 19.1 (C9).

HRMS (ESI*, m/z) calculated for Ca1HsoN704 (M+H)*: 584.3919, found 584.3927.

3-(4-(-6-((((3-(dimethylamino)propyl)carbamoyl)oxy)methyl)-5,5a,6,6a,7,8-
hexahydrocyclopropa[5,6]cycloocta[1,2-d][1,2,3]triazol-1(4H)-yl)phenyl)propanoic acid S12

NN 3 1H NMR (700 MHz, MeOD) & 7.47 (2H, d, J = 8.0 Hz,

2 | N\@H H3), 7.37 (2H, d, J = 8.0 Hz, H2), 4.17 (2H,d, J = 8.1

3 1 H |"®  Hz, H10), 3.20 (2H, t, J = 6.3 Hz, H12), 3.18-3.13

&y 9"'1/0%“‘\/\/“\ (1H, m, H8), 3.16-3.13 (2H, m, H14), 3.04 (2H, t, J =

HO- Hooo g » 7.4 Hz, H5), 2.99-2.90 (2H, m, H3 + H8), 2.88 (6H,
o s, H15), 2.72 (2H, t, J = 7.4 Hz, H6), 2.70-2.65 (1H,

m, H3), 2.27 (1H, dddd, J = 15.1, 11.7, 7.8, 4.1 Hz, H7), 2.15 (1H, dddd, J = 14.6, 10.4, 7.0, 3.5 Hz, H4),
1.93-1.88 (2H, m, H13), 1.68-1.60 (2H, m, H4 + H7), 1.26 (1H, app. quint., J = 8.3 Hz, H9), 1.14-1.04
(2H, m, H6 + H5).

13C NMR (126 MHz, MeOD) & 176.2 (C7), 159.5 (C11), 146.0 (C1), 144.7 (C4), 136.7 (C2), 135.8 (C1),
130.7 (C3), 127.1 (C2), 63.8 (C10), 56.6 (C14), 43.5 (C15), 38.4 (C12), 36.2 (C6), 31.5 (C5), 26.5 (C13),
26.4 (C8), 24.3 (C3), 23.7 (C7), 23.3 (C4), 21.1 (C5), 20.8 (C6), 19.1 (C9).

HRMS (ESI*, m/z) calculated for C2sH3sNsO4 (M+H)*: 470.2762, found 470.2779.
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4-((((1-(4-(1-hydroxy-19-ox0-3,6,9,12,15,20-hexaoxa-18-azatricosan-23-yl)phenyl)-
1,4,5,5a,6,6a,7,8-octahydrocyclopropa[5,6]cycloocta[1,2-d][1,2,3]triazol-6-
yl)methoxy)carbonyl)amino)butanoic acid S13

IH NMR (700 MHz,
MeOD) & 7.47 (2H, d, J =
7.8 Hz, H3), 7.38 (2H, d, J
=7.8Hz,H2), 4.16 (2H, d,
J = 7.7 Hz, H10), 4.08
(2H, t, J = 6.2 Hz, H7),
3.66-3.61 (18H, m, H11-
18 + H20), 3.56-3.52 (4H,
m, H10 + H19), 3.30-3.28 (2H, m, H9), 3.18-3.13 (1H, m, H8), 3.12 (2H, t, J = 7.1 Hz, H12), 2.98-2.91
(2H, m, H3 + H8), 2.83 (2H, t, J = 7.4 Hz, H5), 2.72-2.66 (1H, m, H3), 2.35 (2H, t, J = 7.3 Hz, H14), 2.29-
2.24 (1H, m, H7), 2.19-2.14 (1H, m, H4), 2.02-1.98 (2H, m, H6), 1.80-1.75 (2H, m, H13), 1.70-1.63 (2H,
m, H4 + H7), 1.26 (1H, app. quint., J = 8.1 Hz, H9), 1.14-1.05 (2H, m, H6 + H5).

13C NMR (126 MHz, MeOD) & 176.9 (C15), 159.2 (C11), 159.1 (C8), 145.8 (C1), 145.4 (C4), 137.0 (C2),
135.6 (C1), 130.8 (C3), 127.2 (C2), 73.6 (C20), 71.5-71.2 (8C, C11-C19)*, 71.0 (C10), 65.0 (C7), 63.4
(C10), 62.2 (C11-C19)*, 41.7 (C9), 41.0 (C12), 32.7 (C5), 31.9 (C14), 31.7 (C6), 26.4 (C8), 26.2 (C13),
24.4 (C3), 23.7 (C7), 23.3 (C4), 21.1 (C5), 20.8 (C6), 19.1 (C9).

HRMS (ESI*, m/z) calculated for Cs7HssNsO12 (M+H)*: 764.4076, found 764.4062.

4-((((-1-(4-(3-(((3-(dimethylamino) propyl)carbamoyl)oxy)propyl)phenyl)-1,4,5,5a,6,6a,7,8-
octahydrocyclopropa[5,6]cycloocta[l,2-d][1,2,3]triazol-6-yl)methoxy)carbonyl)amino)butanoic
acid S14

'H NMR (700 MHz, MeOD) & 7.46
(2H, d, J=8.0 Hz, H3), 7.37 (2H, d, J
= 8.0 Hz, H2), 4.19-4.12 (2H, m,
H10), 4.09 (2H, t, J = 6.2 Hz, H7),
3.22-3.19 (2H, m, H9), 3.18-3.13 (1H,
m, H8), 3.17-3.14 (2H, m, H11), 3.15-
R 3.11 (2H, m, H12), 2.98-2.91 (2H, m,
H3 + H8), 2.89 (6H, s, H12), 2.83 (2H, t, J = 7.5 Hz, H5), 2.72-2.66 (1H, m, H3), 2.32 (2H, t, J = 7.5 Hz,
H14), 2.30-2.25 (1H, m, H7), 2.19-2.14 (1H, m, H4), 2.01 (2H, app. quint., J = 6.9 Hz, H6), 1.91 (2H,
app. quint., J = 6.8 Hz, H10), 1.79-1.74 (2H, m, H13), 1.69-1.63 (2H, m, H4 + H7), 1.27 (1H, app. quint.,
J = 8.5 Hz, H9), 1.15-1.05 (2H, m, H6 + H5).

13C NMR (126 MHz, MeOD) & 177.0 (C15), 159.5 (C11), 159.3 (C8), 146.1 (C1), 145.2 (C4), 136.8 (C2),
135.7 (C1), 130.7 (C3), 127.2 (C2), 65.3 (C7), 63.5 (C10), 56.7 (2C, C11), 43.5 (C12), 41.1 (C12), 38.4
(C9), 32.7 (C5H), 32.1 (C14), 31.6 (C6), 26.5 (2C, C8 + C10), 26.3 (C13), 24.3 (C3), 23.8 (C7), 23.4 (C4),
21.1 (C5), 20.9 (C6), 19.2 (C9).

HRMS (ESI*, m/z) calculated for CsoHasNsOs (M+H)*: 585.3395, found 585.3399.

4-((((-1-(4-(2-carboxyethyl)phenyl)-1,4,5,5a,6,6a,7,8-octahydrocyclopropa[5,6]cycloocta[1,2-
d][1,2,3]triazol-6-yl)methoxy)carbonyl)amino)butanoic acid S15

NN s IH NMR (700 MHz, MeOD) & 7.47 (2H, d, J = 8.3

. N\@H Hz, H3), 7.36 (2H, d, J = 8.3 Hz, H2), 4.15 (2H, d,

3 1 H o J =7.9 Hz, H10), 3.18-3.14 (1H, m, H8), 3.15-3.11

8 9"~/O{rN\/\)LOH (2H, m, H12), 3.04 (2H, t, J = 7.5 Hz, H5), 2.96-

HO— How g 2 2.90 (2H, m, H3 + H8), 2.72 (2H, t, J = 7.5 Hz, H6),
0 2.72-2.66 (1H, m, H3), 2.34 (2H, t, J = 7.3 Hz,

H14), 2.28-2.23 (1H, m, H7), 2.17-2.12 (1H, m, H4), 1.80-1.74 (2H, m, H13), 1.70-1.62 (2H, m, H4 +
H7), 1.25 (1H, app. quint., J = 8.5 Hz, H9), 1.13-1.03 (2H, m, H6 + H5).

13C NMR (126 MHz, MeOD) & 176.9 (C15), 176.2 (C7), 159.2 (C11), 145.8 (C1), 144.7 (C4), 136.9 (C2),
135.7 (C1), 130.7 (C3), 127.1 (C2), 63.4 (C10), 41.0 (C12), 36.1 (C6), 32.0 (C14), 31.4 (C5), 26.4 (C8),
26.2 (C13), 24.3 (C3), 23.7 (C7), 23.3 (C4), 21.1 (C5), 20.8 (C6), 19.1 (C9).

HRMS (ESI*, m/z) calculated for C24H31N4Os (M+H)*: 471.2238, found 471.2242.
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Kinetic experiments

Kinetics of SPAAC reaction were determined at two concentrations. Reactions were first run at 100 pM
in plasma; this concentration was chosen to match that of BCN in vivo at the peak of concentration, as
determined in our previous work.2> The same reactions were also run in methanol at the same
concentration (i.e.100 pM). However, as the reactivity in methanol was found to be mediocre, a third set
of experiments was conducted in methanol at 5 mM, to allow sufficient conversion of azides for an
accurate calculation of the second-order kinetic rate in this solvent.

Unless otherwise specified, all experiments were performed in triplicates.

Stock solution preparation

Stock solutions of BCN and azides in DMSO were prepared, at different concentrations.

10 mM azide solutions were prepared by mixing the 100 mM azide stock solution with a 100 mM 1,7-
dihydroxynaphthalene (internal standard, IS — see ‘Note 1’ below) solution in DMSO in a 1:1 ratio (v/v),
giving a final 50 mM stock solution of azide and IS in DMSO. This solution was then diluted with DMSO
to reach the final concentration of 10 mM for both azide and IS.

10 mM BCN solutions were prepared by simple dilution of the 100 mM solutions.

Note 1. 1,7-Dihydroxynaphthalene was selected as IS as its absorbance is in the same range as the
azides’ at the same concentration, its retention time is compatible with all other analyzed compounds
and it is fully extracted from the plasma under the conditions we used.

Reactions at 100 pyM

Reaction mixture was prepared by mixing 980 pL of solvent (i.e. plasma, methanol, or PBS) with 10 pL
of the 10-mM azide + IS stock solution and 10 pL of the 10-mM BCN stock solution. The resulting
solution was then agitated at 37 °C and 20 pL aliquots were taken at regular intervals (i.e., t =1, 15, 30,
45 and 60 min). Aliquots were diluted with 80 pL of cold acetonitrile (ACN — see ‘Note 2’ below), and 50
pL of this final solution were injected in the HPLC system for analysis. Samples at t = 0 min were
prepared by replacing the volume of the BCN solution with pure DMSO.

Note 2. For all plasma reactions, precipitation of plasma proteins was achieved by adding a 20-pL
sample aliquot to 80 pL of cold acetonitrile (placed in a centrifugation tube and stored in ice for 10
minutes). The mixture was then vortexed for 20 seconds to ensure complete precipitation and then
centrifuged for 5 minutes (4000 rpm). 50 uL of the supernatant were finally injected in the HPLC system
for analysis.

Reactions at 5 mM in MeOH

Reaction mixture was prepared by mixing 85 uL of MeOH with 10 uL of the 50-mM azide + IS stock
solution and 5 pL of the 100-mM BCN stock solution. The resulting solution was then agitated at 37 °C
and 4 pL aliquots were taken at regular intervals (i.e., t = 1, 15, 30, 45 and 60 min). Aliquots were diluted
with 996 L of cold acetonitrile (ACN — see ‘Note 2’ below), and 50 pL of this final solution were injected
in the HPLC system for analysis. Samples at t = 0 min were prepared by replacing the volume of the
BCN solution with pure DMSO.

HPLC analyses.
HPLC analyses were conducted on a Shimadzu UFLC system, composed of two LC-20AC pumps, one

DGU 20 A3 degasser, a SPD 20A detector and a SIL 20AC HT autosampler. We used a Waters Sunfire®
C18 5 pm, 4.6 x 150 mm column. Elution was performed with a mixture of mQ water (with 0.05% TFA
v/v) and acetonitrile (ACN), under a flow rate of 1 mL.min-! with two different methods (see table S1 and
S2 below for details). Samples were kept at 15 °C in autosampler before injection. 50 pL of each sample
were injected and the different compounds were detected by UV absorbance at 256 nm.

Method 2 was designed to improve peak resolution of compounds eluting with ~60% of ACN, which
highly overlap under the linear method 1. Method 1 was utilized to analyze the following pairs: 1-7, 1-8,
1-9 and 7-10. All other pairs were analyzed using method 2.
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Table S1. HPLC methods and elution profiles used for sample analysis. Red and green curves correspond to

ACN % and flow rate respectively

, - % water @ flow rate
cumulated time (min) (0.05% TFA) % ACN B curve (mL.min)
0 95 5 0 1
10 5 95 0 1
12 5 95 0 1
12.01 95 5 0 1
15 95 5 0 0
A0 Max Intensity: 0 % mLimin €
o Liooo 100
3 ]
2 75 750
2 1 L7500 LTS
= ]
50 Lo
1 Lsoo  [s0
25 L2s0  [2s 250
o | T T T T oo ~0.0 0.0
00 25 50 75 100 128 150
, : % water o flow rate
cumulated time (min) (0.05% TFA) % ACN B curve (mL.min)
0 95 5 0 1
0.5 95 5 -5 1
6.5 50 50 3 1
11 25 75 3 1
11.25 0 100 0 1
12 0 100 0 1
12.01 95 5 0 1
15 95 5 0 0
~ 100 hac Intensity : 0 % mlimin - C
'8 F1o00 00
< ]
Q 75 750
p= 1 L7500 L7
a0 Lsno
| 500 5o
25 Loz [ s L2500
0 T T ; T ; 00 Loo Loo
oo 25 50 75 10.0 125 150

Calculation of conversion rates

Conversion rate was defined as the percentage of azide that reacted over the considered period (i.e. t
=1, 15, 30, 45 and 60 min). For each chromatogram obtained, the area under the curve of the azide
peak was divided by that of the IS and the resulting ratio was normalized against the value obtained at
t = 0 min for a given concentration (0.1 mM or 5 mM).

Although this auto-calibration methodology is quite simple, we needed to ensure no bias were introduced
during the measurements. We thus checked the stability of azides over a period of 60 min at 37 °C and
that the click reaction was leading to a single product. Besides, we also checked the ability of both
azides and IS to be fully extracted from plasma as well as the absence of matrix effect, which could be
due to the complex composition of plasma. These controls were done to ensure that the decrease in
azides concentration was solely due to their reaction with BCN and not to side reactions (see below for
further details).
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Calculation of second-order kinetic rates.

Second-order kinetic constants of SPAAC reactions between BCN and azides — reacted as equimolar
mixtures at either 0.1 mM or 5 mM —were calculated by plotting the evolution of the inverse of azide
concentration as a function of time according to the following equation:

! ! + kt
[A]  [Alo

where [A]o is the initial molar concentration of the azide reactant; [A], the molar concentration of the
azide reactant at a given time; t, the time in seconds; and k, the second-order kinetic constant expressed
in M-1.s1, This formula was utilized since the initial concentration of both azide and BCN reactants was
identical and that only one single product formed during the reaction (see Figures S22 to S30 for details).
Second-order kinetic constants correspond to the slope of curves obtained after linear regression
analysis.

Figures S2 to S20 illustrate the conversion rate (left) and second-order kinetic rate plot (right) for all
reacting pairs in PBS (when conducted), MeOH and plasma.

BCN 3 Azide 1 BCN 3 Azide 1
MeOH 0.1 mM MeOH 0.1 mM
0.1 14000
= 01 12000 _
Eom F—._\_——"'_‘I_l T 10000 .
g Z w00
= 0.06 z
= 5 6000 ¥ =0.4842x+ 10109
2 0.04 E R?=0.9443
g < 4000
S 0.0z 2000
0 0
0 10 20 30 0 50 &0 0 500 1000 1500 2000 2500 00( 1500
Time (min) Time (s)
BCN 3 Azide 1 BCN 3 Azide 1
MeOH 5 mM MeOH 5 mM

¥=0.1224x+ 198.91
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1/[Warf-N;] (M)
2 g & 8 ¢

0 0
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0.12 18000
16000
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£ 0.06 10000 y = 1.5364x + 10379
5 ! W =097
g om
s
Som
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Figure S2. Kinetic profiles (left) and second-order kinetic rates plots (right) for the reaction of BCN 3 and azide 1.
Each measurement was done in triplicate (n = 3).

16



Plasma Induced Acceleration and Selectivity in Strain-Promoted Azide-Alkyne

Cycloadditions

BCN 3 Azide 10
MeCH 0.1 mM

Time (min)

BCN 3 Azide 10

MeOH 5 mM
6
1)
0 10 20 30 a0 50 60
Time {min)
BCN 3 Azide 10
Plasma 0.1 mM
0.12

Time (min)

Electronic Supporting
Information

BCN 3 Azide 10
MeOH 0.1 mM

y/= 02685+ 10153
R*=0.9529,

o 500 1000 1500 2000 2500 3000 3500
Time (s)

BCN 3 Azide 10
MeOH 5 mM

500
450
400
350
300
250
200 VEO761XF 2043
150 R*=0.9975
100

50

1/[PEG-N,] (M)

Time (s)

BCN 3 Azide 10
Plasma 0.1 mM

30000
/= 2.6425x + 10755

25000 R?=0.9872

20000

15000

10000

1/IPEG-N,] (M)

0 500 1000 1500 2000 2500 3000 3500

Time (s)

Figure S3. Kinetic profiles (left) and second-order kinetic rates plots (right) for the reaction of BCN 3 and
azide 10. Each measurement was done in triplicate (n = 3).
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Figure S4. Kinetic profiles (left) and second-order kinetic rates plots (right) for the reaction of BCN 3 and
azide 11. Each measurement was done in triplicate (n = 3), except for the reaction in PBS, performed as a

single experiment.
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Figure S5. Kinetic profiles (left) and second-order kinetic rates plots (right) for the reaction of BCN 3 and
azide 12. Each measurement was done in triplicate (n = 3).

BCN 6 Azide 2 BCN 6 Azide 2
PBS0.1mM PBS0.1 mM
012 13000
= o1 12500
% —e = 12000 V= 0L30A6% + 10055
EU-W % 11500 R?-09927
T 006 & 11000
§ 0.04 £ 10500 r/
§ - = 10000

4500

£

9000
0 10 20 30 40 50 60 ] 500 1000 1500 2000 2500 3000 3500
Time (min) Time (s)
BCN 6 Azide 2 BCN 6 Azide 2
MeOH 0.1 mM MeOH 0.1 mM
0.12

r

2
8

¥=0,142x + 10536
R =0.9993

-————’——,4}——_._——_,

Concentration (mM)
)
8

0.0
0.02
0
0 10 20 30 a0 50 60 0 500 1000 1500 2000 2500 3000 3500
Time (min) Time (s)
BCN 6 Azide 2 BCN 6 Azide 2
MeOH 5 mM MeOH 5 mM

@
g

Concentration (m)
P

oW

385

5 T ¥=0.1266x+212.51
=210 R* = 0.9601
1 190
170
0 150
0 10 20 30 40 50 60 0 100 200 300 400 500 600 700 800 900
Time (min) Time (s)
BCN 6 Azide 2 BCN 6 Azide 2
Plasma 0.1 mM Plasma 0.1 mM
012 13000
12500
= 01 -
g "\.‘__._ﬁ.__. 12000
H 0.08 11500 =t
& 006 11000 y'=0.5784x + 10294
2 R’=0.9071
g 0.0 10500
5 10000
5
<
0.02 9500
o 9000
0 10 20 30 a0 50 60 0 500 1000 1500 2000 2500 3000 3500
Time (min) Time (s)

Figure S6. Kinetic profiles (left) and second-order kinetic rates plots (right) for the reaction of BCN 6 and
azide 2. Each measurement was done in triplicate (n = 3).
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Figure S7. Kinetic profiles (left) and second-order kinetic rates plots (right) for the reaction of BCN 7 and
azide 1. Each measurement was done in triplicate (n = 3).
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Figure S8. Kinetic profiles (left) and second-order kinetic rates plots (right) for the reaction of BCN 7 and
azide 10. Each measurement was done in triplicate (n = 3).
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Figure S9. Kinetic profiles (left) and second-order kinetic rates plots (right) for the reaction of BCN 7 and
azide 11. Each measurement was done in triplicate (n = 3).
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Figure S10. Kinetic profiles (left) and second-order kinetic rates plots (right) for the reaction of BCN 7 and
azide 12. Each measurement was done in triplicate (n = 3).
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Figure S11. Kinetic profiles (left) and second-order kinetic rates plots (right) for the reaction of BCN 8 and
azide 1. Each measurement was done in triplicate (n = 3).
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azide 10. Each measurement was done in triplicate (n = 3).
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Figure S13. Kinetic profiles (left) and second-order kinetic rates plots (right) for the reaction of BCN 8 and
azide 11. Each measurement was done in triplicate (n = 3).
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Figure S14. Kinetic profiles (left) and second-order kinetic rates plots (right) for the reaction of BCN 8 and

azide 12. Each measurement was done in triplicate (n = 3).
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Figure S15. Kinetic profiles (left) and second-order kinetic rates plots (right) for the reaction of BCN 9 and
azide 1. Each measurement was done in triplicate (n = 3).

24



Plasma Induced Acceleration and Selectivity in Strain-Promoted Azide-Alkyne

Cycloadditions

BCN 9 Azide 10

MeOH 0.1 mM
0.12
=008
s
E 0.06
S 004
g
~ 0.02
0
0 10 20 30 40 50 60
Time (min)
BCN 9 Azide 10
MeOH 5 mM
6

Concentration (mM)
W oa ow

0
0 10 20 30 a0 50 60
Time (min)
BCN 9 Azide 10
Plasma 0.1 mM
012

=

0.08

Concentration (mM)
s o
s 5
-

e
g
S

]

0 10 20 30 a0 50 60
Time (min)

BCN 9 Azide 10

MeOH 0.1 mM
14000
12000
g 10000 W—_—.’,“
=7 8000 v = 04400 + 10298
S 0o RE-0.9245
% 4000
2000
0
0 500 1000 1500 2000 2500 3000 3500

Time (s)

BCN 9 Azide 10
MeOH 5 mM
350

300
250
200

V= 0.1106% + 208.43
100 R - 09932

1/[PEG-N;] (M)

Time (s)

BCN 9 Azide 10
Plasma 0.1 mM

45000
40000
35000
30000
25000
20000
15000
10000
5000
0
0 500 1000 1500 2000 2500 3000 3500

Time (s)

JIPEG-N;] (M)

Electronic Supporting

Information

Figure S16. Kinetic profiles (left) and second-order kinetic rates plots (right) for the reaction of BCN 9 and
azide 10. Each measurement was done in triplicate (n = 3).
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Figure S17. Kinetic profiles (left) and second-order kinetic rates plots (right) for the reaction of BCN 9 and
azide 11. Each measurement was done in triplicate (n = 3).
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Figure S18. Kinetic profiles (left) and second-order kinetic rates plots (right) for the reaction of BCN 9 and
azide 12. Each measurement was done in triplicate (n = 3).
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Figure S19. Kinetic profiles (left) and second-order kinetic rates plots (right) for the competition reaction between
BCN 3 (0.1 mM) and azides 11 and 12 (0.1 mM) . Each measurement was done in triplicate (n = 3).
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Figure S20. Kinetic profiles (left) and second-order kinetic rates plots (right) for the competition reaction between
BCN 3 (0.5 mM) and azides 11 and 12 (0.1 mM) . Each measurement was done in triplicate (n = 3).

To simplify and make the previous data more visually appealing, conversion rates of azides (i.e. the
percentage of reacted azide) in SPAAC reactions in plasma at 0.1 mM and in methanol at 0.1 mM and
5.0 mM are also reported below (Tables S2-S4), at t = 15 min and t = 60 min. These time-points
correspond to in vivo maximal concentration (15 minutes) and complete disappearance (60 minutes) of
azide-modified warfarin 1 in plasma samples, as reported in our previous work.® The same color code
has been applied to all tables: red corresponds to poor conversion rates, orange to low, blue to good
and green to very good conversion rates.

The threshold for poor to very good conversions has been set as follows:

e at t = 15 min, red is <15%, orange is <25%, blue is <50% and green is 250%;
e att = 60 minutes, red is <15%, orange is <50%, blue is <75% and green is 275%.
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S2. Conversion rates of SPAAC reactions at t = 15 min (top) and t = 60 min (bottom) in plasma at 0.1 mM.
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Table S3. Conversion rates of SPAAC reactions at t = 15 min (top) and t = 60 min (bottom) in MeOH at 0.1 mM.
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Table S4. Conversion rates of SPAAC reactions at t = 15 min (top) and t = 60 min (bottom) in MeOH at 5 mM.

Azide
MeOH, 5 mM o [ [ T
t=15min o i i i
) OJLH/\(\/O\);\OH /©/\/\0)LH/\/\N/ /@/\)LOH
T LT . .
1 10 11 12

MeOH, 5 mM °
o] o

. (o]
t =60 min OH /Ej/\/\okﬁ/\(\/O\%;\OH /@/\/\OJ\N/\/\N/ /@/\)‘\OH
Ny N N
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Plasma stability

To assess plasma stability of azidesl, 2, 10-12, each to sample (see ‘Kinetic experiments’, ‘Reactions
at 100 uM’ for sample preparation) was incubated at 37 °C for 60 minutes. Aliquots of 20 uL were then
taken and diluted with 80 pL of cold ACN to precipitate plasma proteins. After 5 min centrifugation (4000
rpm), 50 uL of the supernatant were injected in the HPLC system for analysis. Concentrations at to were
normalized at 0.1 mM and concentrations at t = 60 min were calculated according to the method
described above (see ‘Kinetic experiments’, ‘Calculation of conversion rates’) and all experiments were
done as triplicates. No significant variation in azide concentration over time was observed (Figure S21).

Stability in plasma
012

0.1
0
1 2 10 11 12

mt0 mt60
Figure S21. Plasma stability of azides 9, 10, 11 and 12 over 1 h as determined by concentrations at to (blue) and t
= 60 min (red). Errors represent the standard variation for triplicates.
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Reaction profiles

SPAAC reactions between all azides and BCN consistently led to azide consumption and single product
formation, both in plasma at 0.1 mM and in methanol at 5 mM. HPLC elution profiles at to, t = 15 min
and t = 60 min are reported below, in Figures S22 to S30.

Note 3. The peak at ~6 min corresponds to the internal standard. The peak at ~2 min in all plasma
reaction HPLC profiles is the injection peak.
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60000
§ 50000 click 8 click
8 40000 product g 50000 product
A
0 2 4 & 8 10 12 14

Retention time (min) Retention time (min)

BCN 6 Azide 2
Plasma 0.1 mM

120000

100000

80000

Click

60000 product

Absorbance

40000

20000
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Figure S22. HPLC profile of the SPAAC reaction between BCN 6 and Azide 2 in methanol at 5 mM (top left),
PBS at 0.1 mM (top right) and plasma at 0.1 mM (bottom) at to (blue curve), t = 15 min (grey curve) and t = 60
min (red curve).
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Figure S23. HPLC profile of the SPAAC reaction between azide 1 and BCN 3 (top left), BCN 7 (top right), BCN 8
(bottom left) and BCN 9 (bottom right) in methanol at 5 mM at to (blue curve), t = 15 min (grey curve) and t =

60 min (red curve).
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Figure S24. HPLC profile of the SPAAC reaction between azide 1 and BCN 3 (top left), BCN 7 (top right), BCN 8
(bottom left) and BCN 9 (bottom right) in plasma at 0.1 mM at to (blue curve), t = 15 min (grey curve) and t =

60 min (red curve).
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Figure S25. HPLC profile of the SPAAC reaction between azide 10 and BCN 3 (top left), BCN 7 (top right),
BCN 8 (bottom left) and BCN 9 (bottom right) in methanol at 5 mM at to (blue curve), t = 15 min (grey curve) and
t =60 min (red curve).
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Figure S26. HPLC profile of the SPAAC reaction between azide 10 and BCN 3 (top left), BCN 7 (top right),
BCN 8 (bottom left) and BCN 9 (bottom right) in plasma at 0.1 mM at to (blue curve), t = 15 min (grey curve) and
t = 60 min (red curve).
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Figure S27. HPLC profile of the SPAAC reaction between azide 11 and BCN 3 (top left), BCN 7 (top right),
BCN 8 (bottom left) and BCN 9 (bottom right) in methanol at 5 mM at to (blue curve), t = 15 min (grey curve) and
t =60 min (red curve).
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Figure S28. HPLC profile of the SPAAC reaction between azide 11 and BCN 3 (top left), BCN 7 (top right),
BCN 8 (bottom left) and BCN 9 (bottom right) in plasma at 0.1 mM at to (blue curve), t = 15 min (grey curve) and
t = 60 min (red curve).
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Figure S29. HPLC profile of the SPAAC reaction between azide 12 and BCN 3 (top left), BCN 7 (top right),
BCN 8 (bottom left) and BCN 9 (bottom right) in methanol at 5 mM at to (blue curve), t = 15 min (grey curve) and
t = 60 min (red curve).
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Figure S30. HPLC profile of the SPAAC reaction between azide 12 and BCN 3 (top left), BCN 7 (top right),
BCN 8 (bottom left) and BCN 9 (bottom right) in plasma at 0.1 mM at to (blue curve), t = 15 min (grey curve) and
t = 60 min (red curve).
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Evaluation of azide extraction from plasma

In order to evaluate the extraction percentage of azides from plasma, two sets of azides solutions were
prepared, one in plasma and one in methanol, by diluting 5 pL of the 10-mM DMSO stock solutions of
azides (also containing IS at 10 mM) with 5 pL of DMSO and 490 pL of either plasma or methanol. 20
pL of these solutions were then added to 80 pL of cold ACN. The resulting suspensions were vortexed
for 20 s and centrifuged for 5 min (4000 rpm) before 50 uL of the supernatant were finally injected in the
HPLC system for analysis (see above for methods). For each chromatogram obtained, the area under
the curve of the azide peak was divided by that of the IS. The ratios obtained for the plasma series were
then normalized against those obtained in the MeOH series, set as references. No major differences in
concentrations between plasma and methanol samples were observed (Figure S31).

Extraction of azides
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Figure S31. Comparison of azides extraction from human plasma (blue) and MeOH (red). Error bars represent the
standard deviation calculated for the triplicate.

Evaluation of matrix effect

As plasma is a complex medium, some of its components may interfere during the extraction and
analysis processes and affect the detection of azides, leading to falsely increased results because of
this matrix effect. To make sure no such effect was observed, extractions from plasma and PBS were
compared, by adding 10 pL of DMSO to 980 L of either plasma or PBS. The resulting solutions were
then transferred in 4 mL of cold ACN, and the resulting suspensions were vortexed for 20 s and
centrifuged for 5 min (4000 rpm). Then, 5 pL of the 10-mM DMSO stock solutions of azides (also
containing IS at 10 mM) were added to 2495 uL of the previously obtained supernatants and 50 pL of
these solutions were finally injected in the HPLC system for analysis (see above for methods). For each
chromatogram obtained, the area under the curve of the azide peak was divided by that of the IS. The
ratios obtained for the plasma series were then normalized against those obtained in the MeOH series,
set as references. No major differences in concentrations between plasma and methanol samples were
observed (Figure S32), suggesting no matrix effect.

37



Plasma Induced Acceleration and Selectivity in Strain-Promoted Azide-Alkyne Electronic Supporting
Cycloadditions Information

Matrix effect determination
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Figure S32. Comparison of concentrations extracted from solutions in plasma (blue) or PBS (red) to evaluate the
matrix effect of plasma components. Error bars represent the standard deviation calculated for the triplicate.

Determination of plasma proteins binding

Plasma proteins binding assays were conducted on a RED (Rapid Equilibrium Dialysis) device (90006,
ThermoFisher). Samples were prepared (n = 2) as follows: A 100 uM solution of compound was
prepared in a mixture of plasma and PBS 1x (1:1 v/v) from a 10 mM DMSO stock solution of the
compound. 200 uL of this diluted solution was introduced in the sample chamber and 350 uL of PBS 1x
were introduced in the buffer chamber. The unit was covered with sealing tape and incubated for 4 h at
37 °C on an orbital shaker set at 250 rpm. After that, the seal was removed and 70 uL samples of both
the buffer and the plasma chambers were collected and placed in separate 1.5 mL microcentrifuge
tubes. 70 L of plasma / PBS (1:1 v/v) and PBS were respectively added to the buffer and the sample
chamber. ACN (350 pL) was added to precipitate proteins and solubilize the compound. All samples
were frozen before analysis. Before analysis, samples were thawed and vortexed for 5 min before being
sonicated in a sonication bath for 1 min and finally centrifuged for 5 min at 15000 g and 16 °C.
Supernatants were then analyzed by LC-MS/MS using a Triple Quadrupole Liquid Chromatograph Mass
Spectrometer (LCMS 8030, Shimadzu) in multiple reaction-monitoring mode (MRM). Data acquisition
and processing were performed using LabSolutions version 5 software.

The percentage of bound compounds was calculated as follows:

% Free50 = (Peak area of buffer chamber / Peak area of plasma chamber) x 100%
% Freel00 = % Free50 / (2 - % Freeb50)
% Bound = 100% - % Free

Data are summarized in Table S5 below.

Table S5. Plasma proteins binding values of BCN and azide

Plasma chamber, area under Buffer chamber, area under
i\:wcj)tlal;':zz the curve the curve % bound
Compound Experiment 1 Experiment 2 | Experiment 1 | Experiment 2
BCN 3 1L 367249 350246 313513 296026 261
BCN 6 1pL 11692 12740 2056 1846 91+1
BCN 7 1pL 34237 30974 822 590 989+0.1
BCN 8 1pL 785133 748127 682606 618918 26+3
BCN 9 1pL 17875 20753 12090 13218 51+2
Azide 2 1L 43426 41099 37647 39754 15%9
Azide 10 0.2 uL 2974803 3217840 1034854 1161810 785%05
Azide 11 0.5 pL 3575740 3705412 1577115 1517177 731
Azide 12 1puL 43285 43867 35117 39512 25+7
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Determination of second-order kinetic rates of SPAAC in the presence of
albumin

Solutions of human serum albumin (HSA) at six different concentrations (i.e. 0.5, 1, 2.5, 5, 10, and 50
mg/mL) were prepared in PBS and used to study SPAAC between BCN 3 and azide 1.

Reaction mixtures were prepared by mixing 980 pL of the albumin solution in PBS (0.5, 1, 2.5, 5, 10 or
50 mg/mL) with 10 pL of the 10-mM azide + IS stock solution and 10 pL of the 10-mM BCN stock
solution. The resulting solution was then agitated at 37 °C and 20 uL aliquots were taken at regular
intervals (i.e., t = 1, 15, 30, 45 and 60 min). Aliquots were diluted with 80 uL of cold acetonitrile (ACN —
see ‘Note 2’ in the Kinetic Experiments section), and 50 pL of this final solution were injected in the
HPLC system for analysis. Samples at t = 0 min were prepared by replacing the volume of the BCN
solution with pure DMSO. These measurements were done in monoplicate (n = 1).

Kinetic profiles and associated second-order kinetic rates are reported in Figure S33 and Table S6
below.
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Figure S33 (above). Kinetic profiles (left) and second-order kinetic rates plots (right) for the reaction between BCN
3 and azide 1 in PBS with increasing concentrations in human serum albumin. These measurements were done in

monoplicate (n = 1) or duplicate (n = 2).

Table S6. Second-order rate constants of SPAAC between BCN 3 and azide 1 in human plasma or HSA solution

in PBS at different concentrations.

Plasma

HSA solution in PBS (concentration in mg.mL™?)

0.5

1.0

2.5

5.0

10.0

50.0

Second-order rate constants (M2.s?)

1.54

1.19

1.27

2.21

3.33

2.24

2.33

1.66
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