Synthesis and Photophysical Evaluation of Polarity Sensitive Push-pull Isoquinolines and their alkynyl precursors

Elisa Brambilla,^a Matteo Giannangeli,^b Valentina Pirovano,^a

Elisabetta Rossi,^a Alessandro Caselli,^b and Giorgio Abbiati^{a,*}

^a Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Generale e Organica "A. Marchesini", Università degli Studi di Milano, Via Venezian, 21, 20133 Milano, Italy

^b Dipartimento di Chimica and CNR-SCITEC, Università degli Studi di Milano, Via Golgi, 19, 20133 Milano, Italy

e-mail: giorgio.abbiati@unimi.it

Supporting Information

Preparation of 2-bromo-5-(diethylamino)benzaldehyde 7

2-(2-Bromo-5-nitrophenyl)-1,3-dioxolane **4**: A solution of 2-bromo-5-nitrobenzaldehyde (900 mg, 3.9 mmol), ethylene glycol (2.2 mL, 39 mmol) and *p*-TsOH (70 mg, 0.39 mmol) in toluene (25 mL) was refluxed for 5 h. After cooling at rt, the solution was diluted with EtOAc (25 mL) and washed with NaHCO₃ (20 mL). The organic layers were dried over Na₂SO₄ and the solvent was removed under reduced pressure. The crude pale yellow solid **4** (1.0 g, 94%) was sufficiently pure to be used for the next step without further purification. ¹H NMR (300 MHz, CDCl₃) δ 8.44 (d, *J* = 2.8 Hz, 1H), 8.08 (dd, *J* = 8.7, 2.8 Hz, 1H), 7.75 (d, *J* = 8.7 Hz, 1H), 6.10 (s, 1H), 4.26 – 4.05 (m, 4H). NMR data are in agreement with those reported in the literature.¹

4-Bromo-3-(1,3-dioxolan-2-yl)aniline **5**: A suspension of 2-(2-bromo-5-nitrophenyl)-1,3-dioxolane **4** (400 mg, 1.44 mmol), iron powder (408 mg, 7.28 mmol) and ammonium chloride (40 mg, 0.72 mmol) in 16 mL EtOH/H₂O (3:1) was heated at 80 °C for 1 h. The mixture was filtered through a thin pad od diatomite. The filtrate was extracted three times with EtOAc. The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄. The solvent was evaporated at reduced pressure affording the product **5** (336 mg, 96%) as brown oil. It was used for the next step without further purification. ¹H NMR (300 MHz, CDCl₃) δ 7.29 (d, *J* = 8.5 Hz, 1H), 6.93 (d, *J* = 2.9 Hz, 1H), 6.54 (dd, *J* = 8.5, 2.9 Hz, 1H), 6.00 (s, 1H), 4.21 – 4.00 (m, 4H), 3.73 (bs, 2H). ¹³C NMR (75 MHz, CDCl₃) δ 145.9 (C), 137.0 (C), 133.4 (CH), 117.3 (CH), 114.2 (CH), 110.5 (C), 102.6 (CH), 65.4 (2 × CH₂). **ESI(+)-MS**: m/z(%) = 244.13 (78) [⁷⁹Br MH]⁺; 246.13 (76) [⁸¹Br MH]⁺ 266.09 (20) [⁷⁹Br M + Na]⁺;

¹ T. Kawabata, C. Jiang, K. Hayashi, K. Tsubaki, T. Yoshimura, S. Majumdar, T. Sasamori and N. Tokitoh, *J. Am. Chem. Soc.*, 2009, **131**, 54–55.

268.11 (22) [⁸¹Br M + Na]⁺. Calcd for C₉H₁₀BrNO₂ (244.09): C, 44.29; H, 4.13; N, 5.74; found: C, 44.12; H, 4.15; N, 5.73.

4-Bromo-3-(1,3-dioxolan-2-yl)-N,N-diethylaniline **6**: Under a nitrogen atmosphere, 4-bromo-3-(1,3-dioxolan-2-yl)aniline **5** (400 mg 1.46 mmol) was dissolved in 5 mL of dry DMF. To the reaction mixture, K₂CO₃ (303 mg 2.19 mmol) and iodoethane (956 mg, 6.13 mmol) were added. The reaction was stirred at 65 ° C for 24 h. The reaction was then stirred overnight until no more starting product was detected by TLC. A solution of brine was added (30 mL) and then extracted with EtOAc (3 × 10 mL). The organic phases were combined, dried over Na₂SO₄, and filtered. The solvent was removed at reduced pressure to afford product **6** (337 mg, 77%) as a brown oil. It was used directly for the next step without further purification. ¹H NMR (300 MHz, CDCl₃) δ 7.32 (d, *J* = 8.9 Hz, 1H), 6.90 (d, *J* = 3.2 Hz, 1H), 6.53 (dd, *J* = 8.9, 3.2 Hz, 1H), 6.02 (s, 1H), 4.25 – 3.96 (m, 4H), 3.33 (q, *J* = 7.1 Hz, 4H), 1.14 (t, *J* = 7.1 Hz, 6H).

2-Bromo-5-(diethylamino)benzaldehyde **7**: To a solution of 4-bromo-3-(1,3-dioxolan-2-yl)-N,Ndiethylaniline **6** (337 mg, 1.12 mmol) in 6 ml of THF, 6 mL of HCl 3N were added. The solution was stirred at rt overnight and then it was poured into NaHCO₃ saturated solution and extracted with DCM. The organic phases were combined, dried over Na₂SO₄, and filtered. The solvent was removed under reduced pressure to afford the 2-bromo-5-(diethylamino)benzaldehyde **7** (284 mg, 99%) as a brown oil, sufficiently pure to be used in the following Sonogashira coupling reactions without further purification.

¹**H NMR** (300 MHz, CDCl₃) δ 10.29 (s, 1H), 7.39 (d, *J* = 8.9 Hz, 1H), 7.15 (d, *J* = 3.4 Hz, 1H), 6.74 (dd, *J* = 8.9, 3.4 Hz, 1H), 3.36 (q, *J* = 7.1 Hz, 4H), 1.15 (t, *J* = 7.1 Hz, 6H). ¹³**C NMR** (75 MHz, CDCl₃) δ 192.6 (CH), 147.2 (C), 134.1 (CH), 133.5 (C), 118.7 (CH), 111.7 (C), 111.6 (CH), 44.4 (2 × CH₂), 12.3 (2 × CH₃). **ESI**(+)-**MS**: m/z(%) = 256.14 (45) [⁷⁹Br MH]⁺; 258.15 (40) [⁸¹Br MH]⁺; 288.16 (94) [⁷⁹Br MH + MeOH]⁺; 290.14 (100) [⁸¹Br MH + MeOH]⁺. Calcd for C₉H₁₀BrNO₂ (256.14): C, 51.58; H, 5.51; N, 5.47; found: C, 51.69; H, 5.45; N, 5.55.

mdd

mdd

mdd

bpm

3-(4-methoxyphenyl)-7-nitroisoquinoline 1a

Wavelenght nm

0.40

0,30

-EtOH -DMF

-DMSO

N,N-dimethyl-4-(7-nitroisoquinolin-3-yl)anilina 1b

N,N-diethyl-3-(4-(trifluoromethyl)phenyl)isoquinolin-7-amine 2a

N,N-diethyl-3-(4-(methylsulfonyl)phenyl)isoquinolin-7-amine 2b

N,N-diethyl-3-(pyridin-2-yl)isoquinolin-7-amine 2c

$2\-((4\-Methoxyphenyl)\-thynyl)\-5\-nitrobenzaldehyde~{\bf 3a}$

$2\-((4(Dimethylamino)phenyl)\-thynyl)\-5\-nitrobenzaldehyde~{\bf 3b}$

5-(Diethylamino)-2-((4-(trifluoromethyl)phenyl)ethynyl)benzaldehyde 8a

$5\-(Diethylamino)\-2\-((4\-(methylsulfonyl)phenyl)ethynyl)benzaldehyde~{\bf 8b}$

5-(Diethylamino)-2-(pyridin-2-ylethynyl)benzaldehyde 8c

3-(4-Methoxyphenyl) isoquinoline

3-(4-Methoxyphenyl)isoquinoline solutions in 9 different solvents under a 254 nm lamp (same appearance under 365 nm lamp)

Absolute QY determination

Absolute photoluminescence quantum yields were measured using a C11347 (Hamamatsu Photonics K.K). A description of the experimental setup and measurement method can be found in the article of K. Suzuki et al.[K. Suzuki, A. Kobayashi, S. Kaneko, K. Takehira, T. Yoshihara, H. Ishida, Y. Shiina, S. Oishic, S. Tobita, *Phys. Chem. Chem. Phys.*, **2009**, 11, 9850–9860]

For any fixed excitation wavelength, the fluorescence quantum yield Φ is given by:

$$\Phi = \frac{PN(Em)}{PN(Abs)} = \frac{\int \frac{\lambda}{hc} \left[I_{em}^{sample}(\lambda) - I_{em}^{reference}(\lambda) \right] d\lambda}{\int \frac{\lambda}{hc} \left[I_{ex}^{reference}(\lambda) - I_{ex}^{sample}(\lambda) \right] d\lambda}$$

where PN(Em) is the number of photons emitted from a sample and PN(Abs) is the number of photons absorbed by a sample, λ is the wavelength, h is Planck's constant, c is the velocity of light, $I_{em}^{sample}(\lambda)$ and $I_{em}^{reference}(\lambda)$ are the photoluminescence intensities with and without a sample, respectively, $I_{ex}^{sample}(\lambda)$ and $I_{ex}^{reference}(\lambda)$ are the integrated intensities of the excitation light with and without a sample, respectively. PN(Em) is calculated in the wavelength interval $[\lambda_i, \lambda_f]$, where λ_i is taken 10 nm below the excitation wavelength, while λ_f is the upper end wavelength in the emission spectrum.

	Solvent		
	Toluene	DMSO	EtOH
Compound	Quantum Yield (%)	Quantum Yield (%)	Quantum Yield (%)
1a	45,8	15,7	2,4
1b	77,8	not determinable	not determinable
2a	14,2	28,1	13,8
2b	24,2	62,6	35,7
2c	17,6	27,2	13,5
3 a	67	not determinable	not determinable
3b	not determinable	25,1	not determinable
8a	65,5	71	3,4
8b	71,4	88,5	4,4
8c	73,6	84,6	3,6

