Supporting Information

Exploring Glycosyl Sulphates as Donors for Chemical Glycosylation

Daniela Imperio,* Federica Campo and Luigi Panza

Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, L. go Donegani 2, 28100, Novara, Italy E-mail: daniela.imperio@uniupo.it

Contents:

Table S1 Additional glycosylation entries with sulphate donor 2a	S2
Table S2 Glycosylation entries with sulphate donor 2c	S4
Fig. S1 ¹ H NMR spectrum of 2a in CDCl ₃	S5
Fig. S2 Apt NMR spectrum of 2a in CDCl ₃	S5
Fig. S3 Cosy NMR spectrum of 2a in CDCl ₃	S6
Fig. S4 HSQC NMR spectrum of 2a in CDCl₃	S6
Fig. S5 ¹ H NMR spectrum of 2b in CDCl ₃	S7
Fig. S6 Apt NMR spectrum of 2b in CDCl₃	S7
Fig. S7 Cosy NMR spectrum of 2b in CDCl ₃	S8
Fig. S8 HSQC NMR spectrum of 2b in CDCl ₃	S8
Fig. S9 ¹ H NMR spectrum of 2c in CDCl ₃	S 9
Fig. S10 Apt NMR spectrum of 2c in CDCl₃	S 9
Fig. S11 Cosy NMR spectrum of 2c in CDCl ₃	S10
Fig. S12 HSQC NMR spectrum of 2c in CDCl₃	S10
Fig. S13 ¹ H NMR spectrum of 4c in CDCl ₃	S11
Fig. S14 ¹³ C NMR spectrum of 4c in CDCl ₃	S11

Proton spectra of known compounds	
Fig. S15 ¹ H NMR spectrum of 4a in CDCl ₃	S12
Fig. S16 ¹ H NMR spectrum of 6a in CDCl ₃	S12
Fig. S17 ¹ H NMR spectrum of 8a in CDCl ₃	S13
Fig. S18 ¹ H NMR spectrum of 10a in CDCl ₃	S13
Fig. S19 ¹ H NMR spectrum of 4b in CDCl ₃	S14
Fig. S20 ¹ H NMR spectrum of 6b in CDCl ₃	S14
Fig. S21 ¹ H NMR spectrum of 8b in CDCl ₃	S15
Fig. S22 ¹ H NMR spectrum of 10b in CDCl ₃	S15

Table S1 Additional glycosylation entries with sulphate donor $\mathbf{2a}$

Entry	Acceptor	Promoter (equiv.)	Solvent	T (°C), time	Results(Yield, α/β ratio)
1	2-propanol 3	Ca(OTf) ₂ (1.7)	CH₃CN	r.t., 72 h	BnO BnO BnO BnO BnO BnO BnO C BnO SnO SnO SnO SnO SnO SnO SnO SnO SnO S
2	2-propanol 3	Yb(OTf)₃ (1.1)	CH ₂ Cl ₂ :Et ₂ O 1:2	0°C, 1 h	Bno Bno Bno Bno Bno Bno Bno Bno Bno Sno Bno Sno Bno Sno Bno Bno Sno Bno Bno Bno Bno Bno Bno Bno Bno Bno B
3	2-propanol 3	Ba(OTf) ₂ (1.5)	Et ₂ O	r.t., 24 h	no reaction
4	2-propanol 3	BaO (3), TMSOTf (2.5)	CH ₂ Cl ₂ :Et ₂ O 1:2	0°C, 45 min	Bno Bno Bno Bno Bno Bno Bno Sno Sno Sno Sno Sno Sno Sno Sno Sno S
5	2-propanol 3	BaO (3), TMSOTf (0.2+0.8 after 24 h)	CH₃CN	0° C to r.t, 48 h	BnO BnO 4a (25% TLC)
6	2-propanol 3	BaO (3), TMSOTf (1+0.5 after 24 h + 0.5 after 28 h)	CH₃CN	0° C to r.t, 48 h	Bno Bno Bno Bno Bno Bno Co Bno Bno Co Co Bno Co Co Bno Co Bno Co Co Bno Co Co Co Co Bno Co Co Co Bno Co Bno Co Co Bno Co Co Co Co Co Bno Co Co Co Co Co Co Co Co Co Co Co Co Co
7	2-propanol 3	BaO (3), TMSOTf (2+0.5 after 24 h) (Slow reaction until the addition of the second portion of TMSOTf)	CH₃CN	0° C to r.t, 25 h	$\frac{BnO}{BnO} \xrightarrow{OBn}_{BnO} \xrightarrow{O}$ 4a (95% TLC)
8	HO 5	CaO (3)	THF	50°C, 48 h	no reaction

9	HOP 5	CaCl ₂ (6)	THF	r. t., 2 h	Bno Bno Bno Bno Bno Bno Bno Bno Bno Bno
10	но 5	Ca(OTf) ₂ (1.2)	THF:CH ₂ Cl ₂ 1:4	r.t., 48 h	Bno Con Con Con Con Con Con Con Con Con C
11	HO 5	Ca(OTf) ₂ (2)	CH₃CN	rfx, 4 h	Bno Con Bno Co
12	HO 5	Ca(OTf) ₂ (2)	Et ₂ O	r.t., 24 h	no reaction
13	HO 5	Ca(OTf) ₂ (2)	THF	r.t., 2h then 90°C, 26h	BNO COBI BNO BNO CO 6a (30% TLC)

[a] The formation of trehaloses can be due to the partial hydrolysis of the donor by adventitious water followed by the glycosylation of the anomeric hydroxyl group. In the previous paper the easy formation of trehaloses was already observed, see L. Cipolla, L. Lay, F. Nicotra, L. Panza, G. Russo, *Tetrahedron Lett.* **1994**, *35*, 8669-8670.

Table S2 Glycosylation entries with sulphate donor 2c

Entry	Acceptor (equiv.)	Promoter (equiv.)	Solvent	T (°C), time	Yield of 4c
1	2-propanol 3 (2)	Yb(OTf) ₃ (1.2)	CH₃CN	r.t., 24 h	10% (TLC)
2	2-propanol 3 (2)	Yb(OTf)₃ (4 additions of 1.5 eq each, every hour)	CH ₂ Cl ₂	r.t., 24 h	53% (isolated)
3	2-propanol 3 (2)	BaO (3), TMSOTf (2.5)	CH ₂ Cl ₂	0°C to r.t. 7 h	traces of a mixture of products
4	2-propanol 3 (2)	BaO (3), TMSOTf (2.5)	CH₃CN	0° C to r.t, 72 h	10% (TLC)
5	2-propanol 3 (2)	TMSOTf (3)	CH ₂ Cl ₂	0°C to r.t. 24 h	10% (TLC)
6	2-propanol 3 (2)	BF ₃ -OEt ₂ (3)	CH₃CN	0° C to r.t, 24 h	no reaction
7	2-propanol 3 (4)	Yb(OTf) ₃ (1.5)	CH ₂ Cl ₂	reflux, 3 h	50% (TLC)

Isopropyl 2,3,4,6-tetra-*O*-benzoyl-β-D-glucopyranoside (4c) was obtained from donor 2c and acceptor **3** as a white foam in the yield listed in table S2, entry 2. $[α]_D^{20} + 12.0$ (*c* 0.5, CH₂Cl₂); lit. ¹ + 11.4 (CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 8.08 – 7.82 (8H, m), 7.62 – 7.26 (12H, m), 5.92 (1H, t, *J* = 9.7 Hz), 5.67 (1H, t, *J* = 9.7 Hz), 5.51 (1H, dd, *J* = 9.8, 7.9 Hz), 4.93 (1H, d, *J* = 7.9 Hz), 4.65 (1H, dd, *J* = 12.0, 3.3 Hz), 4.53 (1H, dd, *J* = 12.0, 5.6 Hz), 4.18 (1H, ddd, *J* = 9.3, 5.5, 3.4 Hz), 4.05 – 3.95 (1H, m), 1.25 (3H, d, *J* = 6.2 Hz), 1.10 (3H, d, *J* = 6.1 Hz). ¹³C NMR (101 MHz, CDCl₃) δ 166.17, 165.87, 165.26, 165.05, 133.41, 133.20, 133.13, 133.09, 129.85, 129.79, 129.73, 129.71, 129.66, 129.49, 128.90, 128.41, 128.35, 128.29, 100.13, 73.32, 73.04, 72.12, 70.04, 63.44, 23.24, 22.02. HRMS(ESI) *m*/*z* calcd for [C₃₇H₃₄O₁₀ + Na]⁺: 661.20497, found 661.20312.

¹ L. R. Schroeder and J. W. Green J. Chem. Soc. C, **1966**, 530-531

Fig. S1 ¹H NMR spectrum of 2a in CDCl₃ (400 MHz)

Fig. S2 Apt NMR spectrum of 2a in CDCl₃ (101 MHz)

S5

Fig. S3 Cosy NMR spectrum of 2a in CDCl₃ (400 MHz)

Fig. S4 HSQC NMR spectrum of 2a in CDCl₃

Fig. S5 ¹H NMR spectrum of **2b** in CDCl₃ (400 MHz)

Fig. S6 Apt NMR spectrum of 2b in CDCl₃ (101 MHz)

Fig. S7 Cosy NMR spectrum of 2b in CDCl₃ (400 MHz)

Fig. S8 HSQC NMR spectrum of 2b in CDCl₃

Fig. S9 ¹H NMR spectrum of 2c in CDCl₃ (400 MHz)

Fig. S10 Apt NMR spectrum of 2c in CDCl₃ (101 MHz)

Fig. S11 Cosy NMR spectrum of 2c in CDCl₃ (400 MHz)

Fig. S12 HSQC NMR spectrum of 2c in CDCl₃

Fig. S13 ¹H NMR spectrum of 4c in CDCl₃

Fig. S14 $^{\rm 13}C$ NMR spectrum of 4c in CDCl_3

S11

Fig. S15 ¹H NMR spectrum of 4a in CDCl₃ (400 MHz)

Fig. S16 ¹H NMR spectrum of 6a in CDCl₃ (400 MHz)

S12

Fig. S17 ¹H NMR spectrum of 8a in CDCl₃ (400 MHz)

Fig. S18 ¹H NMR spectrum of 10a in CDCl₃ (400 MHz)

S13

Fig. S19 ¹H NMR spectrum of 4b in CDCl₃ (400 MHz)

Fig. S20 ¹H NMR spectrum of 6b in CDCl₃ (400 MHz)

S14

Fig. S21 ¹H NMR spectrum of 8b in CDCl₃ (400 MHz)

Fig. S22 ¹H NMR spectrum of 10b in CDCl₃ (400 MHz)

