Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Diastereoselective synthesis of chiral 3-substituted isoindolinones via

rhodium(III)-catalyzed oxidative C-H olefination/annulation

Xue-Hong Li, Jun-Fang Gong,^{*} and Mao-Ping Song^{*} College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, People's Republic of China

E-mail: mpsong@zzu.edu.cn (M.-P. Song) or gongjf@zzu.edu.cn (J.-F. Gong).

Table of contents

1 General procedure for the preparation of substrates	S2
2 Optimization of the reaction conditions	S7
3 Mechanistic investigations	S10
3.1 Synthesis of [D ₅]-1a	S10
3.2 H/D exchange experiments	S11
3.3 Intermolecular competition KIE	S13
3.4 Parallel experiments	S13
3.5 Competition experiment	S14
4 Removal of <i>N</i> -sulfinyl and further transformations	S14
4.1 Removal of <i>N</i> -sulfinyl	S14
4.2 Synthesis of (<i>S</i>)-PD172938	S15
4.3 Synthesis of compound 8	S16
4.4 Synthesis of compound 10	S17
4.5 Synthesis of compound 11 by <i>N</i> -arylation of isoindolinone (<i>S</i>)-4b	S17
5 Crystal data of (<i>R</i> , <i>R</i>)-3aa and (<i>R</i> , <i>S</i>)-3ab	S18
6 References	S21
7 NMR and HPLC spectra.	

1 General procedure for the preparation of substrates

Following the literature reported method,^[1] and at a temperature of -78 °C, *n*-BuLi (12.0 mL, 30.0 mmol, 3.0 equiv, 2.5 M in THF) was added dropwise to the solution of *R*-(+)-2-methyl-2-propanesulfinamide (1.21 g, 10.0 mmol) dissolved in dry THF (40.0 mL) under Ar atmosphere. Upon stirring for 1 h, methyl ester (3.0 equiv) was slowly added, followed by stirring for additional 12 h at room temperature. The reaction was then quenched by addition of the saturated NH₄Cl aqueous solution and the organic phase was extracted three times using EtOAc (50 mL). The organic phase was combined, washed with brine, dried with anhydrous Na₂SO₄, filtered and concentrated *in vacuo*. The residue was purified by flash column chromatography using petroleum ether/EtOAc as the eluent to give substrate **1**.

(R)-N-(tert-butylsulfinyl)benzamide (1a).

R_f= 0.3 (Petroleum ether/EtOAc =3/2). White solid (1.13 g, 50%), mp. 145-146 °C. [α]_D²⁰ = -26.4 (*c* 0.600, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.85 (d, *J* = 7.4 Hz, 2H), 7.57-7.53 (m, 1H), 7.46-7.43 (m, 2H), 1.33 (s, 9H). ¹³C{¹H} NMR(100 MHz, CDCl₃): δ 168.0, 132.9, 132.3, 128.7, 127.9, 57.6, 22.2. HRMS (positive ESI): [M+Na]⁺ calcd for C₁₁H₁₅NNaO₂S⁺: 248.0716. Found: 248.0713.

(R)-N-(tert-butylsulfinyl)-4-methylbenzamide (1b).

R_f= 0.2 (Petroleum ether/EtOAc =3/2). White solid (1.32 g, 55%), mp. 166-167 °C. [α]_D²⁰ = -16.7 (*c* 0.600, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.73 (d, *J* = 8.2 Hz, 2H), 7.65 (br s, 1H), 7.27 (d, *J* = 5.8 Hz, 2H), 2.42 (s, 3H), 1.34 (s, 9H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 167.4, 143.8, 129.5, 129.3, 127.8, 57.5, 22.1, 21.6. HRMS (positive ESI): [M+Na]⁺ calcd for C₁₂H₁₇NNaO₂S⁺: 262.0872. Found: 262.0870.

(R)-N-(tert-butylsulfinyl)-4-methoxybenzamide (1c).

R_f= 0.3 (Petroleum ether/EtOAc =3/2). White solid (1.58 g, 62%), mp. 139-140 °C. [α]_D²⁰ = -13.5 (*c* 0.600, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.97 (br s, 1H), 7.83 (d, *J* = 8.9 Hz, 2H), 6.94 (d, *J* = 8.8 Hz, 2H), 3.86 (s, 3H), 1.34 (s, 9H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 167.0, 163.4, 130.0, 124.3, 114.0, 57.5, 55.5, 22.2. HRMS (positive ESI): [M+Na]⁺ calcd for C₁₂H₁₇NNaO₃S⁺: 278.0821. Found: 278.0819.

(R)-4-(tert-butyl)-N-(tert-butylsulfinyl)benzamide (1d).

R_f= 0.4 (Petroleum ether/EtOAc =3/2). Yellow solid (1.27 g, 45%), mp. 132-133 °C. [α]_D²⁰ = -12.8 (*c* 0.600, CH₂Cl₂). ¹H NMR (600 MHz, CDCl₃): δ 7.78 (d, *J* = 8.3 Hz, 2H), 7.63 (br s, 1H), 7.49 (d, *J* = 8.4 Hz, 2H), 1.342 (s, 9H), 1.338 (s, 9H). ¹³C {¹H} NMR (150 MHz, CDCl₃): δ 167.3, 156.8, 129.3, 127.7, 125.9, 57.5, 35.1, 31.1, 22.1. HRMS (positive ESI): [M+Na]⁺ calcd for C₁₅H₂₃NNaO₂S⁺: 304.1342. Found: 304.1339.

(R)-4-bromo-N-(tert-butylsulfinyl)benzamide (1e).

R_f = 0.3 (Petroleum ether/EtOAc =3/2). Yellow solid (2.04 g, 67%), mp. 78-79 °C. $[α]_D^{20}$ = +20.3 (*c* 0.600, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 8.06 (br s, 1H), 7.73 (d, *J* = 8.6 Hz, 2H), 7.61 (d, *J* = 8.6 Hz, 2H), 1.34 (s, 9H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 166.8, 132.1, 130.9, 129.5, 128.0, 57.9, 22.2. HRMS (positive ESI): [M+Na]⁺ calcd for C₁₁H₁₄BrNNaO₂S⁺: 325.9821. Found: 325.9820.

(R)-N-(tert-butylsulfinyl)-4-fluorobenzamide (1f).

R_f = 0.3 (Petroleum ether/EtOAc =3/2). Pale yellow solid (1.02 g, 42%), mp. 144-145 °C. [α]_D²⁰ = -27.9 (*c* 0.600, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 8.16 (br s, 1H), 7.91-7.88 (m, 2H), 7.17-7.12 (m, 2H), 1.35 (s, 9H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 166.6, 165.6 (d, *J*_C-_F = 253.1 Hz), 130.5 (d, *J*_{C-F} = 9.1 Hz), 128.2 (d, *J*_{C-F} = 2.9 Hz), 116.0 (d, *J*_{C-F} = 22.0 Hz), 57.8, 22.2. ¹⁹F NMR (565 MHz, CDCl₃): δ -105.2. HRMS (positive ESI): [M+Na]⁺ calcd for C₁₁H₁₄FNNaO₂S⁺: 266.0621. Found: 266.0618.

(R)-N-(tert-butylsulfinyl)-4-(trifluoromethyl)benzamide (1g).

R_f = 0.3 (Petroleum ether/EtOAc =3/2). Pale yellow solid (1.80 g, 61%), mp. 141-142 °C. [α]_D²⁰ = -49.8 (*c* 0.600, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 9.06 (br s, 1H), 8.00 (d, *J* = 6.0 Hz, 2H), 7.65 (br s, 2H), 1.32 (s, 9H). ¹³C {¹H} NMR (100 MHz, CDCl₃): δ 167.2, 135.3, 134.1 (q, *J* = 32.8 Hz), 128.7, 125.6, 123.6 (q, *J*_{C-F} = 270.6 Hz), 58.4, 22.2. ¹⁹F NMR (376 MHz, CDCl₃): δ -63.2. HRMS (positive ESI): [M+Na]⁺ calcd for C₁₂H₁₄F₃NNaO₂S⁺: 316.0590. Found: 316.0629.

(*R*)-*N*-(*tert*-butylsulfinyl)-4-chlorobenzamide (1h).

R_f= 0.3 (Petroleum ether/EtOAc =3/2). Yellow solid (1.68 g, 65%). mp. 156-157 °C. [α]_D²⁰ = +14.2 (*c* 0.600, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 8.62 (br s, 1H), 7.82 (d, J = 8.5 Hz, 2H), 7.41 (d, J = 8.3 Hz, 2H), 1.32 (s, 9H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 166.8, 139.4, 130.3, 129.5, 129.0, 58.0, 22.2. HRMS (positive ESI): [M+Na]⁺ calcd for C₁₁H₁₄ClNNaO₂S⁺: 282.0326. Found: 282.0359.

(R)-N-(tert-butylsulfinyl)-3-methylbenzamide (1i).

 $R_f = 0.3$ (Petroleum ether/EtOAc = 3/2). White solid (1.13 g, 47%). mp. 171-172 °C. $[\alpha]_D^{20} =$

-13.0 (*c* 0.600, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.95 (br s, 1H), 7.66 (br s, 1H), 7.62 (d, *J* = 7.2 Hz, 1H), 7.39-7.32 (m, 2H), 2.41 (s, 3H), 1.35 (s, 9H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 167.8, 138.8, 133.7, 132.1, 128.7, 128.5, 124.8, 57.7, 22.2, 21.3. HRMS (positive ESI): [M+Na]⁺ calcd for C₁₂H₁₇NNaO₂S⁺: 262.0872. Found: 262.0870.

(R)-N-(tert-butylsulfinyl)-3-methoxybenzamide (1j).

R_f = 0.3 (Petroleum ether/EtOAc =3/2). Brown solid (1.23 g, 48%). mp. 98-99 °C. [α]_D²⁰ = -16.9 (*c* 0.600, CH₂Cl₂). ¹H NMR (600 MHz, CDCl₃): δ 7.83 (br s, 1H), 7.40 (br s, 1H), 7.38-7.35 (m, 2H), 7.12-7.10 (m, 1H), 3.85 (s, 3H), 1.35 (s, 9H). ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 167.4, 160.0, 133.5, 129.8, 119.7, 119.4, 112.8, 57.7, 55.5, 22.2. HRMS (positive ESI): [M+H]⁺ calcd for C₁₂H₁₈NO₃S⁺: 256.1002. Found: 256.1030.

(R)-3-bromo-N-(tert-butylsulfinyl)benzamide (1k).

R_f = 0.3 (Petroleum ether/EtOAc =3/2). Pale yellow solid (1.32 g, 43%). mp. 134-135 °C. $[\alpha]_D^{20} = +12.2 (c \ 0.600, CH_2Cl_2).$ ¹H NMR (400 MHz, CDCl₃): δ 8.74 (br s, 1H), 8.04 (s, 1H), 7.82 (d, *J* = 7.8 Hz, 1H), 7.67 (d, *J* = 8.0 Hz, 1H), 7.33 (t, *J* = 7.9 Hz, 1H), 1.35 (s, 9H). ¹³C {¹H} NMR (100 MHz, CDCl₃): δ 166.5, 135.8, 133.9, 131.3, 130.2, 126.5, 122.9, 58.2, 22.2. HRMS (positive ESI): [M+Na]⁺ calcd for C₁₁H₁₄BrNNaO₂S⁺: 325.9821. Found: 325.9864.

(R)-N-(tert-butylsulfinyl)-3-chlorobenzamide (11).

R_f= 0.3 (Petroleum ether/EtOAc =3/2). Yellow solid (1.56 g, 60%), mp. 142-143 °C. [α]_D²⁰ = +7.7 (*c* 0.600, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 8.30 (br s, 1H), 7.86 (t, *J* = 1.8 Hz, 1H), 7.75 (d, *J* = 7.8 Hz, 1H), 7.54 (dd, *J* = 0.9, 8.0 Hz, 1H), 7.41 (t, *J* = 7.9 Hz, 1H), 1.35 (s, 9H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 166.5, 135.0, 133.8, 132.9, 130.1, 128.3, 126.0, 58.0, 22.2. HRMS (positive ESI): [M+Na]⁺ calcd for C₁₁H₁₄ClNNaO₂S⁺: 282.0326. Found:

282.0323.

(R)-N-(tert-butylsulfinyl)-2-fluorobenzamide (1m).

R_f= 0.3 (Petroleum ether/EtOAc =3/2). White solid (0.82 g, 34%), mp. 153-154 °C. [α]_D²⁰ = -58.6 (*c* 0.600, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 8.14-8.10 (m, 1H), 7.97 (d, *J* = 14.2 Hz, 1H), 7.60-7.55 (m, 1H), 7.34-7.30 (m, 1H), 7.18 (dd, *J* = 8.3, 12.2 Hz, 1H), 1.35 (s, 9H). ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 162.5 (d, *J*_{C-F} = 257.1 Hz), 160.0, 135.1 (d, *J*_{C-F} = 9.4 Hz), 132.5, 125.3 (d, *J*_{C-F} = 3.0 Hz), 119.3 (d, *J*_{C-F} = 10.5 Hz), 116.3 (d, *J*_{C-F} = 24.8 Hz), 57.0, 22.1. ¹⁹F NMR (565 MHz, CDCl₃): δ -111.9. HRMS (positive ESI): [M+Na]⁺ calcd for C₁₁H₁₄FNNaO₂S⁺: 266.0621. Found: 266.0619.

(R)-N-(tert-butylsulfinyl)-2-methylbenzamide (1n).

R_f= 0.3 (Petroleum ether/EtOAc =3/2). White solid (1.50 g, 63%), mp. 138-139 °C. [α]_D²⁰ = -10.8 (*c* 0.600, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.76 (br s, 1H), 7.43 (d, *J* = 7.5 Hz, 1H), 7.39-7.35 (m, 1H), 7.27-7.22 (m, 2H), 2.45 (s, 3H), 1.32 (s, 9H). ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 167.3, 137.0, 133.5, 131.5, 131.2, 127.1, 125.9, 57.3, 22.2, 20.0. HRMS (positive ESI): [M+Na]⁺ calcd for C₁₂H₁₇NNaO₂S⁺: 262.0872. Found: 262.0871.

(R)-N-(tert-butylsulfinyl)-2-naphthamide (10).

R_f= 0.3 (Petroleum ether/EtOAc =3/2). White solid (1.85 g, 67%), mp. 192-193 °C. [α]_D²⁰ = +9.6 (*c* 0.600, CH₂Cl₂). ¹H NMR (600 MHz, CDCl₃): δ 8.36 (br s, 1H), 7.96-7.92 (m, 2H), 7.89 (d, *J* = 8.0 Hz, 1H), 7.85 (d, *J* = 8.3 Hz, 1H), 7.63-7.57 (m, 3H), 1.39 (s, 9H). ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 167.6, 135.4, 132.4, 129.4, 129.2, 128.93, 128.87, 128.6, 127.9, 127.2, 123.6, 57.6, 22.2. HRMS (positive ESI): [M+H]⁺ calcd for C₁₅H₁₈NO₂S⁺: 276.1053.

Found: 276.1050.

(R)-N-(tert-butylsulfinyl)thiophene-2-carboxamide (1p).

R_f= 0.3 (Petroleum ether/EtOAc =3/2). White solid (1.50 g, 65%), mp. 178-179 °C. $[α]_D^{20}$ = -11.3 (*c* 0.600, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.90 (br s, 1H), 7.76 (dd, *J* = 1.1, 3.8 Hz, 1H), 7.61 (dd, *J* = 1.0, 5.0 Hz, 1H), 7.13 (dd, *J* = 3.8, 5.0 Hz, 1H), 1.35 (s, 9H). ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 161.7, 136.5, 132.7, 130.9, 128.1, 57.8, 22.1. HRMS (positive ESI): [M+Na]⁺ calcd for C₉H₁₃NNaO₂S₂⁺: 254.0280. Found: 254.0281.

(R)-N-(tert-butylsulfinyl)cinnamamide (1q).

R_f= 0.3 (Petroleum ether/EtOAc =3/2). White solid (1.10 g, 44%), mp. 150-151°C. [α]_D²⁰ = +18.0 (*c* 0.600, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 8.39 (br s 1H), 7.74 (d, *J* = 15.6 Hz, 1H), 7.55-7.52 (m, 2H),

7.39-7.37 (m, 3H), 6.70 (d, J = 15.4 Hz, 1H), 1.33 (s, 9H). ¹³C {¹H} NMR (100 MHz, CDCl₃): δ 166.8, 145.1, 134.2, 130.6, 128.9, 128.4, 117.9, 57.6, 22.1. HRMS (positive ESI): [M+Na]⁺ calcd for C₁₃H₁₇NNaO₂S⁺: 274.0872. Found: 274.0871.

2 Optimization of the reaction conditions

Table S1 Screening of the solvent^a

	+OEt	[Cp*RhCl ₂] ₂ (2.5 mol%) Cu(OAc) ₂ (1.0 equiv) Solvent, 80 °C, 12 h	etooc
1a	2a		3aa
entry	solvent	yield $(\%)^b$	ratio $(RS/RR)^c$
1	n-BuOH	trace	/
2	CF ₃ CH ₂ OH	27	2.7:1
3	EtOH	trace	/
4	MeOH	trace	/
5	HFIP	30	4.6:1

6	<i>t</i> -AmOH	0	/
7	CH ₃ CN	0	/
8	dioxane	0	/
9	toluene	0	/

^{*a*}Reaction conditions: **1a** (0.15 mmol), **2a** (0.45 mmol), [Cp*RhCl₂]₂ (2.5 mol%), Cu(OAc)₂ (1.0 equiv), solvent (1.0 mL), 80 °C, Ar, 12 h. ^{*b*}Isolated yield. ^{*c*}The *dr* values were determined from ¹H NMR spectra of crude products.

Table S2 Screening of the reaction temperature^a

	+OEt	[Cp*RhCl ₂] ₂ (2.5 mol%) Cu(OAc) ₂ (1.0 equiv) HFIP, <i>T</i> ⁰C, 12 h	EtOOC 3aa
		: 11 (0/)h	
entry	temp (°C)	yield $(\%)^{o}$	ratio (RS/RR) ^e
1	80	30	4.6:1
2	90	26	3.6:1
3	70	21	4.7:1
4	60	trace	/

^{*a*}Reaction conditions: **1a** (0.15 mmol), **2a** (0.45 mmol), [Cp*RhCl₂]₂ (2.5 mol%), Cu(OAc)₂ (1.0 equiv), HFIP (1.0 mL), Ar, 12 h. ^{*b*}Isolated yield. ^{*c*}The *dr* values were determined from ¹H NMR spectra of crude products.

Table S3 Screening of the co-oxidant^a

2^e	$Ag_2CO_3(2.0)$	trace	/
3^f	AgSbF ₆ (0.1)	18	4.0:1
4^{f}	$AgSbF_6(0.2)$	13	3.5:1
5	Ag ₂ CO ₃ (1.0)	40	5.3:1
6	Ag ₂ CO ₃ (2.0)	50	4.7:1
7	AgOAc (2.0)	25	2.5:1
8	Ag ₂ O (2.0)	40	2.2:1
9	AgOTf (2.0)	0	/
10	AgNO ₃ (2.0)	0	/
11 ^g	Ag2CO3 (2.0)	57	5.0:1

^{*a*}Reaction conditions: **1a** (0.15 mmol), **2a** (0.45 mmol), $[Cp*RhCl_2]_2$ (2.5 mol%), $Cu(OAc)_2$ (1.0 equiv), co-oxidant, HFIP (1.0 mL), 80 °C, Ar, 12 h. ^{*b*}Isolated yield. ^{*c*}The *dr* values were determined from ¹H NMR spectra of crude products. ^{*d*}Cu(OAc)_2 (2.0 equiv). ^{*e*}Without Cu(OAc)_2. ^{*f*}AgSbF₆ was used as the additive. ^{*g*}[Cp*RhCl_2]_2 (5.0 mol%).

Table S4 Screening of solvent volume, reaction time and further screening of oxidant^a

N S	+OEt 2a	[Cp*RhCl ₂] ₂ (5.0 mol%) Cu(OAc) ₂ (1.0 equiv) Ag ₂ CO ₃ (2.0 equiv) HFIP (x mL), 80 °C, 12 h	→ O N-S' EtOOC 3aa
entry	HFIP (mL)	yield $(\%)^b$	ratio $(RS/RR)^c$
1	1.0	57	5.0:1
2	0.5	63	5.0:1
3	0.25	67	5.0:1
4 ^{<i>d</i>}	0.25	82	5.5:1
5 ^e	0.25	80	5.0:1
6^{df}	0.25	11	3.1:1
7^{dg}	0.25	0	/

8^{dh}	0.25	0	/

^{*a*}Reaction conditions: **1a** (0.15 mmol), **2a** (0.45 mmol), [Cp*RhCl₂]₂ (5.0 mol%), Cu(OAc)₂ (1.0 equiv), Ag₂CO₃ (2.0 equiv), HFIP (x mL), 80 °C, Ar, 12 h. ^{*b*}Isolated yield. ^{*c*}The *dr* values were determined from ¹H NMR spectra of crude products. ^{*d*}The reaction time was 16 h. ^{*e*}The reaction time is 20 h. ^{*f*}Under O₂ atmosphere without Ag₂CO₃. ^{*g*}Under air without Ag₂CO₃. ^{*h*}TBHP (1.0 equiv) instead of Cu(OAc)₂ and Ag₂CO₃ was used as the oxidant.

3 Mechanistic investigations

According to the literature report,^[2] D_8 -toluene (99.9% atom D) (2.5 g, 25.0 mmol), KMnO₄ (9.9 g, 62.5 mmol), Na₂CO₃ (1.33 g, 12.5 mmol) and water (75.0 mL) were added to a 250 mL round-bottom flask. The reaction system was refluxed at 120 °C for 8 h and then allowed to cool to room temperature. Next, the mixture was filtered through a pad of celite and the obtained filtrate was subjected to acidification with HCl (12.0 M) and then extracted with EtOAc. The organic layer was washed with water and subsequently concentrated *in vacuo*. The crude product was recrystallized from water to give C₆D₅COOH as white needles (1.78 g, 56%).

 H_2SO_4 (conc.) (2.0 mL) was added to the solution of C_6D_5COOH (1.78 g, 14.0 mmol) dissolved in MeOH (30.0 mL) in a round-bottom flask with a magnetic stir bar and a condenser. The reaction mixture was refluxed until the reaction was completed (monitored by TLC) and followed by cooling to room temperature. Then the solvent was removed under reduced

pressure. The residue was neutralized with saturated NaHCO₃ aqueous solution at 0 $^{\circ}$ C. Then, the resulted mixture was extracted with EtOAc and the organic layer was combined, dried with anhydrous Na₂SO₄, filtered and concentrated *in vacuo* to give *d*₅-methyl benzoate for the next step without further purification.

At -78 °C, *n*-BuLi (5.6 mL, 14.0 mmol, 3.0 equiv, 2.5 M in THF) was added dropwise to the solution of *R*-(+)-2-methyl-2-propanesulfinamide (557.5 mg, 4.6 mmol, 1.0 equiv) dissolved in dry THF (30.0 mL) under Ar atmosphere. Upon stirring for 1 h, d_5 -methyl benzoate (1.98 g, 3.0 equiv) was slowly added and the mixture was stirred for 12 h at room temperature. Then, the reaction was quenched by addition of saturated NH₄Cl aqueous solution at 0 °C and the organic phase was extracted with EtOAc. The organic layer was combined, washed with brine, dried with anhydrous Na₂SO₄ and concentrated *in vacuo*. The residue was purified by flash column chromatography using petroleum ether/EtOAc as eluent to give [D₅]-**1a** (0.48 g, 45%).

(*R*)-*N*-(*tert*-butylsulfinyl)benzamide-2,3,4,5,6-*d*₅ (D₅-1a): White solid (0.48 g, 45%). mp. 145-146 °C. $[\alpha]_D^{20} = -19.7$ (*c* 0.400, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.50 (br s, 1H), 1.35 (s, 9H). ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 167.5, 132.5 (t, *J* = 24.7 Hz), 132.0, 128.3 (t, *J* = 24.5 Hz), 127.4, (t, *J* = 24.5 Hz), 57.6, 22.2. HRMS (positive ESI): [M+Na]⁺ calcd for C₁₁H₁₀D₅NNaO₂S⁺: 253.1030. Found: 253.1028.

3.2 H/D exchange experiments

Figure S1 1 H NMR spectrum of the [D_n]-1a from the H/D exchange experiment

Figure S2 1 H NMR spectrum of the [D_n]-1a from the D/H exchange experiment

3.3 Intermolecular competition KIE.

Figure S3 ¹H NMR spectrum of product from intermolecular competition KIE experiment

3.4 Parallel experiments

Figure S4 The parallel KIE was calculated as $k_{\rm H}/k_{\rm D} = 0.135/0.074 = 1.8$

3.5 Competition experiment

Figure S5 ¹H NMR spectrum of products from the competition experiment

4 Removal of N-sulfinyl and further transformations

4.1 Removal of N-sulfinyl

Following the literature report,^[3] 0.6 mL HCl (conc.) dissolved in EtOH (6.0 mL) was added dropwise to the compound (*R*,*S*)-**3aa** (39.0 mg, 0.12 mmol) in a round bottom flask at 0 °C. The mixture was stirred at room temperature until the reaction was completed (monitored by TLC). Then, the solvent was removed under reduced pressure and the residue was neutralized

with saturated NaHCO₃ aqueous solution at 0 °C. Next, the mixture was extracted with EtOAc $(3\times20 \text{ mL})$ and the organic layer was dried with anhydrous Na₂SO₄, filtered and evaporated. The residue was purified by preparative TLC on silica gel plates using petroleum ether/EtOAc (3/2) as the eluent to give (*S*)-4a as a white solid (23.0 mg, 87%).

Ethyl (S)-2-(3-oxoisoindolin-1-yl)acetate ((S)-4a). White solid (23.0 mg, 87%). $[α]_D^{20} =$ -128.8 (*c* 0.24, CH₂Cl₂). ¹H NMR (600 MHz, CDCl₃): δ 7.79 (d, *J* = 7.6 Hz, 1H), 7.52-7.49 (m, 1H), 7.42 (t, *J* = 7.4 Hz, 1H), 7.35 (d, *J* = 7.7 Hz, 1H), 4.87 (dd, *J* = 3.5, 10.3 Hz, 1H), 4.17 (q, *J* = 7.1 Hz, 2H), 2.93 (dd, *J* = 3.7, 17.0 Hz, 1H), 2.41 (dd, *J* = 10.3, 17.0 Hz, 1H), 1.23 (t, *J* = 7.1 Hz, 3H). ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 171.2, 170.1, 145.9, 132.1, 131.8, 128.7, 124.1, 122.3, 61.3, 52.9, 39.6, 14.2. The enantiomeric excess was determined on a Daicel Chiralpak IB column with *n*-hexane/2-propanol (85/15) and flow rate 0.3 mL/min and detected at a UV wavelength of 254 nm. Retention times: 33.2 min (major), 36.6 min (minor), >99% *ee*. HRMS (positive ESI): [M+Na]⁺ calcd for C₁₂H₁₃NNaO₃⁺: 242.0788. Found: 242.0785.

4.2 Synthesis of (S)-PD172938

According to the literature method,^[4] reduction of the ethyl ester (*S*)-4a (0.2 mmol, 43.9 mg, 1.0 equiv) by LiBH₄ afforded the compound 5.

(S)-3-(2-hydroxyethyl)isoindolin-1-one (5).

White solid (28.4 mg, 80%). $[\alpha]_D{}^{20} = -66.2$ (*c* 0.280, CH₂Cl₂). Spectroscopic data are in agreement with those reported in the literature.^[4] The enantiomeric excess was determined on a Daicel Chiralpak IC column with *n*-hexane/2-propanol (60/40) and flow rate 0.8 mL/min and detected at a UV wavelength of 254 nm. Retention times: 14.4 min (minor), 18.5 min (major), >99% *ee*.

The compound **7** was synthesized from **5** (35.4 mg, 0.2 mmol, 1.0 equiv) according to the literature method.^[4]

(*S*)-3-(2-(4-(3,4-dimethylphenyl)piperazin-1-yl)ethyl)isoindolin-1-one (7). White solid (50.3 mg, 72%). $[\alpha]_D^{20} = -6.0$ (*c* 0.20, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.86 (d, *J* = 7.5 Hz, 1H), 7.57 (dt, *J* = 1.0, 7.5 Hz, 1H), 7.53 (br s, 1H), 7.49-7.43 (m, 2H), 7.02 (d, *J* = 8.2 Hz, 1H), 6.75 (d, *J* = 2.2 Hz, 1H), 6.69 (dd, *J* = 2.5, 8.2 Hz, 1H), 4.65 (dd, *J* = 2.8, 9.6 Hz, 1H), 3.24-3.15 (m, 4H), 2.75-2.56 (m, 6H), 2.23 (s, 3H), 2.18 (s, 3H), 2.16-2.15 (m, 1H), 1.82-1.73 (m, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 170.3, 149.5, 147.5, 137.1, 132.0, 131.7, 130.2, 128.3, 128.2, 123.9, 122.3, 118.3, 114.0, 57.1, 56.5, 53.4, 49.9, 31.4, 20.2, 18.8. The enantiomeric excess was determined on a Daicel Chiralpak AD-H column with *n*-hexane/2-propanol (70/30) and flow rate 0.9 mL/min and detected at a UV wavelength of 254 nm. Retention times: 8.0 min (minor), 9.6 min (major), 95% *ee*.

4.3 Synthesis of compound 8

The compound **8** (30.6 mg, 80%) was synthesized by oxidation of the alcohol **5** (35.4 mg, 0.2 mmol, 1.0 equiv) according to the literature method.^[4]

4.4 Synthesis of compound 10

The compound **10** was prepared by the condensation reaction of **8** (38.3 mg, 0.2 mmol, 1.0 equiv) with **9** according to the literature method.^[4]

(S)-3-(2-oxo-2-(1,4-dioxa-8-azaspiro[4.5]decan-8-yl)ethyl)isoindolin-1-one (10).

White solid (47.5 mg, 75% yield). $[\alpha]_D^{20} = -242.9$ (*c* 0.400, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.86 (d, *J* = 7.5 Hz, 1H), 7.59-7.55 (m, 1H), 7.50-7.44 (m, 2H), 7.12 (br s, 1H), 5.03 (dd, *J* = 2.7, 10.5 Hz, 1H), 4.00-3.96 (m, 4H), 3.80-3.69 (m, 2H), 3.49-3.46 (m, 2H), 3.06 (dd, *J* = 3.2, 16.5 Hz, 1H), 2.42 (dd, *J* = 10.6, 16.5 Hz, 1H), 1.73-1.67 (m, 4H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 169.8, 168.3, 146.5, 132.2, 131.8, 128.4, 124.1, 122.3, 106.6, 64.5, 53.4, 43.4, 39.9, 38.9, 35.4, 34.7. The enantiomeric excess was determined on a Daicel Chiralpak AD column with *n*-hexane/2-propanol (75/25) and flow rate 0.5 mL/min and detected at a UV wavelength of 254 nm. Retention times: 50.5 min (major), >99% *ee*.

4.5 Synthesis of compound 11 by N-arylation of isoindolinone (S)-4b

According to the literature reported method ^[5] and under Ar atmosphere, a 15 mL Schlenk tube was charged with CuI (15.2 mg, 0.05 mmol), K₃PO₄ (78.6 mg, 0.23 mmol), 2-iodopyridine (29.0 μ L, 0.17 mmol), *N*,*N*-dimethylethylenediamine (12.5 μ L, 0.07 mmol) and (*S*)-**4b** (50.0 mg, 0.15 mmol) dissolved in dioxane (1.6 mL). The reaction mixture was heated at 80 °C for 24 h and then quenched by addition of EtOAc followed by filtration through a celite pad. The solvent was removed under reduced pressure and the residue was purified by preparative TLC on silica gel plates using petroleum ether/EtOAc as the eluent to afford **11**. (Note: (*S*)-**4b** was obtained as described in **4.1**).

Methyl (S)-2-(3-oxo-2-(pyridin-2-yl)isoindolin-1-yl)acetate (11).

White solid (38.0 mg, 90%). $[\alpha]_D^{20} = +190.5$ (*c* 0.400, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 8.56 (dt, J = 0.8, 8.4 Hz, 1H), 8.43-8.41 (m, 1H), 7.93 (d, J = 7.6 Hz, 1H), 7.79-7.75 (m, 1H), 7.64-7.50 (m, 3H), 7.09-7.06 (m, 1H), 6.00 (dd, J = 3.7, 8.2 Hz, 1H), 3.67 (s, 3H), 3.41 (dd, J = 3.7, 16.0 Hz, 1H), 2.73 (dd, J = 8.2, 16.0 Hz, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 171.1, 167.5, 150.9, 147.7, 145.0, 138.0, 132.9, 131.8, 128.7, 124.3, 122.8, 119.6, 115.7, 56.5, 51.8, 38.1. The enantiomeric excess was determined on a Daicel Chiralpak AD column with *n*-hexane/2-propanol (80/20) and flow rate 1.0 mL/min and detected at a UV wavelength of 254 nm. Retention times: 8.2 min (minor), 9.2 min (major), >99% *ee*.

5 Crystal data of (R,R)-3aa and (R,S)-3ab

Crystals of (*R*,*R*)-**3aa** (CCDC 1971954) and (*R*,*S*)-**3ab** (CCDC 2046609) were obtained by recrystallization at ambient temperature from EtOAc/petroleum ether, dichloromethane/ petroleum ether, respectively. The data were collected on an Oxford Diffraction Gemini ES8 diffractometer with graphite-monochromated Cu K α radiation (λ = 1.54184 Å) for compounds (*R*,*R*)-**3aa** and (*R*,*S*)-**3ab**.

Figure S6 Molecular structure of (R,R)-3aa with thermal ellipsoids drawn at the 50%

probability level (Hydrogen atoms are omitted for clarity; one of the two independent molecules shown).

Figure S7 Molecular structure of (R,S)-**3ab** with thermal ellipsoids drawn at the 50% probability level (Hydrogen atoms are omitted for clarity).

	(<i>R</i> , <i>R</i>)-3aa	(<i>R</i> , <i>S</i>)-3ab
Empirical formula	$C_{16}H_{21}NO_4S$	$C_{15}H_{19}NO_4S$
Formula weight	323.40	309.37
Temperature/K	293(2)	293(2)
Crystal system	monoclinic	orthorhombic
Space group	P21	P212121
a/Å	9.4481(4)	8.6665(5)
b/Å	10.3898(5)	9.0914(5)
c/Å	17.9970(9)	20.0289(10)
$\alpha/^{\circ}$	90	90
β/°	96.944(4)	90
γ/°	90	90
Volume/Å ³	1753.69(14)	1578.09(15)
Z	4	4
$\rho_{calc}g/cm^3$	1.225	1.302
μ/mm^{-1}	1.782	1.957
F(000)	688.0	656.0
Crystal size/mm ³	$0.19 \times 0.16 \times 0.14$	$0.16 \times 0.14 \times 0.1$

Table S5. Summary of crystal structure determination for (*R*,*R*)-3aa and (*R*,*S*)-3ab

Radiation	$CuK\alpha$ ($\lambda = 1.54184$)	$CuK\alpha (\lambda = 1.54184)$
2Θ range for data collection/ $^\circ$	9.43 to 134.158	8.83 to 134.094
Index ranges	$-11 \le h \le 10$,	$-10 \le h \le 10$,
	$-11 \le k \le 12$,	$-9 \le k \le 10$,
	$-20 \le 1 \le 21$	$-23 \le 1 \le 20$
Reflections collected	14681	5764
Independent reflections	5731 [$R_{int} = 0.0322$,	2812 [R _{int} = 0.0316,
	$R_{sigma} = 0.0362$]	$R_{sigma} = 0.0434$]
Data/restraints/parameters	5731/3/413	2812/49/207
Goodness-of-fit on F ²	1.071	1.062
Final R indexes [$I \ge 2\sigma$ (I)]	$R_1 = 0.0477,$	$R_1 = 0.0447,$
	$wR_2 = 0.1380$	$wR_2 = 0.1087$
Final R indexes [all data]	$R_1 = 0.0629,$	$R_1 = 0.0515,$
	$wR_2 = 0.1557$	$wR_2 = 0.1158$
peak/hole [e Å ⁻³]	0.27/-0.23	0.18/-0.24
CCDC number	1971954	2046609

Table S6. Selected bond lengths (Å) and angles (°) for (R,R)-3aa and (R,S)-3ab

(<i>R</i> , <i>R</i>)-3aa		(<i>R</i> , <i>S</i>)-3ab	
C5-C8	1.509 (6)	C1-C3	1.473 (6)
C6-C7	1.476 (7)	C1-O1	1.213 (5)
C7-N1	1.387 (6)	C1-N1	1.406 (5)
C7-O1	1.205 (7)	C2-C4	1.505 (5)
C8-N1	1.487 (6)	C2-C9	1.514 (6)
N1-S1	1.704 (4)	N1-S1	1.720 (3)
C5-C6-C7	109.5 (4)	C1-N1-C2	111.7 (3)
N1-C7-C6	105.5 (4)	S1-N1-C1	116.9 (3)
O1-C7-C6	128.9 (5)	N1-C2-C4	101.9 (3)
01-C7-N1	125.6 (5)	C2-C9-C10	115.1 (3)

C8-N1-S1	128.0 (3)	C1-C3-C4	109.3 (3)
C7-N1-C8	113.4 (4)	N1-C1-C3	106.2 (3)
N1-S1-C13	102.7 (2)	O2-S1-N1	104.66 (18)
O2-S1-N1	107.5(2)	C3-C4-C2	110.8 (3)

6 References

- [1] (a) F. Xue, F. Wang, J. Liu, J. Di, Q. Liao, H. Lu, M. Zhu, L. He, H. He, D. Zhang, H. Song, X.-Y. Liu and Y. Qin, *Angew. Chem. Int. Ed.*, 2018, **57**, 6667; (b) Z.-Y. Xu, Y. Luo, D.-W. Zhang, H. Wang, X.-W. Sun and Z.-T. Li, *Green Chem.*, 2020, **22**, 136.
- [2] Q.-L. Yang, X.-Y. Wang, T.-L. Wang, X. Yang, D. Liu, X. Tong, X.-Y. Wu and T.-S. Mei, Org. Lett., 2019, 21, 2645.
- [3] M. F. Jacobsen and T. Skrydstrup, J. Org. Chem., 2003, 68, 7112.
- [4] S. K. Ray, M. M. Sadhu, R. G. Biswas, R. A. Unhale and V. K. Singh, Org. Lett., 2019, 21, 417.
- [5] A. Di Mola, M. Tiffner, F. Scorzelli, L. Palombi, R. Filosa, P. De Caprariis, M. Waser and A. Massa, *Beilstein J. Org. Chem.*, 2015, 11, 2591.

7 NMR and HPLC spectra

S29

 $^{13}C\{^{1}H\}$ NMR (150 MHz, CDCl₃) of 1j

¹H NMR (400 MHz, CDCl₃) of **3af**

S48

 $^{13}C\{^{1}H\}$ NMR (100 MHz, CDCl₃) of 7

8674 8674 8874 8874 8874 9688 8474 1971 1785 1596	1211
	36

 $\begin{array}{c} 5.0444\\ 5.0376\\ 5.0376\\ 5.0318\\ 5.0376\\ 5.0318\\ 3.9628\\ 3.39628\\ 3.39786\\ 3.37570\\ 3.36297\\ 3.36297\\ 3.37570\\ 3.36283\\ 3.37570\\ 3.36283\\ 2.3893\\ 2.23892\\ 2.23$

LXH2 1H CDCl3 1626/GJF 0 ΝH 0 10 F-0000-1 F8800. 4.1249 2.0991 2.0179 1.0421 2.0073 € 1.0103H 4.0785-J 1.0253-1.0065 -9.0 7.5 4.5 f1 (ppm) 3.5 3.0 2.5 0.0 8.5 8.0 7.0 6.5 6.0 5.5 4.0 2.0 1.5 1.0 0.5 ¹H NMR (400 MHz, CDCl₃) of 10 ~169.7917 ~168.3482 <132.2297
<131.7785
<131.7785
<131.7785
<128.4454
<124.0620
<122.3322</pre> -146.4571 -106,6131-64.5200-53.3749 43.3507 39.9108 38.9182 35.3829 34.6789 LXH2 13C CDCl3 1634/GJF 0 ΝH 0= 10 100 90 f1 (ppm) 0 180 150 120 80 70 60 50 20 10 170 160 140 130 110 40 30

LXH1 1H CDCl3 1625/GJF

HPLC Spectra.

PeakNO.	Ret.Time	PeakHeight	PeakArea	Area%
1	33.608	55.60484	3224.21680	50.4983
2	36.833	51.36386	3160.58936	49.5017

Chiral HPLC chromatogram for racemic 4a

PeakNO.	Ret.Time	PeakHeight	PeakArea	Area%
1	33.211	545.38116	3.76698e4	99.9560
2	36.557	1.73080	16.57049	0.0440

Chiral HPLC chromatogram for enantioenriched (S)-4a

PeakNO.	Ret.Time	PeakHeight	PeakArea	Area%
1	14.564	169.56108	7965.42432	49.2525
2	18.385	144.59998	8207.21387	50.7475

Chiral HPLC chromatogram for racemic 5

PeakNO.	Ret.Time	PeakHeight	PeakArea	Area%
1	14.409	3.64892e-2	15.71862	0.3121
2	18.454	87.75197	5020.24023	99.6879

Chiral HPLC chromatogram for enantioenriched 5

PeakNO.	Ret.Time	PeakHeight	PeakArea	Area%
1	7.919	412.30762	8576.43945	49.1058
2	9.539	373.75912	8888.79102	50.8942

Chiral HPLC chromatogram for racemic 7

PeakNO.	Ret.Time	PeakHeight	PeakArea	Area%
1	7.974	4.10645	128.32562	2.4610
2	9.564	181.66975	5086.11035	97.5390

Chiral HPLC chromatogram for enantioenriched 7

PeakNO.	Ret.Time	PeakHeight	PeakArea	Area%
1	46.992	41.98966	4167.18164	49.1988
2	51.063	42.11304	4302.90430	50.8012

Chiral HPLC chromatogram for racemic 10

PeakNO.	Ret.Time	PeakHeight	PeakArea	Area%
1	50.462	90.15623	9818.70215	100

Chiral HPLC chromatogram for enantioenriched 10

PeakNO.	Ret.Time	PeakHeight	PeakArea	Area%
1	8.199	582.74756	6411.64014	48.5559
2	9.269	537.28802	6793.02295	51.4441

Chiral HPLC chromatogram for racemic 11

PeakNO.	Ret.Time	PeakHeight	PeakArea	Area%
1	8.155	1.86769	21.23161	0.1432
2	9.216	1167.37207	1.48092e4	99.8568

Chiral HPLC chromatogram for enantioenriched 11