Total synthesis of cynaropicrin

Tenma Nakamura, Dinda B. Pitna, Kogaku Kimura, Yukiko Yoshimoto, Tomoya Uchiyama, Takaya Mori, Ryosuke Kondo, Shihori Hara, Yuki Egoshi, Shoya Yamaguchi, Noriyuki Suzuki, Yumiko Suzuki, and Toyonobu Usuki*

Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo 102-8554, Japan

E-mail: t-usuki@sophia.ac.jp

Table of Contents

S2-S24: Experimental
S25: Scheme S1
S26-S60: NMR spectra
S61-S65: X-ray
S66: DFT calculation

General:

All non-aqueous reactions were conducted under an atmosphere of nitrogen with magnetic stirring unless otherwise indicated. Dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, methanol (MeOH), tetrahydrofuran (THF), ethanol (EtOH), and toluene were purchased from commercial suppliers and stored over activated molecular sieves. All reagents were obtained from commercial suppliers and used without further purification unless otherwise stated. Dess-Martin Periodinane (DMP) and pyridinium p-toluenesulfonate (PPTS) was prepared according to literature procedure. For the photo oxygenation reaction, a Shimadzu AT-100HG halogen lamp was used. Analytical thin layer chromatography (TLC) was performed on Silica gel $60 \mathrm{~F}_{254}$ plates produced by Merck. Column chromatography was performed with acidic Silica gel 60 (spherical, $40-50 \mu \mathrm{~m}$) or neutral Silica gel 60 N (spherical, 40-50 $\mu \mathrm{m}$) produced by Kanto Chemicals (Tokyo, Japan). Removal of small amount of solvent was performed by Smart Evaporator CEV1-SQ-P2, CEVI-SK-P2, CEV1A-GR-P2 (Biochromato, Kanagawa, Japan).

Optical rotations were measured on a JASCO P-2200 digital polarimeter at the sodium $\operatorname{lamp}(\lambda=589 \mathrm{~nm}) \mathrm{D}$ line and are reported as follows: $[\alpha]_{\mathrm{D}}{ }^{\mathrm{T}}\left(c \mathrm{~g} / 100 \mathrm{~mL}\right.$, solvent). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ nuclear magnetic resonance (NMR) spectra were recorded on a JEOL JNM-ECA 500 spectrometer $(500 \mathrm{MHz})$ or BRUKER AVANCE III HD $(400 \mathrm{MHz}) .{ }^{1} \mathrm{H}$ NMR data are reported as follows: chemical shift (δ, ppm), integration, multiplicity (s , singlet; d , doublet; t , triplet; q , quartet; m , multiplet), coupling constants (J) in Hz , assignments. ${ }^{13} \mathrm{C}$ NMR data are reported in terms of chemical shift (δ, ppm). Electrospray ionization-mass spectrometer (ESI-MS) spectra were recorded on a JEOL JMS-T100LC instrument and are reported in mass-to-charge ratio (m / z).

The carbon numberings on NMR of all compounds are corresponding with cynaropicrin $\mathbf{1}$ or (R)-7-hydroxycarvone $\mathbf{9}$.

Electronic Supplementary Information

cynaropicrin (1)

(R)-7-hydroxycarvone (9)

(2R, 3R, 5R)-2-Chloro-3-hydroxy-2-hydroxymethyl-5-isopropenyl-cyclohexanone (12):

To a solution of 9 ($431.4 \mathrm{mg}, 2.60 \mathrm{mmol}, 1.0$ equiv) and 4 N NaOH solution ($195 \mu \mathrm{~L}$, 0.3 equiv), in $\mathrm{MeOH}(6.4 \mathrm{~mL})$ to cooled at $0{ }^{\circ} \mathrm{C}$ was added $30 \% \mathrm{H}_{2} \mathrm{O}_{2}(3.6 \mathrm{~mL}$, large excess) dropwise. After stirring for 1 h at $0^{\circ} \mathrm{C}$, the reaction mixture was diluted with EtOAc and quenched with saturated $\mathrm{Na}_{2} \mathrm{SO}_{3}$ solution. The aqueous layer was then extracted with EtOAc. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo afforded the product $\mathbf{1 1}$ as a yellow oil, and the residue was used for the second step without further purification; 11: $R_{\mathrm{f}} 0.62$ (hexane/EtOAc $=1: 2$).

Next, the residue 11 and $\mathrm{LiCl}(326.8 \mathrm{mg}, 7.79 \mathrm{mmol}, 3.0$ equiv) in THF (20 mL) cooled to $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{CF}_{3} \mathrm{COOH}(596 \mu \mathrm{~L}, 7.79 \mathrm{mmol}, 3.0$ equiv) dropwise. After stirring at room temperature for 2 h , the reaction mixture was diluted with EtOAc and quenched with saturated NaHCO_{3} solution. The aqueous layer was then extracted with EtOAc. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. Purification on silica gel column chromatography (hexane/EtOAc $=4: 1$) afforded 12 as a yellow oil (474.0 mg , $2.17 \mathrm{mmol}, 84 \%(2$ steps $)$); $R_{\mathrm{f}} 0.70$ (hexane/EtOAc $=1: 2$); $[\alpha]_{\mathrm{D}}{ }^{25}+86.9(c 0.1, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.82(2 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}, \mathrm{H} 9), 4.52(1 \mathrm{H}, \mathrm{t}, J=2.7 \mathrm{~Hz}, \mathrm{H} 3), 4.37(1 \mathrm{H}$, $\mathrm{d}, J=12.6 \mathrm{~Hz}, \mathrm{H} 7), 3.88(1 \mathrm{H}, \mathrm{d}, J=12.6 \mathrm{~Hz}, \mathrm{H} 7), 3.07-2.92(2 \mathrm{H}, \mathrm{m}, \mathrm{H} 6), 2.43-2.39(1 \mathrm{H}, \mathrm{m}$, H5), 2.33-2.23 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H} 4$), 2.02-1.95 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H} 4$), $1.78(3 \mathrm{H}, \mathrm{s}, \mathrm{H} 10)$) ${ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 207.2,146.5,110.8,67.1,66.3,41.9,39.7,39.5,33.0,20.5 ;$ ESI-HRMS (m / z) calcd for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{ClNaO}_{3}[\mathrm{M}+\mathrm{Na}$ 241.0607, found 241.0598.
(2S,3R,5R)-2-Chloro-5-isopropenyl-3-(tetrahydro-pyran-2-yloxy)-2-(tetrahydro-pyran-2-yloxymethyl)-cyclohexanone (13):

To a solution of $\mathbf{1 2}(52.7 \mathrm{mg}, 0.241 \mathrm{mmol}, 1.0 \mathrm{eq})$ and PPTS ($302.8 \mathrm{mg}, 1.20 \mathrm{mmol}$, $5.0 \mathrm{eq})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2.4 mL) was added dihydropyran ($105.6 \mu \mathrm{~L}, 1.81 \mathrm{mmol}, 7.5 \mathrm{eq}$). After stirring at rt for 24 h , the reaction mixture was diluted with EtOAc and quenched with saturated NaHCO_{3} solution. The aqueous layer was then extracted with EtOAc. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. Purification on silica gel column chromatography (hexane/EtOAc $=10: 1$) afforded $\mathbf{1 3}$ as a colorless oil $(80.7 \mathrm{mg}, 0.210$ $\mathrm{mmol}, 87 \%) ; R_{\mathrm{f}} 0.67$ (hexane $/ \mathrm{EtOAc}=4: 1$).

This compound could not be identified with ${ }^{1} \mathrm{H}$ NMR spectrrum because it contains inseparable diastereomer derived from THP group.

(2R, 3R, 5R)-2-Chloro-3-(1-ethoxy-ethoxy)-2-(1-ethoxy-ethoxymethyl)-5-isopropenyl-

 cyclohexanone (14):

A solution of $\mathbf{1 2}(56.9 \mathrm{mg}, 0.260 \mathrm{mmol}, 1.0 \mathrm{eq})$ and ethyl vinyl ether ($250.2 \mu \mathrm{~L}, 2.601$ $\mathrm{mmol}, 10.0 \mathrm{eq})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ was stirred with PPTS ($13.1 \mathrm{mg}, 0.052 \mathrm{mmol}, 0.2 \mathrm{eq}$) at rt for 12 h . The solution was diluted with ether and quenched with saturated NaHCO_{3} solution. The aqueous layer was then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. Purification on silica gel column chromatography (hexane/EtOAc $=10: 1$) afforded $\mathbf{1 4}$ as a yellow oil $(66.2 \mathrm{mg}, 0.182 \mathrm{mmol}$, 70%); $R_{\mathrm{f}} 0.77$ (hexane/EtOAc $=4: 1$).

This compound could not be identified with ${ }^{1} \mathrm{H}$ NMR spectrum because it contains inseparable diastereomer derived from EE group.

(2R, 3R, 5R)-2-Chloro-3-hydroxy-2-(1-ethoxy-ethoxymethyl)-5-isopropenylcyclohexanone (12'):

A solution of $\mathbf{1 2}(2.8615 \mathrm{~g}, 0.01308 \mathrm{~mol}, 1.0$ equiv) and ethyl vinyl ether (3.78 mL , 39.24 mmol , 3.0 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(137 \mathrm{~mL})$ was stirred with PPTS ($657.7 \mathrm{mg}, 2.617 \mathrm{mmol}, 0.2$ equiv) at $0{ }^{\circ} \mathrm{C}$ for 1 h . The solution was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and quenched with saturated NaHCO_{3} solution. The aqueous layer was then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. Purification on silica gel column chromatography (hexane/EtOAc $=4: 1$) afforded 12' as a yellow oil (3.50 g , $12.04 \mathrm{mmol}, 92 \%$); $R_{\mathrm{f}} 0.37$ (hexane/EtOAc $=4: 1$); $[\alpha]_{\mathrm{D}}{ }^{25}+74.1\left(c 0.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 204.9,146.6,110.4,101.3,72.2,68.4,67.9,63.0,41.6,39.1,32.0,20.4,20.0$, 15.1; ESI-HRMS (m / z) calcd for $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{ClNaO}_{4}[\mathrm{M}+\mathrm{Na}] 313.1183$, found 313.1214.

This compound could not be identified with ${ }^{1} \mathrm{H}$ NMR spectrum because it contains inseparable diastereomer derived from EE group.

(2R, 3R, 5R)-2-Chloro-2-(1-ethoxy-ethoxymethyl)-5-isopropenyl-3-methanesulfonyl-

 cyclohexanone (8):

To a solution of $\mathbf{1 2}{ }^{\prime}(1.2574 \mathrm{~g}, 4.4706 \mathrm{mmol}, 1.0$ equiv $)$ and powdered $\mathrm{MS} 4 \AA$ in $\mathrm{Et}_{3} \mathrm{~N}$ ($100.0 \mathrm{~mL}, 0.7153 \mathrm{~mol}, 160.0$ equiv) at $0^{\circ} \mathrm{C}$ was added $\mathrm{MsCl}(10.4 \mathrm{~mL}, 0.1341 \mathrm{~mol}, 30.0$ equiv) dropwise. After stirring for 5 min at $0{ }^{\circ} \mathrm{C}$, the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and quenched with saturated NaHCO_{3} solution. After that the reaction mixture was filtered through Celite. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. Purification on silica gel column chromatography (hexane/EtOAc $=4: 1$) afforded compound $\mathbf{8}$ as a yellow oil $(1.2712 \mathrm{~g}, 3.4462 \mathrm{mmol}, 80 \%) ; R_{\mathrm{f}} 0.30($ hexane $/ \mathrm{EtOAc}=$ $4: 1) ;[\alpha]_{\mathrm{D}}{ }^{25}+46.0(c 0.1, \mathrm{MeOH}) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.21(1 \mathrm{H}, \mathrm{s}, \mathrm{H} 3), 4.78(1 \mathrm{H}, \mathrm{s}$, H9), $4.73(1 \mathrm{H}, \mathrm{s}, \mathrm{H} 9), 4.71-4.4 .67(1 \mathrm{H}, \mathrm{m}, \mathrm{EE}), 4.10(1 \mathrm{H}, \mathrm{d}, J=12.1 \mathrm{~Hz}, \mathrm{EE}), 3.74(1 \mathrm{H}, \mathrm{d}, J=$ $12.1 \mathrm{~Hz}, \mathrm{EE}), 3.65-3.59(1 \mathrm{H}, \mathrm{m}, \mathrm{EE}), 3.46-3.40(1 \mathrm{H}, \mathrm{m}, \mathrm{EE}), 3.05(3 \mathrm{H}, \mathrm{s}, \mathrm{Ms}), 2.96(1 \mathrm{H}, \mathrm{dd}, J$ $=11.5,11.5 \mathrm{~Hz}, \mathrm{H} 5), 2.79-2.73(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 6), 2.37-2.28(3 \mathrm{H}, \mathrm{m}, \mathrm{H} 4,6), 1.69(3 \mathrm{H}, \mathrm{s}, \mathrm{H} 10), 1.26$ ($3 \mathrm{H}, \mathrm{d}, J=4.12 \mathrm{~Hz}, \mathrm{EE}$), $1.11(3 \mathrm{H}, \mathrm{dd}, J=5.96,5.96 \mathrm{~Hz}, \mathrm{EE}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 201.7, 145.3, 111.1, 101.2, 81.1, 67.2, 65.2, 62.6, 40.9, 38.6, 38.1, 30.9, 20.3, 20.2, 15.2; ESIHRMS (m / z) calcd for $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{ClNaO}_{6} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]$ 391.0958, found 391.0947.
$(1 R, 5 R)$-4-Hydroxymethyl-1-isopropenyl-cyclopent-3-enecarboxylic acid methyl ester (15"):

To a solution of $\mathbf{8}(1.1280 \mathrm{~g}, 3.0580 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{MeOH}(13 \mathrm{~mL})$ was added $\mathrm{NaOMe}\left(0.9912 \mathrm{~g}, 18.348 \mathrm{mmol}, 6.0\right.$ equiv) in $\mathrm{MeOH}(15 \mathrm{~mL} \times 3)$ using a cannula at $0{ }^{\circ} \mathrm{C}$. After stirring for 2 h at $0^{\circ} \mathrm{C}$, the product 15 was obtained as a colorless oil $(0.7878 \mathrm{~g}, 2.916$ mmol) in 96% yield. The product was used for the second step without further purification.

To a solution of $\mathbf{1 5}$ in $\mathrm{MeOH}, 3 \mathrm{~N} \mathrm{HCl}(6 \mathrm{~mL})$ was added. After stirring for 1 h at $0^{\circ} \mathrm{C}$ the reaction mixture was diluted with MeOH and quenched with saturated NaHCO_{3} solution. The aqueous layer was then extracted with EtOAc. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. Purification on silica gel column chromatography (hexane/EtOAc $=4: 1$) afforded $\mathbf{1 5 "}$ as a colorless oil $(0.576 \mathrm{~g}, 2.9616 \mathrm{mmol}$, quant); $R_{\mathrm{f}} 0.62$ (hexane/EtOAc $=1: 1$); $[\alpha]_{\mathrm{D}}{ }^{25}+205.9(c 0.1, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 5.93(1 \mathrm{H}, \mathrm{s}, \mathrm{H} 3), 4.84(1 \mathrm{H}, \mathrm{s}, \mathrm{H} 14), 4.79(1 \mathrm{H}, \mathrm{s}, \mathrm{H} 14), 4.17(2 \mathrm{H}, \mathrm{m}, \mathrm{H} 15), 3.68(1 \mathrm{H}$, d, $J=8.0 \mathrm{~Hz}, \mathrm{H} 5), 3.61(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 3.18(1 \mathrm{H}, \mathrm{q}, J=8.5 \mathrm{~Hz}, \mathrm{H} 1), 2.68-2.62(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 2), 2.41-$ $2.36(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 2), 1.77(3 \mathrm{H}, \mathrm{s}, \mathrm{H} 10) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.0,144.8,141.8,131.3$, 111.9, 61.7, 54.7, 51.9, 50.6, 35.2, 22.9; ESI-HRMS (m / z) calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{3}{ }^{+}[\mathrm{M}]^{+}$196.1099, found 196.1080.
($1 R, 5 R$)-4-Bromomethyl-1-isopropenyl-cyclopent-3-enecarboxylic acid methyl ester (7):

To a solution of $\mathbf{1 5}^{\prime}\left(2.6633 \mathrm{~g}, 13.571 \mathrm{mmol}, 1.0\right.$ equiv) and $\mathrm{PPh}_{3}(7.1194 \mathrm{~g}, 27.143$ mmol, 2.0 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(144.0 \mathrm{~mL})$ was added $\mathrm{CBr}_{4}(6.7511 \mathrm{~g}, 20.357 \mathrm{mmol}, 1.5$ equiv) at $0^{\circ} \mathrm{C}$. After stirring for 30 minutes at $0{ }^{\circ} \mathrm{C}$, the reaction mixture was treated with hexane/EtOAc $=4: 1$ mixture and passed through short silica gel column chromatography (hexane/EtOAc $=$ $4 / 1$) and concentrated in vacuo. Purification on silica gel column chromatography (hexane $/$ EtOAc $=9: 1$) afforded $7\left(35273 \mathrm{~g}, 13.571 \mathrm{mmol}\right.$, quant) as a colorless oil; $R_{\mathrm{f}} 0.90$ (hexane/EtOAc $=1: 1) ;[\alpha]_{\mathrm{D}}{ }^{25}+62.2(c 0.1, \mathrm{MeOH}) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.08(1 \mathrm{H}, \mathrm{s}$, H3), $4.86(1 \mathrm{H}, \mathrm{s}, \mathrm{H} 14), 4.74(1 \mathrm{H}, \mathrm{s}, \mathrm{H} 14), 4.13(1 \mathrm{H}, \mathrm{d}, J=10.7 \mathrm{~Hz}, \mathrm{H} 15), 4.02(1 \mathrm{H}, \mathrm{d}, J=10.7$ $\mathrm{Hz}, \mathrm{H} 15), 3.81(1 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{H} 5), 3.62(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 3.21(1 \mathrm{H}, \mathrm{dd}, J=17.1,8.7 \mathrm{~Hz}, \mathrm{H} 1)$, 2.73-2.64 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H} 2$), 2.46-2.38 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H} 2$), 1.77 (3H, s, H9); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.4,144.1,138.2,134.7,111.7,54.2,51.5,50.3,35.1,30.2,22.4$; ESI-HRMS (m / z) calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{BrO}_{2}{ }^{+}[\mathrm{M}-\mathrm{H}]^{+}$257.0177, found 257.0164, 259.0125.
(1R, 3R, 5R)-3-Hydroxy-1-isopropenyl-4-methylene-cyclopentanecarboxylic acid methyl ester (18):

To a solution of diphenyl diselenide ($4.3462 \mathrm{~g}, 13.925 \mathrm{mmol}, 0.55$ equiv) in $\mathrm{EtOH}(90.0$ mL) was added enough sodium borohydride to render the yellow solution colorless. To this solution was added $7(6.5608 \mathrm{~g}, 25.318 \mathrm{mmol}, 1.0$ equiv) in $\operatorname{EtOH}(30.0 \mathrm{~mL} \times 4)$ using a cannula at $0^{\circ} \mathrm{C}$. The solution was stirred for 15 minutes at $0^{\circ} \mathrm{C}, 2 \mathrm{~h}$ at room temperature and $1 / 2$ of the EtOH was evaporated under a stream of N_{2} gas. The reaction mixture was added THF (126.0 mL), followed by $30 \% \mathrm{H}_{2} \mathrm{O}_{2}$ solution ($14.54 \mathrm{~mL}, 1.74 \mathrm{M}$) at $0^{\circ} \mathrm{C}$. After stirring at $0^{\circ} \mathrm{C}$ for 10 minutes, the reaction mixture was diluted with ether, quenched with saturated NaHCO_{3} solution. The aqueous layer was then extracted with ether. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. Purification on silica gel column chromatography (hexane/EtOAc $=4: 1$) afforded 18 as a colorless oil $(4.452 \mathrm{~g}, 23.546 \mathrm{mmol}$, 93%); $R_{\mathrm{f}} 0.77$ (hexane/EtOAc $=1: 1$); $[\alpha]_{\mathrm{D}}{ }^{25}-50.6(c 0.2, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.40(1 \mathrm{H}, \mathrm{t}, J=1.5 \mathrm{~Hz}, \mathrm{H} 15), 5.27(1 \mathrm{H}, \mathrm{t}, J=1.2 \mathrm{~Hz}, \mathrm{H} 15), 4.83(1 \mathrm{H}, \mathrm{s}, \mathrm{H} 14), 4.72(2 \mathrm{H}, \mathrm{m}$, $\mathrm{H} 3 / 14), 3.79(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}, \mathrm{H} 5), 3.59(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 3.18-3.09(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 1), 2.45-2.34(1 \mathrm{H}$, $\mathrm{m}, \mathrm{H} 2), 1.86-1.79(4 \mathrm{H}, \mathrm{m}, \mathrm{H} 2 / 9) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.9$, 153.6, 143.9, 113.6, 110.9, 73.8, 52.7, 51.6, 47.2, 37.7, 23.1; ESI-HRMS (m / z) calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{3}{ }^{+}[\mathrm{M}]^{+}$196.1099, found 196.1097.
(1R, 5R)-1-Isopropenyl-4-methylene-3-oxo-cyclopentanecarboxylic acid methyl ester (19):

To a solution of $\mathbf{1 8}(1.8792 \mathrm{~g}, 9.5760 \mathrm{mmol}, 1.0$ equiv $)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(94.3 \mathrm{~mL})$ to cooled at $0{ }^{\circ} \mathrm{C}$ was added Dess-Martin periodinane $(6.0923 \mathrm{~g}, 14.364 \mathrm{mmol}, 1.5$ equiv). After stirring for 1 h at $0{ }^{\circ} \mathrm{C}$, the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and quenched with saturated $\mathrm{Na}_{2} \mathrm{SO}_{3}$ solution and saturated NaHCO_{3} solution (1/1). The aqueous layer was then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. Purification on silica gel column chromatography (hexane $/ \mathrm{EtOAc}=4: 1$) afforded 19 as a colorless oil ($1.8449 \mathrm{~g}, 9.5188 \mathrm{mmol}, 99 \%$); $R_{\mathrm{f}} 0.83$ (hexane $/ \mathrm{EtOAc}=1: 1$); $[\alpha]_{\mathrm{D}}{ }^{25}-118.5(c 0.1, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.16(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}, \mathrm{H} 15), 5.51$ $(1 \mathrm{H}, \mathrm{d}, J=1.5 \mathrm{~Hz}, \mathrm{H} 15), 4.92-4.91(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 14), 4.77(1 \mathrm{H}, \mathrm{s}, \mathrm{H} 14), 4.00-3.97(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 5)$, $3.63(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 3.05-2.96(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 1), 2.85(1 \mathrm{H}, \mathrm{dd}, J=17.7,11.7 \mathrm{~Hz}, \mathrm{H} 2), 2.42(1 \mathrm{H}, \mathrm{dd}, J$ $=17.1,6.9 \mathrm{~Hz}, \mathrm{H} 2), 1.80(3 \mathrm{H}, \mathrm{s}, \mathrm{H} 9) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 203.8,171.5,143.5$, 142.7, 120.0, 111.9, 51.8, 50.6, 43.7, 40.3, 21.8; ESI-HRMS (m / z) calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{3}{ }^{+}[\mathrm{M}]^{+} 194.0943$, found 194.0942.
(1R, 3S, 5R)-3-Hydroxy-1-isopropenyl-4-methylene-cyclopentanecarboxylic acid methyl ester (19'):

Solid $\mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}(3.9585 \mathrm{~g}, 10.624 \mathrm{mmol}, 1.3$ equiv) was added in one portion to a solution of $\mathbf{1 9}\left(1.5874 \mathrm{~g}, 8.1727 \mathrm{mmol}, 1.0\right.$ equiv) in $\mathrm{MeOH}(77.4 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. After stirring for 10 minutes at $-78{ }^{\circ} \mathrm{C}, \mathrm{NaBH}_{4}(0.4019 \mathrm{~g}, 10.624 \mathrm{mmol}, 1.3$ equiv $)$ was added in one portion. The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 30 minutes and then warmed to $0^{\circ} \mathrm{C}$. After stirring for 10 minutes at $0{ }^{\circ} \mathrm{C}$, the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The aqueous layer was then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. Purification on silica gel column chromatography (hexane/EtOAc $=4: 1$) afforded 19' as a yellow oil ($1.4717 \mathrm{~g}, 7.4998 \mathrm{mmol}$, quant); $R_{\mathrm{f}} 0.67$ (hexane $/ \mathrm{EtOAc}=1: 1$); $[\alpha]_{\mathrm{D}}{ }^{25}+146.4(c 0.1$, $\mathrm{MeOH}) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.39(1 \mathrm{H}, \mathrm{t}, J=1.8 \mathrm{~Hz}, \mathrm{H} 15), 5.23(1 \mathrm{H}, \mathrm{t}, J=1.8 \mathrm{~Hz}$, H15), 4.86-4.85 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H} 14$), $4.76(1 \mathrm{H}, \mathrm{s}, \mathrm{H} 14), 4.54-4.49(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 3)$, 3.66-3.62 (4H, m, H5/Me), 2.65-2.56 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H} 1$), 2.35-2.26 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H} 2$), 2.17-2.02 $(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 2), 1.78(3 \mathrm{H}, \mathrm{s}$, H9); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.7,152.3,143.2,112.6,111.0,73.8,52.3,51.7,45.8$, 37.6, 22.7; ESI-HRMS $(\mathrm{m} / \mathrm{z})$ calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{3}{ }^{+}[\mathrm{M}]^{+}$196.1099, found 196.1097.
(1R,3S, 5R)-3-(p-Methoxy-benzyloxy)-1-isopropenyl-4-methylene-cyclopentanecarboxylic acid methyl ester (20):

A solution of $\mathbf{1 9}^{\prime}(2.2996 \mathrm{~g}, 11.72 \mathrm{mmol}, 1.0$ equiv) and p-methoxybenzyl trichloroacetimidate ($3.649 \mathrm{~mL}, 17.58 \mathrm{mmol}$, 1.5 equiv) in toluene (276 mL) was treated with $\mathrm{La}(\mathrm{OTf})_{3}(343.4 \mathrm{mg}, 0.1611 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ at room temperature. After stirring for 1 h at room temperature, the reaction mixture was concentrated in vacuo. Purification on silica gel column chromatography (hexane/EtOAc $=10: 1)$ afforded 20 as a colorless oil $(3.280 \mathrm{~g}, 10.37 \mathrm{mmol}$, $88 \%) ; R_{\mathrm{f}} 0.57$ (hexane/EtOAc $\left.=4: 1\right) ;[\alpha]_{\mathrm{D}}{ }^{20}+80.1\left(c 0.76, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.26-7.19(2 \mathrm{H}, \mathrm{m}, \mathrm{Bn}), 6.83-6.79(2 \mathrm{H}, \mathrm{m}, \mathrm{Bn}), 5.29(1 \mathrm{H}, \mathrm{t}, J=1.8 \mathrm{~Hz}, \mathrm{H} 15), 5.16(1 \mathrm{H}, \mathrm{t}, J=$ $2.4 \mathrm{~Hz}, \mathrm{H} 15), 4.77(1 \mathrm{H}, \mathrm{q}, J=1.8 \mathrm{~Hz}, \mathrm{H} 14), 4.69(1 \mathrm{H}, \mathrm{s}, \mathrm{H} 14), 4.59\left(1 \mathrm{H}, \mathrm{d}, J=11.7 \mathrm{~Hz}, \mathrm{CH}_{2}\right)$, $4.44\left(1 \mathrm{H}, J=11.7 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 4.32-4.26(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 3), 3.82(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 3.65(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}$, H5), $3.62(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.51-2.44(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 1), 2.23-2.02(2 \mathrm{H}, \mathrm{m}, \mathrm{H} 2), 1.78(3 \mathrm{H}, \mathrm{s}, \mathrm{H} 9) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.8,159.3,149.3,143.5,130.8,129.5,113.9,112.1,111.1,79.4$, $70.5,55.4,51.7,51.5,44.7,33.6,22.7$; ESI-HRMS (m / z) calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}_{4}{ }^{+}[\mathrm{M}]^{+} 316.1675$, found 316.1670 .
(1R, 3S, 5R)-5-(Hydroxymethyl)-1-isopropenyl-3-(p-methoxy-benzyloxy)-4-methylenecyclopentanecarboxylic acid methyl ester (20'):

To a solution of lithium aluminium hydride ($196.7 \mathrm{mg}, 5.1841 \mathrm{mmol}, 2.0$ equiv) in THF (10 mL) was added dropwise $20(820.1 \mathrm{mg}, 2.5920 \mathrm{mmol}, 1.0$ equiv) in THF ($10 \mathrm{~mL} \times 3$) using a cannula at $0{ }^{\circ} \mathrm{C}$. After stirring for 30 min at $0^{\circ} \mathrm{C}$, the reaction mixture was diluted with ether, quenched with $10 \% \mathrm{KOH}$ aqueous solution and filtered with Celite. The aqueous layer was then extracted with ether. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. Purification on silica gel column chromatography (hexane/EtOAc $=$ 4:1) afforded 20' as a colorless oil ($722.2 \mathrm{mg}, 2.5044 \mathrm{mmol}, 97 \%$); $R_{\mathrm{f}} 0.43$ (hexane $/ \mathrm{EtOAc}=$ 4:1); $[\alpha]_{\mathrm{D}}{ }^{25}+135.9(c 0.1, \mathrm{MeOH}) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30-7.26(2 \mathrm{H}, \mathrm{m}, \mathrm{Bn}), 6.91-$ $6.86(2 \mathrm{H}, \mathrm{m}, \mathrm{Bn}), 5.31(1 \mathrm{H}, \mathrm{s}, \mathrm{H} 15), 5.22(1 \mathrm{H}, \mathrm{s}, \mathrm{H} 15), 4.91(1 \mathrm{H}, \mathrm{s}, \mathrm{H} 14), 4.82(1 \mathrm{H}, \mathrm{s}, \mathrm{H} 14)$, $4.57\left(1 \mathrm{H}, \mathrm{d}, J=11.4 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 4.50\left(1 \mathrm{H}, \mathrm{d}, J=11.4 \mathrm{~Hz}^{2}, \mathrm{CH}_{2}\right), 4.31-4.25(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 3), 3.60(1 \mathrm{H}$, dd, $J=11.7,6.3 \mathrm{~Hz}, \mathrm{H} 6), 3.41(1 \mathrm{H}, \mathrm{dd}, J=11.7,7.2 \mathrm{~Hz}, \mathrm{H} 6), 2.81-2.76(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 5), 2.52-2.46$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 1), 2.20-2.12(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 2), 1.93-1.82(4 \mathrm{H}, \mathrm{m}, \mathrm{H} 2 / 9) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $159.3,152.2,144.4,130.5,129.4,113.9,112.0,110.9,79.6,70.8,62.6,55.3,47.5,44.6,34.0$, 23.2; ESI-HRMS (m / z) calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{3}{ }^{+}[\mathrm{M}]^{+}$288.1725, found 288.1721.

7-\{Hydroxy-[1-isopropenyl-3-(p-methoxy-benzyloxy)-4-methylene-cyclopentyl]-methyl\}-11-methylene-dihydro-furan-12-one (4):

20'

73\%

To a solution of $\mathbf{2 0}{ }^{\prime}\left(65.5 \mathrm{mg}, 0.2273 \mathrm{mmol}, 1.0\right.$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.8 \mathrm{~mL})$ to cooled at $0{ }^{\circ} \mathrm{C}$ was added Dess-Martin periodinane ($152.0 \mathrm{mg}, 0.3409 \mathrm{mmol}, 1.5$ equiv). After stirring for 2 h at $-5^{\circ} \mathrm{C}$, the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and quenched with saturated $\mathrm{Na}_{2} \mathrm{SO}_{3}$ and NaHCO_{3} solution (1/1). The aqueous layer was then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo afforded 5 as a colorless oil $(59.2 \mathrm{mg}, 0.2068 \mathrm{mmol}, 91 \%)$, and the residue was used for the second step without further purification; 5: $R_{\mathrm{f}} 0.70$ (hexane/EtOAc $=2: 1$).

Next, the residue 5 and bromolactone $\mathbf{6}\left(92.4 \mathrm{mg}, 0.5682 \mathrm{mmol}\right.$, 2.5 equiv) in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$ (1:2) $(0.3 \mathrm{~mL})$ was treated with In powder ($72.1 \mathrm{mg}, 0.6818 \mathrm{mmol}, 3.0$ equiv) at $0{ }^{\circ} \mathrm{C}$. After stirring for 16 h at $0^{\circ} \mathrm{C}$ to room temperature, the reaction mixture wa filtered through Celite and combined. The aqueous layer was then extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. Purification on silica gel column chromatography (hexane/EtOAc $=5: 1$) afforded 4 as a yellow oil $(63.8 \mathrm{mg}, 0.1659$ $\mathrm{mmol}, 73 \%(2$ steps $)(\mathrm{dr}=92: 8)$); $R_{f} 0.37($ hexane $/ \mathrm{EtOAc}=2: 1) ;[\alpha]_{\mathrm{D}}^{25}-36.0\left(c 0.032, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.27-7.22(2 \mathrm{H}, \mathrm{m}, \mathrm{Bn}), 6.90-6.67(2 \mathrm{H}, \mathrm{m}, \mathrm{Bn}), 6.32(1 \mathrm{H}, \mathrm{dd}, J=$ $2.7,0.9 \mathrm{~Hz}, \mathrm{H} 13), 5.98(1 \mathrm{H}, \mathrm{dd}, J=2.4,1.2 \mathrm{~Hz}, \mathrm{H} 13), 5.40(1 \mathrm{H}, \mathrm{s}, \mathrm{H} 15), 5.23(1 \mathrm{H}, \mathrm{s}, \mathrm{H} 15)$, 5.03 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H} 14$), 4.94 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H} 14$), 4.52-4.38 ($3 \mathrm{H}, \mathrm{m}, \mathrm{H} 8 / \mathrm{CH}_{2}$), 4.33-4.20 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H} 3$), 4.013.97 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H} 6$), $3.80(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 3.53$ ($1 \mathrm{H}, \mathrm{d}, J=9.3 \mathrm{~Hz}, \mathrm{H} 8$), 3.20-3.12 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H} 7$), 2.99$2.91(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 5), 2.62-2.21(2 \mathrm{H}, \mathrm{m}, \mathrm{H} 1 / 2), 2.28-2.21(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 2), 1.78(3 \mathrm{H}, \mathrm{s}, \mathrm{H} 9) ;{ }^{13} \mathrm{C}$ NMR
($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.0,159.6,149.1,142.1,135.1,129.8,129.3,126.0,117.2,114.1,112.8$, 80.1, 71.6, 70.0, 67.8, 55.4, 49.5, 47.3, 43.2, 35.2, 23.6; ESI-HRMS (m / z) calcd for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{O}_{5}{ }^{+}$ $[\mathrm{M}]^{+} 384.1937$, found 384.1950.

7-Hydroxymethyl-6-[1-isopropenyl-3-(p-methoxy-benzyloxy)-4-methylene-cyclopentyl]-11-methoxymethyl-dihydro-furan-12-one (21):

To a solution of 4 ($24.7 \mathrm{mg}, 0.0642 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{MeOH}(1.0 \mathrm{~mL})$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}(1.7 \mathrm{mg}, 0.0122 \mathrm{mmol}, 0.19$ equiv) at room temperature. After stirring for 1 h , the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The aqueous layer was then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. Purification on silica gel column chromatography (hexane/EtOAc $=2: 1$) afforded 21 as a colorless oil $(20.6 \mathrm{mg}, 0.0488 \mathrm{mmol}$, 76%); $R_{\mathrm{f}} 0.27$ (hexane/EtOAc $=1: 1$); $[\alpha]_{\mathrm{D}}{ }^{25}+29.9(c 0.1, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.31-7.29(2 \mathrm{H}, \mathrm{m}, \mathrm{Bn}), 6.88-6.86(2 \mathrm{H}, \mathrm{m}, \mathrm{Bn}), 5.42(1 \mathrm{H}, \mathrm{s}, \mathrm{H} 15), 5.29(1 \mathrm{H}, \mathrm{s}, \mathrm{H} 15), 4.98(1 \mathrm{H}$, s, H14), $4.92(1 \mathrm{H}, \mathrm{s}, \mathrm{H} 14), 4.57\left(1 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 4.46\left(1 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}^{2}, \mathrm{CH}_{2}\right), 4.33-$ $4.30(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 3), 4.11-4.09(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 6), 3.85(1 \mathrm{H}, \mathrm{dd}, J=6.0,2.1 \mathrm{~Hz}, \mathrm{H} 13), 3.80(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$, $3.74(1 \mathrm{H}, \mathrm{dd}, J=6.6,2.1, \mathrm{H} 8), 3.60-3.56(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 8), 3.43-3.39(4 \mathrm{H}, \mathrm{m}, \mathrm{H} 13 / \mathrm{Me}), 2.83(1 \mathrm{H}$, d, $J=4.2 \mathrm{~Hz}, \mathrm{H} 5), 2.69-2.65(2 \mathrm{H}, \mathrm{m}, \mathrm{H} 7 / 11), 2.56-2.51(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 1), 2.19-2.14(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 2)$, 2.09-2.04 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H} 2$), $1.75(3 \mathrm{H}, \mathrm{s}, \mathrm{H} 9) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.3,158.9,149.3$, $142.4,130.8,129.1,114.4,113.6,112.9,79.0,78.8,71.4,69.7,63.0,59.1,55.2,46.9,46.0,46.0$, 45.5, 33.2, 22.9.; ESI-HRMS (m / z) calcd for $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{NaO}_{6}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$439.2097, found 439.2128.

8-Hydroxy-3-(p-methoxy-benzyloxy)-11-methoxymethyl-4,10-dimethylene-decahydro-azuleno[6,7- β]furan-12-one ($\mathbf{2 2}^{\prime}$):

To a solution of DMSO ($49.1 \mu \mathrm{~L}, 0.691 \mathrm{mmol}, 10.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.29 \mathrm{~mL})$ was added dropwise oxalic chloride ($11.9 \mu \mathrm{~L}, 0.138 \mathrm{mmol}, 2.0$ equiv) at $-78^{\circ} \mathrm{C}$. After stirring at this temperature for 30 min , a solution of $21\left(28.8 \mathrm{mg}, 0.0691 \mathrm{mmol}, 1.0\right.$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.58$ mL) was added dropwise at the same temperature. The reaction mixture was stirred for 3 h and then $\mathrm{Et}_{3} \mathrm{~N}\left(48.3 \mu \mathrm{~L}, 0.346 \mathrm{mmol}, 5.0\right.$ equiv) was added. After stirring for 1 h at $-78^{\circ} \mathrm{C}$ and 15 min at room temperature, the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The aqueous layer was then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The crude aldehyde 22 was used in the next step without further purification.

To a solution of crude aldehyde 22 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.66 \mathrm{~mL})$ was added $(i \mathrm{PrO})_{2} \mathrm{TiCl}_{2}(26.2$ $\mathrm{mg}, 0.1029 \mathrm{mmol}, 1.6$ equiv) at $-18^{\circ} \mathrm{C}$. After stirring for 2 h at $-18^{\circ} \mathrm{C}$, the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and quenched with saturated $\mathrm{Na}_{2} \mathrm{SO}_{3}$ solution. The aqueous layer was then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. Purification on silica gel column chromatography (hexane/EtOAc $=$ 2:1) afforded 22, as a colorless oil ($25.6 \mathrm{mg}, 0.06176 \mathrm{mmol}, 89 \%$ (2 steps)); $R_{\mathrm{f}} 0.37$
(hexane/EtOAc $=1: 1) ;[\alpha]_{\mathrm{D}}{ }^{25}+32.4(c 0.1, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.27-7.25 $(2 \mathrm{H}, \mathrm{m}, \mathrm{Bn}), 6.88-6.86(2 \mathrm{H}, \mathrm{m}, \mathrm{Bn}), 5.39(1 \mathrm{H}, \mathrm{s}, \mathrm{H} 15), 5.30(1 \mathrm{H}, \mathrm{s}, \mathrm{H} 15), 5.21(1 \mathrm{H}, \mathrm{s}, \mathrm{H} 14)$, 4.96 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H} 14$), $4.54\left(1 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 4.43\left(1 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 4.25-4.19(1 \mathrm{H}$, $\mathrm{m}, \mathrm{H} 3 / 6), 4.07-4.04(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 8), 3.80(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 3.70(2 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}, \mathrm{H} 13), 3.37(3 \mathrm{H}, \mathrm{s}$, Me), 3.09-3.05 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H} 11$), 2.96-2.90 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H} 1$), $2.75(1 \mathrm{H}, \mathrm{t}, J=5.4 \mathrm{~Hz}, \mathrm{H} 5), 2.55-2.45$ (2H, m, H9), 2.42-2.37 (1H, m, H7), 2.29-2.23 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H} 2$), 1.98-1.93 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H} 2$); ${ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 176.3,159.5,149.7,143.9,131.0,129.7,129.7,117.4,114.4,114.2,80.4$, $78.0,70.5,69.5,59.7,55.7,51.1,51.0,45.2,43.6,43.3,36.9,21.4$; ESI-HRMS (m / z) calcd for $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{NaO}_{6}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$437.1940, found 437.1939.

8-Hydroxy-3-(p-methoxy-benzyloxy)-13,14,15-trimethylene-decahydro-azuleno[6,7-

 β]furan-12-one (3):

A solution of 22' ${ }^{\prime}(36.5 \mathrm{mg}, 0.0881 \mathrm{mmol}, 1.0$ equiv $)$ and $\mathrm{DBU}(40.0 \mu \mathrm{~L}, 0.2642 \mathrm{mmol}$, 3.0 equiv) in toluene (12.2 mL) was reflux for 6 h , cooled to room temperature, and concentrated in vacuo. Purification on silica gel column chromatography (hexane $/ \operatorname{EtOAc}=2: 1$) afforded $\mathbf{3}$ as a colorless oil ($26.4 \mathrm{mg}, 0.0690 \mathrm{mmol}, 77 \%$); $R_{\mathrm{f}} 0.30$ (hexane $/ \mathrm{EtOAc}=1: 1$); $[\alpha] \mathrm{D}^{25}+0.77(c$ $0.35, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.28-7.26(2 \mathrm{H}, \mathrm{m}, \mathrm{Bn}), 6.88-6.87(2 \mathrm{H}, \mathrm{m}, \mathrm{Bn})$, $6.40(1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}, \mathrm{H} 13), 5.90(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}, \mathrm{H} 13), 5.46(1 \mathrm{H}, \mathrm{s}, \mathrm{H} 15), 5.34(1 \mathrm{H}, \mathrm{s}$, H15), $5.17(1 \mathrm{H}, \mathrm{s}, \mathrm{H} 14), 4.95(1 \mathrm{H}, \mathrm{s}, \mathrm{H} 14), 4.57-4.46\left(3 \mathrm{H}, \mathrm{m}, \mathrm{H}_{6} / \mathrm{CH}_{2}\right), 4.34-4.32(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 8)$, 4.26-4.23 (1H, m, H3), 3.80 (3H, s, Me), 2.96-2.92 (2H, m, H1/5), 2.78-2.73 (1H, m, H7), 2.58 $(1 \mathrm{H}, \mathrm{dd}, J=8.1,3.6 \mathrm{~Hz}, \mathrm{H} 9), 2.45(1 \mathrm{H}, \mathrm{dd}, J=7.8,3.9 \mathrm{~Hz}, \mathrm{H} 9), 2.28-2.23(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 2), 1.95-$ 1.90 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H} 2$); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.0,159.5,149.6,143.7,136.7,130.9,129.7$, $129.7,121.8,117.8,114.2,114.2,80.2,78.3,70.7,66.1,55.7,51.5,50.9,45.8,41.8,37.2$; ESIHRMS (m / z) calcd for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{NaO}_{5}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$405.1678, found 405.1670.

3

PhOPPh_{2}, DEAD toluene, rt, 2 h 17\%
PhOPPh_{2} ($76.8 \mathrm{mg}, 0.2761 \mathrm{mmol}, 4.0$ equiv) in toluene ($605 \mu \mathrm{~L}$) was added to 3 (26.4 $\mathrm{mg}, 0.0690 \mathrm{mmol}, 1.0$ equiv) and $2(71.3 \mathrm{mg}, 0.2761 \mathrm{mmol}, 4.0$ equiv) using a cannula. The mixture was cooled to $0^{\circ} \mathrm{C}$, and then added DEAD ($126 \mu \mathrm{~L}, 0.2761 \mathrm{mmol}, 4.0$ equiv) $0^{\circ} \mathrm{C}$. After stirring for 2 h at room temperature, the mixture was diluted with ether, and quenched with a saturated NaHCO_{3} solution. The aqueous layer was then extracted with ether. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. Purification on silica gel column chromatography (hexane/EtOAc $=5: 1$) afforded 3' as yellow oil ($7.1 \mathrm{mg}, 0.01140 \mathrm{mmol}, 17 \%$); $R_{\mathrm{f}} 0.77$ (hexane $/ \mathrm{EtOAc}=2 / 1$); ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.25(2 \mathrm{H}, \mathrm{ddd}, J=8.4,1.1,0.6 \mathrm{~Hz}, \mathrm{Bz}), 6.87(2 \mathrm{H}, \mathrm{ddd}, J=8.4,1.1,0.6 \mathrm{~Hz}, \mathrm{Bz}), 6.34(1 \mathrm{H}, \mathrm{s}$, H13), $6.20(1 \mathrm{H}, \mathrm{d}, J=0.1 \mathrm{~Hz}, \mathrm{H} 19), 6.09(1 \mathrm{H}, \mathrm{s}, \mathrm{H} 13), 5.58(1 \mathrm{H}, \mathrm{d}, J=0.1 \mathrm{~Hz}, \mathrm{H} 19), 5.45(1 \mathrm{H}$, s, H15), 5.31 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H} 15$), 5.13 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H} 14$), $5.10(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 8), 4.89(1 \mathrm{H}, \mathrm{s}, \mathrm{H} 14), 4.54(1 \mathrm{H}, \mathrm{d}$, $J=1.5 \mathrm{~Hz}, \mathrm{H} 18), 4.48(2 \mathrm{H}, \mathrm{s}, \mathrm{Bz}), 4.40(1 \mathrm{H}, \mathrm{d}, J=1.5 \mathrm{~Hz}, \mathrm{H} 18), 4.34(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 3), 4.21(1 \mathrm{H}$, m, H6), $3.80(3 \mathrm{H}, \mathrm{s}, \mathrm{Bz}), 3.15(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 7), 3.01(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 1), 2.78(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 5), 2.69(1 \mathrm{H}, \mathrm{m}$, H9), $2.36(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 9), 2.27(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 2), 1.82(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 2), 1.25-1.07(21 \mathrm{H}, \mathrm{m}, \mathrm{TIPS}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta 169.5,165.1,159.3,148.5,142.4,139.7,137.9,130.4,129.6,125.0,122.5$, $118.1,115.5,114.0,80.2,78.4,77.4,77.16,76.9,74.1,70.0,61.7,55.4,53.3,47.6,46.4,37.2$, 36.8, 29.8, 18.1, 12.1; ESI-HRMS (m / z) calcd for $\mathrm{C}_{36} \mathrm{H}_{50} \mathrm{NaO}_{7} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]$ 645.3224, found 645.3216.

Cynaropicrin (1):

To a solution of $\mathbf{3}^{\prime}\left(4.2 \mathrm{mg}, 0.00674 \mathrm{mmol}, 1.0\right.$ equiv) in THF ($187 \mu \mathrm{~L}$) cooled to $0^{\circ} \mathrm{C}$ was added and TBAF ($13.5 \mu \mathrm{~L}, 0.01349 \mathrm{mmol}, 2.0$ equiv). After stirring for 5 min , the reaction mixture was diluted with EtOAc and quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The aqueous layer was then extracted with EtOAc. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo afforded $\mathbf{3}$ " as a colorless oil, and the residue was used for the second step without further purification; $\mathbf{3} ": R_{\mathrm{f}} 0.83$ (hexane/EtOAc $=1: 3$); ESIHRMS (m / z) calcd for $\mathrm{C}_{2} \mathrm{H}_{30} \mathrm{NaO}_{7}[\mathrm{M}+\mathrm{Na}]$ 489.1889, found 489.1912.

To a solution of $\mathbf{3} "$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(123 \mu \mathrm{~L})$ cooled to $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{PB}(\mathrm{pH} 7)(12.3 \mu \mathrm{~L})$ and DDQ ($3.1 \mathrm{mg}, 0.0135 \mathrm{mmol}, 2.0$ equiv). After stirring at $0^{\circ} \mathrm{C}$ for 4 h , the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and quenched with saturated $\mathrm{Na}_{2} \mathrm{SO}_{3}$ solution and saturated NaHCO_{3} solution (1/1). The aqueous layer was then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. Purification on HPLC afforded cynaropicrin (1) as a yellow oil ($2.2 \mathrm{mg}, 0.00635 \mathrm{mmol}, 94 \%$ (2 steps) ; $R_{\mathrm{f}} 0.50$ (hexane/EtOAc $=1 / 3) ;[\alpha]_{\mathrm{D}}{ }^{25}+152.2(c 0.08, \mathrm{MeOH}) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{Cl}_{3}\right) \delta 6.39(1 \mathrm{H}$, s, H19), $6.23(1 \mathrm{H}, \mathrm{d}, J=3.4 \mathrm{~Hz}, \mathrm{H} 13), 5.96(1 \mathrm{H}, \mathrm{s}, \mathrm{H} 19), 5.62(1 \mathrm{H}, \mathrm{d}, J=3.1 \mathrm{~Hz}, \mathrm{H} 13), 5.51$ $(1 \mathrm{H}, \mathrm{s}, \mathrm{H} 15), 5.37(1 \mathrm{H}, \mathrm{s}, \mathrm{H} 15), 5.12-5.18(2 \mathrm{H}, \mathrm{m}, \mathrm{H} 14 / \mathrm{H} 8), 4.95(1 \mathrm{H}, \mathrm{s}, 14 \mathrm{H}), 4.57(1 \mathrm{H}, \mathrm{t}, J=$
$7.2 \mathrm{~Hz}, \mathrm{H} 3), 4.39(2 \mathrm{H}, \mathrm{s}, \mathrm{H} 18), 4.26(1 \mathrm{H}, \mathrm{dd}, J=10.6 \mathrm{~Hz}, \mathrm{H} 6), 3.24-3.17(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 7), 3.01-$ $2.95(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 1), 2.85(1 \mathrm{H}, \mathrm{t}, J=10.3 \mathrm{~Hz}, \mathrm{H} 5) 2.72(1 \mathrm{H}, \mathrm{dd}, J=14.8 \mathrm{~Hz}, \mathrm{H} 9), 2.41(1 \mathrm{H}, \mathrm{dd}, J$ $=14.4 \mathrm{~Hz}, \mathrm{H} 9), 2.30-2.20(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 2), 1.79-1.69(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 2) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $168.8,165.1,152.0,141.5,139.0,137.0,126.6,122.6,118.0,113.4,78.2,74.1,73.6,62.1,51.1$, 47.4, 45.1, 38.9, 36.8; ESI-HRMS (m / z) calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{NaO}_{6}[\mathrm{M}+\mathrm{Na}]$ 369.1314, found 369.1310.

Scheme S1. Synthesis of C8-brominated C5-epimer of 21 (S1) prepared from compound 16. Reagents and conditions: a) PPTS, $\mathrm{MeOH}, \mathrm{rt}, 95 \%$; b) $\mathrm{CBr}_{4}, \mathrm{PPh}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 92 \%$; c) $\mathrm{Ph}_{2} \mathrm{Se}_{2}$, $\mathrm{NaBH}_{4}, \mathrm{EtOH}$, rt, then $\mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{THF}, 0^{\circ} \mathrm{C}, 90 \%$; d) DMP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 90 \%$; e) $\mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}$, $\mathrm{NaBH}_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$, quant; f) PMBTCA, $\mathrm{La}(\mathrm{OTf})_{3}$, toluene, rt, 77%; g) LAH, THF, $0^{\circ} \mathrm{C}$, 97%; h) DMP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 90 \%$; i) $\mathrm{Zn}(0)$, $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}, \mathrm{rt}, 71 \%$; j) $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}, \mathrm{rt}, 66 \%$; k) $\mathrm{PPh}_{3}, \mathrm{CBr}_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 52 \%$.
34/kinurakosakull 8

$$
\begin{aligned}
& 2816^{\circ} \\
& 969
\end{aligned}
$$

$$
\text { Ztte: } 30
$$

$$
\begin{aligned}
& 1698^{\circ}-70 \\
& 9128^{\circ}
\end{aligned}
$$

$$
6196^{\circ}
$$

7686°
990°
9910°
0200°
$89 t \mathrm{~g}$.
0099°
6829
9289
2022°
0782°
9976.
$1026^{\circ} 8$
9198°
$9988^{\circ} 7$
8498°
L987.
$6199^{\circ} 7$
$2229^{\circ} 7$
$6008^{\circ} 7-1$
0098°
\$4kinura keakku0Z

$6801 \cdot 91$
$8280 \cdot 02$
$8280 \cdot 02$
$0215 \cdot 02$
2886.18-
$2760 \cdot 68=$
$0799 \cdot 15=$
$\begin{aligned} & 1296 \cdot 29 \\ & 1006 \cdot 29 \\ & 168 \cdot 89 \\ & 8826 \cdot 22 \\ & 0178 \cdot 9 l \\ & 0091 \cdot 2 l \\ & 06 L \%\end{aligned}>$
\longrightarrow
2958.101-
1087*011-
$0098 \cdot 9 t l-$

1900 . 181
$02 t 9 \cdot|t|-$
9199'切l-ー
$1112 \cdot 821$

19

$0096^{\circ}{ }^{\circ}$

19
$6162^{\circ} 12=$

$0292^{\circ} 07=$
$9622^{\circ}=$
$8619^{\circ}=$
$8122^{\circ} 19=$
$82+8 \cdot 92$
$009 \cdot[L$
$8085 \cdot L Z$
$9928 \cdot 111-$
$9580^{\circ} 021-$
$8+99^{\circ} 271 \sim$
$9187 \cdot 871-$
$2889^{\circ} 121$
$808 L^{\circ} 802-$

19'

34/yoshineto474
2182.36
2769'88-
7899° 煬———
$6289.19 —$
$8882.19 —$
$1617.99 —$
$8909.02=$
8682.92
$0091^{\circ} \rightarrow 2 \rightarrow$
$8909^{\circ} \cdot 2 L \longrightarrow$
$8601 \cdot 111-$
$8821 \cdot 811-$
$0268.811-$
$7987 \cdot 681-$
$6828 \cdot 081$
$8019 \cdot 8 t 1-$
$2838 \cdot 6 t 1-$
$6987^{\circ} 691-$
$798 L^{\circ}$ 2LL

20

$9676.011-$
$9080.611-$
$9868^{\circ} 81-$
$+288^{\circ} 621=$
$\angle 9 t g^{\circ} 081-$
しゃげかもい—
$9 \vdash 61 \cdot 291-$
$1288^{\circ} 691-$

$9079 \cdot 82=$

34/kinurakpsaku109
34/y9shincto408

21

X-ray diffraction analysis of S1:

Crystals were obtained from a hexane solution by slow evaporation of the solvent. A colorless platelet crystal $(0.35 \times 0.30 \times 0.03 \mathrm{~mm})$ was mounted on a polyimide film, MicroMounts ${ }^{\mathrm{TM}}$ (MiTegen), and coated with paraffin. All measurements were made on a Rigaku Mercury70 diffractometer using graphite monochromated $\mathrm{Mo}-\mathrm{K} \alpha$ radiation at 223 K . Data were collected and processed using CrystalClear (Rigaku). ${ }^{1}$ The structure was solved by direct methods ${ }^{2}$ and expanded using Fourier techniques. A unit cell contained two independent molecules whose structures are almost identical. The non-hydrogen atoms were refined anisotropically. Hydrogen atoms were refined using the riding model. The final cycle of full-matrix least-squares refinement on F^{2} was based on 7316 observed reflections and 547 variable parameters. All calculations were performed using the CrystalStructure ${ }^{3}$ crystallographic software package except for refinement, which was performed using SHELXL97. ${ }^{4}$ Crystallographic data are summarized in table S1. CIF data were deposited in Cambridge Structural Database (CCDC2038598).

Figure S1. Molecular structure of S1. Draws with 50% probability.

Table S1. Crystal data and structure refinement for S1.

Empirical Formula	$\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{BrO}_{5}$
Formula Weight	479.41
Crystal Color, Habit	colorless, platelet
Crystal Dimensions	$0.35 \times 0.30 \times 0.03 \mathrm{~mm}$
Crystal System	triclinic
Lattice Type	Primitive
Space Group	P1 (\#1)
Lattice Parameters	$a=8.703(13) \AA$
	$b=9.329(14) \AA$
	$c=14.17(2) \AA$
	$\alpha=94.13(3){ }^{\circ}$
	$\beta=91.26(3){ }^{\circ}$
	$\gamma=90.13(2)^{\circ}$
	$V=1147(3) \AA^{3}$
Z value	2
Absorption coefficient	$18.284 \mathrm{~cm}^{-1}$
Radiation	$\operatorname{MoK} \alpha(\lambda=0.71073 \AA)$
	graphite monochromated
Temperature	223 K
No. of Reflections Measured	Total: 10727
	Unique: 7316
	$\left(R_{\text {int }}=0.0358\right)$
Corrections	Lorentz-polarization Absorption (trans. factors: $0.737-0.947$)

No. of Reflections	10727
No. Variables	547
Reflection/Parameter Ratio	13.37
Residuals: $R ; w R$ (All data)	$0.1182 ; 0.2234$
Residuals: R_{1}	0.0737
No. of Reflections to calc R_{1}	3598
Goodness of Fit Indicator	0.935
Flack Parameter	-0.032 (Friedel pairs $=3296)$
Max Shift/Error in Final Cycle	0.000
Maximum peak in Final Diff. Map $\left(\mathrm{e} \AA^{3}\right)$	0.34
Minimum peak in Final Diff. Map (e $\left.\AA^{3}\right)$	-0.73
CCDC\#	

References:

1. CrystalClear: Data Collection and Processing Software, Rigaku Corporation (1998-2015). Tokyo 196-8666, Japan.
2. SIR2008: Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. Siliqi, D. and Spagna R. (2007). J. Appl. Cryst. 40, 609-613.
3. CrystalStructure 4.2.5: Crystal Structure Analysis Package, Rigaku Corporation (20002017). Tokyo 196-8666, Japan.
4. SHELXL97: Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

DFT calculation with B3LYP/6-31G* for compound $\mathbf{S 2}$:

