Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2021

Electronic Supporting Information

for

Switchable Regioselective Hydroalkylation of 2-Arylindoles with Maleimides

Dhananjay S. Nipate,^{a,‡} Vikki N. Shinde,^{a,‡} Krishnan Rangan,^b and Anil Kumar^{a,*}

^aDepartment of Chemistry, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan, 333031, India ^bDepartment of Chemistry, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Telangana, 500078, India E-mail: <u>anilkumar@pilani.bits-pilani.ac.in</u>

[‡]Author contributed equally

Table of Contents

1	Mechanistic Studies	
	1.1 Deuterium Exchange Experiment	S1
	1.2 Intermolecular KIE Experiment	S2
2	Competition Experiment	
	2.1 Competition Experiment for ortho-Hydroalkylation	S3
	2.2 Competition Experiment for C3-Hydroalkylation	S4
3	Copies of ¹ H and ¹³ C{ ¹ H} NMR spectra of 3 and 4	S5-S50
4	X-ray Crystallographic Analysis of 3aa	S51-S52
5	References	S52

1. Mechanistic Studies:

1.1 Deuterium exchange experiment:

An oven dried 10 mL pressure tube charged with 2-phenylindole (**1a**, 0.26 mmol), Cu(OAc)₂.H₂O (0.39 mmol), AgSbF₆ (20 mol %), NaOAc (0.52 mmol), [Ru(*p*-cymene)Cl₂]₂ (2.5 mol %), D₂O (25 equiv.) and DCE (2 mL). The reaction mixture stirred at 100 °C in oil bath for 36 h. After completion of reaction, it was cooled to ambient temperature, quenched by water and extracted in ethyl acetate (10 mL \times 3). The combined organic layer was dried over Na₂SO₄ and evaporated under reduced pressure. The resulting residue was purified by column chromatography (*n*-hexane/EtOAc) on (100-200 mm) size silica gel to afford the product **1a-D₃**. 75% of Deuterium

incorporation was observed at both *ortho* C–H bonds of 2-phenyl ring and 15% of deuterium incorporation was observed at C3-position to give $1a-D_3$.

1.2 Intermolecular KIE Experiment:

An oven dried 10 mL pressure tube charged with 2-phenylindole (**1a**, 50 mg, 0.26 mmol), 2-phenyl- D_5 -indole (**1a**- D_5 , 52 mg, 0.26 mmol), *N*-methyl maleimide (**2a**, 57 mg, 0.52 mmol), Cu(OAc)₂.H₂O (77 mg, 0.39 mmol), AgSbF₆ (18 mg, 20 mol %), NaOAc (43 mg, 0.52 mmol), [Ru(*p*-cymene)Cl₂]₂ (8 mg, 2.5 mol %), and DCE (2 mL). The reaction mixture stirred at 100 °C in oil bath for 36 h. After completion of reaction, it was cooled to ambient temperature, quenched by water and extracted in ethyl acetate (10 mL × 3). The combined organic layer was dried over Na₂SO₄ and evaporated under reduced pressure. The resulting residue was purified by column chromatography (*n*-hexane/EtOAc) on (100-200 mm) size silica gel to afford the mixture of products **3aa** and **3aa**-*d*₄. The isolated product was analyzed by ¹H NMR spectrum, the intermolecular KIE (k_H/k_D) was calculated as 3.76.

2. Competition Experiment

2.1. Competition Experiment for ortho-Hydroalkylation

An oven dried 10 mL pressure tube charged with 2-(4-fluorophenyl)-1*H*-indole (1d, 0.26 mmol), 2-(4-methoxyphenyl)-1*H*-indole (1d, 0.26 mmol), *N*-methyl maleimide (2a, 0.52 mmol), Cu(OAc)₂·H₂O (77 mg, 0.39 mmol), AgSbF₆ (18 mg, 20 mol %), NaOAc (43 mg, 0.52 mmol), [Ru(*p*-cymene)Cl₂]₂ (8 mg, 2.5 mol %) in dichloro ethane (2 mL). The reaction tube was caped tightly and stirred at 100 °C in an oil bath for 36 h. After completion of reaction, it was cooled to ambient temperature, quenched by water and extracted in ethyl acetate (10 mL × 3). The combined organic layer was dried over Na₂SO₄ and evaporated under reduced pressure. The resulting residue was purified by column chromatography (*n*-hexane/EtOAc) on (100-200 mm) size silica gel to afford the mixture of products **3da** and **3ea**. The isolated product was analyzed by ¹H NMR spectrum, and ratio predicted as 3:2.

2.2 Competition Experiment for C3-Hydroalkylation:

An oven dried 10 mL pressure tube charged with 2-(4-fluorophenyl)-1*H*-indole (1c, 0.26 mmol), 2-(4-methoxyphenyl)-1*H*-indole (1d, 0.26 mmol), *N*-methyl maleimide (2a, 0.52 mmol), and TFE (2 mL). The reaction mixture stirred at 100 °C in oil bath for 24 h. After completion of reaction, it was cooled to ambient temperature, quenched by water and extracted in ethyl acetate (10 mL \times 3). The combined organic layer was dried over Na₂SO₄ and evaporated under reduced pressure. The resulting residue was purified by column chromatography (*n*-hexane/EtOAc) on (100-200 mm) size silica gel to afford the mixture of products **4ac** and **4ad**. The isolated product was analyzed by ¹H NMR spectrum, and ratio predicted as 2:3.

3. Copies of ¹H and ¹³C{¹H} NMR spectra of 3 and 4

S13

3.097 3.039 3.029 2.994 2.982

100 90 f1 (ppm)

	1		1		1		1 1	1					1		1		1		
	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10
									f1	L (ppm)									

100 90 f1 (ppm)

82.86 82.86 82.86 82.86 82.86 82.86 82.86 82.86 82.86 82.86 83.87 83.87 83.82 84.60 <

4ag, ¹H NMR 400 MHz, CDCI₃

4. X-ray Crystallographic Analysis of 3aa

The single crystals of the compound **3aa** were obtained as yellow blocks from chloroformhexane solvent mixture. The crystal data collection and data reduction were performed using CrysAlis PRO on a single crystal Rigaku Oxford XtaLab Pro diffractometer. The crystals were kept at 93(2) K during data collection using CuK α ($\lambda = 1.54184$) radiation. Using Olex2,¹ the structure was solved with the ShelXT² structure solution program using Intrinsic Phasing and refined with the ShelXL³ refinement package using Least Squares minimization.

Identification code	exp_687-AK-DNS-59
Empirical formula	$C_{19}H_{16}N_2O_2$
Formula weight	304.34
Temperature/K	93(2)
Crystal system	monoclinic
Space group	P21
a/Å	12.4146(6)
b/Å	9.1711(5)
c/Å	13.5882(8)
α/°	90
β/°	105.086(5)
$\gamma/^{\circ}$	90
Volume/Å ³	1493.77(14)
Z	4
$\rho_{calc}g/cm^3$	1.353
μ/mm^{-1}	0.716
F(000)	640.0
Crystal size/mm ³	0.15 imes 0.1 imes 0.04
Radiation	$Cu K\alpha (\lambda = 1.54184)$
2Θ range for data collection/°	6.738 to 159.198
Index ranges	$-15 \le h \le 14, -11 \le k \le 6, -16 \le l \le 17$
Reflections collected	8879
Independent reflections	4340 [$R_{int} = 0.0685$, $R_{sigma} = 0.0914$]
Data/restraints/parameters	4340/1/417
Goodness-of-fit on F ²	1.094
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0862, wR_2 = 0.2693$
Final R indexes [all data]	$R_1 = 0.0903, wR_2 = 0.2721$
Largest diff. peak/hole / e Å ⁻³	0.66/-0.49
Flack parameter	-0.1(4)

Table S1 Crystal data and structure refinement for 3aa.

Figure S1. The crystal structure ORTEP diagram of the compound **3aa**. Only one of the two molecules appear in an asymmetric unit is shown for clarity. The thermal ellipsoids are drawn at 50 % probability level. CCDC number 2068507.

5. References

- 1. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. *Appl. Cryst.*, 2009, **42**, 339-341.
- 2. G. Sheldrick, Acta Cryst. A, 2015, 71, 3-8.
- 3. G. Sheldrick, Acta Cryst. C, 2015, 71, 3-8.