Synthesis, Biological Evaluation and Molecular Modeling of Urea-Containing MraY Inhibitors[†]

Martin Oliver,^a Laurent Le Corre,^a Mélanie Poinsot,^a Alessandra Corio,^a Léa Madegard,^a Michaël Bosco,^a Ana Amoroso,^b Bernard Joris,^b Rodolphe Auger,^c Thierry Touzé,^c Ahmed Bouhss,^d Sandrine Calvet-Vitale^{a,*} and Christine Gravier-Pelletier^{a,*}

ELECTRONIC SUPPLEMENTARY INFORMATION

Table of contents

Experimental procedure for the synthesis of primary amines 13c-e and 13h-k	4
10-phenyldecan-1-amine 13c	
4-(8'-Amino-octanyloxy)-benzophenone 13d	
3,7,11,15-tetramethylhexadecan-1-amine 13e	
N,N-dioctylethane-1,2-diamine 13h	5
2-(4-(5-(trifluoromethyl)pyridin-2-yl)piperazin-1-yl)ethan-1-amine 13i	5
8'-(4-benzhydrylpiperazin-1-yl)octan-1-amine 13j	5
N,N-dioctyloctane-1,8-diamine 13k .	5
8-azidooctyl methanesulfonate 16	6
1-(8'-azidooctyl)-4-benzhydrylpiperazine 17	6
4-(8'-Azido-octanyloxy)-benzophenone 18	6
8-azido- <i>N,N</i> -dioctyloctan-1-amine 19	6
N-phtalimido-10-(9-(dioctylamino)ethyl) 20	7
2-(2-(4-(5-(trifluoromethyl)pyridin-2-yl)piperazin-1-yl)ethyl) phtalimide 21	7
1H and 13C Spectra	8
Compound 2	
Side product 3	9
Side product 4	
Compound 7	
5'(S)-C-(Phthalimidomethyl)-2',3'-di-O-(tert-butyldimethylsilyl)uridine 8	
1'',5''-Dideoxy-2'',3''-O-isopentylidene-5''-azido-1''-[2',3'-O-isopropylidene-5'(S)- phthalimidomethyl-uridinyl]-β-D-ribofuranose 10	13

^a Université de Paris, Faculté des Sciences, UMR CNRS 8601, LCBPT, F-75006 Paris, France. E-mail for C. G.-P.: <u>christine.gravier-pelletier@u-paris.fr</u>, E-mail for S. C.-V.: <u>sandrine.calvet-vitale@u-paris.fr</u>

^b Unité de Physiologie et Génétique Bactériennes, Centre d'Ingénierie des Protéines, Département des Sciences de la Vie, Université de Liège, Sart Tilman, B4000 - Liège 1- Belgique.

^c Institute for Integrative Biology of the Cell (I2BC), CNRS, Université Paris Sud, CEA, F-91405, Orsay, France.

^d Laboratoire Structure-Activité des Biomolécules Normales et Pathologiques (SABNP), Univ Evry, INSERM U1204, Université Paris-Saclay, 91025 Evry, France.

⁺ Electronic supplementary information (ESI) available: 1. Numbering system, 2. ¹H and ¹³C NMR spectra of all new compounds.

1",5"-Dideoxy-2",3"-O-isopentylidene-5"-azido-1"-[2',3'-O-isopropylidene-5'(S)-aminomethyl- uridinyl]-β-D-ribofuranose 11	. 14
Compound 12	. 15
10-phenyldecan-1-amine 13c	. 16
4-(8'-Amino-octanyloxy)-benzophenone 13d	. 17
3,7,11,15-tetramethylhexadecan-1-amine 13e	. 18
N,N-dioctylethane-1,2-diamine 13h	. 19
2-(4-(5-(trifluoromethyl)pyridin-2-yl)piperazin-1-yl)ethan-1-amine 13i	. 20
8'-(4-benzhydrylpiperazin-1-yl)octan-1-amine 13j	. 21
<i>N,N</i> -dioctyloctane-1,8-diamine 13k	. 22
8-azidooctyl methanesulfonate 16	. 23
1-(8'-azidooctyl)-4-benzhydrylpiperazine 17	. 24
4-(8'-Azido-octanyloxy)-benzophenone 18	. 25
8-azido- <i>N,N</i> -dioctyloctan-1-amine 19	. 26
<i>N</i> -phtalimido-10-(9-(dioctylamino)ethyl) 20	. 27
2-(2-(4-(5-(trifluoromethyl)pyridin-2-yl)piperazin-1-yl)ethyl) phtalimide 21	. 28
Compound 23a	. 29
Compound 23b	. 30
Compound 23c	. 31
Compound 23d	. 32
Compound 23e	. 33
Compound 23f	. 34
Compound 23g	. 35
Compound 23h	. 36
Compound 23i	. 37
Compound 23j	. 38
Compound 23k	. 39
Compound 24a	. 40
Compound 24b	. 41
Compound 24c	. 42
Compound 24d	. 43
Compound 24e	. 44
Compound 24f	. 45
Compound 24g	. 46
Compound 24h	. 47
Compound 24i	. 48
Compound 24j	. 49

1-butyi-3-(2-(dioctylamino)ethyl)urea 27	E 1
¹ H Spectra of compound 7	51 52

Experimental procedure for the synthesis of primary amines 13c-e and 13h-k

Fig. 1S Structure of the selected primary amines 13a-k.

10-phenyldecan-1-amine 13c.

To a solution of 10-phenyl-1-azide (380 mg, 1.46 mmol, 1 equiv) in THF (4 mL) was added triphenylphosphine (768 mg, 2.93 mmol, 2 equiv.) and pure water (1 mL). The reaction mixture was stirred at r.t. for 18 h. and concentrated *in vacuo*. Flash chromatography of the residue (Cyclo/EtOAc 1/1; then EtOAc 100% and EtOAc/MeOH 7/3) afforded the compound 13c as a white powder (315 mg, 92% yields): R_f 0.1 (EtOAc/MeOH 7/3); IR (film) 3379, 2925, 2853, 1645, 1352, 1275, 1261, 749; ¹H NMR δ 7.26 – 7.01 (m, 5 H, H₁₂H₁₃H₁₄), 2.64 (t, J_{H1-H2} = 7.1 Hz, 2 H, H₁), 2.54 – 2.50 (m, 2 H, H₁₀), 1.57 – 1.49 (m, 2 H, H₉), 1.43 – 1.37 (m, 2 H, H₂), 1.27-1.16 (m, 12 H, H₃-H₈); ¹³C NMR (126 MHz, CDCl₃) δ 143.0 (C₁₁), 128.5 (C₁₂), 128.3 (C₁₃), 125.6 (C₁₄), 42.3 (C₁), 36.1 (C₁₀), 34.0 (C₂), 31.6 (C₉), 29.7 (C₄), 29.6 (C₈), 29.6 (C₅, C₇), 29.4 (C₆), 27.0 (C₃); HRMS APCI⁺ calcd for C₁₆H₂₇N₁ (M + H)⁺ 234.2216, found 234.2215.

4-(8'-Amino-octanyloxy)-benzophenone 13d.

To a solution of compound 18 (60 mg, 170 μ mol, 1 equiv.) in THF (17 mL) was added triphenylphosphine (179 mg, 683 μ mol, 4 equiv.) and pure water. The reaction mixture was stirred at r.t. for 18 h. and then concentrated in vacuo. Flash chromatography of the residue (Cyclo/EtOAc 1/1; then EtOAc 100% and EtOAc/MeOH 7/3) afforded compound 13d as a white powder (32 mg, 98% yield): Rf 0.10 (EtOAc/MeOH 7/3); IR (film): 3279, 2926, 2853, 1641, 1602, 1506, 1473, 1444, 1317, 1307, 1290, 1250, 1174, 1149, 939, 846, 740; 1H NMR δ 7.82 (d, JH2-H3 = 8.8 Hz, 2 H, H2), 7.78 – 7.72 (m, 2 H, H7), 7.56 (t, JH9-H8 = 7.4 Hz, 1H, H9), 7.47 (t, JH8-H9 = JH8-H7 = 7.4 Hz, 2 H, H8), 6.95 (d, JH3-H2 = 8.8 Hz, 2 H, H3), 4.04 (t, JH1'-H2' = 6.5 Hz, 2 H, H1'), 2.68 (t, JH8'-H7' = 7.0 Hz, 2 H, H8'), 1.86 – 1.78 (m, 2 H, H2'), 1.50 – 1.42 (m, 4 H, H7' H3'), 1.38-1.32 (m, 6 H, H6' H5' H4'); 13C NMR δ 195.7 (C5), 163.0 (C4), 138.5 (C6), 132.7 (C2), 131.9 (C9), 130.1 (C1), 129.8 (C7), 128.3 (C8), 114.1 (C3), 68.4 (C1'), 42.3 (C8'), 33.8 (C7'), 29.5 (C4'), 29.4 (C6'), 29.2 (C2'), 26.9 (C5'), 26.1 (C3'); HRMS APCI+ calcd for C21H28NO2 (M + H)+ 326.2115, found 326.21149.

3,7,11,15-tetramethylhexadecan-1-amine 13e.

To a solution of 3,7,11,15-tetramethylhexadecan-1-azide (75 mg, 232 μ mol, 1 equiv) in THF (3 mL) was added triphenylphosphine (121 mg, 463 μ mol, 2 equiv.) and pure water (1 mL). The reaction mixture was stirred at r.t. for 12 h and concentrated *in vacuo*. Flash chromatography of the residue (Cyclo/EtOAc 1/1; then EtOAc 100% and EtOAc/MeOH 7/3) afforded the compound 13e as a colorless oil (67 mg, 98% yield): R_f 0.15 (EtOAc/MeOH 7/3); IR (film) 2954, 2925, 2868, 1463, 1377, 1275, 1260,

1262, 1136, 938, 875, 799, 764; ¹H NMR δ 2.85 – 2.68 (m, 2 H, H₁), 2.32 (s, 2 H, NH₂), 1.62 – 1.43 (m, 4 H, CH), 1.48 – 1.00 (m, 20 H, CH₂), 0.93 – 0.79 (m, 15 H, CH₃); HRMS APCl⁺ calcd for C₂₀H₄₄N₁ (M + H)⁺ 298.3468, found 298.3468. Other spectral data were in agreement with literature.¹

N,*N*-dioctylethane-1,2-diamine 13h.

The compound 20 (75 mg, 180 µmol, 1 equiv.) was dissolved in MeOH (10 mL) and hydrazine monohydrate (28 µL, 904 µmol, 5 equiv.) was added dropwise. The reaction mixture was stirred for 12 h at 80 °C. Solvent were removed *in vacuo* and the product was then dissolved in DCM, filtered through a celite pad, and rinsed with DCM. The diamine 13h was obtained in quantitative yield and analyzed: IR (film): 3005, 2954, 2924, 2854, 1643, 1573, 1467, 1365, 1275, 1260, 1206, 1153, 1094, 1021, 936, 764, 750; ¹H NMR δ 3.11 (bs, 1 H, NH₂), 2.75 (t, *J*_{H1-H2} = 5.5 Hz, 2 H, H₁), 2.48 (t, *J*_{H2-H1} = 5.5 Hz, 2 H, H₂), 2.43 – 2.35 (m, 4 H, H₃), 1.40 (bs, 4 H, H₄), 1.25 (s, 10 H, H₅-H₉), 0.86 (t, *J*_{H10-H9} = 6.8 Hz, 6 H, H₁₀); ¹³C NMR δ 56.7 (C₂), 54.4 (C₃), 39.6 (C₁), 31.9, 29.7, 29.4, 27.6, 27.2 (C₄), 22.5, 14.2 (C₁₀); HRMS APCI⁺ calcd for C₁₈H₄₁N₂ (M + H)⁺ 285.3264, found 285.3268.

2-(4-(5-(trifluoromethyl)pyridin-2-yl)piperazin-1-yl)ethan-1-amine 13i.

The compound 21 (50 mg, 123 µmol, 1 equiv.) was dissolved in MeOH (8 mL) and hydrazine monohydrate (19 µL, 618 µmol, 5 equiv.) was added dropwise. The reaction mixture was stirred for 12 h at 80 °C. The solvent were removed *in vacuo*, the product was then dissolved in DCM, filtered through a celite pad, and rinsed with DCM. The amine 13i was obtained in quantitative yield: IR (film) 3006, 2985, 2924, 2552, 1614, 1508, 1458, 1329, 1275, 1260, 1169, 1116, 1082, 764, 750; ¹H NMR δ 8.41 – 8.37 (m, 1 H, H₅), 7.62 (d, *J*_{H3-H2} = 9.0 Hz, 1 H, H₃), 6.63 (d, *J*_{H2-H3} = 9.0 Hz, 1 H, H₂), 3.68 – 3.63 (m, 4 H, H₇), 2.84 (t, *J*_{H7-H6} = 6.1 Hz, 2 H, H₉), 2.60 – 2.53 (m, 4 H, H₆), 2.48 (t, *J*_{H8-H9} = 6.1 Hz, 2 H, H₈); ¹³C NMR δ 160.5 (C₁), 145.8 (C₅), 134.5 (C₃), 125.71 (CF₃), 115.3 (C₄), 105.6 (C₂), 61.2 (C₆), 53.0 (C₈), 44.8 (C₇), 38.8 (C₉); HRMS APCI⁺ calcd for C₁₂H₁₈F₃N₄ (M + H)⁺ 275.1478, found 275.14726.

8'-(4-benzhydrylpiperazin-1-yl)octan-1-amine 13j.

To a solution of compound 17 (35 mg, 86 µmol, 1 equiv.) in dry THF (9 mL) was added triphenylphosphine (90 mg, 345 µmol, 4 equiv.) and pure water. The reaction mixture was stirred at r.t. for 18 h and then concentrated *in vacuo*. Flash chromatography of the residue (Cyclo/EtOAc 1/1; then EtOAc 100% and EtOAc/MeOH 7/3) afforded the compound 13j as a white powder (32 mg, 98% yield): Rf 0.15 (EtOAc/MeOH 7/3); IR (film): 3362, 3060, 3026, 2927, 2853, 2808, 2770, 1597, 1491, 1451, 1376, 1305, 1281, 1187, 1151, 1008, 850, 757, 700; ¹H NMR δ 7.34 (d, *J*_{H7-H8} = 8.5, 4H, H₇), 7.18 (dd, *J*_{H8-H9} = 8.5, *J*_{H8-H7} = 7.5 Hz, 4H, H₈), 7.09 (t, *J*_{H9-H8} = 7.5 Hz, 2 H, H₉), 4.14 (s, 1 H, H₅), 2.62 (dd, *J*_{H8'a}-H_{8'b} = 13.7, *J*_{H8'-H7'} = 6.7 Hz, 2 H, H_{8'}), 2.38 (bs, 1 H, H₉, H₃), 2.31 – 2.20 (m, 2 H, H_{1'}), 1.38 (s, 4 H, H₂), $H_{2'}$), 1.28 – 1.14 (m, 8 H, H_{6'}, H_{3'}); ¹³C NMR δ 142.9 (C₆), 128.5 (C₈), 128.0 (C₇), 127.0 (C₉), 76.40 (C₅), 58.9 (C_{1'}), 53.6 (C_{8'}), 52.0 (C₃ = C₂), 42.0 (C_{7'}), 33.0 (C_{2'}), 29.4 (C_{3'}), 27.7 (C_{5'}), 26.9 (C_{4'}); HRMS APCI⁺ calcd for C₂₅H₃₈N₃ (M + H)⁺ 380.3060, found 380.3049.

N,N-dioctyloctane-1,8-diamine 13k.

To a solution of compound 19 (50 mg, 127 μ mol, 1 equiv.) in dry THF (13 mL) was added triphenylphosphine (132 mg, 506 μ mol, 4 equiv.) and pure water. The reaction mixture was stirred at r.t. for 18 h and then concentrated *in vacuo*. Flash chromatography of the residue (Cyclo/EtOAc 1/1; then EtOAc 100% and EtOAc/MeOH 7/3) afforded the compound 13k as a colorless oil (46 mg, 98% yield): Rf 0.15 (EtOAc/MeOH 7/3); IR (film): 2925, 2854, 2095, 1681, 1574, 1465, 1260, 1275, 1203, 1181, 1137, 764, 750; ¹H NMR δ 3.90 (bs, 2 H, NH₂) 2.70 (t, *J*_{H1-H2} = 7.1 Hz, 2 H, H₁), 2.60 – 2.51 (m, 6 H, H₈ H₉), 1.48 (s, 6 H, H₁₀ H₇), 1.27 (s, 30 H), 0.87 (t, *J*_{H16-H15} = 6.8 Hz, 6 H, H₁₆); ¹³C NMR δ 53.7 (C₈), 53.6 (C₉), 41.9 (C₁), 31.9 (C₇), 29.5, 29.4, 29.3, 27.5, 27.3, 26.7, 25.8, 22.7, 14.2 (C₁₆); HRMS APCI⁺ calcd for C₂₄H₅₃N₂ (M + H)⁺ 369.4203, found 369.4209.

8-azidooctyl methanesulfonate 16.

To a solution of 1,8-octanediol (2.0 g, 13.7 mmol) in dry DCM (100 mL) was added triethylamine (4.38 mL, 31.46 mmol, 2.3 equiv.) at 0 °C under argon. The reaction was stirred for 30 min prior to addition of methanesulfonyl chloride (2.43 mL, 31.46 mmol, 2.3 equiv.). The temperature was allowed to slowly warm to room temperature, the reaction mixture was quenched with water (20 mL) and the aqueous phase was extracted with DCM. The combined organic layers were washed with brine, dried and concentrated in vacuo. The crude white powder (3.27g, 10.8 mmol, 1 equiv.) was then dissolved in dry DMF (120 mL), then sodium azide (667 mg, 10.27 mmol, 0.95 equiv.) was added and the reaction mixture was stirred overnight at 90 °C. After solvent removal in vacuo, 150 mL of EtOAc was added and the organic phase was washed four times with brine, dried over MgSO4, filtered and concentrated in vacuo. The resulting pale yellow oil was purified by flash chromatography (Cyclohexane/EtOAc 9/1) to give compound 16 as a white powder (1.29 g, 48% yield): Rf 0.25 (Cyclohexane/EtOAc 9/1); IR (film): 2930, 2857, 2096, 1715, 1612, 1466, 1353, 1255, 1260, 1174, 974, 940, 750; ¹H NMR δ 4.23 (t, J_{H1-H2} = 6.6 Hz, 2 H, H₁), 3.26 (t, J_{H8-H7} = 6.9 Hz, 2 H, H₈), 3.00 (s, 6 H, H₉), 1.82 – 1.69 (m, 2 H, H₂), 1.66 – 1.56 (m, 2 H, H₇), 1.45 – 1.20 (m, 8 H, H₆₋₅₋₄₋₃); ¹³C NMR δ 70.1 (C₁), 52.0 (C₈), 37.5 (C₉), 29.2 (C₇), 29.0 (C₅), 29.0 (C₄), 28.9 (C₂), 26.7 (C₆), 25.4 (C₃); HRMS APCI⁺ calcd for $C_9H_{20}O_3N_3 (M + H)^+ 250.1220$, found 250.1218.

1-(8'-azidooctyl)-4-benzhydrylpiperazine 17.

To a solution of compound 16 (70 mg, 280 µmol) in dry CH₃CN (100 mL) was added triethylamine (66 µL, 417 µmol, 1.7 equiv.) and 1-benzhydrylpiperazine (85 mg, 336 µmol, 1.2 equiv.) at 0 °C under argon. The reaction was stirred for 16 h at 90 °C and then concentrated *in vacuo*. The resulting pale yellow oil was purified by flash chromatography (Cyclohexane/EtOAc 7/3) to give compound 17 as a white powder (99 mg, 88% yield): Rf 0.25 (Cyclohexane/EtOAc 7/3); IR (film): 3026, 2931, 2855, 2808, 2094, 1595, 1491, 1451, 1301, 1278, 1261, 1151, 1008, 757, 746, 700; ¹H NMR δ 7.33 (d, *J*_{H7-H8} = 7.3 Hz, 4 H, H₇), 7.18 (t, *J*_{H8-H7} = 7.6 Hz, 4 H, H₈), 7.09 (t, *J*_{H9-H8} = 7.3 Hz, 2 H, H₉), 4.14 (s, 1 H, H₅), 3.16 (t, *J*_{H8'-H7'} = 7.0 Hz, 2 H, H_{8'}), 2.38 (bs, 8 H, H₂, H₃), 2.30 – 2.17 (m, 2 H, H₁'), 1.57 – 1.45 (m, 2 H, H₇'), 1.41 – 1.37 (m, 2 H, H₂'), 1.29 – 1.18 (m, 8 H, H_{3'}-H_{6'}); ¹³C NMR (126 MHz, CDCl₃) δ 142.9 (C₆), 128.5 (C₈), 128.0 (C₇), 127.0 (C₉), 76.37 (C₅), 58.9 (C₁'), 53.6 (C₂), 52.0 (C₃), 51.6 (C₈'), 29.5, 29.1, 28.9, 27.6, 26.9 26.7 (C_{2'}-C_{7'}); HRMS APCl⁺ calcd for C₂₅H₃₆N₅ (M + H)⁺ 406.2965, found 406.29585.

4-(8'-Azido-octanyloxy)-benzophenone 18.

To a solution of compound 16 (50 mg, 200 µmol, 1 equiv.) in dry DMF (10 mL) was added 4-hydroxybenzophenone (79 mg, 400 µmol, 2 equiv.), K_2CO_3 (55mg, 400 µmol, 2 equiv.) and KI (6.6 mg, 40 µmol, 0.2 equiv.) under argon. The reaction was stirred for 16 h at 80 °C and then concentrated *in vacuo*. The resulting pale yellow oil was purified by flash chromatography (Cyclohexane/EtOAc 7/3) to give compound 18 as a white powder (61 mg, 87% yield): Rf 0.25 (Cyclohexane/EtOAc 7/3); IR (film): 2933, 2857, 2094, 1854, 1660, 1507, 1446, 1325, 1305, 1280, 1250, 1172, 1148, 922, 844, 764, 742; ¹H NMR δ 7.82 (d, *J*_{H2-H3} = 8.8 Hz, 2 H, H₂), 7.79 – 7.74 (m, 2 H, H₇), 7.6 (t, *J*_{H9-H8} = 7.4 Hz, 1 H, H₉), 7.47 (t, *J*_{H8-H9} = *J*_{H8-H7} = 7.6 Hz, 2 H, H₈), 6.95 (d, *J*_{H3-H2} = 8.8 Hz, 2 H, H₃), 4.04 (t, *J*_{H1'-H2'} = 6.5 Hz, 2 H, H_{1'}), 3.26 (t, *J*_{H8'-H7'} = 6.9 Hz, 2 H, H₈), 1.86 – 1.77 (m, 2 H, H_{2'}), 1.65 – 1.56 (m, 2 H, H_{7'}), 1.50–1.46 (m, 2 H, H_{3'}), 1.37 (s, 2 H, H_{6'}), 1.34 – 1.23 (m, 4 H, H_{5'}, H_{4'}); ¹³C NMR δ 195.6 (C₅), 163.0 (C₄), 138.5 (C₆), 132.7 (C₂), 131.9 (C₉), 130.1 (C₁), 129.8 (C₇), 128.3 (C₈), 114.1 (C₃), 68.3 (C_{1'}), 51.6 (C_{8'}), 29.3 (C_{7'}), 29.1 (C_{2'}), 29.2 (C_{3'}), 28.9 (C_{6'}), 27.0 (C_{5'}), 26.0 (C_{4'}); HRMS APCI⁺ calcd for C₂₁H₂₅N₃O₂ (M + H)⁺ 352.2020, found 352.20225.

8-azido-*N*,*N*-dioctyloctan-1-amine 19.

To a solution of compound 16 (70 mg, 280 μ mol) in dry CH₃CN (100 mL) was added triethylamine (66 μ L,417 μ mol, 1.7 equiv.) and dioctylamine (103 μ L, 337 μ mol, 1.2 equiv.) at 0 °C under argon. The reaction was stirred for 16 h at 90 °C and then concentrated *in vacuo*. The resulting pale yellow oil was purified by flash chromatography (Cyclohexane/EtOAc 7/3) to give the product 19 as a colorless

oil (111 mg, 59% yield): Rf 0.30 (Cyclohexane/EtOAc 7/3); IR (film): 2925, 2854, 2095, 1694, 1582, 1466, 1377, 1275, 1260, 1090, 839, 764, 722; ¹H NMR δ 3.25 (t, J_{H8-H7} = 7.0 Hz, 2 H, H₈), 2.45 (s, 6 H, H₁, H₉), 1.68 – 1.55 (m, 2 H, H₇), 1.47 (s, 6 H, H₁₀, H₂), 1.38 – 1.33 (m, 2 H, H₆) 1.37 – 1.20 (m, 26 H, H₃, H₄, H₅, H₁₁ - H₁₅), 0.88 (t, $J_{H16-H15}$ = 6.9 Hz, 6 H, H₁₆); ¹³C NMR δ 54.0 (C₁ = C₉), 51.6 (C₈), 32.0, 29.6, 29.5, 29.4, 29.2, 28.9 (C₇), 27.7 (C₂), 27.6 (C₁₀), 26.8 (C₆), 22.7, 14.2 (C₁₆); HRMS APCI⁺ calcd for C₂₄H₅₁N₄ (M + H)⁺ 395.4108, found 395.40986.

N-phtalimido-10-(9-(dioctylamino)ethyl) 20.

To a solution of 1-phthalimido-2-bromoethane (75 mg, 295 μ mol, 1 equiv.) in dry CH₃CN (30 mL) were successively added K₂CO₃ (40 mg, 295 μ mol, 1 equiv.) and dioctylamine (90 μ L, 295 μ mol, 1 equiv.) at 0 °C under argon. The reaction was stirred for 16 h at 90 °C and then concentrated *in vacuo*. The resulting pale yellow oil was purified by flash chromatography (Cyclohexane/EtOAc 7/3) to give compound 20 as a colorless oil (90 mg, 74% yield): Rf 0.25 (Cyclohexane/EtOAc 7/3); IR (film): 3726, 3692, 2926, 2856, 2354, 2342, 1774, 1751, 1467, 1394, 1087, 871, 719; ¹H NMR δ 7.86-7.81 (m, 2 H, H₁₃), 7.72-7.68 (m, 2 H, H₁₄), 3.75 (t, *J*_{H10-H9} = 6.8 Hz, 2 H, H₁₀), 2.69 (t, *J*_{H9-H10} = 6.8 Hz, 2 H, H₉), 2.50 – 2.36 (m, 4 H, H₈), 1.36 (dd, *J*_{H7-H8} = *J*_{H7-H6} = 7.4 Hz, 4 H, H₇), 1.30 – 1.21 (m, 4 H, H₆), 1.20 (bs, 8 H, H₂₋₅) 0.87 (t, *J*_{H1-H2} = 7.1 Hz, 6H, H₁); ¹³C NMR δ 168.5 (C₁₁), 133.9 (C₁₄), 132.4 (C₁₂), 123.2 (C₁₃), 54.4 (C₈), 51.6 (C₉), 36.4 (C₁₀), 31.9, 29.7, 29.5, 27.6, 27.4 (C₇), 22.8 (C₆), 14.2 (C₁); HRMS APCI⁺ calcd for C₂₆H₄₃N₂O₂ (M + H)⁺ 415.3319, found 415.3312.

2-(2-(4-(5-(trifluoromethyl)pyridin-2-yl)piperazin-1-yl)ethyl) phtalimide 21.

To a solution of 1-phthalimido-2-bromoethane (70 mg, 275 μ mol, 1 equiv.) in dry CH₃CN (27 mL) were successively added K₂CO₃ (38 mg, 275 μ mol, 1 equiv.) and 1-[5-(trifluoromethyl)pyrid-2-yl]piperazine (63 mg, 275 μ mol, 1 equiv.) under argon. The reaction was stirred for 16 h at 90 °C and then concentrated *in vacuo*. The resulting pale yellow oil was purified by flash chromatography (Cyclohexane/EtOAc 7/3) to give the compound 21 as a colorless oil (100 mg, 90% yield): Rf 0.35 (Cyclohexane/EtOAc 7/3); IR (film): 2988, 2821, 1773, 1750, 1612, 1586, 1508, 1396, 1327, 1317, 1276, 1258, 1244, 1167, 1111, 1081, 1009, 944, 813, 764, 750, 720; ¹H NMR δ 8.37 (s, 1 H, H₅), 7.88 – 7.81 (m, 2 H, H₁₂), 7.76 – 7.70 (m, 2 H, H₁₃), 7.60 (d, *J*_{H3-H2} = 9.0 Hz, 1 H, H₃), 6.60 (d, *J*_{H2-H3} = 9.0 Hz, 1 H, H₂), 3.86 (t, *J*_{H9-H8} = 5.9 Hz, 2 H, H₉), 3.57 (bs, 4 H, H₇), 2.69 (t, *J*_{H8-H9} = 5.9 Hz, 2 H, H₈), 2.61 (bs, 4 H, H₆); ¹³C NMR δ 208,1 (C₁₀), 168.5 (C₁), 145.9 (C₅), 134.5 (C₃), 134.4 (C₁₁), 134.0 (C₁₃), 132.3 (C₁₂), 123.4 (CF₃), 105.7 (C₂), 55.8 (C₆), 52.8 (C₈), 44.9 (C₇), 35.3 (C₉), 31.03; HRMS APCI⁺ calcd for C₂₀H₂₀F₃N₄O₂ (M + H)⁺ 405.1533, found 405.15234.

Compound 2

¹H NMR, 500 MHz (CDCl₃)

Side product 3

¹H NMR, 500 MHz (CDCl₃)

¹³C NMR, 125 MHz (MeOD)

Side product 4

¹H NMR, 500 MHz (CDCl₃)

Compound 7

¹H NMR, 500 MHz (CDCl₃)

5'(S)-C-(Phthalimidomethyl)-2',3'-di-O-(tert-butyldimethylsilyl)uridine 8

¹H NMR, 500 MHz (CDCl3)

¹³C NMR, 125 MHz (CDCl3)

1",5"-Dideoxy-2",3"-O-isopentylidene-5"-azido-1"-[2',3'-O-isopropylidene-5'(S)phthalimidomethyl-uridinyl]-β-D-ribofuranose 10

xm 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

 $1^{\prime\prime},5^{\prime\prime}$ -Dideoxy- $2^{\prime\prime},3^{\prime\prime}$ -O-isopentylidene- $5^{\prime\prime}$ -azido- $1^{\prime\prime}$ - $[2^{\prime},3^{\prime}$ -O-isopropylidene- $5^{\prime}(S)$ -aminomethyl-uridinyl]- β -D-ribofuranose 11

H, 0.00° TBSO OTBS 11

Compound 12

¹H NMR, 500 MHz (D₂O)

¹³C NMR, 125 MHz (D₂O)

10-phenyldecan-1-amine 13c

¹H NMR, 500 MHz (CDCl3)

4-(8'-Amino-octanyloxy)-benzophenone 13d

¹ H NMR,	500 MHz (CDCl3)
udd	7,824 7,817 7,817 7,817 7,745 7,745 7,745 7,745 7,745 7,745 7,745 7,748 7,748 7,748 7,748 7,748 6,536 6,336 6,336

3,7,11,15-tetramethylhexadecan-1-amine 13e

 $H_2N \xrightarrow{1}_{2} 3 \xrightarrow{4}_{4} 6 \xrightarrow{7}_{8} 10 \xrightarrow{11}_{12} 14 \xrightarrow{15}_{16} 16$ 13e

¹H NMR, 500 MHz (CDCl3)

N,N-dioctylethane-1,2-diamine 13h

¹H NMR, 500 MHz (CDCl3) 757 746 2,735 2,491 2,480 2,480 2,480 2,488 2,374 bpm 7,260 ,404 ,392 ,296 ,283 ,285 ,285 ,252 ,285 ,397 ,865 ,855 62 62 62 50 50 pm 9 8 ' ¹³C NMR, 125 MHz (CDCl3) 39,629 31,968 29,671 29,483 29,483 22,483 22,483 22,483 22,412 22,412 22,760 22,760 bpm

19

pm 180

160

140

. . . .

| 120 . .

| 100 | 80 60

| 40 | 20 2-(4-(5-(trifluoromethyl)pyridin-2-yl)piperazin-1-yl)ethan-1-amine 13i

8'-(4-benzhydrylpiperazin-1-yl)octan-1-amine 13j

¹H NMR, 500 MHz (CDCl3)

N,N-dioctyloctane-1,8-diamine 13k

8-azidooctyl methanesulfonate 16

¹H NMR, 500 MHz (CDCl3)

1-(8'-azidooctyl)-4-benzhydrylpiperazine 17

¹H NMR, 500 MHz (CDCl3)

xm 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 4-(8'-Azido-octanyloxy)-benzophenone 18

¹H NMR, 500 MHz (CDCl3)

8-azido-*N*,*N*-dioctyloctan-1-amine 19

¹H NMR, 500 MHz (CDCl3)

N-phtalimido-10-(9-(dioctylamino)ethyl) 20

2-(2-(4-(5-(trifluoromethyl)pyridin-2-yl)piperazin-1-yl)ethyl) phtalimide 21

Compound 23a

Compound 23b

¹H NMR, 500 MHz (CDCl3)

Compound 23c

¹H NMR, 500 MHz (CDCl3)

Compound 23e

Compound 23f

¹H NMR, 500 MHz (CDCl3) 1,535 1,538 1,538 1,533 7,806 7,791 7,775 7,775 7,749 7,749 7,745 7,442 7,442 7,442 7,442 7,442 7,442 7,442 7,442 7,340 7,340 7,331 7,332 7,7260 bpm ١ŕ٢ Xi ki 8 12 儞 30,2 98 9 8 7 om ' - - - - _ ļ Т 3 1 . . ¹³C NMR, 125 MHz (CDCl3) 140,389 133,652 132,316 122,351 127,737 127,251 127,254 127,254 126,257 118,140 118,140 mdd 89,746 85,933 84,929 84,879 81,629 80,387 75,115 /-4,002 /-4,342 /-4,703 /-4,717 42,662 41,630 36,661 28,971 25,923 25,923 25,923 25,923 25,923 25,923 25,923 25,923 ^{8,462} 7,632

70 60

50

40

30 20

10

pm 170 160 150 140 130 120 110 100 90 80

Compound 23g

¹H NMR, 500 MHz (CDCl3)

Compound 23h $4^{*} 6^{*} 8^{*} 10^{*}$ $2^{*} 3^{*} 5^{*} 7^{*} 9^{*}$ $8^{*} 0^{*} 6^{*} 8^{*} 10^{*}$ $2^{*} 3^{*} 9^{*} 9^{*}$ $8^{*} 0^{*} 6^{*} 9^{*} 10^{*} 9^{*}$ $8^{*} 0^{*} 6^{*} 7^{*} 9^{*} 9^{*}$ $7^{*} 0^{*} 6^{*} 9^{*} 10^{*} 10^{*} 9^{*} 9^{*}$ $8^{*} 0^{*} 9^{*} 10^{*} 9^{*}$

¹H NMR, 500 MHz (CDCl3)

Compound 23i

Compound 23k

¹H NMR, 500 MHz (CDCl3)

¹³C NMR, 125 MHz (CDCl3)

Compound 24a

¹H NMR, 500 MHz (MeOD)

Compound 24b

Compound 24c

¹H NMR, 500 MHz (MeOD)

Compound 24d

¹³C NMR, 125 MHz (MeOD)

Compound 24e

¹H NMR, 500 MHz (MeOD)

Compound 24f

70

Compound 24g

Compound 24h

¹H NMR, 500 MHz (MeOD)

Compound 24i

¹H NMR, 500 MHz (MeOD)

Compound 24j 15^{+} 12^{+} 12^{+} 11^{+} 12^{+} 11^{+} 11^{+} 11^{+} 10^{+} 10^{+} 10^{+} 9^{+} 6^{+} 7^{+} 4^{+} 5^{+} 7^{+} 4^{+} 5^{+} 7^{+} 4^{+} 5^{+} 7^{+} 4^{+} 5^{+} 7^{+} 11

24j

80

40

20

0

49

pm 200 180 160 140 120 100

120

140 130

110 100 90

Compound 24k

Τ

....

10 0

50

pm 170 160 150

1-butyl-3-(2-(dioctylamino)ethyl)urea 27

¹H NMR, 500 MHz (MeOD)

¹H Spectra of compound 7

Fig. 2S Comparison of the 1H NMR spectra of the crude compound **7** according to the experimental conditions: (a) compound **6** (10 g), *m*CPBA, 4 equiv., CH₂Cl₂/Phosphate buffer pH7 : 2/1, 30 °C, 16 h; (b) compound **6** (10 g), *m*CPBA, 4 equiv., CH₂Cl₂, 30 °C, 16 h; (c) compound **6** (1 g), *m*CPBA, 4 equiv., CH₂Cl₂, 30 °C, 16 h; (c) compound **6** (1 g), *m*CPBA, 4 equiv., CH₂Cl₂, 30 °C, 16 h;