Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2021

Copper Iodide-Catalyzed Coupling Reaction of Benzofuran-3(2*H*)-ones with Amines: an Approach to α-Ketoamides

Rongxiang Chen,^a Ruoling Jia,^a Wenbo Li,^b Wei Zhao,^a Kai-Kai Wang,^{*a} Zhan-Yong Wang,^a Xueji Ma,^a Wei Dai,^a and Aili Sun^{*a}

^a School of Pharmacy, Xinxiang University, Xinxiang 453000, P.R. of China.

^b School of Chemistry and Materials Engineering, Xinxiang University, Xinxiang 453000, P.R. of China.

Email: wangkaikaii@163.com; sunailifly@163.com

Supporting Information

List of Contents

1. General information	S2
2. General procedures for reactions	S2
3. Isotope labelled experiment	S2
4. X-ray crystal structure of 3a	S5
5. Compound characterizations	
6.Reference	.S12
7. Spectroscopic data for products	.S13

1. General information

All manipulations were carried out under air atmosphere. Column chromatography was generally performed on silica gel (300-400 mesh) and reactions were monitored by thin layer chromatography (TLC) using UV light to visualize the course of the reactions. The ¹H NMR (400 MHz), ¹³C NMR (100 MHz) and ¹⁹F NMR (376 MHz) data were recorded on a Bruker DPX-400 spectrometer with CDCl₃ as solvent at room temperature unless specified otherwise. The chemical shifts (δ) are reported in ppm and coupling constants (*J*) in Hz. ¹H NMR spectra was recorded with tetramethylsilane (δ = 0.00 ppm) as internal reference; ¹³C NMR spectra was recorded with CDCl₃ (δ = 77.00 ppm) as internal reference. HRMS were performed on Agilent ESI-quadrupole.

2. General procedures for reactions

A solution of aryl ketones **1** or **4** (0.3 mmol), secondary amine **2** (4.0 equiv, 1.2 mmol), cuprous iodide (20 mol%, 0.06 mmol), *tert*-butyl hydroperoxide (5.0 equiv, 1.5 mmol, 70% in water) and 1,4-dioxane (2 mL) was stirred in a 10 mL sealed tube at 70 °C for 12 h. After completion of the reaction, the reaction solution was then quenched with saturated Na₂SO₃ solution and extracted with ethyl acetate (10 mL \times 3). The combined organic layer was combined and dried with anhydrous Na₂SO₄. Removal of the organic solvent followed by flash column chromatographic purification afforded the desired products using petroleum and ethyl acetate.

3. Isotope labelled experiment

A solution of benzofuran-3(2*H*)-one **1a** (0.3 mmol), morpholine **2a** (4.0 equiv, 1.2 mmol), cuprous iodide (20 mol%, 0.06 mmol), *tert*-butyl hydroperoxide (5.0 equiv, 1.5 mmol, 70% in water) $H_2^{18}O$ (2.0 equiv, 0.6 mmol) and 1,4-dioxane (2 mL) was stirred in a 10 mL sealed tube at 70 °C for 12 h. After completion of the reaction, the reaction solution was then quenched with saturated Na₂SO₃ solution and extracted with ethyl acetate (10 mL × 3). The combined organic layer was combined and dried with anhydrous Na₂SO₄. Removal of the organic solvent followed by flash column chromatographic purification afforded **3a** (60 mg, 86% yield) using petroleum and ethyl acetate (3:1). **3a** and **3a**-¹⁸O were detected by LC-MS and the ratio was approximately 2.3 : 1.

Display Report

3. X-ray crystal structure of 3a

Table S1. Crystal data and structure refinement for **3a**.

Empirical formula	C ₁₂ H ₁₃ NO ₄
Formula weight	235.08
Temperature	296(2) K
Wavelength	71.073 pm
Crystal system	Monoclinic
Space group	P 21/n
	a = 12.5895(17) pm
Unit cell dimensions	α=90°
	b = 5.0682(7) pm
	$\beta = 92.174(2)^{\circ}$
	c = 18.033(2) pm
	$\gamma = 90^{\circ}$
Volume	1149.8(3) nm ³
Ζ	4
Density (calculated)	1.356 Mg/m ³
Absorption coefficient	0.103 mm ⁻¹
F(000)	494
Crystal size	0.260 x 0.250 x 0.230 mm ³
Theta range for data collection	3.239 to 24.996°
Index ranges	-14<=h<=14, -5<=k<=6, -21<=l<=15
Reflections collected	5511
Independent reflections	2009 [R(int) = 0.0196]
Completeness to theta = 24.996°	99.7 %
Data / restraints / parameters	2009 / 15 / 211
Goodness-of-fit on F ²	1.090
Final R indices [I>2sigma(I)]	R1 = 0.0410, $wR2 = 0.1156$

R indices (all data)	R1 = 0.0603, WR2 = 0.1240
Extinction coefficient	0.031(4)
Largest diff. peak and hole	0.242 and -0.229 e.Å ⁻³

Table S2. Bond lengths [pm] and angles $[^{\circ}]$ for 3a.

C(1)-C(2)	1.363(2)	С(10А)-Н(10А)	0.9700
C(1)-C(6)	1.398(2)	С(10А)-Н(10В)	0.9700
C(1)-H(1A)	0.9300	C(11A)-O(4A)	1.394(17)
C(2)-C(3)	1.380(3)	C(11A)-C(12A)	1.482(10)
C(2)-H(2)	0.9300	С(11А)-Н(11С)	0.9700
C(3)-C(4)	1.368(3)	С(11А)-Н(11D)	0.9700
C(3)-H(3)	0.9300	C(12A)-N(1A)	1.458(8)
C(4)-C(5)	1.382(2)	С(12А)-Н(12С)	0.9700
C(4)-H(4)	0.9300	C(12A)-H(12D)	0.9700
C(5)-O(1)	1.349(2)	O(1)-H(1)	0.8200
C(5)-C(6)	1.410(2)	C(2)-C(1)-C(6)	121.47(17)
C(6)-C(7)	1.452(2)	C(2)-C(1)-H(1A)	119.3
C(7)-O(2)	1.2305(19)	C(6)-C(1)-H(1A)	119.3
C(7)-C(8)	1.534(2)	C(1)-C(2)-C(3)	118.99(18)
C(8)-O(3)	1.2193(19)	C(1)-C(2)-H(2)	120.5
C(8)-N(1A)	1.346(6)	C(3)-C(2)-H(2)	120.5
C(8)-N(1)	1.353(4)	C(4)-C(3)-C(2)	121.49(18)
C(9)-N(1)	1.477(6)	C(4)-C(3)-H(3)	119.3
C(9)-C(10)	1.511(7)	C(2)-C(3)-H(3)	119.3
C(9)-H(9A)	0.9700	C(3)-C(4)-C(5)	120.18(17)
C(9)-H(9B)	0.9700	C(3)-C(4)-H(4)	119.9
C(10)-O(4)	1.432(12)	C(5)-C(4)-H(4)	119.9
С(10)-Н(10)	0.9300	O(1)-C(5)-C(4)	118.11(15)
C(11)-O(4)	1.411(13)	O(1)-C(5)-C(6)	122.51(15)
C(11)-C(12)	1.496(6)	C(4)-C(5)-C(6)	119.38(16)
С(11)-Н(11А)	0.9700	C(1)-C(6)-C(5)	118.48(15)
С(11)-Н(11В)	0.9700	C(1)-C(6)-C(7)	120.64(14)
C(12)-N(1)	1.448(5)	C(5)-C(6)-C(7)	120.86(14)
С(12)-Н(12А)	0.9700	O(2)-C(7)-C(6)	123.76(14)
С(12)-Н(12В)	0.9700	O(2)-C(7)-C(8)	117.87(15)
C(9A)-N(1A)	1.465(7)	C(6)-C(7)-C(8)	118.26(14)
C(9A)-C(10A)	1.491(10)	O(3)-C(8)-N(1A)	125.1(3)
С(9А)-Н(9АА)	0.9700	O(3)-C(8)-N(1)	121.6(2)
С(9А)-Н(9АВ)	0.9700	O(3)-C(8)-C(7)	117.53(15)
C(10A)-O(4A)	1.449(17)	N(1A)-C(8)-C(7)	113.9(3)

N(1)-C(8)-C(7)	119.9(2)	O(4A)-C(10A)-C(9A)	111.5(7)
N(1)-C(9)-C(10)	108.7(3)	O(4A)-C(10A)-H(10A)	109.3
N(1)-C(9)-H(9A)	110.0	C(9A)-C(10A)-H(10A)	109.3
С(10)-С(9)-Н(9А)	110.0	O(4A)-C(10A)-H(10B)	109.3
N(1)-C(9)-H(9B)	110.0	С(9А)-С(10А)-Н(10В)	109.3
С(10)-С(9)-Н(9В)	110.0	H(10A)-C(10A)-H(10B)	108.0
H(9A)-C(9)-H(9B)	108.3	O(4A)-C(11A)-C(12A)	114.3(8)
O(4)-C(10)-C(9)	111.3(4)	O(4A)-C(11A)-H(11C)	108.7
O(4)-C(10)-H(10)	124.3	С(12А)-С(11А)-Н(11С)	108.7
С(9)-С(10)-Н(10)	124.3	O(4A)-C(11A)-H(11D)	108.7
O(4)-C(11)-C(12)	112.6(6)	C(12A)-C(11A)-H(11D)	108.7
O(4)-C(11)-H(11A)	109.1	H(11C)-C(11A)-H(11D)	107.6
С(12)-С(11)-Н(11А)	109.1	N(1A)-C(12A)-C(11A)	109.2(6)
O(4)-C(11)-H(11B)	109.1	N(1A)-C(12A)-H(12C)	109.8
С(12)-С(11)-Н(11В)	109.1	С(11А)-С(12А)-Н(12С)	109.8
H(11A)-C(11)-H(11B)	107.8	N(1A)-C(12A)-H(12D)	109.8
N(1)-C(12)-C(11)	110.0(3)	C(11A)-C(12A)-H(12D)	109.8
N(1)-C(12)-H(12A)	109.7	H(12C)-C(12A)-H(12D)	108.3
С(11)-С(12)-Н(12А)	109.7	C(8)-N(1)-C(12)	123.7(3)
N(1)-C(12)-H(12B)	109.7	C(8)-N(1)-C(9)	122.5(4)
С(11)-С(12)-Н(12В)	109.7	C(12)-N(1)-C(9)	113.7(4)
H(12A)-C(12)-H(12B)	108.2	C(8)-N(1A)-C(12A)	119.6(5)
N(1A)-C(9A)-C(10A)	109.8(5)	C(8)-N(1A)-C(9A)	126.5(5)
N(1A)-C(9A)-H(9AA)	109.7	C(12A)-N(1A)-C(9A)	113.5(5)
С(10А)-С(9А)-Н(9АА)	109.7	С(5)-О(1)-Н(1)	109.5
N(1A)-C(9A)-H(9AB)	109.7	C(11)-O(4)-C(10)	110.2(6)
С(10А)-С(9А)-Н(9АВ)	109.7	C(11A)-O(4A)-C(10A)	110.5(8)
H(9AA)-C(9A)-H(9AB)	108.2		

4. Compound characterizations

1-(2-hydroxyphenyl)-2-morpholinoethane-1,2-dione (3a).^[1] Light yellow solid (88% yield); ¹H NMR (400 MHz, CDCl₃) δ 11.24 (s, 1H), 7.56 (t, *J* = 7.8 Hz, 2H), 7.03 (d, *J* = 8.2 Hz, 1H), 6.96 (t, *J* = 7.6 Hz, 1H), 3.78 (d, *J* = 9.1 Hz, 4H), 3.69 – 3.64 (m, 2H), 3.43 – 3.37 (m, 2H).; ¹³C NMR (101 MHz, CDCl₃) δ 195.9, 163.4, 163.2, 138.0, 131.9, 119.8 118.6, 116.7, 66.6, 66.5, 46.3, 41.5. HRMS (ESI-TOF): Anal. Calcd. For C₁₂H₁₃NO₄: 258.0737, Found: 258.0737 (M+Na⁺).

1-(2-hydroxy-5-methylphenyl)-2-morpholinoethane-1,2-dione (3b). Yellow solid (70% yield); ¹H NMR (400 MHz, CDCl₃) δ 11.11 (s, 1H), 7.37 (d, *J* = 8.6 Hz, 1H), 7.33 (s, 1H), 6.94 (d, *J* = 8.5 Hz, 1H), 3.81 (d, *J* = 7.3 Hz, 4H), 3.69 – 3.66 (m, 2H), 3.43 – 3.38 (m, 2H), 2.30 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 195.8, 163.6, 161.4, 139.4, 131.3, 129.2, 118.4, 116.4, 66.7, 66.6, 46.4, 41.6, 20.3; HRMS (ESI-TOF): Anal. Calcd. For C₁₃H₁₅NO₄: 250.1074, Found: 250.1064 (M+H⁺).

1-(5-fluoro-2-hydroxyphenyl)-2-morpholinoethane-1,2-dione (3c). White solid (55% yield); ¹H NMR (400 MHz, CDCl₃) δ 10.97 (s, 1H), 7.27 – 7.18 (m, 2H), 6.95 (dd, J = 9.1, 4.3 Hz, 1H), 3.73 (q, J = 7.2 Hz, 4H), 3.64 – 3.60 (m, 2H), 3.36 – 3.32 (m, 2H); ¹⁹F NMR (376 MHz, CDCl₃) δ -122.63; ¹³C NMR (101 MHz, CDCl₃) δ 194.8, 162.9, 159.7, 155.2 (d, J = 241.4 Hz), 126.0 (d, J = 23.2 Hz), 120.2 (d, J = 7.1 Hz), 116.5 (d, J = 23.2 Hz), 116.2(d, J = 7.1 Hz), 66.64, 66.55, 46.4, 41.8. HRMS (ESI-TOF): Anal. Calcd. For C₁₂H₁₂FNO₄: 254.0823, Found: 254.0819 (M+H⁺).

1-(5-chloro-2-hydroxyphenyl)-2-morpholinoethane-1,2-dione (3d). Light yellow solid (37% yield); ¹H NMR (400 MHz, CDCl₃) δ 11.19 (s, 1H), 7.55 (s, 1H), 7.51 (d, *J* = 9.0 Hz, 1H), 7.26 (s, 2H), 7.01 (d, *J* = 8.9 Hz, 1H), 3.81 (d, *J* = 3.1 Hz, 4H), 3.72 – 3.68 (m, 2H), 3.44 – 3.39 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 194.9, 162.9, 161.9, 138.1, 130.9, 124.7, 120.4, 117.4, 66.7, 66.6, 46.4, 41.9; HRMS (ESI-TOF): Anal. Calcd. For C₁₂H₁₂ClNO₄: 270.0528, Found: 270.0529 (M+ H⁺).

1-(5-bromo-2-hydroxyphenyl)-2-morpholinoethane-1,2-dione (3e). Light yellow solid (71% yield); ¹H NMR (400 MHz, CDCl₃) δ 11.20 (s, 1H), 7.69 (d, J = 2.3 Hz, 1H), 7.63 (dd, J = 8.9, 2.4 Hz, 1H), 6.95 (d, J = 8.9 Hz, 1H), 3.81 (q, J = 7.3 Hz, 4H), 3.71 – 3.67 (m, 2H), 3.43 – 3.39 (m, 2H); ¹¹³C NMR (101 MHz, CDCl₃) δ 194.7, 162.8, 162.2, 140.8, 133.8, 120.7, 118.0, 111.4, 66.6, 66.5, 46.4, 41.8; HRMS (ESI-TOF): Anal. Calcd. For C₁₂H₁₂BrNO₄: 314.0022, Found: 314.0016 (M+H⁺).

1-(4-hydroxy-[1,1'-biphenyl]-3-yl)-2-morpholinoethane-1,2-dione (3f). Yellow solid (47% yield); ¹H NMR (400 MHz, CDCl₃) δ 11.28 (s, 1H), 7.85 – 7.72 (m, 2H), 7.50 (d, *J* = 7.7 Hz, 2H), 7.44 (t, *J* = 7.5 Hz, 2H), 7.36 (t, *J* = 7.1 Hz, 1H), 7.12 (d, *J* = 8.7 Hz, 1H), 3.80 (s, 4H), 3.71 – 3.65 (m, 2H), 3.45 – 3.38 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 196.0, 163.4, 162.7, 139.2, 137.1, 133.38, 130.0, 129.0, 127.5, 126.7, 119.1, 116.8, 66.7, 66.6, 46.4, 41.7; HRMS (ESI-TOF): Anal. Calcd. For C₁₈H₁₇NO₄: 334.1050, Found: 334.1049 (M+Na⁺).

1-(2-hydroxy-3-methylphenyl)-2-morpholinoethane-1,2-dione (3g). Light yellow solid (71%

yield); ¹H NMR (400 MHz, CDCl₃) δ 11.53 (s, 1H), 7.42 (t, *J* = 7.4 Hz, 2H), 6.87 (t, *J* = 7.7 Hz, 1H), 3.82 – 3.76 (m, 4H), 3.68 – 3.64 (m, 2H), 3.41 – 3.36 (m, 2H), 2.28 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 196.3, 163.7, 161.8, 138.8, 129.5, 127.9, 119.3, 116.0, 66.65, 66.59, 46.3, 41.6, 15.2; HRMS (ESI-TOF): Anal. Calcd. For C₁₃H₁₅NO₄: 250.1074, Found: 250.1069 (M+H⁺).

3h

N-(2-(2-morpholino-2-oxoacetyl)phenyl)acetamide (3h).^[2] Brown solid (47% yield); ¹H NMR (400 MHz, CDCl₃) δ 11.23 (s, 1H), 8.80 (d, J = 8.5 Hz, 1H), 7.74 – 7.58 (m, 2H), 7.16 (t, J = 7.6 Hz, 1H), 3.83 – 3.75 (m, 4H), 3.70 – 3.63 (m, 2H), 3.40 – 3.33 (m, 2H), 2.27 (s, 3H).; ¹³C NMR (101 MHz, CDCl₃) δ 195.2, 169.4, 164.4, 142.4, 137.1, 133.4, 122.7, 120.7, 117.6, 66.5, 46.3, 41.6, 25.5.; HRMS (ESI-TOF): Anal. Calcd. For C₁₄H₁₆N₂O₄: 299.1002, Found: 299.1003 (M+Na⁺).

N,N-diethyl-2-(2-hydroxyphenyl)-2-oxoacetamide (3i). Yellow liquid (72% yield); ¹H NMR (400 MHz, CDCl₃) δ 11.27 (s, 1H), 7.49 – 7.39 (m, 2H), 6.93 (d, *J* = 8.3 Hz, 1H), 6.85 (t, *J* = 7.6 Hz, 1H), 3.48 (q, *J* = 7.2 Hz, 2H), 3.18 (q, *J* = 7.1 Hz, 2H), 1.21 (t, *J* = 7.2 Hz, 3H), 1.09 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 196.5, 164.7, 163.1, 137.6, 131.9, 119.6, 118.4, 116.7, 42.2, 38.7, 13.9, 12.6; HRMS (ESI-TOF): Anal. Calcd. For C₁₂H₁₅NO₃: 244.0944, Found: 244.0953 (M+Na⁺).

3j

1-(2-hydroxyphenyl)-2-(pyrrolidin-1-yl)ethane-1,2-dione (3j). Yellow liquid (52% yield); ¹H NMR (400 MHz, CDCl₃) δ 11.30 (s, 1H), 7.59 – 7.53 (m, 1H), 7.47 (t, *J* = 7.9 Hz, 1H), 6.95 (d, *J* = 8.4 Hz, 1H), 6.87 (t, *J* = 7.6 Hz, 1H), 3.59 (t, *J* = 6.7 Hz, 2H), 3.37 (t, *J* = 6.4 Hz, 2H), 1.94 – 1.85 (m, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 196.3, 163.5, 163.2, 137.8, 132.3, 119.7, 118.4, 116.5, 46.7, 45.3, 25.8, 24.0; HRMS (ESI-TOF): Anal. Calcd. For C₁₂H₁₃NO₃: 242.0788, Found: 242.0791 (M+Na⁺).

1-(2-hydroxyphenyl)-2-thiomorpholinoethane-1,2-dione (3k). Yellow solid (69% yield); ¹H NMR (400 MHz, CDCl₃) δ 11.24 (s, 1H), 7.55 (dd, J = 17.8, 8.0 Hz, 2H), 7.04 (d, J = 8.4 Hz, 1H), 6.96 (t, J = 7.6 Hz, 1H), 4.08 – 3.96 (m, 2H), 3.69 – 3.58 (m, 2H), 2.80 – 2.71 (m, 2H), 2.67 – 2.58 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 196.1, 163.7, 163.3, 138.1, 131.9, 119.8, 118.6, 116.6, 48.8, 43.7, 27.8, 27.3; HRMS (ESI-TOF): Anal. Calcd. For C₁₂H₁₃NO₃S: 252.0689, Found: 252.0692 (M+H⁺).

31

1-(4-benzoylpiperazin-1-yl)-2-(2-hydroxyphenyl)ethane-1,2-dione (3l). Yellow solid (86% yield); ¹H NMR (400 MHz, CDCl₃) δ 11.21 (s, 1H), 7.57 (t, *J* = 8.1 Hz, 2H), 7.43 (d, *J* = 11.3 Hz, 5H), 7.04 (d, *J* = 8.3 Hz, 1H), 6.96 (t, *J* = 7.6 Hz, 1H), 3.74 (d, *J* = 40.5 Hz, 6H), 3.42 (s, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 195.7, 170.7, 163.6, 163.3, 138.2, 134.7, 131.9, 130.3, 128.7, 127.0, 119.9, 118.7, 116.7, 46.06, 46.02, 41.43, 41.40; HRMS (ESI-TOF): Anal. Calcd. For C₁₉H₁₈N₂O₄: 361.1159, Found: 361.1165 (M+Na⁺).

2,2-dimorpholinonaphtho[**2,1-b**]**furan-1**(*2H*)**-one** (**3p'**).^[3] Yellow solid (28% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.71 (d, *J* = 8.2 Hz, 1H), 8.12 (d, *J* = 9.0 Hz, 1H), 7.81 (d, *J* = 8.2 Hz, 1H), 7.66 (t, *J* = 7.6 Hz, 1H), 7.47 (t, *J* = 7.6 Hz, 1H), 7.20 (d, *J* = 9.0 Hz, 1H), 3.69 (t, *J* = 4.6 Hz, 8H), 3.03 – 2.94 (m, 4H), 2.80 – 2.73 (m, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 197.4, 173.3, 141.4, 130.3, 129.0, 128.6, 128.5, 125.4, 123.0, 113.2, 113.1, 110.5, 66.9, 45.7; HRMS (ESI-TOF): Anal. Calcd. For C₂₀H₂₂N₂O₄: 377.1472, Found: 377.1478 (M+Na⁺).

2-((2,2,6,6-tetramethylpiperidin-1-yl)oxy)benzofuran-3(2*H***)-one (4).^[4] White solid (20% yield); ¹H NMR (400 MHz, CDCl₃) \delta 7.61 (dd,** *J* **= 13.5, 7.7 Hz, 2H), 7.04 (dd,** *J* **= 8.0, 5.6 Hz, 2H), 5.73 (s, 1H), 1.54 (d,** *J* **= 6.6 Hz, 5H), 1.46 (s, 3H), 1.35 (s, 4H), 1.23 (s, 3H), 1.12 – 1.03 (m, 4H); ¹³C NMR (101 MHz, CDCl₃) \delta 195.2, 171.1, 138.7, 124.7, 121.8, 119.8, 113.3, 106.3, 61.7, 59.6, 40.4, 40.2, 33.8, 32.2, 20.4, 20.1, 17.0; HRMS (ESI-TOF): Anal. Calcd. For C₁₇H₂₃NO₃: 290.1751, Found: 290.1758 (M+H⁺).**

5.Reference

[1] L. Dutta and P. J. Bhuyan, Tetrahedron, 2018, 74, 5770.

[2] B. T. Gonçalves, P. M. Esteves, A. C. Pinto, C. R. Kaiser, F. L. da Silva, E. Miguez and J. F. M. da Silva, *Magn. Reson. Chem.* 2008, **46**, 418.

[3] H. Yu, W. Huang and F. Zhang, Eur. J. Org. Chem. 2014, 2014, 3156.

[4] Y.-X. Xie, R.-J. Song, Y. Liu, Y.-Y. Liu, J.-N. Xiang and J.-H. Li, *Adv. Synth. Catal.* 2013, **355**, 3387.

6. Spectroscopic data for products

¹H NMR (400MHz, CDCl₃) spectra of **3b**

¹H NMR (400MHz, CDCl₃) spectra of **3c**

 ^{19}F NMR (376 MHz, CDCl₃) spectra of 3c

¹³C NMR (101MHz, CDCl₃) spectra of **3c**

¹H NMR (400MHz, CDCl₃) spectra of **3d**

¹H NMR (400MHz, CDCl₃) spectra of **3f**

¹H NMR (400MHz, CDCl₃) spectra of **3h**

S21

¹H NMR (400MHz, CDCl₃) spectra of **3i**

¹H NMR (400MHz, CDCl₃) spectra of **3j**

¹H NMR (400MHz, CDCl₃) spectra of **3**k

S24

¹H NMR (400MHz, CDCl₃) spectra of **3p'**

