Electronic Supplementary Information

The structure and biosynthesis of heinamides A1-A3 and B1-B5, antifungal members of lipopeptide family laxaphycins

Lassi Matti Petteri Heinilä, David Peter Fewer, Jouni Kalevi Jokela, Matti Wahlsten, Xiaodan Oyang, Perttu Permi, Anna Jortikka and Kaarina Sivonen.

Table S1. Laxaphycin structures

	Amino acid residue							Ref.					
11-residue laxaphycins	1	2	3	4	5	6	7	8	9	10	1	1	
Laxaphycin A	Aoa	HSe	Dhb	OHPro	HSe	Phe	Leu	lle	lle	Leu	G	Bly	27,29,33,11
Laxaphycin A2	Aoa	HSe	Dhb	OHPro	HSe	Phe	Leu	Val	lle	Leu	Ģ	Bly	8
Laxaphycin E	Ada	HSe	Dhb	OHPro	HSe	Phe	Leu	lle	lle	Leu	Ģ	Bly	27
Hormothamnin A	Aoa	HSe	Dhb	OHPro	HSe	Phe	Leu	lle	lle	Leu	G	Bly	30
Lobocyclamide A	Aoa	Ser	Dhb	OHPro	HSe	Tyr	Leu	lle	lle	Leu	G	Bly	31
Trichormamide A	Ada	Ser	Ser	Pro	Ser	Tyr	Leu	lle	lle	Pro	G	Bly	38, 35
Trichormamide D	Ada	Gln	Dhb	Pro	Ser	Tyr	Leu	Val	Phe	Leu	G	Bly	9
Scytocyclamide A	Aoa	Gln	Dhb	OHPro	HSe	Phe	Leu	lle	lle	Leu	G	Bly	32
Scytocyclamide A2	Aoa	Gln	Dhb	Pro	HSe	Phe	Leu	lle	lle	Leu	Ģ	Bly	10
[I-Val ⁸]laxaphycin A	Aoa	HSe	Dhb	OHPro	HSe	Phe	Leu	Val	lle	Leu	G	Bly	28
[d-Val ⁹]laxaphycin A	Aoa	HSe	Dhb	OHPro	HSe	Phe	Leu	lle	Val	Leu	Ģ	Bly	28
Acyclolaxaphycin A	H-Aoa	HSe	Dhb	OHPro	HSe	Phe	Leu	lle	lle	Leu	Gly	-OH	28
Acyclolaxaphycin A [des-(Leu ¹⁰ -Glv ¹¹)]	H-Aoa	HSe	Dhb	OHPro	HSe	Phe	Leu	lle	lle	Leu-OH			28
acyclolaxaphycin A	H-Aoa	HSe	Dhb	OHPro	HSe	Phe	Leu	lle	lle-OH				28
Heinamide A1	Aoa	Ser	Dhb	OHPro	Ser	Tyr	Leu	lle	Phe	OHPro	G	Bly	TS
Heinamide A2	Aoa	Ser	Dhb	Pro	Ser	Tyr	Leu	lle	Phe	OHPro	G	Bly	TS
Heinamide A3	Aoa	Ser	Dhb	Pro	Ser	Tyr	Leu	lle	Phe	Pro	G	Bly	TS
12-residue laxaphycins	1	2	3	4	5	6	7	8	9	10	11	12	Ref
Laxaphycin B	Ada	Val	OHLeu	Ala	OHLeu	Gln	NMe-lle	OHAsn	Thr	Pro	Leu	Thr	27,29,33,34,37
Laxaphycin B2	Ada	Val	OHLeu	Ala	Leu	Gln	NMe-lle	OHAsn	Thr	Pro	Leu	Thr	33
Laxaphycin B3	Ada	Val	OHLeu	Ala	OHLeu	Gln	NMe-lle	OHAsn	Thr	OHPro	Leu	Thr	33,37
Laxaphycin B4	Ada	Val	OHLeu	Hse	OHLeu	Gln	NMe-lle	OHAsn	Thr	OHPro	Leu	Thr	8
Laxaphycin B5	Ada	lle	OHLeu	Val	OHLeu	Gln	NMe-lle	Asn	Thr	Pro	Tyr	Thr	11
Laxaphycin B6	Ada	lle	OHLeu	Val	Leu	Gln	NMe-lle	Asn	Thr	Pro	Tyr	Thr	11
Laxaphycin D	Aoa	Val	OHLeu	Ala	OHLeu	Gln	NMe-lle	OHAsn	Thr	Pro	Leu	Thr	27
Lobocyclamide B	Ada	Val	OHLeu	Ala	OHLeu	Gln	NMe-lle	OHHSe*	Thr	OHPro	Leu	Thr	31
Lobocyclamide C	Aoa	Val	OHLeu	Ala	OHLeu	Gln	NMe-lle	OHHSe*	Thr	OHPro	Leu	Thr	31
Lyngbyacyclamide A	Ada	Val	OHLeu	Hse	Leu	Gln	NMe-lle	OHAsn	Thr	Pro	Phe	Thr	12,34
Lyngbyacyclamide B	Ada	Val	OHLeu	Hse	Leu	Gln	NMe-lle	OHAsn	Thr	OHPro	Phe	Thr	12
Trichormamide B	Ada	lle	OHLeu	Hse	OHLeu	Gln	NMe-lle	Ser	Thr	Pro	Tyr	Thr	38
Trichormamide C	Ada	Val	OHLeu	Ala	OHLeu	Gln	NMe-lle	D-Asn	Thr	Pro	Leu	Thr	9
Acyclolaxaphycin B	Ada	Val	OHLeu-OH	H-Ala	OHLeu	Gln	NMe-lle	OHAsn	Thr	Pro	Leu	Thr	36,37
Acyclolaxaphycin B3	Ada	Val	OHLeu-OH	H-Ala	OHLeu	Gln	NMe-lle	OHAsn	Thr	OHPro	Leu	Thr	36,37
Scytocyclamide B	Aoa	Val	OHLeu	Ala	OHLeu	Gln	NMe-lle	OHAsn	Thr	Pro	Leu	Thr	32
Scytocyclamide B2	Aoa	Val	OHLeu	Ala	OHLeu	Gln	NMe-lle	Asn	Thr	Pro	Leu	Thr	10
Scytocyclamide B3	Aoa	Val	OHLeu	Ala	Leu	Gln	NMe-lle	Asn	Thr	Pro	Leu	Thr	10
Scytocyclamide C	Aoa	Val	OHLeu	Ala	Leu	Gln	NMe-lle	OHAsn	Thr	Pro	Leu	Thr	32
Heinamide B1	OHAoa	lle	OHLeu	Carb-Ser	Leu	Gln	NMe-lle	OHHSe	Val	OHMePro	Tyr	Thr	TS
Heinamide B2	OHAoa	lle	OHLeu	Carb-Ser	Leu	Gln	NMe-lle	OHHSe	Val	Pro	Tyr	Thr	TS
Heinamide B3	Aoa	lle	OHLeu	Carb-Ser	Leu	Gln	NMe-lle	OHHSe	Val	Pro	Tyr	Thr	TS
Heinamide B4	Aoa	lle	OHLeu	Carb-Ser	Leu	Gln	NMe-lle	OHHSe	Val	OHMePro	Tyr	Thr	TS
Heinamide B5	OHAoa	lle	OHLeu	Carb-Ser	Leu	Gln	NMe-lle	OHHSe	Val	MePro	Tyr	Thr	TS

TS = this study.

Aoa – β -aminooctanoic acid, Ada – β -aminodecanoic acid, Hse – Homoserine, Dhb – Dehydrobutyrine, NMe-Ile – N-Methyl Isoleucine, OHPro – 4-hydroxyproline, OHAsn – 3-hydroxyasparagine, OHLeu – 3-hydroxyleucine, OHThr – 4-hydroxythreonine, OHHse – 3-hydroxy homoserine, OHAoa – 5-hydroxyl β -amino octanoic acid, Carb-Ser – O-Carbamoyl homoserine

*Reported as 4-OHThr by MacMillan et al. 2002, but interpreted here as OHHse according to information of adenylation domain specificity of heinamides in *Nostoc* sp. UHCC0702

Table S2. Strains used in bioassays.

		Bacteria
Fungi		Staphylococcus aureus HAMBI 66
Candida albicans	FBCC 2462	Enterococcus faecium HAMBI 182
Candida guillermondi	FBCC 2457	Bacillus cereus HAMBI 188
Candida krusei	FBCC 2464	Micrococcus luteus HAMBI 268
Candida parapsilosis	FBCC 2465	Pseudomonas aeruginosa HAMBI 25
Filobasidiella neoformans	FBCC 2466	Escherichia coli HAMBI 172
Aspergillus niger	FBCC 2467	Actineobacter baumannii HAMBI 176
Aspergillus parasiticus	FBCC 2500	Enterobacter aerogenes HAMBI 189
Aspergillus flavus	FBCC 2467	Salmonella enterica HAMBI 233

 Table S3. Solvent gradients used in the identification of peptides.

Stage 1		Stage 2		Stage 3	Stage	Stage 5	
Gradient		Gradient		Isocratic	Gradient		Isocratic
lvent B (%)	Time (min)	Solvent B (%)	Time (min)	Time (min)	Solvent B (%)	Time (min)	Time (min)
5-100	5	-	-	2	100-5	0.5	2.5
10-70	5	70-95	0.01	1.99	95-10	0.5	2.5
30-50	12	50-100	0.01	3.99	100-30	0.01	3.99
5-60	6	60-100	0.01	1.99	100-5	0.01	1.99
5-25	12	25-100	0.01	3.99	100-5	0.01	3.99
ŀ	Gradio <u>vent B (%)</u> 5-100 10-70 30-50 5-60 5-25	Gradient vent B (%) Time (min) 5-100 5 10-70 5 30-50 12 5-60 6 5-25 12	Gradient Gradient Gradient vent B (%) Time (min) Solvent B (%) 5-100 5 - 10-70 5 70-95 30-50 12 50-100 5-60 6 60-100 5-25 12 25-100	Gradient Gradient Gradient Gradient vent B (%) Time (min) Solvent B (%) Time (min) 5-100 5 - - 10-70 5 70-95 0.01 30-50 12 50-100 0.01 5-60 6 60-100 0.01 5-25 12 25-100 0.01	Gradient Gradient Gradient Isocratic vent B (%) Time (min) Solvent B (%) Time (min) Time (min) 5-100 5 - - 2 10-70 5 70-95 0.01 1.99 30-50 12 50-100 0.01 3.99 5-60 6 60-100 0.01 3.99 5-25 12 25-100 0.01 3.99	Gradient Gradient Gradient Isocratic Gradient vent B (%) Time (min) Solvent B (%) Time (min) Time (min) Solvent B (%) 5-100 5 - - 2 100-5 10-70 5 70-95 0.01 1.99 95-10 30-50 12 50-100 0.01 3.99 100-30 5-60 6 60-100 0.01 1.99 100-5 5-25 12 25-100 0.01 3.99 100-5	Gradient Gradient Isocratic Gradient Gradient 6 6 60-100 0.01 1.99 95-100 0.5 5-100 5 - - 2 100-5 0.5 10-70 5 70-95 0.01 1.99 95-10 0.5 30-50 12 50-100 0.01 3.99 100-30 0.01 5-25 12 25-100 0.01 3.99 100-5 0.01

Gradients 3-5 were used for amino acid analysis.

Experiment	Complex points	Acquisition time	Number
	in (t ₁) t ₂	in (t ₁) t ₂ [s]	of scans
¹ H	32k	2.0	8
¹³ C	48k	1.0	2048
2D TOCSY	(256) 2048	(0.0231) 0.183	8
2D DQF-COSY	(256) 1024	(0.0199) 0.0799	16
2D EASY-ROESY	(256) 1024	(0.0199) 0.0799	16
2D 13C HSQC	(128) 1024	(0.0035) 0.0799	32
2D edited ¹³ C HSQC	(128) 1024	(0.0035) 0.0799	32
2D 13C HMBC	(512) 1024	(0.0115) 0.1278	24
2D 15N HSQC	(128) 1024	(0.0128) 0.0799	32

Table S4. Parameters for NMR experiments used for structural characterization of heinamides.

Table S5. UPLC-QTOF analysis of unlabeled (14N) and 15N-labeled heinamides.

			[M+Na]⁺				
Heinamide	t _R	Formula	RI (%)	Exp (<i>m</i> / <i>z</i>)	∆ (ppm)	Exp (<i>m</i> /z)	∆ (ppm)
A1	3.04	$C_{60}H_{88}N_{11}O_{16}^+$	58	1218.6415	0.8	1240.6230	0.4
A2	3.10	$C_{60}H_{88}N_{11}O_{15}^+$	40	1202.6467	0.9	1224.6291	1.2
A3	3.20	$C_{60}H_{88}N_{11}O_{14}^+$	2	1186.6496	-0.9	1208.6323	-0.3
B1	2.82	$C_{71}H_{119}N_{14}O_{22}^{+}$	62	1519.8653	2.3	1541.8485	3.1
B2	2.81	$C_{70}H_{117}N_{14}O_{21}^{+}$	15	1489.8562	3.3	1511.8384	3.4
B3	3.04	$C_{70}H_{117}N_{14}O_{20}^{+}$	11	1473.8594	2.1	1495.8408	1.7
B4	3.06	$C_{71}H_{119}N_{14}O_{21}^{+}$	7	1503.8677	0.5	1525.8513	1.6
B5	2.87	$C_{71}H_{119}N_{14}O_{21}{}^{+}$	4	1503.8591	-5.2	1525.8476	-0.8

Without N-labeling (¹⁴N cultivation)

			[M+Na]⁺				
Heinamide	t _R	$\Delta^{15} N^{-14} N (m/z)$	No of N	Exp (<i>m/z</i>)	∆ (ppm)	Exp (<i>m</i> /z)	∆ (ppm)
A1	3.01	10.9679	11	1229.6094	1.2	1251.5897	-0.1
A2	3.08	10.9686	11	1213.6153	1.9	1235.5975	2.0
A3	3.16	10.9692	11	1197.6188	0.6	1219.6007	0.5
B1	2.79	13.9567	14	1533.8220	1.1	1555.8022	0.0
B2	2.78	13.9574	14	1503.8136	2.6	1525.7963	3.0
B3	3.00	13.9594	14	1487.8188	2.7	1509.8005	2.5
B4	3.03	13.9580	14	1517.8257	0.2	1539.8009	-4.2
B5	2.84	13.9508	14	1517.8099	-10.2	1539.8005	-4.4

N-labeling (¹⁵N cultivation)

Experimental (Exp) ion masses, error (Δ) in ppm to theoretical ion mass, relative intensity (RI) and formula calculated from [M+H]⁺ signal of heinamides, mass difference of unlabeled and ¹⁵N-labeled heinamides (Δ ¹⁵N-¹⁴N) and number of nitrogens (No of N) in heinamides.

Unit	No	$\delta_{C/N}^{a}$	δ _H	mult, J	COSY	НМВС	ROESY ^b
Aoa ¹	1	169.0	-		-	-	
	2	40.5	1.62		2', 3	-	Ser ² -2-NH
	2'		1.90		2, 3	1	Ser ² -2-NH
	3	45.1	4.19		, 2, 2', 3-NH, 4'	-	2, 2', 3-NH, 4, 4'
	4	34.8	1.36		3, 5	2, 3, 5, 6	, , , ,
	4'		1.41		3, 5	2, 3, 5, 6	
	5	25.3	1.26			3, 6	
	6	30.9	1.21			4, 5, 7, 8	
	6'		1.27			4, 5, 7	
	7	22.1	1.28		8	4, 5, 6	
	8	13.9	0.87	t, 7.1	7	6, 7	
	3-NH	122.6	7.08	d, 9.3	3	3, Gly ¹¹ -1	
Ser ²	1	172.5	-		-	-	
	2	54.0	4.45		2-NH, 3, 3'	1, 3, Aoa ¹ -1	2-NH, 3, 3', Dhb ³ -2-NH
	3	60.8	3.75		2, 3', 3-OH	-	
	3'		3.85		2, 3, 3-OH	1	
	3-OH		5.27		3, 3'	-	
	2-NH	117.4	6.57	brs	2	-	
E-Dhb ³	1	167.4	-		-	-	
	2	131.0	-		-	-	
	3	119.7	5.57	q <i>,</i> 7.3	4	1, 2, 4	4
	4	12.2	1.70	d, 7.3	3	1, 2, 3	
	2-NH	140.5	10.89	S	-	1, Ser ² -1	3, Ser ² -2
Hyp ⁴	1	170.5	-		-	-	
	2	59.4	4.49		3, 3'	1, 3, Dhb ³ -1	3, 3', Ser⁵-2-NH
	3	37.7	1.85		2, 3', 4	1, 2	2, 3', 4, 5'
	3'		2.23		2, 3, 4	4, 5	2, 3, 4, 5'
	4	68.1	4.23		3, 3', 5'	-	
	4-OH	-	5.12		4	-	
	5	57.0	3.22		3' <i>,</i> 5'	2, 3, 4, Dhb ³ -1	Dhb ³ -4
	5'		3.93		4, 5	-	
Ser ⁵	1	169.7	-		-	-	
	2	55.1	4.15		2-NH, 3, 3'	1, 3, Hyp ⁴ -1	2-NH, 3, 3', Tyr ⁶ - 2-NH
	3	61.1	3.69		2, 3'	-	
	3'		3.77		2, 3	-	
	3-OH	-	-		-	-	
	2-NH	107.5	7.19	brs	2	Hyp ⁴ -1	

 Table S6. NMR data of HA A1 (from mixture of HA A1, B3 and B4 [7:2:1] in DMSO-d6).

Tyr ⁶	1	172.0	-	-	-	
	2	57.1	4.05	2-NH, 3, 3'	1, 3	2-NH, 3, 3', Leu ⁷ -2-NH
	3	36.2	2.80	2, 3'	1, 2, 4, 5/9	
	3'		2.93	2, 3	1, 2, 4, 5/9	
	4	128.1	-	-	-	
	5/9	130.0	7.13 d, 8.3	6/8	3, 5/9, 6/8, 7	
	6/8	115.0	6.61 d, 8.3	5/9	4, 6/8, 7	
	7	155.7	-	-	-	
	7-OH		-	-	-	
	2-NH	115.0	7.82 d, 7.3	2	2, 3, Ser⁵-1	
Leu ⁷	1	171.3	-	-	-	
	2	51.3	4.21	2-NH, 3, 3'	1, 3, Tyr ⁶ -1	2-NH, 3, 3', lle ⁸ -2-NH
	3	38.7	1.04	2, 3', 4	2, 4, 5	
	3'		1.22	2, 3, 4	4	
	4	24.0	1.49	3, 3', 5, 6	3, 5, 6	
	5	20.3	0.69 d, 6.8	4	3, 4, 6	
	6	22.9	0.77 d, 6.4	4	3, 4, 5, 6	
	2-NH	112.1	7.21 brs	2	5 <mark>-</mark>	
lle ⁸	1	171.7	-	-	-	
	2	55.6	4.45	2-NH, 3	-	2-NH, 3, Phe ⁹ -2-NH
	3	38.3	1.50	2, 3-Me	2	
	$3-CH_3$	15.3	0.56 d, 6.8	3	2, 3, 4	
	4	21.9	0.64	3, 5	-	
	4'		0.67	5	-	
	5	11.3	0.40 t, 7.3	4, 4'	3, 4	
	NH	107.1	6.49 brs	2	×-	
Phe ⁹	1	170.9	-	-	~ _	
	2	53.3	4.60	2-NH, 3, 3'	1, 3	2-NH, 3, 3', Hyp ¹⁰ -5,5'
	3	36.3	2.80	2, 3'	1, 2, 4, 5/9	
	3'		3.02	2, 3	1, 2, 4, 5/9	
	4	137.2	-	-	-	
	5/9	128.8	7.34		3, 5/9, 7	
	6/8	128.2	7.30	7	4, 6/8	
	7	126.6	7.22	6/8	5/9	
	2-NH	120.9	8.74 d, 7.3	2	2, 3, lle ⁸ -1	
Hyp ¹⁰	1	172.1	-	-	-	
	2	59.5	4.28	3, 3'	1, 3, 4, Phe-1	3,3', Gly ¹¹ -2-NH
	3	36.9	1.93	2, 3', 4	1, 4, 5	2, 4, 5,5'
	3'		1.97	2, 3, 4	4, 5	2, 4, 5,5'
	4	68.6	4.47	3, 5	-	
	4-OH	-	5.31	4	2-	
	5	55.2	3.60	4, 5'	2, 3, 4	
. 11			3.75	5	3	
Gly	1	166.8	-	-	-	
	2	42.6	3.28	2', 2-NH	1, Hyp ¹⁰ -1	2', 2-NH, Aoa ¹ -3-NH
	2'		3.71	2, 2-NH	1, Hyp ¹⁰ -1	2, 2-NH, Aoa ¹ -3-NH
	2-NH	110.8	8.80 brs	2	-	

^a = values from 13 C HMBC if 13 C signals not available

^b = Most important signals for the sequence

Unit	No	δ _{C/N} ^a	δ_{H} mult,	J COSY	НМВС	ROESY ^b
Aoa ¹	1	169.1	-	1_	-	
	2	40.6	1.66	2', 3	-	Ser ² -2-NH
	2'		1.93	2	÷.	Ser ² -2-NH
	3	45.2	4.16	2, 2', 3-NH, 4'	-	2, 2', 3-NH, 4, 4'
	4	34.7	1.36	3	5,6	
	4'		1.41	3, 5	3, 5, 6	
	5	25.3	1.26		3, 6, 7	
	6	30.9	1.20		5, 7, 8	
	6'		1.26		8	
	7	22.1	1.27	8	5, 6	
	8	13.9	0.87 t, 7.1	7	6, 7	
	3-NH	122.4	7.10 d, 8.8	3	Gly ¹¹ -1	
Ser ²	1	172.1	-	-	-	
	2	54.0	4.47	2-NH, 3, 3'	1, 3, Aoa ¹ -1	2-NH, 3, 3', Dhb ³ -2-N⊦
	3	60.7	3.72	2, 3', 3-OH	-	
	3'		3.83	2, 3, 3-OH	-	
	3-0H		5.26	3, 3'	-	
	2-NH	116.6	6.66 brs	2	-	
E-Dhb ³	1	166.6	-	-	-	
	2	131.1	-	-	-	
	3	118.6	5.54 q, 7.3	4	1, 2, 4	4
	4	12.3	1.69 d, 7.3	3	1, 2, 3	
	2-NH	139.7	10.86 s	-	-	3, Ser ² -2, 3'
Pro ⁴	1	170.6	-	-	-	
	2	60.7	4.41	3, 3'	1, 3, 4	3, 3', Ser⁵-2-NH
	3	29.4	1.81	2, 3'	1, 2, 4	2, 3', 5'
	3'		2.28	2, 3	1, 4, 5	2, 3
	4	24.4	1.82	5, 5'	3	
	5	48.1	3.30	4, 5'	3, 4	
	5'		3.86	4, 5	3	
Ser ⁵	1	169.7	-	-	-	
	2	55.4	4.16	2-NH, 3, 3'	1, 3	2-NH, 3, 3', Tyr ⁶ - 2-N⊦
	3	61.1	3.69	2, 3'	-	
	3'		3.77	2, 3	-	
	3-OH	-	-	-	-	
	2-NH	108.5	7.26 brs	2	-	

Tyr ⁶	1	171.9	-	-	-	
	2	56.9	4.07	2-NH, 3, 3'	1	2-NH, 3, 3', Leu ⁷ -2-NH
	3	36.2	2.80	2, 3'	4, 5/9	
	3'		2.90	2, 3	2, 4, 5/9	
	4	128.1	-	-	-	
	5/9	130.0	7.11 d, 8.8	6/8	3, 5/9, 6/8, 7	
	6/8	115.0	6.61 d, 8.3	5/9	4, 6/8, 7	
	7	155.8	-	-	-	
	7-OH		-	-	-	
	2-NH	114.7	7.80 d, 7.8	2	2, 3, Ser ⁵ -1	
Leu ⁷	1	171.4	-	-	-	
	2	51.4	4.21	2-NH, 3, 3'	1, 3	2-NH, 3, 3', lle ⁸ -2-NH
	3	38.9	1.07	2, 3', 4	-	
	3'		1.22	2, 3, 4	-	
	4	24.0	1.50	3, 3', 5, 6	3, 5, 6	
	5	20.4	0.69 d, 6.8	4	3, 4, 6	
	6	22.9	0.77 d, 6.4	4	3, 4, 5	
	2-NH	112.2	7.25 brs	2	-	
lle ⁸	1	171.6	-	-	-	
	2	55.7	4.40	2-NH, 3	-	2-NH, 3, Phe ⁹ -2-NH
	3	38.2	1.51	2, 3-Me	-	
	3-CH₃	15.3	0.56 d, 6.8	3	2, 3, 4	
	4	22.1	0.65	3, 5	-	
	4'		0.72	5	-	
	5	11.3	0.42 t, 7.1	4, 4'	3, 4	
	NH		6.59	2	-	
Phe ⁹	1	170.9	-	-	-	
	2	53.1	4.62	2-NH, 3, 3'	1, 3	2-NH, 3, 3', Hyp ¹⁰ -5,5'
	3	36.3	2.80	3'	1, 2, 4, 5/9	
	3'		3.02	3	1, 4, 5/9	
	4	137.2	-	-	-	
	5/9	128.9	7.33		3, 5/9, 7	
	6/8	128.2	7.30	5/9	4, 6/8	
	7	126.6	7.22	6/8	5/9	
	2-NH	120.4	8.72 d, 7.3	2	lle ⁸ -1	
Hyp ¹⁰	1	172.0	-	-	-	
	2	59.5	4.28	3	1, 3, 4, Phe-1	3,3', Gly ¹¹ -2-NH
	3	37.0	1.92	2, 4	1, 2, 5	2, 4, 5,5'
	3'		1.97	2, 3, 4	4, 5	2, 4, 5,5'
	4	68.6	4.45	3, 5	-	
	4-0H		5.32	4	-	
	5	55.1	3.59	5'	3, 4	
	5'		3.74	4, 5	-	
Gly^{11}	1	166.9	- 1	-	-	
	2	42.6	3.29	2'	1, Hyp ¹⁰ -1	2', 2-NH
	2'		3.71	2, 2-NH	1, Hyp ¹⁰ -1	2, 2-NH, Aoa ¹ -3-NH
	2-NH	109.8	8.72	2	-	

^a = values from 13 C HMBC if 13 C signals not available

^b = Most important signals for the sequence

Unit	No	$\delta_{C/N}^{a}$	δ _H	mult, J	COSY	НМВС	ROESY ^b
5-OHAoa ¹	1	170.9	-		-	-	
	2	40.4	2.31		2', 3	1, 3, 4	
	2'		2.55		2, 3	1, 3, 4	
	3	44.1	4.20		2, 2', 3-NH, 4, 4'	-	
	3-NH	126.2	7.75	brs	3	-	Thr ¹² -2
	4	41.6	1.38		3, 4', 5	5	
	4'		1.47		3	-	
	5	66.2	3.46		4, 6, 6'	-	
	6	39.4	1.24		5	5, 7, 8	
	7	18.4	1.23		7', 8	5, 6, 8	
	7'		1.34		7, 8	5, 6, 8	
-	8	14.0	0.82		7, 7'	7, 6	
lle ²	1	171.7	-		-	-	
	2	58.2	4.12		2-NH, 3	1, 3, 3-Me, 4	
	2-NH	123.3	8.13	brs	2	-	5-OHAoa ¹ -2,2
	3	35.9	1.80		2, 3-Me, 4, 4'	-	
	3-CH ₃	15.2	0.84		3	2, 3, 4	
	4	24.4	1.15		3, 4', 5	3, 3-Me, 5	
	4'		1.46		3, 4, 5	-	
	5	10.9	0.81		4, 4'	3, 4	
3-OHLeu ³	1	171.6	-			-	
	2	56.3	4.33		2-NH, 3	1, 3	
	2-NH	_*	8.71	brs	2	-	lle ² -2
	3	77.2	3.43		2, 3-OH	4, (5, 6)	
	3-OH		5.29		3	-	
	4	30.6	1.63		3, 5, 6	3, 5, 6	
	5	18.8	0.75		4	3, 4, 6	
	6	19.3	0.94		4	3, 4, 5	
carbHSe ⁴	1	169.7	-		-	-	
	2	50.3	4.30		2-NH, 3, 3'	1	
	2-NH	126.7	8.15	brs	2	-	
	3	30.8	1.81		2, 3', 4, 4'	2, 4	
	3'		2.08		2, 3, 4, 4'	4	
	4	60.5	3.76		3, 3', 4'	2, 3, 5	
	4'		3.90		3, 3', 4	2, 3, 5	3-OHLeu ³ -6
	5	156.6	-			-	
r	5-NH ₂	_*	6.40	brs	-	-	
Leu⁵	1	172.1	-		-	H	
	2	51.9	4.15		2-NH, 3, 3'	1	
	2-NH	117.5	7.97	d, 5.9	2	-	2, carbHSe ⁴ -2
	3	40.5	1.32		2, 3', 4	4, 5, 6	
	3'		1.49		2, 3	2, 4, 5	
	4	23.9	1.53		3, 5, 6	2, 3, 5, 6	
	5	21.1	0.78		4	3, 4, 6	
	6	22.9	0.84		4	3, 4, 5	

Table S8. NMR data of HA B1 in DMSO-d6.

	3	66.4	3.86		2, 4	-	
	2-NH	112.8	7.82	d, 7.3	2	Tyr ¹¹ -1	2, Tyr ¹¹ -2
	2	58.3	4.09		2-NH, 3	1, 3	
Ihr*	1	169.6	-		2 111 2	-	
TI 12	1	100.0	-		-	2 -	-
	0/8 7	114.8 155 7	0.01		פוכ	4, 0/8, /	
	5/9	130.0	7.01		٥/٥ ۲/٥	3, 5/9, 6/8, 7	
	4	127.8	-		-		
	3'	407.5	2.88		2, 3	1, 2, 4, 5/9	
	3	36.9	2.82		2, 3'	1, 2, 4, 5/9	
	2-NH	118.0	8.08	brs	2	-	OHMePro ¹⁰ -2
	2	54.6	4.45		2-NH, 3, 3'	-	10
Tyr	1	171.0	-		-	-	
- 11	5		3.90		5	2, 3, 4	
	5	51.0	3.25		4, 5'	-	
	4-CH ₃	10.6	0.94		4	3, 4, 5	
	4	38.3	2.06		5, 4-IVIE, 5	-	
	3-0H	20.2	4.5/		З 2 4 Мас Г	-	
	3	/1.9	4.15		2, 3-OH, 4	-	
	2	65.6	4.39		3	1, Val ³ -1	
OHMePro	1	16/./	-			-	
01111 - 10	5	18.1	0.78		3	2, 3, 4	
	4	19.1	0.88		3	2, 3, 5	
	3	30.0	1.92		2, 4, 5	1, 2, 4, 5	
	2-NH	117.1	7.28	brs	2	-	4-OHThr°-2
	2	55.7	4.30		2-INH, 3	1, 3, 4, 5	
Val	1	169.6	-		-	-	
N 19	4	160.5	3.30		3, 4	2, 3	
	4	62.5	3.26		3, 4'	2, 3	
	3-0H	-	4.90		3	-	
	3	/1.2	3.87		2, 3-OH, 4	-	
	2-NH	114.9	7.71	brs	2	-	NMe-lle'-2
	2	54.6	4.36		2-NH, 3	1, 3, NMe-Ile'-1	
3-OHUSE	7	170.0	-		-	- 1 2 NINA- 11-7 4	
2 04460	1	170.0	2.50			2, 011 1	
	N-CH-	30.1	2.98	s	-	2. Gln-1	
	5	10.2	0.77		4. 4'	3, 4	
	4'	27.1	1.29		3, 4, 5	3. 3-Me. 5	
	4	24.1	0.91		3 4' 5	3.3-Me 5	
	3-CH	15.2	0.83		3	2, 3, 4	
	3	31.7	1.91		2.4'	-	
	2	60.0	4 66		3	1 3	
NMe-IIe ⁷	1	170.6	_		-		
	-		7.14		5-NH ₂	5	
	5-NH ₂	108.9	6.71		5-NH ₂	4, 5'	
	5	174.1	-		-	-	
	4	30.8	2.07		3, 3'	2, 3, 5	
	3'		1.82		2, 3	4, 5	
	3	26.1	1.76		2, 3'	2, 4, 5	2,200 2
	2-NH	117.6	8.16	brs	2	-	2. Leu ⁵ -2
	2	48.7	4.56		2-NH, 3, 3'	1. 3. Leu ⁵ -1	
Gln°	1	172.4	-		- 2	-	

^a = values from ¹³C HMBC if ¹³C signals not available. ^b = Most important signals for the sequence * = NH signal in ¹⁵N HSQC unclear/inaccurate

Unit	No	$\delta_{C/N}^{a}$	δ _Η	Unit	No	$\delta_{C/N}^{a}$	δ _H	Unit	No	$\delta_{C/N}^{a}$	δ _H	
5-OHAoa	¹ 1	170.9	-	Leu ⁵	1	172.1	-	Val ⁹	1	169.5	-	
	2	40.4	2.33		2	52.0	4.13		2	55.5	4.30	
	2'		2.55		2-NH	117.6	8.00		2-NH	117.3	7.13	
	3	44.2	4.20		3	40.4	1.31		3	30.1	1.90	
	3-NH	126.4	7.92		3'		1.49		4	19.0	0.85	
	4	41.9	1.43		4	23.8	1.53		5	18.0	0.75	
	5	66.1	3.47		5	21.1	0.78	Pro ¹⁰	1	167.7	-	
	6	39.5	1.25	·	6	22.9	0.84	_	2	59.3	4.31	
	7	18.3	1.24	Gln ⁶	1	172.4	-		3	29.1	1.46	
	7'		1.34		2	48.7	4.56		3'		1.84	
	8	14.0	0.82	_	2-NH	117.6	8.17		4	24.1	1.72	
lle ²	1	171.7	-		3	26.1	1.77		5	47.0	3.47	
	2	58.2	4.09		3'		1.82		5'		3.66	
	2-NH	123.4	8.18		4	30.7	2.07	Tyr ¹¹	1	171.0	-	
	3	35.8	1.77		5	174.1	-		2	54.1	4.51	
	3-CH₃	15.2	0.83		5-NH ₂	108.9	6.74		2-NH	117.6	8.26	
	4	24.5	1.15				7.15		3	37.1	2.65	
	4'		1.46	NMe-Ile ⁷	1	-	_	_	3'		2.95	
	5	10.9	0.80		2	60.0	4.68		4	127.7	-	
3-OHLeu ³	1	171.6	-	-	3	31.7	1.91		5/9	129.9	7.00	
	2	56.5	4.31		3-CH ₃	15.2	0.83		6/8	114.4	6.62	
	2-NH	nd	8.77		4	24.1	0.91		7	155.7	-	
	3	77.3	3.46		4'		1.29	Thr ¹²	1	169.6	-	
	3-OH		5.39		5	10.2	0.77		2	58.2	4.14	
	4	30.6	1.65		N-CH ₃	30.2	2.98		2-NH	111.4	7.87	
	5	18.7	0.75	3-OHHse ⁸	³ 1	170.0	_	-	3	66.5	3.97	
	6	19.4	0.94		2	54.7	4.34		3-OH	-	4.90	
carbHSe ⁴	1	169.7	-		2-NH	115.2	7.83		4	19.1	0.96	
	2	50.3	4.28		3	71.0	3.87					
	2-NH	nd	8.13		3-OH	-	4.90					
	3	30.7	1.82		4	62.4	3.25					
	3'		2.07		4'		3.30	_				
	4	60.5	3.76					_				
	4'		3.90									
	5	156.6	-	^a = values	from ¹³ C	HMBC if ¹³ C s	ignals no	t available	e			
	5-NH ₂	_*	6.40	* = NH signal in ¹⁵ N HSQC unclear/inaccurate								

Table S9. NMR data of HA B2 (from mixture of HA B1 and B2 [1:1] in DMSO-d6).

UnitNo $\delta_{C/N}^{a}$ δ_{H} $\delta_{C/N}^{a}$ δ_{H} $\delta_{C/N}^{a}$ δ_{H} Aoa^1 12 $\delta_{C/N}$ δ_{H} δ_{H} 224051.62260.04.68345.14.19333.171.91345.14.1933.14-1.020.0244.471.021.020.0743.711.211.42-1.020.0763.091.221.220.03 <th></th> <th>-</th> <th colspan="2">HA B3/B4</th> <th></th> <th></th> <th colspan="2">HA B3/B4</th> <th colspan="2">HA B4</th>		-	HA B3/B4				HA B3/B4		HA B4	
Aca11MMe-IIe ⁷ 1240.51.62260.04.68345.14.1923.171.31345.14.193.CH3.CH0.220.33.43.71.267.084'1.30525.31.223.0Here ⁸ 1721.11.223.0Here ⁸ 1721.11.223.0Here ⁸ 118°3.561.774.7437.518.1637.513.641.1637.513.601.1637.513.601.16310.17.183.011.900.85310.11.0310.17.183.011.900.85310.17.18310.11.15310.11.10310.1310.1. <th>Unit</th> <th>No</th> <th>$\delta_{C/N}^{a}$</th> <th>δ_H</th> <th>Unit</th> <th>No</th> <th>$\delta_{C/N}^{a}$</th> <th>δ_H</th> <th>$\delta_{C/N}^{a}$</th> <th>$\delta_{\rm H}$</th>	Unit	No	$\delta_{C/N}^{a}$	δ _H	Unit	No	$\delta_{C/N}^{a}$	δ _H	$\delta_{C/N}^{a}$	$\delta_{\rm H}$
240.51.62260.04.682'1.9131.511.91345.11.9131.520.833-NH122.67.08424.10.9243.771.364'1.304'1.4255.030.222.8872.211.2425.4.74.3481.380.832.NH46.2.53.2511e ² 137.1.13.8633.5.61.742.NH-4.903.0H2.NH50.837.1.13.863.0H1.903.CH33.5.61.1542.NH1.60.37.1.13.451.677.1837.1.13.451.677.1825.6.4.300.851.677.18.37.1.13.451.677.1825.6.4.300.851.677.18.25.6.4.300.851.677.18.25.6.1.8.00.7525.6.4.300.851.5725.6.4.300.8537.1.13.4525.6.4.303 <t< td=""><td>Aoa¹</td><td>1</td><td>-</td><td>-</td><td>NMe-Ile⁷</td><td>1</td><td>-</td><td>-</td><td></td><td></td></t<>	Aoa ¹	1	-	-	NMe-Ile ⁷	1	-	-		
2' 1.91 3 3.1.7 1.91 3 4.1 4.19 3.7.4 1.5.2 0.83 3-NH 122.6 7.08 4 2.10 0.92 4' 1.42 5.0 0.52 0.77 5 2.53 1.23 6.03 0.12 3.04Hse ⁸ 1.0.2 2.98 6 3.03 1.23 3.04Hse ⁸ 1.0.2 2.98 1.43 8 1.3.8 0.83 2.0H - 4.34 3.23 182 5.5 1.0.7 7.1 3.86 7.1 3.86 3-0Hs 1.52 0.83 3.01 1.90 0.85 - 3-0Hs 1.60 0.60 3.01 1.90 0.85 - - 3-0Hs 1.71.6 3.63 3.01 1.90 0.85 - - 3-0Hs 1 7.16 4 1.90 0.85 - - - - <t< td=""><td></td><td>2</td><td>40.5</td><td>1.62</td><td></td><td>2</td><td>60.0</td><td>4.68</td><td></td><td></td></t<>		2	40.5	1.62		2	60.0	4.68		
345.14.193-CH ₃ 15.20.833-NH12.67.084'0.924'1.4251.0.20.77525.31.223-OHHse ⁸ 1.02.28630.91.223-OHHse ⁸ 1.0722.11.2425.4.74.3425.8.14.073-OH-4.9025.8.14.073-OH-4.903-CH2.5.61.774'3-CH2.5.61.7825.5.54.304'71.662.NH1.662.NH1.603-OHLeu ³ 1.714.662.NH1.607.713-OHLeu ³ 1.713.652.0.8330.11.903-OHLeu ³ 1.713.652.0.813.0.11.903-OHLeu ³ 1.713.6430.11.907.113-OHLeu ³ 1.713.651.8.00.751.843.001.601.902.911.467.125.624.313.011.903.243-OHHse ⁴ 3.0.942.41.900.852.9125.13.043.123.2451.8.30.7542.121.7243.0051.921.923.2451.8.30.752.911.467.151.773.911.6		2'		1.91		3	31.7	1.91		
3-NH 122.6 7.08 4 24.1 0.92 4 3.7 1.36 4' 1.30 1.30 5 25.3 1.22 N-CH ₃ 30.2 2.98 6 30.9 1.22 3-OHHee ⁸ 1 - - 7 2.1 1.24 2 54.7 4.34 11e ² 1.1 - - - - 2.NH 1.24 3.0 - 4.38 - - 3.04 3.56 1.7 3.00 - 4.90 - - 3.04 1.05 0.83 30.1 1.50 - - - 3.0 1.1 1.6 - - - - - 3.0 1.1 1.6 - - - - - 3.0 1.08 0.5 1.15 - - - - 3.0 1.0 1.1		3	45.1	4.19		$3-CH_3$	15.2	0.83		
434.71.364'1.304'1.4251.0.20.7755.31.23N-CH330.22.9872.211.24254.74.34813.80.802.NH10371.13.862.NH-8.1646.253.25335.61.774'-3.003-CH335.61.774'-3.003-CH424.61.152.NH1.6-33C11.462.255.54.303'1117.641.903-CH256.24.305518.00.752-NH1.419.00.8537.113.450HMePro ¹⁰ 255.64.303-OHLeu1330.11.903.2451.800.752-NH7.13.450HMePro ¹⁰ 256.64.30330.61.643'-1.660.9533.031.821.773.245'1.8533.081.641.721.6-1.6633.732.643'-1.6633.732.643.53.663.0041.903.33.644.515 <td></td> <td>3-NH</td> <td>122.6</td> <td>7.08</td> <td></td> <td>4</td> <td>24.1</td> <td>0.92</td> <td></td> <td></td>		3-NH	122.6	7.08		4	24.1	0.92		
4'1.4251.0.20.7753.23630.91.24813.80.8311e ² 12.111.2431.520.814.073.043.561.773.051.520.83Val ⁹ 1		4	34.7	1.36		4'		1.30		
525.31.23N-CH330.22.98630.91.223-0HHse ⁸ 1722.11.24254.74.34813.80.832.NH-4.381le ² 1371.13.86255.14.073.0H-4.902.NH-8.1646.53.25335.61.774'-3.003-CH315.20.83Val ⁹ 1424.61.1525.54.304'7.14'-3.001.903-OHLeu ³ 117.1317.13.450HMePro ¹⁰ 25.64.303'1.467.112-NH7.13.450HMePro ¹⁰ 25.64.393'1.467.14.153.24518.80.75-1.467.14.152-NH17.58.043.121.663.342-NH11.78.051.475.133.245155.72-NH12.57.73.141.5-2-NH11.58.993.333.732.6446.053.7633.732.645155.7<		4'		1.42		5	10.2	0.77		
630.91.223-OHHse ⁸ 1722.11.24254.74.3411e ² 1371.13.8611e ² 1371.13.862.NH-8.1646.253.25335.61.774'-3.303.CH ₃ 15.20.83Val ⁹ 14'24.61.15255.54.304'1.16419.00.85377.14.61.100.85-377.13.450HMePro ¹⁰ 256.64.30377.13.450HMePro ¹⁰ 256.64.303'337.11.85-337.713.450HMePro ¹⁰ 256.64.303'33.24-430.61.643'1.85518.80.75430.81.8261.830.7661.840.7561.843.742.533.732.64-75.71.941.552.955<		5	25.3	1.23	-	N-CH ₃	30.2	2.98		
7 22.1 1.24 2 54.7 4.34 8 13.8 0.83 2.NH - - 10 - - 3 71.1 3.86 2.NH - 8.16 4 62.5 3.20 3.CH 3.56 1.77 4' - 4.90 3.CH 2.26 5.6.3 4.30 - - 3.CHLeu ³ 1.71.6 - - - - 3.CHLeu ³ 7.71.8 8.60 - - - - 3.CHLeu ³ 7.71.7 3.45 OHMePro ¹⁰ 2 5.6 4.30 65.6 4.39 3' - - - - - - - - - - 2 5.0 1.64 1.64 1.64 1.64 1.64 1.64 1.64 1.64 1.64 1.64 1.64 1.64 1.64 1.64 1.64 1.64		6	30.9	1.22	3-OHHse ⁸	1	-	-		
$ \begin{array}{ c c c c c c } \hline 1 & . & . & . & . & . & . & . & . & . &$		7	22.1	1.24		2	54.7	4.34		
$\begin{split} & e^2 & 1 & - & - & 3 & 71.1 & 3.86 \\ & 2 & 58.1 & 4.07 & 3-OH & - & 4.90 \\ & 2-NH & - & 8.16 & 4 & 62.5 & 3.25 \\ & 3 & 35.6 & 1.77 & 4' & 3.30 \\ & 4 & 24.6 & 1.15 & 2 & 55.5 & 4.30 \\ & 4 & 24.6 & 1.15 & 2 & 55.5 & 4.30 \\ & 4 & 24.6 & 1.16 & 2-NH & 116.7 & 7.18 \\ & 5 & 10.8 & 0.80 & 3 & 0.1 & 1.90 \\ \hline & 3 & 30.1 & 1.90 & 0.85 & - & - & - \\ & 2 & 56.2 & 4.31 & 5 & 18.0 & 0.75 \\ & 2-NH & - & - & Pro^{10} / & 1 & - & - & - & - \\ & 3 & 77.1 & 3.45 & OHMePro^{10} & 2 & 59.6 & 4.30 & 65.6 & 4.39 \\ & 3' & & & & & & & & & & & & & & & \\ & 3 & 3$		8	13.8	0.83		2-NH	-	-		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	lle²	1	-	-		3	71.1	3.86		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		2	58.1	4.07		3-OH	-	4.90		
		2-NH 2	-	8.16		4	62.5	3.25		
		2 (1)	35.0	1.77	Val ⁹	4		5.50		
		3-CH ₃	15.2	0.83	Vai	1	-	-		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		4 4	24.6	1.15		2	55.5 116 7	4.30		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		4	10.8	0.80		2-INIT 3	30.1	1 90		
	2 OH au ³	1	171.6	0.00		1	10.0	0.85		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5-OnLeu	2	56.2	- 4 31		4 5	19.0	0.85		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		2 2-NH	-		Pro ¹⁰ /	1	-	-		-
		2	77 1	2 /5		2	50.6	4 20	65.6	1 20
		ב ז'	//.1	5.45	Univier10	2	29.1	4.30	72 1	4.39
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		4	30.6	1.64		3'	23.1	1.85	, 2.1	1.15
6 19.3 0.94 $4-CH_3$ - 10.6 0.95 carbHSe ⁴ 1 - - 5 47.0 3.47 51.3 3.24 2 50.4 4.31 5' 3.65 5' 3.65 3.88 2-NH 117.5 8.05 Tyr ¹¹ 1 - - 3.88 3' 30.8 1.82 2 53.9 4.53 3.24 3' 0.08 1.62 2 53.9 4.53 3.88 3' 0.05 3.76 3 37.3 2.64 3.76 3 37.3 2.64 4.77 5 4.77 5 4.77 2.95 4.77 4.77 13.00 7.00 7.00 5 7.00 5 7.00 5 7.00 7.00 7.00 5 7.00 5 7.00 <t< td=""><td></td><td>5</td><td>18.8</td><td>0.75</td><td></td><td>4</td><td>24.2</td><td>1.72</td><td>38.3</td><td>2.06</td></t<>		5	18.8	0.75		4	24.2	1.72	38.3	2.06
carbHSe ⁴ 1 - - 5 47.0 3.47 51.3 3.24 2 50.4 4.31 5' 3.65 3.88 2-NH 117.5 8.05 Tyr ¹¹ 1 - - 3 30.8 1.82 2 53.9 4.53 3.88 3' 2.07 2-NH - - - - - 4 60.5 3.76 3 37.3 2.64 - - - 4 60.5 3.76 3 37.3 2.64 -<		6	19.3	0.94		4-CH₃	-	-	10.6	0.95
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	carbHSe ⁴	1	-	-		5	47.0	3.47	51.3	3.24
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		2	50.4	4.31		5'		3.65		3.88
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		2-NH	117.5	8.05	Tvr ¹¹	1	-	-		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		3	30.8	1.82	,	2	53.9	4.53		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		3'		2.07		2-NH	-	-		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		4	60.5	3.76		3	37.3	2.64		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		4'		3.90		3'		2.95		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		5	155.7	- 1		4	127.9	-		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		5-NH ₂	-	6.40		5/9	130.0	7.00		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Leu⁵	1	-	-		6/8	114.7	6.62		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		2	51.9	4.17		7	155.7	-		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		2-NH	-	-	Thr ¹²	1	-	-	-	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		3	40.5	1.33		2	58.2	4.14	58.3	4.10
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		3'	22.0	1.49		2-NH	112.5	7.85		2.02
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		4 E	23.9	1.53		3	66.6	3.90	66.5	3.82 4 OE
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		5	21.2	0.79		5-ОП Л	- 193	4.67	193	4.65
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Cln ⁶	1	22.0	0.04	^a – values fr		LINEC if ¹³	Ceignale	not avail	ablo
2 40.7 4.50 $=$ NH signal in NHSQC unclear/inaccurate 2-NH 117.5 8.16 3 26.2 1.75 3' 1.83 4 30.8 2.07 5 5-NH ₂ 108.9 6.74 7.15	JIII	2	-	-		on Cr			not avall	anie
3 26.2 1.75 3' 1.83 4 30.8 2.07 5 5-NH ₂ 108.9 6.74 7.15		∠ 2-N⊔	48.7 117 5	4.00 8 16	= NH sight	ai i i N	HSQC UNC	lear/inac	curate	
3' 1.83 4 30.8 2.07 5 5-NH ₂ 108.9 6.74 7.15		2-IN⊟ 3	26.2	0.10 1 75						
4 30.8 2.07 5 5-NH ₂ 108.9 6.74 7.15		3'	20.2	1.83						
5 5-NH ₂ 108.9 6.74 7.15		4	30.8	2.07						
5-NH ₂ 108.9 6.74 7.15		5	-	-						
7.15		5-NH ₂	108.9	6.74						
		2		7.15						

Table S10. NMR data of HA B3 and B4 (from mixture of HA A1, B3 and B4 [7:2:1] in DMSO-d6).

Table S11. Retention times (t_R) of Marfey derived (with 1-fluoro-2-4-dinitrophenyl-5-L-alanine amide [FDAA] or 1-fluoro-2-4-dinitrophenyl-5-L/D-leucine amide [FDLA] reference amino acids [AA] and of Marfey-derived AAs from isolated and hydrolysed heinamide (HA) mixtures. Gray background reference Aa retention times match with retention times of AAs from HAs or their mixtures.

Marfey derivatives	t _R (min)		t _R (min) of the Aa's								
(MD) from reference	Amino acid		MD-de	MD-derivatives from the hydrolyzed heinamide (HA) mixture							
amino acids	D-	L-	A1 A2		A1, B3 and B4	B1	B1 and B2	B3 and B4			
L-DAA-Ser	2,20	2,17		2,17	2,17						
L-DAA-Pro	2,94	2,86		2,86			2,86				
L-DAA-Pro	2,97	2,88			2,88						
L-DAA-Val	4,05	3,62					3,62				
L-DAA-Val	4,07	3,64			3,64						
L-DAA-Thr	8,39	6,51			6,54		6,52				
L-DAA-allo-Thr	7,50	6,77									
L-DAA-Hse	7,13	6,62			6,61		6,61				
L-DAA-(4S)-4-OH-Pro	5,78	6,03									
L-DAA-(4R)-4-OH-Pro	4,46	5,08		5,08	5,08						
L-DAA-Glu	2,76	2,58					2,58				
L-DAA-Glu	2,81	2,61			2,61						
L-DAA-Aoa	5,16	4,77		5,16	5,16						
L-DAA-Phe	4,34	4,00		4,35	4,35						
di-L-DAA-Tyr	4,78	4,44		4,77			4,78				
di-L-DAA-Tyr	4,78	4,45			4,78						
L-DLA-lle	11,80	6,84				6,84		_			
L-DLA-lle	11,86	6,87	6,87					6,87			
L-DLA-allo-lle	11,76	6,77									
L-DLA-Leu	11,90	6,97				11,91					
L-DLA-Leu	11,94	7,00	11,94	11,95		11,95		11,94			
L-DLA-NMe-lle	NA	8,91				8,91		8,91			
D-DLA-lle	6,84	11,80				11,83					
D-DLA-lle	6,86	11,85	11,86	11,85			11,86	11,86			
D-DLA-allo-lle	6,79	11,78									
D-DLA-Leu	6,97	11,92				6,97					
D-DLA-Leu	6,99	11,92	7,00	7,00			7,00	7,00			
D-DLA-NMe-lle	NA	11,83		~			11,84	11,84			

DAA = dinitrophenylalanine amide, DLA = dinitrophenylleucine amide, NA = Not Available

Domain Predicted AA Activated A-domain **Stachelhaus** A-domain **Stachelhaus** Domain Predicted Activated residue residues code % match residues code % match 11-residue heinamides 11-residue scytocyclamides 2 $LxaC1_1$ Ser Ser DVWHISLIDK 100 LxaC₁ Gln Gln DAWQFGLIDK 100 3 $LxaC1_2$ Thr Thr DFWNIGMVHK 100 $LxaC_2$ Thr Thr DFWNIGMVHK 100 LxaC₃ OHPro/Pro 80 4 LxaC1₃ OHPro/Pro DAQFIAHVVK 90 Pro DAHFIAHVVK Pro 5 100 Hse* DlknFGSdvK * $LxaC1_4$ Ser Ser DVWHISLIDK LxaC₄ HSe 6 Tyr Phe DAWTIAAVCK 90 LxaC1₅ Tyr DASTIAAVCK 100 LxaC₅ Phe 7 LxaC1₆ DAWFLGNVVK 100 LxaC₆ DAWFLGNVVK 100 Leu Leu Leu Leu 8 LxaC1₇ lle lle DAFFLGVTFK 100 LxaD₁ lle lle DAFFLGVTFK 100 9 LxaC1₈ Phe 90 LxaD₂ lle DAFFLGVTFK 100 Phe DAWTIAAVCK lle 10 LxaC1_o OHPro/Pro 80 LxaD₃ DAWFLGNVVK 100 Pro DAHFIAHVVK Leu Leu Gly Gly DILQLGLIWK 100 11 LxaC1₁₀ Gly DILQLGLIWK 100 LxaD₄ Gly 12-residue scytocyclamides 12-residue heinamides 2 lle DAFFLGVTFK 100 Val Val DAFWLGGTFK 90 Lxal1₁ lle Lxal₁ 3 100 DAWFLGNVVK 100 Lxal1₂ Leu Leu DAWFLGNVVK Lxal₂ Leu Leu DlknFGSdvK * 4 Hse* Ala DLFNNALTYK 100 Lxal1₃ Hse Lxal₃ Ala 5 70 $Lxal1_4$ DAWFLGNVVK 100 LxaJ₁ ---FLGNVVK Leu Leu Leu Leu 6 Lxal1₅ Gln Gln DAWQFGLIDK 100 $LxaJ_2$ Gln Gln DAWQFGLIDK 100 7 100 100 Lxal1₆ lle lle DAFFLGVTFK LxaJ₃ lle lle DAFFLGVTFK * 8 LxaJ1₁ Hse* DlknFGSdvK LxaK₁ Asn DLTKIGEVGK 100 Hse Asn 9 $LxaK1_1$ LxaK₂ Val Val DAFWLGGTFK 90 Thr DFWNIGMVHK 100 Thr 10 $LxaK1_2$ LxaK₃ Pro OHMePro/Pro DVQFIAHAAK 90 Pro Pro DVQFMAHVVK 90 Tyr 100 11 $LxaK1_3$ Tyr DASTIAAVCK LxaK₄ Leu Leu DAWFLGNVVK 100 100 100 12 LxaK1₄ Thr Thr DFWNIGMVHK LxaL₁ Thr Thr DFWNIGMVHK

Table S12. Predicted and activated substrates of adenylation domains in laxaphycins, with the binding pocket amino acid residues as identified with NRPSpredictor2 in AntiSMASH 5.1.2

*Prediction by AntiSMASH 4.1.0 based on stachelhaus code.

Figure S1. Extracted ion chromatograms of heinamides (HA), total ion current chromatogram (TICC), and mass spectra from heinamide peaks with [M+H]⁺ and [M+Na]⁺ ion masses.

Figure S2. UPLC-QTOF mass spectra of unlabeled (¹⁴N, black trace) and nitrogen-labeled (¹⁵N, blue trace) heinamides (HA) A1 (A), A3 and A2 (B), B1 and B2 (C), B3 (D), B4 (E), and B5 (F). Mass increase of 10.97 (10.95 in HA B5) and 13.96 (10.95 in HA B5) Da of protonated and sodium/potassium adduct ions after ¹⁵N-labeling shows presence of 11 and 14 N atoms in the laxa A group (A1-3) and laxa B group (B1-5) heinamides, respectively.

and A3 (C). The most complete product ion series showing the amino acid sequences are marked with red numbers and lines. Hyp = OHPro.

Figure S4. UPLC-QTOF product ion mass spectra of protonated Laxa B group heinamides (HA) B1 (A), B2 (B), B3 (C), and B4 (D). The most complete product ion series showing the amino acid sequences are marked with red numbers and lines. cHse = O-carbamoyl-Hse, -C = loss of carbamoyl group as NH₂COOH (61.02 Da, marked with blue numbers and lines).

Figure S5. UPLC-QTOF product ion mass spectra of protonated 11-residue laxaphycin heinamide HA A4 (A) and 12-residue laxaphycin heinamide HA B5 (B) obtained by feeding *Nostoc* sp. UHCC 0702 with (2S,4R)-MePro or (2S,4S)-MePro, respectively. The most complete product ion series showing the amino acid sequences are marked with red numbers and lines. Hyp = OHPro. cHse = O-carbamoyl-Hse, -C = loss of carbamoyl group as NH₂COOH (61.02 Da, marked with blue numbers and lines). Line above the spectra shows the range of magnified (X5, x3) ion intensities.

Figure S6. UPLC-QTOF product ion mass spectra of doubly protonated 12-residue laxaphycin heinamide HA B5 obtained by feeding *Nostoc* sp. UHCC 0702 with (2S,4R)-4-MePro (A) or (2S,4S)-4-MePro (B) or without feeding of extra amino acid. Product ion series showing the amino acid sequence are marked with red numbers and lines. cHse = O-carbamoyl-Hse, -C = loss of carbamoyl group as NH₂COOH (61.02 Da, marked with blue numbers and lines).

Figure S7. NMR spectra from heinamide (HA) A1, B3 and B4 (7:2:1) mixture. A: ¹H (HA A1 annotated), B: ¹H+¹⁵N-HSQC (HA A1 annotated), C: ¹³C, D: DQF-COSY, E: ¹H-¹H TOCSY, F: ROESY, G: ¹³C-HSQC (HA A1, B3, and B4 annotated), H: ¹³C-HMBC, I: annotated ¹³C-HMBC carbonyl region.

Figure S8. Laxa A group heinamide (HA) A2 NMR spectra. A: ¹H, B: annotated ¹H+¹⁵N-HSQC, C: ¹³C, D: DQF-COSY, E: ¹H-¹H TOCSY, F: ROESY, G: annotated ¹³C-HSQC, H: ¹³C-HMBC, I: annotated ¹³C-HMBC carbonyl region.

Figure S9. NMR spectra of heinamide (HA) B1 (97% HA B1, 3% HA B2). A: ¹H, B: annotated ¹H+¹⁵N-HSQC, C: ¹³C, D: DQF-COSY, E: DQF-COSY Leu⁵ correlations, F: DQF-COSY OHAoa¹ correlations, G: ¹H-¹H TOCSY, H: ROESY, I: annotated ¹³C-HSQC, J: ¹³C-HMBC, K: annotated ¹³C-HMBC carbonyl region, L: COSY and HSQC Leu⁵ correlations, M: HMBC and HSQC Leu⁵ correlations, N: HMBC and HSQC OHAoa¹ correlations, O: COSY, HSQC, and HMBC cHse⁴ correlations.

170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 Chemical Shift (ppm)

Figure S10. NMR spectra of heinamide (HA) B1 and B2 (1:1) mixture. A: ¹H, B: ¹H+¹⁵N-HSQC (HA B2 annotated), C: ¹³C, D: DQF-COSY, E: ¹H-¹H TOCSY, F: ROESY, G: ¹³C-HSQC (HA B2 differences to HA B1 annotated), H: ¹³C-HMBC.

Figure S11. COSY correlations and HMBC/ROESY correlations for subunit sequencing of heinamide A1.

Figure S12. COSY correlations and HMBC/ROESY correlations for subunit sequencing of heinamide B1.

Figure S13. Phylogeny-based C-domain classification showing LxaC3, HasO2, and NdaA1 C-domains clustered in the modified AA clade. The phylogenetic tree was produced with NaPDoS¹. LCL domains catalyze a peptide bond between two L-amino acids, Cyclization domains catalyze peptide bond formation and cyclization, Epimerization domains change the chirality of the preceding amino acid, DCL domains add an L-amino acid to the peptide ending with a D-amino acid, Dual domains catalyze both epimerization and condensation reactions, ModifiedAA domains are involved in the modification of the incorporated amino acid, Hybrid C domains are involved in the condensation of an amino acid to an aminated polyketide resulting in a hybrid PKS/NRPS product, Starter domains acylate the first amino acid with a β -hydroxy-carboxylic acid.

He	inamides:								Sub	unit in po	osition	
	Control	L-Leu	rac-3-OHLeu	(2S,4R)-OHPro	(2S,4S)-OHPro	(2S,4R)-MePro	(2S,4S)-MePro	(2R,4R)-MePro	1	4	10	
A1	2,583	2,252	2,657	4,897	4,355	61	56	1,953	Aoa	OHPro	OHPro	
A2	1,793	1,503	1,855	70	1,089	30	28	1,147	Aoa	Pro	OHPro	
A3	109	77	119	3	34	2	1	70	Aoa	Pro	Pro	
A 4	0	0	0	0	0	3,493	3,232	3	Aoa	MePro	MePro	
A5	1	1	2	1	1	18	80	273	Aoa	MePro	OHPro	
B1	1,857	1,744	1,950	2,751	4,882	119	116	708	OH-Aoa	cHse	OHMePro	
B2	444	339	386	215	377	45	36	94	OH-Aoa	cHse	Pro	
B3	338	286	308	415	561	16	11	157	Aoa	cHse	Pro	
B4	199	188	225	544	984	13	1	96	Aoa	cHse	OHMePro	
B5	108	120	105	109	167	1,477	1,680	1,176	OH-Aoa	cHse	MePro	
B6	36	47	44	49	84	412	434	301	Aoa	cHse	MePro	
B7	0	0	0	786	676	0	0	0	OH-Aoa	cHse	OHPro	
Scytocyclamides: Subunit ir									n position			
	Control	L-Leu	rac-3-OHLeu	(2S,4R)-OHPro	(2S,4S)-OHPro	(2S,4R)-MePro	(2S,4S)-MePro	(2R,4R)-MePro	4	5	8	10
Α	8,901	6,358	6,997	11,393	7,651	2,100	2,098	5,683	OHPro	Ala	lle	Leu
A2	505	290	356	80	328	190	198	364	Pro	Ala	lle	Leu
A3	0	0	0	0	1	3,849	3,011	221	MePro	Ala	lle	Leu
В	19,367	15,062	16,076	14,104	17,377	9,109	6,699	12,915	Ala	OHLeu	OHAsn	Pro
С	4,640	3,734	4,832	3,774	5,053	2,574	2,280	3,252	Ala	Leu	OHAsn	Pro
B2	3,908	2,574	2,282	1,409	1,503	1,558	1,173	6,110	Ala	OHLeu	Asn	Pro
B3	2 0 2 1		and the second se	100000000000000000000000000000000000000					A1.0	Lou	Acm	Pro
D/I	2,031	1,485	1,644	1,014	1,124	1,078	593	2,797	Ald	Leu	ASI	
D4	107	1,485	1,644 9 4	4,087	1,124	1,078 69	593 54	112	Ala	OHLeu	OHAsn	OHPro
B5	2,031 107 324	1,485 105 359	1,644 94 94 423	1,014 4,087 292	1,124 1,399 407	1,078 69 9,190	593 54 5,778	2,797 112 2,380	Ala Ala	OHLeu OHLeu	OHAsn OHAsn	OHPro MePro
B5 B6	107 324 105	1,485 105 359 76	1,644 94 423 105	1,014 4,087 292 58	1,124 1,399 407 100	1,078 69 9,190 3,398	593 54 5,778 747	2,797 112 2,380 480	Ala Ala Ala	OHLeu OHLeu Leu	OHAsn OHAsn OHAsn	OHPro MePro MePro
B5 B6 B7	2,031 107 324 105 133	1,485 105 359 76 100	1,644 4 94 423 105 109	1,014 4,087 292 58 57	1,124 1,399 407 100 53	1,078 69 9,190 3,398 4,050	593 54 5,778 747 10,839	2,797 112 2,380 480 1,580	Ala Ala Ala Ala Ala	OHLeu OHLeu Leu OHLeu	OHAsn OHAsn OHAsn OHAsn Asn	OHPro MePro MePro MePro

Figure S14. Laxaphycin amounts (sum of single and double protonated and sodiated peak areas) in methanol extracts of cells grown in modified media with added amino acids. Laxaphycin codes and bars marked with blue and red are novel (B5 considerably increased) variants containing added amino acids.

Figure S15. Extracted ion chromatograms *m/z* 752.44 [M+2H]²⁺ and *m/z* 1236.67 [M+Na]⁺ of heinamides HA B5 (A) and HA A4 (B), respectively, from feeding *Nostoc* sp. UHCC 0702 with (2S,4S)-MePro and (2S,4R)-MePro. Control chromatograms are without MePro feeding.

Figure S16. The laxaphycin (*Ixa*) biosynthetic gene clusters and putative biosynthetic schemes in *Nostoc* sp. UHCC 0702 and *Scytonema hofmannii* PCC 7110. A: Organization of predicted heinamide and scytocyclamide biosynthetic genes. B: Proposed biosynthetic pathway of heinamides and scytocyclamides. NRPS non-ribosomal peptide synthetase, PKS polyketide synthase, FAAL fatty acyl AMP Ligase, ACP acyl carrier protein, KS ketosynthase, AT acyltransferase, AMT aminotransferase, C condensation domain, A adenylation domain, T thiolation domain, M methylation domain, TE thioesterase domain.