Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2021

Supporting information

for

Catalyst-free Synthesis of Substituted Pyridin-2-yl, Quinolin-2-yl, and Isoquinolin-1-yl Carbamates from the Corresponding Hetaryl Ureas and Alcohols

Svetlana O. Kasatkina, Kirill K. Geyl, Sergey V. Baykov*, Irina A. Boyarskaya, and Vadim P. Boyarskiy*

Address:

Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab., 7/9, 199034 Saint Petersburg, Russian Federation

*Corresponding authors: e-mail: <u>s.baykov@spbu.ru</u>, v.boyarskii@spbu.ru.

Content

1. General remarks	3
2. Preparation and characterization of ureas 1	4
3. Synthesis of carbamates 2 and 3	12
4. ¹ H, ¹³ C, and ¹⁹ F NMR spectra of compounds 1 , 2 , and 3	25
5. X–ray diffraction data	81
6. DFT calculations	87
7. The reaction mechanism experimental study	94
8. References	95

1. General remarks

Starting N-oxides were synthesiszed according to literature procedures: pyridine-N-oxides, quinoline-N-oxide and benzo[h]quinoline-N-oxide,¹ isoquinoline-N-oxide,² 4-nitroquinoline-Noxide,³ 4-methoxyquinoline-N-oxide.⁴ All other reagents and solvents were purchased and were used as is. Reactions were monitored by analytical thin layer chromatography (TLC) Macherey-Nagel, TLC plates Silufol UV-254 using UV light for detection. Column chromatography was carried out with silica gel grade 60 (0.040–0.063 mm) 230–400 mesh with a hexane ethyl acetate mixture as eluent. NMR spectra were recorded on Bruker Avance DPX 400 (400 MHz and 101 MHz for ¹H and ¹³C{¹H} respectively) or on Bruker Avance III 500 MHz (500 MHz for ¹H, 126 MHz for ¹³C) in DMSO- d_6 or in CDCl₃. Chemical shifts are reported as parts per million (δ , ppm); the solvent peaks were used as internal standards: 2.50 ppm for residual ¹H, 39.50 ppm for ¹³C in DMSO-d₆; 7.26 ppm for residual ¹H, 77.16 ppm for ¹³C in CDCl₃. Multiplicities are abbreviated as follows: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad; coupling constants, J, are reported in Hertz (Hz). Melting points were determined in open capillary tubes on Electrothermal IA 9300 series Digital Melting Point Apparatus. Highresolution mass spectra (HRMS) were measured on Bruker Maxis HRMS-ESI-qTOF (ESI Ionization).

2. Preparation and characterization of ureas 1

General procedure 1 (*GP1*).¹ A mixture of substituted azine *N*–oxide (1.00 mmol) and dialkyl cyanamide (1.50 mmol) was stirred at r.t. for 2 min and methanesulfonic acid (96.0 mg, 1.00 mmol) was then added dropwise within 3 min. The reaction mixture was then stirred at 60 °C for 2 h, cooled down, diluted with saturated aq. Na₂CO₃ (5.0 mL) and aq. NaCl (20 mL), and extracted with EtOAc (4 × 15 mL). Combined organic fractions were dried over anhydrous Na₂SO₄, filtered, and concentrated on a rotary evaporator. The crude product was subjected to column chromatography on silica gel (EtOAc/hexane, gradient from 50% to pure EtOAc) to give target urea **1** in good to excellent yields.

General procedure 2 (*GP2*).⁵ A mixture of substituted azine–*N*–oxide (1 mmol), diamethyl cyanamide (2.0 mmol) and acetonitrile (2 mL, 20.0 mmol) was stirred at room temperature for 2 min, and then MsOH (144 mg, 1.5 mmol) was added dropwise within 3 min. The reaction mixture was stirred at 60 °C for 3 h, cooled, diluted with saturated aq. Na₂CO₃ (2 mL) and aq. NaCl (5 mL), and extracted with EtOAc (4 × 10 mL). Combined organic fractions were dried with anhydrous Na₂SO₄, filtered, and concentrated on a rotary evaporator. The crude product was purified by column chromatography on silica gel (EtOAc/hexane (2:1) for 1,2,4–oxadiazole and acetone/DCM (1:19) for 1,3,4–oxadiazole) to give target urea **1**.

1,1–Dimethyl–3–(4–methylpyridin–2–yl)urea 1a¹

GP1. Beige powder; 81% yield (145 mg); mp 103–104 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.06 (d, J = 5.2 Hz, 1H), 7.93 (s, 1H), 7.11 (s, 1H), 6.79 (d, J = 5.2 Hz, 1H), 3.07 (s, 6H), 2.35 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 154.94, 152.82, 149.47, 147.03, 119.57, 113.51, 36.38, 21.37. HRMS (ESI), m/z: [M+H]⁺ calcd. for C₉H₁₃N₃O 180.1131; found 180.1145.

N-(4-Methylpyridin-2-yl)morpholine-4-carboxamide 1b

GP1. Beige powder; 79% yield (175 mg); mp 56–58 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.03 (d, J = 5.2 Hz, 1H), 7.89 (s, 1H), 6.79 (dd, J = 5.2, 1.5 Hz, 1H), 3.72 (d, J = 5.2 Hz, 4H), 3.53 (d, J = 5.2 Hz, 4H), 2.35 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 154.32, 152.60, 150.09, 146.35, 119.76, 114.07, 66.48, 44.27, 21.45. HRMS (ESI), m/z: [M+H]⁺ calcd. for C₁₁H₁₅N₃O₂ 222.1237; found 222.1248.

N-(4-Methylpyridin-2-yl)piperidine-1-carboxamide 1c

GP1. Beige powder; 71% yield (156 mg); mp 108–109 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.06 (d, J = 5.2 Hz, 1H), 7.90 (s, 1H), 7.15 (s, 1H), 6.77 (d, J = 5.2 Hz, 1H), 3.54 – 3.46 (m, 4H), 2.35 (s, 3H), 1.71 – 1.60 (m, 6H). ¹³C NMR (101 MHz, CDCl₃): δ 154.00, 153.01, 149.40, 147.05, 119.45, 113.66, 45.20, 25.70, 24.38, 21.37. HRMS (ESI), m/z: [M+Na]⁺ calcd. for C₁₂H₁₇N₃O 242.1264; found 242.1280.

N–(Pyridin–2–yl)piperidine–1–carboxamide 1d¹

GP1. Brown powder; 44% yield (90 mg); mp 87–88 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.23 – 8.16 (m, 1H), 8.03 (d, J = 8.4 Hz, 1H), 7.64 (s, 1H), 7.28 (s, 1H), 6.93 (d, J = 2.4 Hz, 1H), 3.57 – 3.41 (m, 4H), 1.71 – 1.57 (m, 6H). ¹³C NMR (101 MHz, CDCl₃): δ 153.92, 153.02, 147.44, 138.01, 118.14, 113.26, 45.20, 25.71, 24.37.

N-(4-Methoxypyridin-2-yl)piperidine-1-carboxamide 1e

GP1. White powder; 58% yield (136 mg); mp 74–75 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.99 (d, J = 6.0 Hz, 1H), 7.72 (d, J = 2.4 Hz, 1H), 7.25 (s, 1H), 6.51 (dd, J = 6.0, 2.4 Hz, 1H), 3.88 (s, 3H), 3.55 – 3.44 (m, 4H), 1.74 – 1.58 (m, 6H). ¹³C NMR (101 MHz, CDCl₃): δ 167.56, 154.72, 153.92, 147.37, 106.92, 97.16, 55.32, 45.23, 25.71, 24.36. HRMS (ESI), m/z: [M+Na]⁺ calcd. for C₁₂H₁₇N₃O₂ 258.1213; found 258.1214.

N–(4–Nitropyridin–2–yl)piperidine–1–carboxamide 1f

GP1. Orange powder; 66% yield (165 mg); mp 119–121 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.83 (d, J = 2.0 Hz, 1H), 8.42 (d, J = 5.6 Hz, 1H), 7.78 – 7.51 (m, 2H), 3.58 – 3.48 (m, 4H), 1.75 – 1.60 (m, 6H). ¹³C NMR (101 MHz, CDCl₃): δ 155.42, 155.22, 153.07, 149.13, 110.65, 106.65, 45.31, 25.69, 24.24. HRMS (ESI), m/z: [M+Na]⁺ calcd. for C₁₅H₁₇N₃O 273.0958; found 273.0963.

N-(4-Cyanopyridin-2-yl)piperidine-1-carboxamide 1g

GP1. Beige powder; 75% yield (173 mg); mp 114–115 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.44 – 8.37 (m, 1H), 8.34 (dd, J = 5.2, 0.8 Hz, 1H), 7.34 (s, 1H), 7.14 (dd, J = 5.2, 1.2 Hz, 1H), 3.57 – 3.47 (m, 4H), 1.74 – 1.62 (m, 6H). ¹³C NMR (101 MHz, CDCl₃): δ 153.79, 153.17, 148.63, 121.97, 121.95, 119.27, 119.25, 116.77, 115.38, 45.28, 25.67, 24.24. HRMS (ESI), m/z: [M+Na]⁺ calcd. for C₁₂H₁₄N₄O 253.1060; found 253.1072.

N-(4-(5-Methyl-1,3,4-oxadiazol-2-yl)pyridin-2-yl)piperidine-1-carboxamide 1h⁵

GP2. Beige powder; 57% yield (164 mg); m.p. 162–164 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.68 (s, 1H), 8.33 (dd, J = 5.2, 0.9 Hz, 1H), 7.93 – 7.77 (br s, 1H), 7.68 (dd, J = 5.2, 1.5 Hz, 1H), 3.54 – 3.57 (m, 4H), 2.65 (s, 3H), 1.74 – 1.64 (m, 6H). ¹³C NMR (101 MHz, DMSO– d_6): δ 165.46, 163.12, 155.05, 154.48, 148.31, 132.85, 114.14, 110.26, 45.32, 25.95, 24.44, 11.17. HRMS (ESI), m/z: [M+H]⁺ calcd. for C₁₄H₁₇N₅O₂ 288.1455; found 288.1457.

N-(4-(5-Methyl-1,2,4-oxadiazol-3-yl)pyridin-2-yl)piperidine-1-carboxamide 1i⁵

GP2. Beige powder; 52% yield (149 mg); m.p. 127–129 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.75 (m, 1H), 8.30 (d, J = 5.2 Hz, 1H), 7.79 – 7.60 (br s, 1H), 7.58 (dd, J = 5.2, 1.0 Hz, 1H), 3.60 – 3.44 (m, 4H), 2.67 (s, 3H), 1.72 – 1.60 (m, 6H). ¹³C NMR (101 MHz, CDCl₃): δ 177.09, 167.18, 153.90, 153.54, 147.83, 147.79, 136.50, 136.47, 115.61, 111.56, 45.28, 25.72, 24.36, 12.35. HRMS (ESI), m/z: [M+H]⁺ calcd. for C₁₄H₁₇N₅O₂ 288.1455; found 288.1469.

Methyl 2-(piperidine-1-carboxamido)isonicotinate 1j

GP1. White powder; 68% yield (179 mg); mp 102–104 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.58 (s, 1H), 8.32 (d, J = 5.2 Hz, 1H), 7.52 – 7.47 (m, 1H), 7.39 (s, 1H), 3.93 (s, 3H), 3.55 – 3.46 (m, 4H), 1.71 – 1.59 (m, 6H). ¹³C NMR (101 MHz, CDCl₃): δ 165.73, 153.92, 153.64, 148.10,

139.43, 117.52, 113.00, 52.53, 45.24, 25.70, 24.33. HRMS (ESI), m/z: $[M+H]^+$ calcd. For $C_{13}H_{17}N_3O_3$ 264.1343; found 264.1356.

N–(6–Methylpyridin–2–yl)piperidine–1–carboxamide 1k

GP1. Beige powder; 49% yield (107 mg); mp 67–68 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.85 (d, J = 8.4 Hz, 1H), 7.54 (t, J = 8.0 Hz, 1H), 7.09 (s, 1H), 6.80 (d, J = 7.6 Hz, 1H), 3.55 – 3.46 (m, 4H), 2.44 (s, 3H), 1.71 – 1.58 (m, 6H). ¹³C NMR (101 MHz, CDCl₃): δ 156.26, 153.94, 152.32, 138.32, 117.53, 109.96, 45.18, 25.72, 24.38, 23.97. HRMS (ESI), m/z: [M+H]⁺ calcd. for C₁₂H₁₇N₃O 220.1444; found 220.1468.

N-(6-Cyanopyridin-2-yl)piperidine-1-carboxamide 11

GP1. Beige powder; 64% yield (147 mg); mp 105–106 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.31 (d, J = 8.8 Hz, 1H), 7.74 (t, J = 8.0 Hz, 1H), 7.54 – 7.30 (m, 2H), 3.54 – 3.47 (m, 4H), 1.73 – 1.60 (m, 6H). ¹³C NMR (101 MHz, CDCl₃): δ 154.13, 153.23, 138.75, 130.94, 122.79, 117.37, 117.03, 45.29, 25.68, 24.24. HRMS (ESI), m/z: [M+Na]⁺ calcd. for C₁₂H₁₄N₄O 253.1060; found 253.1051.

N–(6–Chloropyridin–2–yl)piperidine–1–carboxamide 1m

GP1. Beige powder; 52% yield (125 mg); mp 108–109 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.02 (d, J = 8.4 Hz, 1H), 7.70 – 7.34 (m, 2H), 6.96 (d, J = 7.6 Hz, 1H), 3.56 – 3.44 (m, 4H), 1.71 – 1.58 (m, 6H). ¹³C NMR (101 MHz, CDCl₃): δ 153.26, 153.00, 140.84, 117.76, 111.38, 45.29,

25.69, 24.29. HRMS (ESI), m/z: $[M+Na]^+$ calcd. for $C_{11}H_{14}ClN_3O$ 262.0718.1060; found 262.0719.

N–(6–Phenylpyridin–2–yl)piperidine–1–carboxamide 1n

GP2. White powder; 46% yield (129 mg); mp 111–112 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.15 – 7.91 (m, 3H), 7.74 (t, *J* = 8.0 Hz, 1H), 7.62 – 7.28 (m, 5H), 3.63 – 3.42 (m, 4H), 1.76 – 1.53 (m, 6H). ¹³C NMR (101 MHz, CDCl₃): δ 155.27, 153.99, 152.81, 139.00, 128.97, 128.72, 126.80, 114.95, 111.76, 45.23, 25.74, 24.38. HRMS (ESI), m/z: [M+H]⁺ calcd. for C₁₅H₁₇N₃O 282.1601; found 282.1619.

N-(3,5-Dimethylpyridin-2-yl)piperidine-1-carboxamide 10

GP2. White powder; 22% yield (51 mg); mp 104–105 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.96 (s, 1H), 7.32 (s, 1H), 7.20 (s, 1H), 3.47 (s, 4H), 2.25 (s, 3H), 2.23 (s, 4H), 1.67 – 1.53 (m, 6H). ¹³C NMR (101 MHz, CDCl₃): δ 155.35, 149.51, 145.16, 140.26, 129.80, 127.60, 45.32, 25.77, 24.47, 18.02, 17.59. HRMS (ESI), m/z: [M+H]⁺ calcd. for C₁₃H₁₉N₃O 234.1601; found 234.1613.

N-(Quinolin-2-yl)piperidine-1-carboxamide 1p

GP2. Pale yellow powder; 63% yield (161 mg); mp 85–87 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.29 (d, J = 9.2 Hz, 1H), 8.11 (d, J = 9.2 Hz, 1H), 7.77 (t, J = 7.6 Hz, 2H), 7.69 – 7.48 (m, 2H),

7.41 (t, J = 7.6 Hz, 1H), 3.65 – 3.48 (m, 4H), 1.75 – 1.57 (m, 6H). ¹³C NMR (101 MHz, CDCl₃): δ 154.00, 152.73, 146.70, 138.01, 129.70, 127.57, 126.77, 125.72, 124.37, 114.33, 45.33, 25.77, 24.39. HRMS (ESI), m/z: [M+H]⁺ calcd. for C₁₅H₁₇N₃O 256.1444; found 256.1433.

N-(4-Methoxyquinolin-2-yl)piperidine-1-carboxamide 1q

GP2. Whire powder; 69% yield (197 mg); mp 88–89 °C.¹H NMR (400 MHz, DMSO– d_6): δ 9.36 (br s, 1H), 7.98 (d, J = 8.0, 1.6 Hz, 1H), 7.81 – 7.49 (m, 3H), 7.40 – 7.31 (m, 1H), 4.00 (s, 3H), 3.55 – 3.44 (m, 4H), 1.62 – 1.47 (m, 6H). 13C NMR (101 MHz, DMSO): δ 162.45, 155.44, 155.02, 147.59, 130.39, 126.66, 123.65, 121.89, 118.69, 94.18, 56.21, 45.30, 26.02, 24.53. HRMS (ESI), m/z: [M+Na]⁺ calcd. for C₁₆H₁₉N₃O₂ 286.1550; found 286.1551.

N-(4-Nitroquinolin-2-yl)piperidine-1-carboxamide 1r

GP2. Beige powder; 61% yield (183 mg); mp 145–146 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.92 – 8.83 (m, 1H), 8.20 (t, J = 7.2 Hz, 1H), 7.84 (t, J = 8.0 Hz, 1H), 7.78 – 7.65 (m, 2H), 7.61 – 7.51 (m, 1H), 3.62 – 3.50 (m, 4H), 1.75 – 1.61 (m, 6H). ¹³C NMR (101 MHz, CDCl₃): δ 154.05, 153.30, 152.22, 148.28, 131.13, 127.53, 126.95, 122.75, 116.34, 109.21, 45.38, 25.72, 24.25. HRMS (ESI), m/z: [M+H]⁺ calcd. for C₁₅H₁₆N₄O₃ 301.1295; found 301.1301.

N–(Isoquinolin–1–yl)piperidine–1–carboxamide 1s

GP2. Brown powder; 70% yield (179 mg); mp 97–98 °C. ¹H NMR (400 MHz, CDCl₃): δ 14.45 (br s, 1H), 8.68 (d, J = 8.0 Hz, 1H), 7.68 (t, J = 7.6 Hz, 1H), 7.59 – 7.48 (m, 2H), 7.17 (d, J = 6.8 Hz, 1H), 6.67 (d, J = 6.8 Hz, 1H), 4.71 – 3.53 (m, 4H), 1.76 – 1.57 (m, 6H). ¹³C NMR (101 MHz, CDCl₃): δ 164.60, 156.90, 136.66, 132.12, 126.96, 126.70, 126.42, 126.31, 126.09, 118.61, 108.19, 50.21, 24.94, 24.59, 23.05. HRMS (ESI), m/z: [M+H]⁺ calcd. for C₁₅H₁₇N₃O 256.1444; found 256.1459.

N-(Benzo[h]quinolin-2-yl)piperidine-1-carboxamide 1t

GP2. Pale yellow powder; 45% yield (137 mg); mp 167–168 °C. ¹H NMR (400 MHz, CDCl₃): δ 9.24 – 9.11 (m, 1H), 8.37 (d, J = 8.8 Hz, 1H), 8.16 (d, J = 8.8 Hz, 1H), 7.94 – 7.87 (m, 1H), 7.75 – 7.60 (m, 5H), 3.61 – 3.48 (m, 4H), 1.78 – 1.57 (m, 6H). ¹³C NMR (101 MHz, CDCl₃): δ 54.04, 151.91, 144.87, 137.99, 133.96, 130.55, 127.86, 127.84, 126.42, 125.22, 125.19, 124.06, 123.50, 123.03, 113.54, 45.26, 25.75, 24.38. HRMS (ESI), m/z: [M+H]⁺ calcd. for C₁₉H₁₉N₃O 306.1601; found 306.1613.

3. Synthesis of carbamates 2 and 3

General procedure 3 (*GP3*). A solution of urea 1 (0.2 mmol) in alcohol (4 mL) was placed into a sealed tube and irradiated with microwave in Biotage Initiator+ at 120 °C for 1 h (for compounds 1a-j,o) or 3 h (for compounds 1k-n and 1r-t) at 1 bar and 80 W. Then the reaction mixture was concentrated at reduced pressure to drynes and the crude product was purified by column chromatography using an *n*-hexane and ethyl acetate mixture as an eluent.

Methyl (4-methylpyridin-2-yl)carbamate 2a⁶

White powder; 91% yield (30 mg); mp 141–143 °C. ¹H NMR (400 MHz, CDCl₃): δ 9.89 (s, 1H), 8.20 (d, *J* = 5.2 Hz, 1H), 7.89 (s, 1H), 6.83 (dd, *J* = 5.2, 1.6 Hz, 1H), 3.84 (s, 3H), 2.38 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 154.18, 152.33, 149.95, 147.20, 147.18, 119.79, 119.76, 112.90, 52.23, 21.45. HRMS (ESI), m/z: [M+H]⁺ calcd. for C₈H₁₀N₂O₂ 167.0815; found 167.0821.

Ethyl (4-methylpyridin-2-yl)carbamate 2b⁷

White powder; 94% yield (34 mg); mp 128–130 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.69 (s, 1H), 8.18 (dd, J = 5.2, 0.8 Hz, 1H), 7.87 (d, J = 1.6 Hz, 1H), 6.83 (ddd, J = 5.2, 1.6, 0.8 Hz, 1H), 4.28 (q, J = 7.2 Hz, 2H), 2.38 (s, 3H), 1.37 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 153.78, 152.48, 149.88, 147.19, 119.65, 112.94, 61.15, 21.44, 14.58. HRMS (ESI), m/z: [M+H]⁺ calcd. for C₉H₁₂N₂O₂ 181.0972; found 181.0991.

CH₃ 0 ₩____C++3

Propyl (4-methylpyridin-2-yl)carbamate 2c

White powder; 90% yield (35 mg); mp 113–114 °C. ¹H NMR (400 MHz, CDCl₃): δ 10.14 (s, 1H), 8.22 (d, J = 5.2 Hz, 1H), 7.92 (s, 1H), 6.82 (d, J = 5.2 Hz, 1H), 4.18 (t, J = 6.8 Hz, 2H), 2.37 (s, 3H), 1.76 (hept., J = 7.2 Hz, 2H), 1.00 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 153.92, 152.55, 150.10, 146.89, 119.58, 113.06, 66.82, 22.32, 21.48, 10.36. HRMS (ESI), m/z: [M+H]⁺ calcd. for C₁₀H₁₄N₂O₂ 195.1128; found: 195.1130.

Butyl (4-methylpyridin-2-yl)carbamate 2d

White powder; 93% yield (39 mg); mp 87–88 °C. ¹H NMR (400 MHz, CDCl₃): δ 9.10 (s, 1H), 8.21 (d, J = 5.2 Hz, 1H), 7.92 (s, 1H), 6.82 (d, J = 5.2 Hz, 1H), 4.22 (t, J = 6.8 Hz, 2H), 2.38 (s, 3H), 1.78 – 1.65 (m, 2H), 1.45 (p, J = 6.8 Hz, 2H), 0.98 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 153.82, 152.36, 149.92, 147.14, 119.68, 112.95, 65.10, 31.00, 21.45, 19.09, 13.72. HRMS (ESI), m/z: [M+H]⁺ calcd. for C₁₁H₁₆N₂O₂ 209.1285; found 209.1295.

Isobutyl (4-methylpyridin-2-yl)carbamate 2e

White powder; 83% yield (35 mg); mp 113–114 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.59 (s, 1H), 8.17 (s, 1H), 7.87 (s, 1H), 6.83 (d, J = 5.2 Hz, 1H), 4.00 (d, J = 6.8 Hz, 2H), 2.38 (s, 3H), 2.12 – 1.97 (m, 1H), 1.00 (d, J = 6.8 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃): δ 153.75, 152.20, 149.86, 147.19, 119.80, 112.97, 71.39, 28.01, 21.44, 19.07. HRMS (ESI), m/z: [M+H]⁺ calcd. for C₁₁H₁₆N₂O₂ 209.1285; found 209.1301.

Benzyl (4-methylpyridin-2-yl)carbamate 2f

White powder; 88% yield (43 mg); mp 145–146 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.98 (s, 1H), 8.22 – 8.08 (m, 1H), 7.95 (s, 1H), 6.86 (d, J = 4.8 Hz, 1H), 4.84 – 4.74 (m, 1H), 2.41 (s, 3H), 2.02 – 1.92 (m, 2H), 1.84 – 1.74 (m, 2H), 1.63 – 1.27 (m, 6H). ¹³C NMR (101 MHz, CDCl₃): δ 152.92, 151.74, 151.25, 145.57, 119.71, 113.30, 74.25, 31.88, 25.34, 23.81, 21.67. HRMS (ESI), m/z: [M+H]⁺ calcd. for C₁₄H₁₄N₂O₂ 243.1128; found: 243.1127.

Isopropyl (4-methylpyridin-2-yl)carbamate 2g

White powder; 87% yield (34 mg); mp 136–137 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.54 (s, 1H), 8.17 (d, J = 5.2 Hz, 1H), 7.87 (s, 1H), 6.82 (dd, J = 5.2, 1.6 Hz, 1H), 5.06 (hept, J = 6.4 Hz, 1H), 2.38 (s, 3H), 1.35 (d, J = 6.4 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃): δ 153.41, 152.62, 149.81, 147.18, 119.51, 112.95, 68.70, 22.14, 22.12, 21.43. HRMS (ESI), m/z: [M+H]⁺ calcd. for C₁₀H₁₄N₂O₂ 195.1128; found 195.1130.

sec-Butyl (4-methylpyridin-2-yl)carbamate 2h

White powder; 92% yield (38 mg); mp 93–94 °C. ¹H NMR (400 MHz, CDCl₃): δ 9.45 (s, 1H), 8.19 (d, J = 5.2 Hz, 1H), 7.93 (s, 1H), 6.83 (dd, J = 5.2, 1.5 Hz, 1H), 4.89 (hept, J = 6.4 Hz, 1H), 2.39 (s, 3H), 1.77 – 1.58 (m, 2H), 1.32 (d, J = 6.4 Hz, 3H), 0.97 (t, J = 7.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 153.45, 152.29, 150.34, 146.56, 119.59, 113.08, 73.51, 29.05, 21.51, 19.73, 9.72. HRMS (ESI), m/z: [M+H]⁺ calcd. for C₁₁H₁₆N₂O₂ 209.1285; found: 209.1284.

Cyclohexyl (4-methylpyridin-2-yl)carbamate 2i

White powder; 74% yield (35 mg); mp 171–173 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.98 (s, 1H), 8.22 – 8.08 (m, 1H), 7.95 (s, 1H), 6.86 (d, J = 4.8 Hz, 1H), 4.84 – 4.74 (m, 1H), 2.41 (s, 3H), 2.02 – 1.92 (m, 2H), 1.84 – 1.74 (m, 2H), 1.63 – 1.27 (m, 6H). ¹³C NMR (101 MHz, CDCl₃): δ 152.92, 151.74, 151.25, 145.57, 119.71, 113.30, 74.25, 31.88, 25.34, 23.81, 21.67. HRMS (ESI), m/z: [M+H]⁺ calcd. for C₁₃H₁₈N₂O₂ 235.1441; found: 235.1438.

2-Methoxyethyl (4-methylpyridin-2-yl)carbamate 2j

Pale yellow powder; 63% yield (26 mg); mp 128–129 °C. ¹H NMR (400 MHz, CDCl₃): δ 9.94 (s, 1H), 8.27 (d, J = 5.2 Hz, 1H), 7.90 (s, 1H), 6.83 (d, J = 4.8 Hz, 1H), 4.40 – 4.34 (m, 2H), 3.71 – 3.66 (m, 2H), 3.45 (s, 3H), 2.38 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 153.51, 152.16, 150.21, 147.04, 119.79, 112.96, 70.69, 64.14, 58.95, 21.50. HRMS (ESI), m/z: [M+H]⁺ calcd. for C₁₀H₁₄N₂O₃ 211.1077; found: 211.1079.

2,2,2–Trifluoroethyl (4–methylpyridin–2–yl)carbamate 2k

White powder; 53% yield (25 mg); mp 186–187 °C. ¹H NMR (400 MHz, CDCl₃): δ 10.52 (br s, 1H), 8.24 (d, J = 5.2 Hz, 1H), 7.88 (s, 1H), 6.91 (dd, J = 5.2, 1.5 Hz, 1H), 4.63 (q, J = 8.4 Hz, 2H), 2.41 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 151.71, 151.60, 150.85, 146.70, 127.21 (q, J = 277 Hz), 120.45, 113.39, 61.50, 61.14, 60.77, 60.41, 21.53. ¹⁹F NMR (376 MHz, CDCl₃): δ – 73.90. HRMS (ESI), m/z: [M+H]⁺ calcd. for C₉H₉F₃N₂O₂ 235.0689; found 235.0688.

2,2,3,3,4,4,5,5–Octafluoropentyl (4–methylpyridin–2–yl)carbamate 21

White powder; 64% yield (42 mg); mp 110–111 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.25 (d, J = 5.2 Hz, 1H), 7.90 (s, 1H), 6.91 (d, J = 5.2 Hz, 1H), 6.08 (tt, J = 51.8, 5.2 Hz, 1H), 4.77 (t, J = 14.0 Hz, 2H), 2.41 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 151.81, 151.59, 150.79, 146.79, 120.45, 114.70 (t, J = 31.7 Hz), 113.43, 110.11 (t, J = 31.1 Hz), 107.58 (t, J = 30.4 Hz), 105.05 (t, J = 32.9 Hz), 59.96 (t, J = 25.6 Hz), 21.49. ¹⁹F NMR (376 MHz, CDCl₃): δ –119.84 (m), – 125.31 (m), –129.88 (m), –137.17 (m). HRMS (ESI), m/z: [M+H]⁺ calcd. for C₁₂H₁₀F₈N₂O₂ 367.0687; found: 367.0689.

tert-Butyl (4-methylpyridin-2-yl)carbamate 2m8

White powder; 44% yield (18 mg); mp 114–116 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.95 (s, 1H), 8.17 (d, J = 5.2 Hz, 1H), 7.87 (s, 1H), 6.81 (dd, J = 5.2, 1.5 Hz, 1H), 2.37 (s, 3H), 1.56 (s, 9H). ¹³C NMR (101 MHz, CDCl₃): δ 152.75, 152.32, 150.19, 146.69, 119.43, 112.99, 80.88, 28.35, 21.48. HRMS (ESI), m/z: [M+H]⁺ calcd. for C₁₁H₁₆N₂O₂ 209.1285; found 209.1280.

Ethyl pyridin-2-ylcarbamate 2n⁹

White powder; 90% yield (30 mg); mp 101–103 °C. ¹H NMR (400 MHz, CDCl₃): δ 9.15 (s, 1H), 8.33 (ddd, J = 5.2, 2.0, 0.8 Hz, 1H), 8.08 (d, J = 8.4 Hz, 1H), 7.78 – 7.71 (m, 1H), 7.02 (ddd, J = 7.2, 5.2, 0.8 Hz, 1H), 4.29 (q, J = 7.2 Hz, 2H)), 1.37 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 153.40, 151.99, 146.84, 138.95, 118.51, 112.69, 61.46, 14.53. HRMS (ESI), m/z: [M+H]⁺ calcd. for C₈H₁₀N₂O₂ 167.0815; found 167.0813.

Ethyl (4-methoxypyridin-2-yl)carbamate 20

White powder; 89% yield (35 mg); mp 116–118 °C. ¹H NMR (400 MHz, CDCl₃): δ 9.38 (br s, 1H), 8.14 – 8.01 (m, 1H), 7.78 – 7.68 (m, 1H), 6.65 – 6.56 (m, 1H), 4.29 (q, *J* = 7.2 Hz, 2H), 3.97 – 3.89 (m, 3H), 1.37 (td, *J* = 7.6, 0.8 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 168.09, 153.80, 153.55, 147.19, 106.88, 96.84, 61.42, 55.45, 14.53. HRMS (ESI), m/z: [M+H]⁺ calcd. for C₉H₁₂N₂O₃ 197.0921; found 197.0939.

Ethyl (4-nitropyridin-2-yl)carbamate 2p

Pale orange powder; 66% yield (28 mg); mp 118–120 °C. ¹H NMR (400 MHz, DMSO– d_6): δ 10.83 (s, 1H), 8.62 (d, J = 5.4 Hz, 1H), 8.55 (d, J = 2.0 Hz, 1H), 7.76 (dd, J = 5.6, 2.1 Hz, 1H), 4.21 (q, J = 7.2 Hz, 2H), 1.27 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, DMSO– d_6): δ 155.48, 154.83, 154.12, 151.05, 111.42, 105.13, 61.50, 14.82. HRMS (ESI), m/z: [M+H]⁺ calcd. for C₈H₉N₃O₄ 212.0666 found: 212.0671.

Ethyl (4-cyanopyridin-2-yl)carbamate 2q

White powder; 64% yield (24 mg); mp 196–197 °C. ¹H NMR (400 MHz, CDCl₃): δ 9.04 (s, 1H), 8.48 (d, J = 5.2 Hz, 1H), 8.36 (s, 1H), 7.22 (d, J = 5.2 Hz, 1H), 4.33 (q, J = 7.2 Hz, 2H), 1.39 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 153.04, 152.91, 148.81, 122.63, 119.89, 116.53, 114.64, 62.06, 14.49. HRMS (ESI), m/z: [M+H]⁺ calcd. for C₉H₉N₃O₂ 192.0768; found 192.0769.

Ethyl (4-(5-methyl-1,3,4-oxadiazol-2-yl)pyridin-2-yl)carbamate 2r

White powder; 65% yield (32 mg); mp 216–217 °C. ¹H NMR (400 MHz, DMSO– d_6): δ 10.23 (s, 1H), 8.48 (d, J = 5.2 Hz, 1H), 8.40 (s, 1H), 7.55 (dd, J = 5.2, 1.6 Hz, 1H), 4.21 (q, J = 7.2 Hz, 2H), 2.63 (s, 3H), 1.29 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, DMSO– d_6): δ 165.44, 163.13, 154.14, 153.84, 149.94, 132.80, 115.20, 108.70, 61.22, 14.89, 11.17. HRMS (ESI), m/z: [M+H]⁺ calcd. for C₁₁H₁₂N₄O₃ 249.0982; found 249.0989.

Ethyl (4-(5-methyl-1,2,4-oxadiazol-3-yl)pyridin-2-yl)carbamate 2s

White powder; 59% yield (29 mg); mp 205–207 °C. ¹H NMR (400 MHz, DMSO– d_6): δ 10.24 (s, 1H), 8.52 – 8.41 (m, 2H), 7.57 (dd, J = 5.2, 1.5 Hz, 1H), 4.20 (q, J = 7.2 Hz, 2H), 2.70 (s, 3H), 1.28 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, DMSO– d_6): δ 178.73, 166.98, 154.11, 153.82, 149.74, 135.86, 116.00, 109.84, 61.15, 14.90, 12.54. HRMS (ESI), m/z: [M+H]⁺ calcd. for C₁₁H₁₂N₄O₃ 249.0982; found 249.0985.

Methyl 2–((ethoxycarbonyl)amino)isonicotinate 2t (69%) and ethyl 2– ((ethoxycarbonyl)amino)isonicotinate 2t' (9%)

The title compounds were obtained and characterized as a mixture.

2t. ¹H NMR (400 MHz, CDCl₃): δ 9.62 (s, 1H), 8.62 (s, 1H), 8.48 (d, J = 5.2 Hz, 1H), 7.58 (dd, J = 5.2, 1.6 Hz, 1H), 4.32 (q, J = 7.2 Hz, 2H), 3.97 (s, 3H), 1.39 (t, J = 7.2 Hz, 3H). ¹³C NMR (101

MHz, CDCl₃): δ 165.44, 153.40, 153.16, 148.04, 140.0, 117.89, 112.31, 61.64, 52.73, 14.53. HRMS (ESI), m/z: [M+H]⁺ calcd. for C₁₀H₁₂N₂O₄ 225.0870; found 225.0874.

2t^{*}. ¹H NMR (400 MHz, CDCl₃): δ 9.62 (s, 1H), 8.62 (s, 1H), 8.48 (d, J = 5.2 Hz, 1H), 7.58 (dd, J = 5.2, 1.6 Hz, 1H), 4.43 (q, J = 7.2 Hz, 2H), 4.32 (q, J = 7.2 Hz, 2H), 1.43 (t, J = 7.2 Hz, 3H), 1.39 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 164.94, 153.10, 147.90, 140.51, 61.88, 61.64, 14.53, 14.21. HRMS (ESI), m/z: [M+H]⁺ calcd. for C₁₁H₁₄N₂O₄ 239.1026; found 239.1023.

Ethyl (6-methylpyridin-2-yl)carbamate 2u¹⁰

White powder; 73% yield (26 mg); mp 58–59 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.77 (d, J = 8.3 Hz, 1H), 7.66 (s, 1H), 7.58 (t, J = 8.0 Hz, 1H), 6.85 (d, J = 7.6 Hz, 1H), 4.24 (q, J = 7.2 Hz, 2H), 2.46 (s, 3H), 1.32 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 156.86, 153.33, 151.00, 138.53, 118.19, 109.11, 61.27, 23.93, 14.46. HRMS (ESI), m/z: [M+H]⁺ calcd. for C₉H₁₂N₂O₂ 203.0791; found 203.0801.

Ethyl (6-cyanopyridin-2-yl)carbamate 2v

Pale yellow powder; 78% yield (30 mg); mp 126–127 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.28 (d, J = 8.8 Hz, 1H), 7.82 (t, J = 8.0 Hz, 1H), 7.63 (br s, 1H), 7.40 (d, J = 7.6 Hz, 1H), 4.29 (q, J = 7.2 Hz, 2H), 1.36 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 152.88, 152.67, 139.19, 131.50, 123.46, 116.81, 116.18, 62.03, 14.38. HRMS (ESI), m/z: [M+Na]⁺ calcd. for C₉H₉N₃O₂ 214.0587; found 214.0589.

Ethyl (6-chloropyridin-2-yl)carbamate 2w

White powder; 71% yield (28 mg); mp 68–69 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.91 (d, J = 8.2 Hz, 1H), 7.65 (t, J = 7.8 Hz, 1H), 7.34 (br s, 1H), 7.03 (d, J = 7.6 Hz, 1H), 4.27 (q, J = 7.2 Hz, 2H), 1.34 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 152.84, 151.43, 148.92, 140.86, 118.69, 110.31, 61.81, 14.43. HRMS (ESI), m/z: [M+H]⁺ calcd. for C₈H₉ClN₂O₂ 201.0425; found: 201.0439.

Ethyl (6-phenylpyridin-2-yl)carbamate 2x

White powder; 62% yield (30 mg); mp 73–74 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.02 – 7.91 (m, 3H), 7.77 (t, *J* = 7.8 Hz, 1H), 7.66 (br s, 1H), 7.52 – 7.38 (m, 4H), 4.27 (q, *J* = 7.2 Hz, 2H), 1.34 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 155.66, 153.29, 151.32, 139.16, 138.59, 129.10, 128.71, 126.79, 115.43, 110.59, 61.43, 14.49. HRMS (ESI), m/z: [M+H]⁺ calcd. for C₁₄H₁₄N₂O₂ 243.1128; found 243.1115.

Ethyl (3,5-dimethylpyridin-2-yl)carbamate 2y

White powder; 36% yield (14 mg); mp 73–74 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.09 (s, 1H), 7.37 (d, J = 2.0 Hz, 1H), 7.07 (s, 1H), 4.23 (q, J = 7.2 Hz, 2H), 2.29 (d, J = 6.4 Hz, 6H), 1.32 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 154.05, 147.01, 145.92, 140.50, 130.79, 126.88, 61.43, 17.77, 17.66, 14.54. HRMS (ESI), m/z: [M+H]⁺ calcd. for C₁₀H₁₄N₂O₂ 195.1128; found 195.1127.

Ethyl quinolin-2-ylcarbamate 3a¹¹

Pale yellow powder; 54% yield (23 mg); mp 98–99 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.27 (d, J = 9.2 Hz, 1H), 8.19 (d, J = 9.2 Hz, 1H), 7.96 (br s, 1H), 7.85 (d, J = 8.4 Hz, 1H), 7.79 (d, J = 8.0

Hz, 1H), 7.72 - 7.65 (m, 1H), 7.46 (t, J = 7.6 Hz, 1H), 4.30 (q, J = 7.2 Hz, 2H), 1.36 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 153.52, 151.19, 146.09, 138.94, 130.07, 127.54, 126.93, 125.72, 124.96, 112.97, 61.65, 14.40. HRMS (ESI), m/z: [M+H]⁺ calcd. for C₁₂H₁₂N₂O₂ 217.0972; found 217.0988.

Ethyl (4-methoxyquinolin-2-yl)carbamate 3b

White powder; 72% yield (35 mg); mp 156–158 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.11 (d, J = 8.0 Hz, 1H), 7.97 (s, 1H), 7.80 – 7.71 (m, 2H), 7.67 – 7.61 (m, 1H), 7.39 (t, J = 8.4 Hz, 1H), 4.28 (q, J = 7.2 Hz, 2H), 4.11 (s, 3H), 1.34 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 163.98, 153.92, 152.84, 147.29, 130.03, 126.91, 123.83, 121.80, 119.32, 91.89, 61.35, 55.88, 14.35. HRMS (ESI), m/z: [M+H]⁺ calcd. for C₁₃H₁₄N₂O₃ 247.1077; found 247.1078.

Ethyl (4–nitroquinolin–2–yl)carbamate 3c (57%) and ethyl (4–(piperidin–1–yl)quinolin–2– yl)carbamate 3c' (25%)

The title compounds were obtained and characterized as a mixture.

3c. ¹H NMR (400 MHz, CDCl₃): δ 8.83 (s, 1H), 8.25 (d, J = 8.5 Hz, 2H + br s, 1H), 7.95 (d, J = 8.5 Hz, 1H), 7.79 (ddd, J = 8.4, 6.9, 1.4 Hz, 1H), 7.63 (ddd, J = 8.4, 6.8, 1.2 Hz, 1H), 4.32 (q, J = 7.2 Hz, 2H), 1.35 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 154.54, 153.15, 150.66, 148.39, 131.38, 128.01, 127.52, 122.72, 116.52, 107.75, 62.22, 14.37. HRMS (ESI), m/z: [M+H]⁺ calcd. for C₁₂H₁₁N₃O₄ 262.0822; found 262.0829.

3c'. ¹H NMR (400 MHz, CDCl₃): δ 8.30 – 8.12 (br s, 1H), 7.95 (m, 1H), 7.77 (m, 2H), 7.63 (m, 1H), 7.39 – 7.34 (m, 1H), 4.25 (q, *J* = 7.2 Hz, 2H), 3.26 (t, *J* = 5.2 Hz, 4H), 1.87 (m, 4H), 1.73 (m, 2H), 1.30 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 160.31, 132.48, 129.51,

129.34, 124.62, 123.96, 123.40, 123.16, 121.45, 104.21, 61.39, 53.66, 26.09, 24.52, 14.45. HRMS (ESI), m/z: $[M+H]^+$ calcd. for $C_{17}H_{21}N_3O_2$ 300.1707; found 300.1711.

Ethyl benzo[h]quinolin-2-ylcarbamate 3e

Yellow powder; 68% yield (36 mg); mp 104–105 °C. ¹H NMR (400 MHz, Acetone– d_6): δ 9.25 (s, 1H), 9.18 – 9.10 (m, 1H), 8.37 – 8.32 (m, 2H), 8.01 – 7.94 (m, 1H), 7.82 – 7.77 (m, 2H), 7.73 – 7.66 (m, 2H), 4.29 (q, J = 7.2 Hz, 2H), 1.34 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, Acetone– d_6): δ 153.65, 151.12, 144.87, 138.14, 134.09, 130.65, 128.03, 127.78, 126.32, 125.40, 125.16, 124.21, 123.04, 112.35, 60.87, 13.96. HRMS (ESI), m/z: [M+H]⁺ calcd. for C₁₆H₁₄N₂O₂ 267.1128; found 267.1127.

Benzyl quinolin-2-ylcarbamate 3f¹²

Yellow powder; 73% yield (41 mg); mp 103–104 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.26 (d, J = 8.8 Hz, 1H), 8.22 – 8.11 (m, 2H), 7.84 (d, J = 8.4 Hz, 1H), 7.78 (dd, J = 8.0, 1.6 Hz, 1H), 7.68 – 7.61 (m, 1H), 7.48 – 7.33 (m, 6H), 5.27 (s, 2H). ¹³C NMR (101 MHz, Acetone– d_6): δ 153.67, 151.69, 146.94, 138.21, 136.68, 129.71, 128.42, 127.99, 127.92, 127.60, 127.38, 125.81, 124.68, 112.96, 66.42. HRMS (ESI), m/z: [M+H]⁺ calcd. for C₁₇H₁₄N₂O₂ 279.1128; found 279.1127.

Isopropyl quinolin-2-ylcarbamate 3g¹²

Pale yellow powder; 80% yield (37 mg); mp 100–101 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.46 (br s, 1H), 8.28 (d, J = 8.8 Hz, 1H), 8.18 (d, J = 8.8 Hz, 1H), 7.88 (dd, J = 8.4, 2.8 Hz, 1H), 7.78 (d, J = 8.0 Hz, 1H), 7.67 (t, J = 7.6 Hz, 1H), 7.45 (t, J = 7.6 Hz, 1H), 5.11 – 5.02 (m, 1H), 1.33 – 1.26 (m, 6H). ¹³C NMR (101 MHz, CDCl₃): δ 153.15, 151.26, 146.23, 138.81, 130.01, 127.52,

127.50, 127.01, 125.71, 124.88, 113.01, 69.35, 21.95. HRMS (ESI), m/z: $[M+H]^+$ calcd. for $C_{13}H_{14}N_2O_2$ 231.1128; found 231.1129.

2-Methoxyethyl quinolin-2-ylcarbamate 3h

Pale yellow powder; 71% yield (35 mg); mp 60–62 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.25 (d, *J* = 8.8 Hz, 1H), 8.17 (d, *J* = 8.8 Hz, 1H), 7.87 (d, *J* = 8.4 Hz, 1H), 7.77 (d, *J* = 8.0 Hz, 1H), 7.71 – 7.62 (m, 1H), 7.44 (t, *J* = 7.2 Hz, 1H), 4.45 – 4.32 (m, 2H), 3.67 – 3.58 (m, 2H), 3.38 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 153.42, 151.03, 146.54, 138.64, 129.90, 127.48, 127.33, 125.85, 124.90, 112.97, 70.49, 64.50, 58.98. HRMS (ESI), m/z: [M+H]⁺ calcd. for C₁₃H₁₄N₂O₃ 247.1077; found 247.1078.

tert-Butyl quinolin-2-ylcarbamate 3j13

Yellow oil; 39% yield (19 mg). ¹H NMR (400 MHz, CDCl₃): δ 8.22 (d, J = 8.8 Hz, 1H), 8.15 (d, J = 8.8 Hz, 1H), 7.79 – 7.71 (m, 2H), 7.69 – 7.63 (m, 1H), 7.46 – 7.41 (m, 1H), 1.56 (s, 9H). ¹³C NMR (101 MHz, CDCl₃): δ 152.53, 151.34, 146.78, 138.33, 129.81, 127.52, 127.49, 127.26, 125.78, 124.65, 112.94, 81.23, 28.25. HRMS (ESI), m/z: [M+H]⁺ calcd. for C₁₄H₁₆N₄O₃ 245.1285; found 245.1279.

Isopropyl isoquinolin–1–ylcarbamate 3k

White powder; 27% yield (12 mg); mp 166–168 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.64 (d, J = 8.0 Hz, 1H), 7.79 – 7.57 (m, 4H), 7.15 (d, J = 6.4 Hz, 1H), 5.15 – 5.04 (m, 1H), 1.39 (d, J = 6.0 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃): δ 137.25, 132.45, 130.94, 127.64, 126.72, 126.54,

124.00, 114.10, 69.20, 22.09. HRMS (ESI), m/z: $[M+Na]^+$ calcd. for $C_{13}H_{14}N_2O_2$ 253.0947; found 253.0957.

4. ¹H, ¹³C, and ¹⁹F NMR spectra of compounds 1, 2, and 3

¹H and ¹³C spectra of *N*-(4-methoxypyridin-2-yl)piperidine-1-carboxamide **1e**.

¹H and ¹³C spectra of N-(4-(5-methyl-1,3,4-oxadiazol-2-yl)pyridin-2-yl)piperidine-1-carboxamide **1h**.

f1 (ppm) 0.

S37

¹H and ¹³C spectra of methyl (4–methylpyridin–2–yl)carbamate **2a**.

$^1\mathrm{H}$ and $^{13}\mathrm{C}$ spectra of ethyl (4–methylpyridin–2–yl)carbamate $\mathbf{2b}.$

 1 H and 13 C spectra of butyl (4–methylpyridin–2–yl)carbamate **2d**.

¹H and ¹³C spectra of isobutyl (4–methylpyridin–2–yl)carbamate **2e**.

f1 (ppm) C

S55

¹H and ¹³C spectra of isopropyl (4–methylpyridin–2–yl)carbamate **2g**.

¹H and ¹³C spectra of cyclohexyl (4–methylpyridin–2–yl)carbamate **2i**.

¹H and ¹³C spectra of 2–methoxyethyl (4–methylpyridin–2–yl)carbamate **2j**.

50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -250 f1 (ppm)

--73.90

¹H, ¹³C, ¹⁹F spectra of 2,2,3,3,4,4,5,5–octafluoropentyl (4–methylpyridin–2–yl)carbamate **2I**.

¹H and ¹³C spectra of ethyl (4–methoxypyridin–2–yl)carbamate **20**.

¹H and ¹³C spectra of ethyl (4–nitropyridin–2–yl)carbamate **2p**.

¹H and ¹³C spectra ethyl (4–cyanopyridin–2–yl)carbamate **2q**.

¹H and ¹³C spectra of ethyl (4–(5–methyl–1,3,4–oxadiazol–2–yl)pyridin–2–yl)carbamate **2r**.

¹H and ¹³C spectra of ethyl (4–(5–methyl–1,2,4–oxadiazol–3–yl)pyridin–2–yl)carbamate **2s**.

¹H and ¹³C spectra of methyl 2–((ethoxycarbonyl)amino)isonicotinate 2t and ethyl 2–((ethoxycarbonyl)amino)isonicotinate 2t'.

¹H and ¹³C spectra ethyl (6–chloropyridin–2–yl)carbamate **2w**.

¹H and ¹³C spectra of ethyl (3,5-dimethylpyridin–2–yl)carbamate **2**y.

¹H and ¹³C spectra of ethyl (4–methoxyquinolin–2–yl)carbamate **3b**.

¹H and ¹³C spectra of ethyl (4–nitroquinolin–2–yl)carbamate 3c + ethyl (4–(piperidin–1–yl)quinolin–2–yl)carbamate 3c'.

¹H and ¹³C spectra of ethyl benzo[*h*]quinolin–2–ylcarbamate **3e**.

¹H and ¹³C spectra of benzyl quinolin–2–ylcarbamate **3f**.

¹H and ¹³C spectra of isopropyl quinolin–2–ylcarbamate **3g**.

5. X-ray diffraction data

Singe crystals for X-ray studying were obtained by slow evaporation of solutions of corresponding carbamates in MeOH (**2a**), CDCl₃ (**2i** and **2**k), and 1,2-DCE (**3b** and **3h**) at RT in air. X–ray diffraction data were collected at a Rigaku SuperNova (compounds **2a**, **2i**, **3b**) and at a Rigaku XtaLAB Synergy–S (compounds **2k and 3h**) diffractometers using Cu–K α ($\lambda = 0.154184$ nm) radiation. The structures have been solved with the ShelXT¹⁴ structure solution program using Intrinsic Phasing and refined with the ShelXL¹⁵ refinement package incorporated in the OLEX2 program package¹⁶ using Least Squares minimization. Empirical absorption correction was applied in CrysAlisPro¹⁷ program complex using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. Supplementary crystallographic data for this paper have been deposited at Cambridge Crystallographic Data Centre and can be obtained free of charge *via* www.ccdc.cam.ac.uk/data_request/cif. CCDC numbers 2050683 (**2a**), 2050680 (**2i**), 2050682 (**2k**), 2050687 (**3b**), 2050685 (**3h**).

Figure S1. View of the molecular structure of 2a. Thermal ellipsoids are drawn at the 50% probability level.

Figure S2. View of the molecular structure of **2i**. Thermal ellipsoids are drawn at the 50% probability level.

Figure S3. View of the molecular structure of 2k. Thermal ellipsoids are drawn at the 50% probability level.

Figure S4. View of the molecular structure of 3b. Thermal ellipsoids are drawn at the 50% probability level.

Figure S5. View of the molecular structure of **3h**. Thermal ellipsoids are drawn at the 50% probability level.

Compound	2a	2i	2k
Identification code	KKG-167	BSC-296	BSC-297
CCDC number	2050683	2050680	2050682
Empirical formula	$C_{8}H_{10}N_{2}O_{2}$	$C_{13}H_{18}N_2O_2$	$C_9H_9F_3N_2O_2$
Formula weight	166.18	234.29	234.18
Temperature, K	100(2)	100(2)	100(2)
Crystal system	monoclinic	monoclinic	triclinic
Space group	P2 ₁ /c	$P2_1/n$	P-1
a, Å	5.9064(3)	8.3092(2)	4.8119(2)
b, Å	18.7809(8)	12.0788(4)	10.5336(4)
c, Å	7.4306(4)	11.8379(3)	10.7314(4)
α, °	90	90	114.870(4)
β, °	97.589(5)	92.429(3)	94.157(4)
γ, °	90	90	90.003(3)
Volume, Å ³	817.04(7)	1187.05(6)	491.92(4)
Ζ	4	4	2
$\rho_{calc}g, cm^3$	1.351	1.311	1.581
μ , mm ⁻¹	0.822	0.719	1.327
F(000)	352.0	504.0	240.0
Crystal size, mm ³	0.18 imes 0.13 imes 0.12	$0.17 \times 0.15 \times 0.12$	0.17 imes 0.17 imes 0.11
Radiation	$CuK\alpha \ (\lambda = 1.54184)$	$CuK\alpha (\lambda = 1.54184)$	$CuK\alpha \ (\lambda = 1.54184)$
20 range for data collection, °	9.418 to 152.132	10.468 to 152.298	9.112 to 154.646
	$-7 \le h \le 6,$	$-8 \le h \le 10,$	$-6 \le h \le 5,$
Index ranges	$-23 \le k \le 22,$	$-15 \le k \le 15,$	$-12 \le k \le 13,$
	$-9 \le 1 \le 8$	$-14 \le l \le 14$	$-13 \le l \le 13$
Reflections collected	3366	10645	6782
Independent reflections	$\frac{1661 [R_{int} = 0.0232,}{R_{sigma} = 0.0304]}$	$2462 [R_{int} = 0.0425, R_{sigma} = 0.0317]$	$2033 [R_{int} = 0.0372, R_{sigma} = 0.0310]$
Data/restraints/parameters	1661/0/111	2462/0/155	2033/0/146
Goodness-of-fit on F ²	1.093	1.048	1.096
Final R indexes [I>=2 σ	$R_1 = 0.0411,$	$R_1 = 0.0382,$	$R_1 = 0.0366,$
(I)]	$wR_2 = 0.1095$	$wR_2 = 0.0975$	$wR_2 = 0.1021$
Final R indexes [all data]	$R_1 = 0.0501,$ w $R_2 = 0.1159$	$R_1 = 0.0465,$ $wR_2 = 0.1032$	$R_1 = 0.0385,$ w $R_2 = 0.1041$
Largest diff. peak/hole/ eÅ ⁻³	0.23/-0.27	0.35/-0.20	0.25/-0.29

 Table S1. Crystal data and structure refinement parameters for 2a, 2i, and 2k.

Compound	3b	3h
Identification code	16831_UCM-32	16831_UCM-26
CCDC number	2050687	2050685
Empirical formula	$C_{13}H_{14}N_2O_3$	$C_{13}H_{14}N_2O_3$
Formula weight	246.26	246.26
Temperature, K	100(2)	100(2)
Crystal system	Triclinic	monoclinic
Space group	P-1	$P2_1/n$
a, Å	7.9429(2)	11.9095(2)
b, Å	12.4375(2)	7.96230(10)
c, Å	12.8747(3)	25.3411(4)
α, °	87.653(2)	90
β, °	74.488(2)	95.9570(10)
γ, °	87.068(2)	90
Volume, Å ³	1223.46(5)	2390.04(6)
Ζ	4	8
$\rho_{calc}g, cm^3$	1.337	1.369
μ , mm ⁻¹	0.796	0.815
F(000)	520.0	1040.0
Crystal size, mm ³	0.15 imes 0.14 imes 0.11	$0.19 \times 0.12 \times 0.1$
Radiation	Cu Ka (λ = 1.54184)	Cu Ka (λ = 1.54184)
2⊖ range for data collection, °	7.12 to 141.658	7.014 to 155.682
	$-9 \le h \le 8,$	$-15 \le h \le 14,$
Index ranges	$-15 \le k \le 15,$	$-10 \le k \le 8,$
	$-15 \le l \le 15$	$-32 \le l \le 31$
Reflections collected	24817	48959
Independent reflections	$4672 [R_{int} = 0.0374, R_{sigma} = 0.0230]$	$\begin{array}{l} 4990 \; [R_{int} = 0.0473, \\ R_{sigma} = 0.0228] \end{array}$
Data/restraints/parameters	4672/0/330	4990/0/327
Goodness-of-fit on F ²	1.085	1.068
Final R indexes [I>=2 σ	$R_1 = 0.0368,$	$R_1 = 0.0383,$
(I)]	$wR_2 = 0.0985$	$wR_2 = 0.0968$
Final R indexes [all data]	$R_1 = 0.0404,$ w $R_2 = 0.1021$	$R_1 = 0.0415,$ w $R_2 = 0.0992$
Largest diff. peak/hole/ eÅ ⁻³	0.24/-0.22	0.27/-0.33

 Table S2. Crystal data and structure refinement parameters for 3b and 3h.

6. DFT calculations

All computations were carried out at the DFT/HF hybrid level of theory using hybrid exchange functional B3LYP by using GAUSSIAN2003 program packages.¹⁸ The geometries optimization were performed using the 6-311+G(2d,2p) basis set (standard 6-311G basis set added with polarization (d,p) and diffuse functions). Optimizations were performed on all degrees of freedom and solvent phase optimized structures were verified as true minima with no imaginary frequencies. The Hessian matrix was calculated analytically for the optimized structures in order to prove the location of correct minima and to estimate the thermodynamic parameters. Solvent–phase calculations used the Polarizable Continuum Model (PCM, solvent – ethanol).

Calculated energy for starting urea 1d: E(B3LYP) = -667.937981796 h, $G^{298} = -667.725729$ h, $\mu=3.93$ D.

Ν	atom	X	y	Z
1	N	2.787914	-1.196915	-0.532415
2	С	2.009452	-0.214563	-0.062091
3	С	2.527871	0.900541	0.609958
4	С	3.900672	0.983354	0.774111
5	С	4.720819	-0.030424	0.282563
6	С	4.110701	-1.099187	-0.356021
7	N	0.640989	-0.443122	-0.241921
8	С	-0.347700	0.534195	-0.352591
9	0	-0.066139	1.733816	-0.411153
10	N	-1.632298	0.076972	-0.379639
11	С	-2.061010	-1.307088	-0.153687
12	С	-3.212506	-1.367662	0.856268
13	С	-4.367847	-0.446720	0.457522
14	С	-3.858018	0.978651	0.229336
15	С	-2.708091	0.993042	-0.777340
16	Н	4.328233	1.835809	1.290942
17	Н	1.871107	1.668970	0.985229
18	Н	4.703074	-1.918991	-0.752076
19	Н	5.797308	0.003600	0.394675
20	Н	0.461875	-1.357160	-0.644728

Table S3. Cartesian coordinates for the optimized structure of urea 1d, Å.

21	Н	-1.229996	-1.895625	0.222440
22	Н	-2.378998	-1.744262	-1.107396
23	Н	-3.549858	-2.403275	0.933052
24	Н	-2.832673	-1.077051	1.839585
25	Н	-5.142937	-0.458962	1.225761
26	Н	-4.828492	-0.818812	-0.463509
27	Н	-4.658399	1.621690	-0.142368
28	Н	-3.512157	1.405142	1.175123
29	Н	-2.282821	1.985370	-0.877042
30	Н	-3.078457	0.679655	-1.760805

Figure S6. Optimized structure of urea 1d.

Calculated energy for intermediate I1 (Scheme 6): E(B3LYP) = -415.911526522 h, $G^{298} = -415.852726$ h, $\mu = 5.24$ D.

Ν	atom	X	у	Z
1	C	-2.238653	-0.893526	0.000349
2	C	-2.537870	0.465559	0.000256
3	C	-1.484504	1.371348	-0.000077
4	N	-0.197022	1.005570	-0.000379
5	C	0.069596	-0.300996	-0.000322
6	C	-0.910333	-1.292436	0.000073
7	Н	-3.029584	-1.635391	0.000623
8	Н	-3.561664	0.819212	0.000439
9	Н	-1.674349	2.440612	-0.000138

Table S4. Cartesian coordinates for the optimized structure of intermediate I1, Å.

10	Н	-0.625593	-2.337214	0.000126
11	N	1.414851	-0.697345	-0.000731
12	C	2.458165	-0.091088	-0.000099
13	0	3.528498	0.375255	0.000705

Figure S7. Optimized structure of intermediate I1.

Calculated energy for intermediate I2 (Scheme 6): E(B3LYP) = -822.998020007 h, $G^{298} = -822.709797$ h, μ =6.43 D.

N	atom	X	у	Z
1	C	-1.738352	-0.920327	-0.812177
2	C	-1.817140	-0.468522	0.528639
3	N	-2.961345	-0.525434	1.213615
4	C	-4.043019	-1.052204	0.621639
5	C	-4.056793	-1.531602	-0.675168
6	C	-2.867212	-1.450546	-1.404060
7	N	-0.776363	0.103829	1.248320
8	C	0.592930	0.532758	1.136822
9	0	0.929258	1.360110	2.000362
10	N	1.575652	-0.242495	0.534346
11	C	2.962397	0.212130	0.635691
12	C	3.781747	-0.238228	-0.576268
13	C	3.678128	-1.753183	-0.785272
14	C	2.209389	-2.174222	-0.874394
15	С	1.425390	-1.685027	0.347840
16	0	0.136786	1.696862	-0.536959
17	С	-0.271756	3.073242	-0.310018

Table S5. Cartesian coordinates for the optimized structure of intermediate I2, Å.

18	C	-0.786136	3.711065	-1.586487
19	Н	-2.826259	-1.795308	-2.431678
20	Н	-0.828070	-0.827986	-1.375313
21	Н	-4.943273	-1.080405	1.228795
22	Н	-4.962442	-1.941686	-1.103411
23	Н	-1.056804	0.380427	2.189446
24	Н	0.380904	-1.918393	0.226392
25	Н	1.808356	-2.206786	1.238202
26	Н	2.115536	-3.260292	-0.946458
27	Н	1.761775	-1.748320	-1.778193
28	Н	4.225438	-2.054660	-1.680311
29	Н	4.147267	-2.265091	0.061349
30	Н	4.821110	0.065250	-0.435757
31	Н	3.415518	0.278905	-1.468977
32	Н	2.968510	1.294063	0.736587
33	Н	3.420483	-0.192823	1.549433
34	Н	0.569409	3.619954	0.113498
35	Н	-1.058127	3.004996	0.431597
36	Н	-1.110460	4.735629	-1.390994
37	Н	-0.005206	3.750216	-2.347128
38	Н	-1.634338	3.154036	-1.981683
39	Н	0.979268	1.669193	-0.997315

Calculated energy for intermediate I3 (Scheme 6): E(B3LYP) = -822.998020007 h, $G^{298} = -822.709797$ h, μ =6.43 D.

N	atom	X	у	Z
1	С	-2.228857	-0.782101	0.901647
2	С	-1.974992	0.014289	-0.232347
3	N	-2.930478	0.249840	-1.152139
4	С	-4.145093	-0.276684	-0.967776
5	С	-4.491526	-1.059064	0.123294
6	С	-3.497290	-1.309456	1.067630
7	N	-0.766814	0.612856	-0.524479
8	С	0.489287	0.686396	0.194897
9	0	0.278412	0.670682	1.590340
10	N	1.416507	-0.365562	-0.174570
11	С	2.722444	-0.274674	0.506764
12	С	3.740133	-1.197313	-0.162671
13	С	3.242174	-2.644327	-0.184896
14	С	1.840563	-2.711487	-0.796001
15	С	0.884805	-1.733080	-0.110826
16	0	1.131851	1.875240	-0.232030
17	С	0.590186	3.114312	0.246279
18	С	1.351176	4.243863	-0.419032
19	Н	-3.707130	-1.922630	1.937795
20	Н	-1.455220	-0.979128	1.625391
21	Н	-4.875768	-0.054248	-1.740762
22	Н	-5.492304	-1.458626	0.224728
23	Н	-0.725399	1.021671	-1.455414
24	Н	-0.079076	-1.761285	-0.610332
25	Н	0.731092	-2.049297	0.931899
26	Н	1.431244	-3.720822	-0.713830
27	Н	1.890706	-2.468501	-1.861018
28	Н	3.933727	-3.283083	-0.738191
29	Н	3.207540	-3.029245	0.839650
30	Н	4.690238	-1.124080	0.371321
31	Н	3.916313	-0.851766	-1.185155
32	Н	3.059903	0.756141	0.463057
33	Н	2.625610	-0.550779	1.566486
34	Н	0.701013	3.168839	1.331766
35	Н	-0.475032	3.174357	0.004789

Table S6. Cartesian coordinates for the optimized structure of intermediate I3, Å.

36	Н	0.971872	5.202862	-0.064529
37	Н	2.414072	4.188144	-0.183820
38	Н	1.234523	4.208182	-1.502217
39	Н	-0.452587	1.261941	1.848452

Figure S9. Optimized structure of intermediate I3.

Calculated energy for carbamate **2n** (Scheme 6): E(B3LYP) = -571.054236896 h, $G^{298} = -570.917572$ h, μ =0.59 D.

1 up to 5 1 up to 1

Ν	atom	X	у	Z
1	C	-3.953419	0.050140	0.001754
2	С	-3.136428	1.177112	-0.000264
3	С	-1.757252	1.032267	-0.001961
4	С	-1.236604	-0.267166	-0.001317
5	N	-2.011022	-1.358519	0.000115

6	C	-3.337346	-1.193181	0.001507
7	N	0.130262	-0.566907	-0.003574
8	C	1.193227	0.290940	-0.000224
9	0	2.339873	-0.419021	0.000456
10	С	3.570981	0.352168	0.001242
11	С	4.721672	-0.628475	0.000147
12	0	1.140523	1.506953	0.001510
13	Н	-3.569144	2.171670	-0.000540
14	Н	-1.101518	1.886840	-0.003870
15	Н	-3.928731	-2.104228	0.003155
16	Н	-5.033396	0.129484	0.003251
17	Н	0.347317	-1.565119	-0.002356
18	Н	3.580445	0.987710	0.886095
19	Н	3.580370	0.989602	-0.882256
20	Н	4.697539	-1.262017	-0.886255
21	Н	4.697373	-1.264163	0.885016
22	Н	5.662914	-0.078078	0.000936

Figure S10. Optimized structure of carbamate 2n.

7. The reaction mechanism experimental study

Urea 1c (10 mg, 1 eq) and phenyl isocyanate (0.02 mL, 4 eq) were mixed in toluene (1 mL) and stirred at 120 °C for 1 hour. A white precipitate formed. The reaction mixture was cooled to room temperature and the precipitate was filtered off. The filtrate was evaporated with a rotary evaporator, dissolved in CDCl₃, and analyzed by ¹H NMR spectroscopy and high-resolution mass spectrometry.

8. References

- V. A. Rassadin, D. P. Zimin, G. Z. Raskil'dina, A. Y. Ivanov, V. P. Boyarskiy, S. S. Zlotskii and V. Y. Kukushkin, *Green Chem.*, 2016, 18, 6630–6636.
- 2 S. E. Wengryniuk, A. Weickgenannt, C. Reiher, N. A. Strotman, K. Chen, M. D. Eastgate and P. S. Baran, *Org. Lett.*, 2013, **15**, 792–795.
- 3 V. V. Romanov, Y. P. Nizhnik and A. D. Fofanov, J. Struct. Chem., 2015, 56, 365–369.
- K. Inamoto, Y. Araki, S. Kikkawa, M. Yonemoto, Y. Tanaka and Y. Kondo, *Org. Biomol. Chem.*, 2013, 11, 4438–4441.
- 5 K. Geyl, S. Baykov, M. Tarasenko, L. E. Zelenkov, V. Matveevskaya and V. P. Boyarskiy, *Tetrahedron Lett.*, 2019, **60**, 151108.
- D. M. Bystrov, E. S. Zhilin, L. L. Fershtat, A. A. Romanova, I. V. Ananyev and N. N. Makhova, *Adv. Synth. Catal.*, 2018, 360, 3157–3163.
- 7 S. Shapiro, I. Rose, F. Testa and L. Freedman, J. Org. Chem., 1959, 24, 1606–1607.
- 8 N. C. Ihle and A. E. Krause, J. Org. Chem., 1996, 61, 4810–4811.
- 9 M. P. Shewalkar, R. R. Rao, V. Reddy, S. N. Darandale and D. B. Shinde, *Lett. Org. Chem.*, 2013, 10, 60–64.
- 10 A. R. Katritzky, J. Chem. Soc., 1956, 2063–2066.
- A. R. Katritzky, I. R. Beattie, A. Dyer, M. Daniels, J. Lyon, J. Weiss, P. C. Anson, J. M. Tedder, J. I. Jones, N. G. Savill, Y. Liwschitz, A. Zilkha, Y. Edlitz-Pfeffermann, Y. Shorr, R. Mirza, J. D. Cocker, T. G. Halsall, A. Campbell, S. D. Cavalla, D. T. Elmore, J. R. Ogle and S. Trippett, *J. Chem. Soc.*, 1957, 4385–4408.
- 12 B. I. Ardashev and Y. M. Popova, *Chem. Heterocycl. Compd.*, 1972, **8**, 480–481.
- A. Abengózar, B. Abarca, A. M. Cuadro, D. Sucunza, J. Álvarez-Builla and J. J. Vaquero, *Eur. J. Org. Chem.*, 2015, 2015, 4214–4223.
- 14 G. M. Sheldrick, Acta Crystallogr. Sect. A Found. Adv., 2015, 71, 3–8.
- 15 G. M. Sheldrick, Acta Crystallogr. Sect. C Struct. Chem., 2015, 71, 3–8.
- 16 O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. *Appl. Crystallogr.*, 2009, **42**, 339–341.
- 17 CrysAlis PRO. Agilent Technologies Ltd: Yarnton, Oxfordshire, England 2014.
- Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J.
 R.; Montgomery, J. A.; Vreven, Jr. T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar,

S. S;, Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson,
G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida,
M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.;
Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.;
Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.;
AyalaP, Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V.
G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.;
Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.;
Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin,
R. L.; Fox, D. J.; Keith, T.; Al–Laham, M. A.; Peng, C. Y.; Nanayakkara, A.;
Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.;
Pople, J. A. Gaussian 03, Revision D.02, Gaussian, Inc., Wallingford CT, 2004.