Supporting Information

Enantio- and Diastereoselective Double Mannich Reaction of Malononitrile with N -Boc Imines Using Bifunctional Organoiodine Catalyst

Satoru Kuwano, ${ }^{\text {a,b }}$ Eri Ogino, ${ }^{\text {a }}$ Takayoshi Arai ${ }^{\text {a* }}$
${ }^{\text {a }}$ Soft Molecular Activation Research Center (SMARC)
${ }^{a}$ Chiba Iodine Resource Innovation Center (CIRIC)
${ }^{a}$ Molecular Chirality Research Center (MCRC)
${ }^{\text {a }}$ Department of Chemistry, Graduate School of Science, Chiba University 1-33 Yayoi, Inage, Chiba 263-8522 (Japan)
${ }^{\mathrm{b}}$ Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, 152-8551 (Japan)
E-mail: tarai@faculty.chiba-u.jp

Contents

1. General S3
2. General procedure for asymmetric Mannich reaction of malononitrile with N-Boc aldimines S3
3. Analytical data of double Mannich products S3
4. 3 mmol scale synthesis S9
5. Synthesis of unsymmetrical 1,3-diamine S9
6. Transformation of chiral 1,3-diamine derivative 4. S10
7. Reactions using acetaldehyde and ynone as nucleophiles S11
8. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra S12
9. HPLC spectra S30

1. General

Dry solvents were purchased from commercial suppliers and used without further purification. Analytical thin-layer chromatography (TLC) was performed on glass plates coated with $0.25 \mathrm{~mm} 230-400$ mesh silica gel containing a fluorescent indicator (Merck, \#1.05715.0009). Silica gel column chromatography was performed on Kanto silica gel 60 (spherical, 63-210 $\mu \mathrm{m}$). IR spectra were recorded on JASCO FT/IR-4100 using ATR. High-resolution mass spectra were recorded on a Thermo Fisher Scientific Exactive Orbitrap mass spectrometer (ESI), and a JEOL JMST100GCv "AccuTOF GCv" (FD). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra were recorded on JEOL ECS-400 (400 MHz), ECA-500 (500 $\mathrm{MHz})$, ECX-400 $(400 \mathrm{MHz})$ spectrometers. Chemical shifts of ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra were reported relative to tetramethyl silane ($\delta 0$). ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra were recorded on JEOL ECS-400 (100 MHz), ECA-500 (125 MHz), ECX-400 (100 MHz) spectrometers. Chemical shifts of ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra were reported relative to $\mathrm{CDCl}_{3}(\delta 77.0)$. Splitting patterns were reported as s, singlet; d, doublet; t, triplet; m, multiplet; br, broad.
N-Boc aldimines were synthesized according to known procedure. ${ }^{1}$
[1] Wenzel, A.-G.; Jacobsen, E.-N. J. Am. Chem. Soc. 2002, 124, 12964.

2. General procedure for asymmetric Mannich reaction of malononitrile with \boldsymbol{N}-Boc aldimines

Catalyst 3b ($1.9 \mathrm{mg}, 0.003 \mathrm{mmol}, 0.03 \mathrm{eq}$) and malononitrile $2(6.6 \mathrm{mg}, 0.1 \mathrm{mmol}, 1 \mathrm{eq})$ were added to a glass tube containing a stir bar under $\mathrm{Ar} . \mathrm{CHCl}_{3}(0.5 \mathrm{ml})$ was added to the flask, and the mixture was cooled to $-50^{\circ} \mathrm{C}$. To the resulting suspension, imine $\mathbf{3}(0.22 \mathrm{mmol}, 2.2 \mathrm{eq})$ was added. After being stirred for 48 h , solvent was removed under reduced pressure. Diastereomeric ratio was determined by ${ }^{1} \mathrm{H}$ NMR analysis of the crude reaction mixture. The mixture was purified by silica gel column chromatography (hexane/ethyl acetate $=10 / 1$ to $5 / 1$) to afford product 4 . The enantiomeric excesses of the products were determined by chiral stationary phase HPLC using Daicel OD-H, OD-3, AD-H, IA, and AZ-3 column.

3. Analytical data of double Mannich products
 di-tert-butyl ((1R,3R)-2,2-dicyano-1,3-diphenylpropane-1,3-diyl)dicarbamate (4a)

Reaction time: 48 h ; colorless oil ($47.4 \mathrm{mg},>99 \%$ yield, dl:meso $=>20: 1$); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.42(\mathrm{~s}$, 10 H), 5.47 (br, 2H), 5.33 (br, 2H), 1.45 ($\mathrm{s}, 18 \mathrm{H}$); ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 154.1,134.87,129.7,129.1,127.7$, 113.1, 81.3, 56.5, 51.6, 28.1; IR (neat) 3316, 3010, 2979, 1703, 1497, 1366, 1166, $754 \mathrm{~cm}^{-1}$; HRMS (ESI+) calcd for $\mathrm{C}_{27} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}: 499.2316$, found: 499.2309; [$\left.\boldsymbol{\alpha}\right]_{\mathbf{D}}{ }^{\mathbf{2 1}}=-41.9\left(c=1.0, \mathrm{CHCl}_{3},>99.5 \%\right.$ ee $)$.
Enantiomeric excess was determined by HPLC with a Chiralpak IA column (hexane:2-propanol $=90: 10,0.5$ $\mathrm{mL} / \mathrm{min}, 254 \mathrm{~nm}$); minor enantiomer $\mathrm{t}_{\mathrm{R}}=16.6 \mathrm{~min}$, major enantiomer $\mathrm{t}_{\mathrm{R}}=18.2 \mathrm{~min},>99.5 \%$ ee.

di-tert-butyl ((1R,3R)-2,2-dicyano-1,3-di-p-tolylpropane-1,3-diyl)dicarbamate (4b)

Reaction time: 48 h ; colorless oil ($49.7 \mathrm{mg}, 99 \%$ yield, dl:meso $=16: 1$); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.29(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.21(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 4 \mathrm{H}), 5.42(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.24(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.37(\mathrm{~s}, 6 \mathrm{H}), 1.44(\mathrm{~s}, 18 \mathrm{H})$; ${ }^{13} \mathbf{C}$ NMR (125 MHz, CDCl_{3}): $\delta 154.1,139.7,131.9,129.7,127.6,113.3,81.2,56.2,51.8,28.1,21.1 ;$ IR (neat) 3346, $2979,1700,1509,1366,1162,733 \mathrm{~cm}^{-1}$; HRMS (ESI+) calcd for $\mathrm{C}_{29} \mathrm{H}_{36} \mathrm{~N}_{4} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}: 527.2629$, found: $527.2626 ;[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 0}}=-36.2\left(c=1.0, \mathrm{CHCl}_{3}, 99 \%\right.$ ee $)$.
Enantiomeric excess was determined by HPLC with a Chiralcel OD-H column (hexane:2-propanol $=90: 10,1.0$ $\mathrm{mL} / \mathrm{min}, 254 \mathrm{~nm}$); minor enantiomer $\mathrm{t}_{\mathrm{R}}=10.4 \mathrm{~min}$, major enantiomer $\mathrm{t}_{\mathrm{R}}=24.3 \mathrm{~min}, 99 \%$ ee.

di-tert-butyl ((1R,3R)-2,2-dicyano-1,3-di-m-tolylpropane-1,3-diyl)dicarbamate (4c)

Reaction time: 48 h ; colorless oil ($50.0 \mathrm{mg},>99 \%$ yield, $d l:$ meso $=>20: 1$); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.11-7.33$ $(\mathrm{m}, 8 \mathrm{H}), 5.44(\mathrm{~s}, 2 \mathrm{H}), 5.23(\mathrm{~s}, 2 \mathrm{H}), 2.36(\mathrm{~s}, 6 \mathrm{H}), 1.38(\mathrm{~d}, J=48.2 \mathrm{~Hz}, 18 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 154.0$, 138.7, 134.7, 130.4, 128.9, 128.8, 124.4, 113.2, 81.2, 56.5, 51.6, 28.1, 21.3; IR (neat) 3344, 2979, 1699, 1366, 1159, $730 \mathrm{~cm}^{-1}$; HRMS (ESI +) calcd for $\mathrm{C}_{29} \mathrm{H}_{36} \mathrm{~N}_{4} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}: 527.2629$, found: 527.2620; $[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{1 8}}=-43.0(c=1.0$, $\mathrm{CHCl}_{3},>99.5 \%$ ee $)$.

Enantiomeric excess was determined by HPLC with a Chiralpak IA column (hexane:2-propanol $=95: 5,0.5 \mathrm{~mL} / \mathrm{min}$, 254 nm); minor enantiomer $\mathrm{t}_{\mathrm{R}}=16.9 \mathrm{~min}$, major enantiomer $\mathrm{t}_{\mathrm{R}}=26.0 \mathrm{~min},>99.5 \%$ ee.
di-tert-butyl ((1S,3S)-2,2-dicyano-1,3-bis(2-methoxyphenyl)propane-1,3-diyl)dicarbamate (4d)

Reaction time: 48 h ; colorless oil ($53.4 \mathrm{mg},>99 \%$ yield, dl:meso $=>20: 1$); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.32-7.40$ $(\mathrm{m}, 2 \mathrm{H}), 7.26(\mathrm{~s}, 2 \mathrm{H}), 6.89-6.98(\mathrm{~m}, 4 \mathrm{H}), 6.29(\mathrm{~s}, 2 \mathrm{H}), 5.97(\mathrm{~s}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 6 \mathrm{H}), 1.47(\mathrm{~s}, 19 \mathrm{H}),{ }^{13} \mathbf{C}$ NMR (125 MHz , CDCl_{3}): $\delta 157.0,155.0,130.6,129.2,124.3,120.8,113.5,111.2,80.8,55.1,54.49,51.0,28.3$; IR (neat) 3345, 2978, 1716, 1491, 1248, 1163, $754 \mathrm{~cm}^{-1}$; HRMS (ESI+) calcd for $\mathrm{C}_{29} \mathrm{H}_{36} \mathrm{~N}_{4} \mathrm{NaO}_{6}[\mathrm{M}+\mathrm{Na}]^{+}: 559.2527$, found: 559.2524; $[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{1 9}}=-27.5\left(c=1.0, \mathrm{CHCl}_{3}, 99 \%\right.$ ee $)$.

Enantiomeric excess was determined by HPLC with a Chiralpak IA column (hexane:2-propanol $=90: 10,0.5$ $\mathrm{mL} / \mathrm{min}, 254 \mathrm{~nm}$); minor enantiomer $\mathrm{t}_{\mathrm{R}}=19.0 \mathrm{~min}$, major enantiomer $\mathrm{t}_{\mathrm{R}}=27.1 \mathrm{~min}, 99 \%$ ee.

di-tert-butyl ((1R,3R)-1,3-bis(4-bromophenyl)-2,2-dicyanopropane-1,3-diyl)dicarbamate (4e)

Reaction time: 48 h ; colorless oil ($62.0 \mathrm{mg}, 96 \%$ yield, dl:meso $=>20: 1$); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.57(\mathrm{dt}, J$ $=8.9,2.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.30-7.34(\mathrm{~m}, 4 \mathrm{H}), 5.41(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.31(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.44(\mathrm{~s}, 18 \mathrm{H}),{ }^{13} \mathbf{C} \mathbf{~ N M R}$ ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 153.9,133.8,132.4,129.3,124.1,112.6,81.7,56.0,51.1,28.1$; IR (neat) 2979, 1701, 1365, $728 \mathrm{~cm}^{-1} ;$ HRMS $(E S I+)$ calcd for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{NaO}_{4} \mathrm{Br}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 655.0526$, found: $655.0524 ;[\alpha]_{\mathbf{D}}{ }^{21}=-27.3(c=$ $1.0, \mathrm{CHCl}_{3}, 99 \%$ ee).

Enantiomeric excess was determined by HPLC with a Chiralpak IA column (hexane:2-propanol $=90: 10,0.2$ $\mathrm{mL} / \mathrm{min}, 254 \mathrm{~nm}$); minor enantiomer $\mathrm{t}_{\mathrm{R}}=46.8 \mathrm{~min}$, major enantiomer $\mathrm{t}_{\mathrm{R}}=42.6 \mathrm{~min}, 99 \%$ ee.
di-tert-butyl ((1S,3S)-1,3-bis(2-bromophenyl)-2,2-dicyanopropane-1,3-diyl)dicarbamate (4f)

Reaction time: 48 h ; white solids (62.0 mg , 98% yield, dl:meso $=19: 1$); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.63-7.68$ (m, 4H), 7.42-7.46(m, 2H), 7.26-7.31 (m, 2H), $6.18(\mathrm{~s}, 2 \mathrm{H}), 5.53(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.46(\mathrm{~s}, 18 \mathrm{H}),{ }^{13} \mathbf{C}$ NMR (125 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 153.8,135.3,133.5,130.9,128.4,127.6,124.8,111.7,81.5,54.7,50.9,28.1 ; \mathbf{I R}$ (neat) 2979, 1702, 1365, 1158, $728 \mathrm{~cm}^{-1}$; HRMS (ESI +) calcd for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{NaO}_{4} \mathrm{Br}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 655.0526$, found: $655.0521 ;[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 0}}=$ -92.3 ($c=1.0, \mathrm{CHCl}_{3}, 99 \%$ ee).

Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column (hexane:2-propanol = 90:10, 1.0 $\mathrm{mL} / \mathrm{min}, 254 \mathrm{~nm}$); minor enantiomer $\mathrm{t}_{\mathrm{R}}=9.8 \mathrm{~min}$, major enantiomer $\mathrm{t}_{\mathrm{R}}=30.9 \mathrm{~min}, 99 \%$ ee.

di-tert-butyl ((1R,3R)-1,3-bis(4-chlorophenyl)-2,2-dicyanopropane-1,3-diyl)dicarbamate (4g)

Reaction time: 48 h ; colorless oil ($54.1 \mathrm{mg},>99 \%$ yield, dl:meso $=>20: 1$); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.42(\mathrm{~d}$, $J=9.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.38(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 4 \mathrm{H}), 5.42(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.33(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.44(\mathrm{~s}, 18 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{~ N M R}$ ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 153.9,135.9,133.4,129.4,129.0,112.6,81.7,55.9,51.3,28.1$; IR (neat) $3313,2980,1698$, 1491, 1160, $730 \mathrm{~cm}^{-1}$; HRMS (ESI +) calcd for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{NaO}_{4} \mathrm{Cl}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 567.1536$, found: 567.1534; $[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 1}}=$ -32.7 ($c=1.0, \mathrm{CHCl}_{3},>99.5 \%$ ee $)$.

Enantiomeric excess was determined by HPLC with a Chiralpak IA column (hexane:2-propanol $=98: 2,1.0 \mathrm{~mL} / \mathrm{min}$, 254 nm); minor enantiomer $\mathrm{t}_{\mathrm{R}}=31.8 \mathrm{~min}$, major enantiomer $\mathrm{t}_{\mathrm{R}}=44.9 \mathrm{~min},>99.5 \%$ ee.

di-tert-butyl ((1S,3S)-1,3-bis(2-chlorophenyl)-2,2-dicyanopropane-1,3-diyl)dicarbamate (4h)

Reaction time: 48 h ; colorless oil ($53.6 \mathrm{mg}, 98 \%$ yield, dl:meso $=19: 1$); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.64-7.66$ (m, 2H), 7.34-7.49 (m, 6H), $6.20(\mathrm{~s}, 2 \mathrm{H}), 5.56(\mathrm{~s}, 2 \mathrm{H}), 1.45(\mathrm{~s}, 18 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 153.9,134.2$, $133.6,130.6,130.2,127.8,127.5,111.8,81.5,52.2,50.8,28.1$; IR (neat) $3333,2979,1702,1367,1156,729 \mathrm{~cm}^{-1}$; HRMS (ESI +) calcd for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{NaO}_{4} \mathrm{Cl}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 567.1536$, found: 567.1535; $[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 0}}=-78.0\left(c=1.0, \mathrm{CHCl}_{3}\right.$, 99\% ee).

Enantiomeric excess was determined by HPLC with a Chiralpak IA column (hexane:2-propanol $=90: 10,1.0$ $\mathrm{mL} / \mathrm{min}, 254 \mathrm{~nm}$); minor enantiomer $\mathrm{t}_{\mathrm{R}}=11.8 \mathrm{~min}$, major enantiomer $\mathrm{t}_{\mathrm{R}}=17.4 \mathrm{~min}, 99 \%$ ee.
di-tert-butyl ((1R,3R)-2,2-dicyano-1,3-bis(4-fluorophenyl)propane-1,3-diyl)dicarbamate (4i)

Reaction time: 48 h ; colorless oil (50.2 mg , 98% yield, $d l:$ meso $=>20: 1$); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.41-7.45$ $(\mathrm{m}, 4 \mathrm{H}), 7.10-7.15(\mathrm{~m}, 4 \mathrm{H}), 5.45(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.32-5.35(\mathrm{~m}, 2 \mathrm{H}), 1.45(\mathrm{~s}, 18 \mathrm{H}){ }^{13} \mathbf{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 163.3\left(\mathrm{~d},{ }^{1} J_{\mathrm{CF}}=250.1 \mathrm{~Hz}\right), 154.0,129.6\left(\mathrm{~d},{ }^{3} J_{\mathrm{CF}}=8.4 \mathrm{~Hz}\right), 116.2\left(\mathrm{~d},{ }^{2} J_{\mathrm{CF}}=22.8 \mathrm{~Hz}\right), 112.8,81.6,55.9$, 51.7, 28.1; IR (neat) $3316,2980,1699,1509,1160,730 \mathrm{~cm}^{-1}$; HRMS (ESI +) calcd for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{NaO}_{4} \mathrm{~F}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$: 535.2127, found: 535.2117; $[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{1 9}}=-42.4\left(c=1.0, \mathrm{CHCl}_{3}, 99 \%\right.$ ee $)$.

Enantiomeric excess was determined by HPLC with a Chiralpak IA column (hexane:2-propanol = 95:5, $1.0 \mathrm{~mL} / \mathrm{min}$, 254 nm); minor enantiomer $\mathrm{t}_{\mathrm{R}}=13.1 \mathrm{~min}$, major enantiomer $\mathrm{t}_{\mathrm{R}}=15.4 \mathrm{~min}, 99 \%$ ee.

di-tert-butyl ((1R,3R)-2,2-dicyano-1,3-bis(3-fluorophenyl)propane-1,3-diyl)dicarbamate (4j)

Reaction time: 48 h ; colorless oil ($50.2 \mathrm{mg}, 98 \%$ yield, dl:meso $=16: 1$); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.40-7.45$ $(\mathrm{m}, 2 \mathrm{H}), 7.25-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.12-7.17(\mathrm{~m}, 4 \mathrm{H}), 5.47(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.38(\mathrm{~s}, 2 \mathrm{H}), 1.45(\mathrm{~s}, 18 \mathrm{H}),{ }^{13} \mathbf{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 162.7\left(\mathrm{~d},{ }^{1} J_{\mathrm{CF}}=248.9 \mathrm{~Hz}\right), 154.0,137.2\left(\mathrm{~d},{ }^{3} J_{\mathrm{CF}}=7.5 \mathrm{~Hz}\right), 130.9\left(\mathrm{~d},{ }^{3} J_{\mathrm{CF}}=8.5 \mathrm{~Hz}\right), 123.4,116.9(\mathrm{~d}$, ${ }^{2} J_{\mathrm{CF}}=20.7 \mathrm{~Hz}$), $115.0\left(\mathrm{~d},{ }^{2} J_{\mathrm{CF}}=22.6 \mathrm{~Hz}\right.$), 112.5, 81.8, 56.1, 51.1, 28.1; IR (neat) 3304, 2979, 1698, 1489, 1367, 1157, $730 \mathrm{~cm}^{-1} ;$ HRMS $(\mathrm{ESI}+)$ calcd for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{NaO}_{4} \mathrm{~F}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 535.2127$, found: 535.2120; $[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 7}}=-8.0(c$ $=0.5, \mathrm{CHCl}_{3}, 98 \%$ ee).

Enantiomeric excess was determined by HPLC with a Chiralpak IA column (hexane:2-propanol = 95:5, $0.5 \mathrm{~mL} / \mathrm{min}$, 254 nm); minor enantiomer $\mathrm{t}_{\mathrm{R}}=16.8 \mathrm{~min}$, major enantiomer $\mathrm{t}_{\mathrm{R}}=25.5 \mathrm{~min}, 98 \%$ ee.

di-tert-butyl ((1R,3R)-2,2-dicyano-1,3-bis(2-(trifluoromethyl)phenyl)propane-1,3-diyl)dicarbamate (4k)

Reaction time: 48 h ; colorless oil ($60.0 \mathrm{mg}, 98 \%$ yield, dl:meso $=>20: 1$); ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.90(\mathrm{~d}, J$ $=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.78(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.69(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.95(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 2 \mathrm{H})$, $5.42(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.47(\mathrm{~s}, 18 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 153.5,135.0,132.9,128.6\left(\mathrm{~d},{ }^{2} J_{\mathrm{CF}}=30.0\right.$ $\mathrm{Hz}), 127.5,126.7\left(\mathrm{~d},{ }^{3} J_{\mathrm{CF}}=5.6 \mathrm{~Hz}\right), 123.6\left(\mathrm{~d},{ }^{1} J_{\mathrm{CF}}=274.3 \mathrm{~Hz}\right), 112.3,81.7,52.2,51.7,28.1,27.9$; IR (neat) 3157, 2981, 1703, 1490, 1310, 1155, $730 \mathrm{~cm}^{-1}$; HRMS (ESI +) calcd for $\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{NaO}_{4} \mathrm{~F}_{6}[\mathrm{M}+\mathrm{Na}]^{+}: 635.2063$, found: $635.2053 ;[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{1 9}}=-89.5\left(c=1.0, \mathrm{CHCl}_{3},>99.5 \% \mathrm{ee}\right)$.

Enantiomeric excess was determined by HPLC with a Chiralpak IA column (hexane:2-propanol $=95: 5,0.5 \mathrm{~mL} / \mathrm{min}$, 254 nm); minor enantiomer $t_{R}=41.9 \mathrm{~min}$, major enantiomer $\mathrm{t}_{\mathrm{R}}=55.3 \mathrm{~min},>99.5 \%$ ee.

di-tert-butyl ((1R,3R)-2,2-dicyano-1,3-bis(2-nitrophenyl)propane-1,3-diyl)dicarbamate (4I)

Reaction time: $48 \mathrm{~h} ; 3.3$ equiv of N-Boc imine were used; pale yellow oil ($56.0 \mathrm{mg}, 98 \%$ yield, dl:meso $=16: 1$); ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.23(\mathrm{br}, 2 \mathrm{H}), 7.88(\mathrm{br}, 2 \mathrm{H}), 7.79(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.86$ (s, 2H), $6.00(\mathrm{~s}, 2 \mathrm{H}), 1.46-1.47(\mathrm{~m}, 18 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 153.8,147.8,134.5,131.7,130.5,128.6$, 125.9, 111.6, 81.9, 50.7, 50.5, 28.2, 28.1; IR (neat) 3360, 2980, 1703, 1529, 1346, $729 \mathrm{~cm}^{-1}$; HRMS (ESI+) calcd for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{~N}_{6} \mathrm{NaO}_{8}[\mathrm{M}+\mathrm{Na}]^{+}: 589.2017$, found: 589.2011; $[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 1}}=+51.3\left(c=1.0, \mathrm{CHCl}_{3}, 94 \%\right.$ ee $)$.
Enantiomeric excess was determined by HPLC with a Chiralpak IA column (hexane:2-propanol $=70: 30,1.0$ $\mathrm{mL} / \mathrm{min}, 254 \mathrm{~nm}$); minor enantiomer $\mathrm{t}_{\mathrm{R}}=28.0 \mathrm{~min}$, major enantiomer $\mathrm{t}_{\mathrm{R}}=11.7 \mathrm{~min}, 94 \%$ ee.

di-tert-butyl ((1S,3S)-2,2-dicyano-1,3-di(furan-2-yl)propane-1,3-diyl)dicarbamate (4m)

Reaction time: 48 h ; 3.3 equiv of N-Boc imine were used; colorless oil ($43.2 \mathrm{mg}, 95 \%$ yield, $d l$:meso $=2.3: 1$); ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.52(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.51(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.43-6.44(\mathrm{~m}, 2 \mathrm{H}), 5.47(\mathrm{~s}, 2 \mathrm{H}), 5.41$ ($\mathrm{s}, 2 \mathrm{H}$), $1.45(\mathrm{~s}, 18 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 154.0,146.9,144.0,112.4,110.8,110.5,81.6,51.2,28.1$, 21.0; IR (neat) $3355,2930,1706,1498,1366,1159 \mathrm{~cm}^{-1}$; HRMS (ESI+) calcd for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{~N}_{4} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}$: 457.2087, found: $457.2083 ;[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 7}}=-11.7\left(c=0.5, \mathrm{CHCl}_{3}, 91 \%\right.$ ee $)$.
Enantiomeric excess was determined by HPLC with a Chiralpak IA column (hexane:2-propanol $=90: 10,1.0$ $\mathrm{mL} / \mathrm{min}, 254 \mathrm{~nm}$); minor enantiomer $\mathrm{t}_{\mathrm{R}}=16.3 \mathrm{~min}$, major enantiomer $\mathrm{t}_{\mathrm{R}}=22.0 \mathrm{~min}, 91 \%$ ee.

di-tert-butyl ((1R,3R)-2,2-dicyano-1,3-dicyclohexylpropane-1,3-diyl)dicarbamate (4n)

Reaction time and temperature: 48 h at $-50^{\circ} \mathrm{C}$ and 48 h at $0^{\circ} \mathrm{C}$; 3.3 equiv of N-Boc imine were used; $10 \mathrm{~mol} \%$ of $\mathbf{1 b}$ were used; colorless oil ($46.0 \mathrm{mg}, 94 \%$ yield, $d l:$ meso $=10: 1$); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 4.87(\mathrm{~d}, J=10.6 \mathrm{~Hz}$, $2 \mathrm{H}), 4.21(\mathrm{~s}, 2 \mathrm{H}), 1.68-2.05(\mathrm{~m}, 12 \mathrm{H}), 1.47(\mathrm{~s}, 18 \mathrm{H}), 1.13-1.38(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 155.0$, 114.1, 80.7, 56.8, 46.0, 41.0, 31.3, 28.2, 26.9, 26.0, 25.7; IR (neat) 3344, 2979, 1709, 1152, $750 \mathrm{~cm}^{-1}$; HRMS (ESI+) calcd for $\mathrm{C}_{27} \mathrm{H}_{45} \mathrm{~N}_{4} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 489.3435$, found: 489.3436; $[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{27}=+35.8\left(c=0.5, \mathrm{CHCl}_{3}, 83 \%\right.$ ee $)$.

Enantiomeric excess was determined by HPLC with a Chiralcel OD-3 column (hexane:2-propanol $=95: 5,0.5$ $\mathrm{mL} / \mathrm{min}, 220 \mathrm{~nm}$); minor enantiomer $\mathrm{t}_{\mathrm{R}}=15.1 \mathrm{~min}$, major enantiomer $\mathrm{t}_{\mathrm{R}}=19.2 \mathrm{~min}, 83 \%$ ee.

dibenzyl ((1R,3R)-2,2-dicyano-1,3-di-m-tolylpropane-1,3-diyl)dicarbamate (40)

Reaction time: 48 h ; colorless oil ($50.4 \mathrm{mg}, 88 \%$ yield, $d l:$ meso $=4: 1$); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.35-7.22(\mathrm{~m}$, $16 \mathrm{H}), 7.16(\mathrm{~s}, 2 \mathrm{H}), 5.65(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.37(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.11-5.08(\mathrm{~m}, 4 \mathrm{H}), 2.36(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (125 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 155.1,139.1,135.4,134.3,130.7,129.1,128.6,128.5,128.4,124.5,112.9,68.0,57.2,51.5,21.4 ;$ IR (neat) $3449,2980,1700,1508,1370 \mathrm{~cm}^{-1}$; HRMS (ESI +) calcd for $\mathrm{C}_{35} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}: 595.2321$, found: $595.2316 ;[\alpha]_{\mathbf{D}}{ }^{25}=-24.0\left(c=0.5, \mathrm{CHCl}_{3}, 94 \%\right.$ ee $)$.

Enantiomeric excess was determined by HPLC with a Chiralpak AZ-3 column (hexane:2-propanol $=90: 10,1.0$ $\mathrm{mL} / \mathrm{min}, 254 \mathrm{~nm}$); minor enantiomer $\mathrm{t}_{\mathrm{R}}=25.5 \mathrm{~min}$, major enantiomer $\mathrm{t}_{\mathrm{R}}=19.2 \mathrm{~min}, 94 \% \mathrm{ee}$.

$4.3 \mathbf{m m o l}$ scale synthesis

Catalyst 3b ($54.3 \mathrm{mg}, 0.09 \mathrm{mmol}, 0.03 \mathrm{eq}$) and malononitrile $2(199 \mathrm{mg}, 3 \mathrm{mmol}, 1 \mathrm{eq})$ were added to a glass tube containing a stir bar under $\mathrm{Ar} . \mathrm{CHCl}_{3}(15 \mathrm{ml})$ was added to the flask, and the mixture was cooled to $-50^{\circ} \mathrm{C}$. To the resulting suspension, N-Boc imine $\mathbf{3 a}(1.35 \mathrm{~g}, 6.6 \mathrm{mmol}, 2.2 \mathrm{eq})$ was added. After being stirred for 72 h , solvent was removed under reduced pressure. Diastereomeric ratio was determined by ${ }^{1} \mathrm{H}$ NMR analysis of the crude reaction mixture $(\mathrm{dr}=98: 2)$. The mixture was purified by silica gel column chromatography (hexane/ethyl acetate $=10 / 1$ to $5 / 1)$ to afford product $\mathbf{4 a}(1.43 \mathrm{~g},>99 \%$ yield $)$. The enantiomeric excesses of the products were determined by chiral stationary phase HPLC using Chiralpak IA column (99% ee).

5. Synthesis of unsymmetrical 1,3-diamine

Catalyst 3b ($1.9 \mathrm{mg}, 0.003 \mathrm{mmol}, 0.03 \mathrm{eq}$) and malononitrile $2(6.6 \mathrm{mg}, 0.1 \mathrm{mmol}, 1 \mathrm{eq})$ were added to a glass tube containing a stir bar under $\mathrm{Ar} . \mathrm{CHCl}_{3}(0.5 \mathrm{ml})$ was added to the flask, and the mixture was cooled to $-50^{\circ} \mathrm{C}$. To the resulting suspension, imine $\mathbf{3 a}(0.22 \mathrm{mmol}, 2.2 \mathrm{eq})$ was added. After being stirred for 15 h , imine $\mathbf{3 b}$ ($0.22 \mathrm{mmol}, 2.2$ eq) was added. After being stirred for 48 h , solvent was removed under reduced pressure. The mixture was purified by silica gel column chromatography (hexane/ethyl acetate $=10 / 1$ to $5 / 1$) to afford product $\mathbf{4 a b}$ ($35.1 \mathrm{mg}, 72 \%$ yield).

di-tert-butyl ((1R,3R)-2,2-dicyano-1-phenyl-3-(p-tolyl)propane-1,3-diyl)dicarbamate (4ab)

Colorless oil; ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.42(\mathrm{~s}, 5 \mathrm{H}), 7.29(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.49-$ $5.43(\mathrm{~m}, 2 \mathrm{H}), 5.28(\mathrm{br}, 2 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 18 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 154.1,139.8,134.9,131.9$, $129.8,129.7,129.1,127.8,127.6,113.3,81.4,56.6,51.8,28.2,21.2$; IR (neat) $3649,3021,2927,1727,1511,1216$, $758 \mathrm{~cm}^{-1} ;$ HRMS $(\mathrm{ESI}+)$ calcd for $\mathrm{C}_{28} \mathrm{H}_{34} \mathrm{~N}_{4} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}: 513.2478$, found: 513.2473; $[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 5}}=-41.6(c=0.5$, $\mathrm{CHCl}_{3}, 80 \%$ ee).
Enantiomeric excess was determined by HPLC with a Chiralpak IA column (hexane:2-propanol = 95:5, $1.0 \mathrm{~mL} / \mathrm{min}$, 254 nm); minor enantiomer $\mathrm{t}_{\mathrm{R}}=17.2 \mathrm{~min}$, major enantiomer $\mathrm{t}_{\mathrm{R}}=16.3 \mathrm{~min}, 80 \%$ ee.

6. Transformation of chiral 1,3-diamine derivative 4.

di-tert-butyl ((1R,3R)-2-carbamoyl-2-cyano-1,3-di-m-tolylpropane-1,3-diyl)dicarbamate (5c)

A glass tube equipped was charged with a stir bar, $\mathbf{4 c}(50.0 \mathrm{mg}, 0.100 \mathrm{mmol}, 1.0 \mathrm{eq})$, acetamide ($29.5 \mathrm{mg}, 0.500$ mmol, 5.0 eq$), \mathrm{MeCN}(0.3 \mathrm{~mL})$, and $\mathrm{H}_{2} \mathrm{O}(0.05 \mathrm{~mL})$. To the mixture was added $\mathrm{Pd}\left(\mathrm{NO}_{3}\right)_{2} \bullet 2 \mathrm{H}_{2} \mathrm{O}(2.3 \mathrm{mg}, 0.01 \mathrm{mmol}$, $10 \mathrm{~mol} \%$) and the mixture was stirred at room temperature. After being stirred for 16 h , the $\mathrm{H}_{2} \mathrm{O}$ was added. Separated aqueous layer was extracted with EtOAc three times. Combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent under reduced pressure, the residue was purified by silica-gel column chromatography (hexane/ethyl acetate $=5 / 1$ to $2 / 1$) to afford $\mathbf{5 c}$ (white solids, $32.9 \mathrm{mg}, 63 \%$ yield).
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.25-7.11(\mathrm{~m}, 8 \mathrm{H}), 6.88(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.62(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{~s}, 1 \mathrm{H})$, $5.38(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~s}, 1 \mathrm{H}), 2.340(\mathrm{~s}, 3 \mathrm{H}), 2.344(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 18 \mathrm{H}),{ }^{13} \mathbf{C} \mathbf{N M R}$ (125 MHz, CDCl_{3}): $\delta 167.0,154.3,154.1,138.2,138.0,137.1,136.7,129.4,129.3,128.9,128.7,128.5,128.3,124.8$, $124.6,118.3,80.6,79.8,77.2,77.0,76.7,60.3,56.3,55.2,28.4,28.3,21.5$; IR (neat) 3455, 3366, 3299, 2977, 1723, 1677, 1366, $1168 \mathrm{~cm}^{-1}$; HRMS (ESI+) calcd for $\mathrm{C}_{29} \mathrm{H}_{38} \mathrm{~N}_{4} \mathrm{NaO}_{5}[\mathrm{M}+\mathrm{Na}]^{+}: 545.2734$, found: $545.2728 ;[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 0}}=$ +12.4 ($c=0.26, \mathrm{CHCl}_{3},>99.5 \%$ ee $)$.

Enantiomeric excess was determined by HPLC with a Chiralpak IC-3 column column (hexane:2-propanol = 95:5, $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$); minor enantiomer $\mathrm{t}_{\mathrm{R}}=19.6 \mathrm{~min}$, major enantiomer $\mathrm{t}_{\mathrm{R}}=8.3 \mathrm{~min},>99.5 \%$ ee.
di-tert-butyl ((1R,3R)-1,3-bis(4-bromophenyl)-2-carbamoyl-2-cyanopropane-1,3-diyl)dicarbamate (5e)

A glass tube equipped was charged with a stir bar, $4 \mathbf{e}(60.0 \mathrm{mg}, 0.0946 \mathrm{mmol}, 1.0 \mathrm{eq})$, acetamide ($27.9 \mathrm{mg}, 0.473$ mmol, 5.0 eq$)$, $\mathrm{MeCN}(0.3 \mathrm{~mL})$, and $\mathrm{H}_{2} \mathrm{O}(0.05 \mathrm{~mL})$. To the mixture was added $\mathrm{Pd}\left(\mathrm{NO}_{3}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(2.2 \mathrm{mg}, 0.00946$ mmol, $10 \mathrm{~mol} \%$) and the mixture was stirred at room temperature. After being stirred for 24 h , the $\mathrm{H}_{2} \mathrm{O}$ was added. Separated aqueous layer was extracted with EtOAc three times. Combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent under reduced pressure, the residue was purified by silica-gel column chromatography (hexane/ethyl acetate $=5 / 1$ to $2 / 1$) to afford $\mathbf{5 e}$ (white solids, $46.8 \mathrm{mg}, 76 \%$ yield).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.49(\mathrm{dd}, J=8.3,2.9 \mathrm{~Hz}, 4 \mathrm{H}), 7.33-7.26(\mathrm{~m}, 4 \mathrm{H}), 6.84(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.63-5.19$ $(\mathrm{m}, 5 \mathrm{H}), 1.41(\mathrm{~s}, 18 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 166.5,154.3,154.0,136.1,135.7,131.9,131.7,129.6,129.5$, $123.1,122.9,117.9,81.1,80.3,77.3,77.0,76.8,59.9,55.8,54.8,28.3,28.2$; IR (neat) $3172,2956,2866,1718,1699$, $1487,1116 \mathrm{~cm}^{-1} ;$ HRMS $(E S I+)$ calcd for $\mathrm{C}_{27} \mathrm{H}_{32} \mathrm{Br}_{2} \mathrm{~N}_{4} \mathrm{NaO}_{5}[\mathrm{M}+\mathrm{Na}]^{+}: 675.0611$, found: $675.0604 ;[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 0}}=+0.84$ ($c=0.23, \mathrm{CHCl}_{3}, 99 \%$ ee).
Enantiomeric excess was determined by HPLC with a Chiralpak IC-3 column column (hexane:2-propanol =95:5, $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$); minor enantiomer $\mathrm{t}_{\mathrm{R}}=10.1 \mathrm{~min}$, major enantiomer $\mathrm{t}_{\mathrm{R}}=7.5 \mathrm{~min}, 99 \%$ ee.

7. Reactions using acetaldehyde and ynone as nucleophiles

Acetaldehyde and ynone were applied to the double Mannich reaction as nucleophiles. No reactions were observed based on TLC monitoring and crude ${ }^{1} \mathrm{H}$ NMR analysis.

8. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra

${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\mathbf{4 a})$

${ }^{13} \mathbf{C}$ NMR (100 MHz, CDCl_{3}) (4a)

${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\mathbf{4 b})$

${ }^{13} \mathbf{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right)(\mathbf{4 b})$

${ }^{13} \mathbf{C} \mathbf{N M R}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\mathbf{4 c})$

${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\mathbf{4 d})$

${ }^{13} \mathbf{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right)(\mathbf{4 d})$

${ }^{13} \mathbf{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right)(\mathbf{4 e})$

${ }^{13} \mathbf{C} \mathbf{N M R}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\mathbf{4 f})$

${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\mathbf{4 g})$

${ }^{13} \mathbf{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right)(\mathbf{4 g})$

${ }^{13} \mathbf{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right)(\mathbf{4 h})$

${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\mathbf{4 i})$

${ }^{13} \mathbf{C} \mathbf{N M R}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(4 i)$

${ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\mathbf{4 j})$

${ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right)(\mathbf{4 k})$

${ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\mathbf{4 l})$

${ }^{13} \mathbf{C}$ NMR (100 MHz, CDCl_{3}) (4I)

${ }^{13} \mathbf{C} \mathbf{N M R}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\mathbf{4 m})$

${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\mathbf{4 n})$

${ }^{13} \mathbf{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right)(\mathbf{4 n})$

${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\mathbf{4 o})$

${ }^{13} \mathbf{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right)(\mathbf{4 o})$

${ }^{13} \mathbf{C}$ NMR (125 MHz, CDCl_{3}) (4ab)

${ }^{13} \mathbf{C} \mathbf{N M R}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\mathbf{5 c})$

${ }^{13} \mathbf{C} \mathbf{N M R}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\mathbf{5 e})$

9. HPLC spectra

Chiralpak IA column (hexane:2-propanol $=90: 10,0.5 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$)

Chiralpak IA column (hexane:2-propanol $=95: 5,0.5 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$)

Chiralpak IA column (hexane:2-propanol $=90: 10,0.5 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$)

Chiralpak IA column (hexane:2-propanol $=90: 10,0.2 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$)

Chiralpak AD-H column (hexane:2-propanol $=90: 10,1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$)

Chiralpak IA column (hexane:2-propanol $=98: 2,1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$)

Chiralpak IA column (hexane:2-propanol $=90: 10,1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$)

Chiralpak IA column (hexane:2-propanol $=95: 5,1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$)

Chiralpak IA column (hexane: 2 -propanol $=95: 5,0.5 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$)

Chiralpak IA column (hexane:2-propanol $=95: 5,0.5 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$)

Chiralpak IA column (hexane:2-propanol $=70: 30,1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$)

Chiralpak IA column (hexane:2-propanol $=90: 10,1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$)

Chiralcel OD-3 column (hexane:2-propanol $=95: 5,0.5 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}$)

Chiralpak AZ-3 column (hexane:2-propanol $=90: 10,1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$)

Chiralpak IA column (hexane:2-propanol $=95: 5,1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$)

Chiralpak IC-3 column column (hexane:2-propanol $=95: 5,1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$)

Chiralpak IC-3 column column (hexane:2-propanol $=95: 5,1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$)

