Electronic Supplementary Information

N-Triflination of pyrazolones: A new method for N-S bond formation

Ahwan Panigrahi, Nachimuthu Muniraj, and Kandikere Ramaiah Prabhu*

Department of Organic Chemistry, Indian Institute of Science, Bangalore 560 012, Karnataka, India *prabhu@jijsc.ac.in

S.No	Title	Page No.
1	General experimental	ESI-3
2	Characterization data for starting material 1n-1v	ESI-3
3	Typical experimental procedure	ESI-5
4	Scale up experimental procedure	ESI-5
5	Characterization data for products	ESI -6
6	Crystal data of 3ca	ESI -11
7	References	ESI -14
8	¹ H and ¹³ C spectra and ¹⁹ F spectra of product	ESI-16
9	¹ H and ¹³ C spectra of starting material 1n-1v	ESI-85

Table of contents

General experimental

All reactions were carried out using commercially available solvents. Reactions were monitored by using precoated silica TLC plates. All ¹H NMR, ¹³C NMR, and ¹⁹F NMR spectra were recorded on a BRUKER-AV400 spectrometer in CDCl₃ (400 MHz for ¹H NMR and 100 MHz for ¹³C NMR and 376 MHz for ¹⁹F NMR), where tetramethylsilane (TMS; $\delta = 0.00$ ppm) served as an internal standard. The corresponding residual nondeuterated solvent signal (CDCl₃; δ = 77.00 ppm) was used as an internal standard for ¹³C NMR. IR spectra were measured using a Perkin-Elmer FT-IR Spectrometer. Mass spectra were measured with Micromass Q-Tof (ESI-HRMS). Column chromatography was carried out on silica gel 230-400 mesh or 100-200 mesh (Merck), and thin-layer chromatography was carried out using SILICA GEL GF-254. Chemicals obtained from commercial suppliers were used without further purification.

Starting material 3-Methyl-1-phenyl-2-pyrazolin-5-one was purchased from Alfa Aesar, and 1-(4-chlorophenyl)-3-methyl-5-pyrazolone was purchased from TCI, whereas the rest of the pyrazolone derivatives were prepared according to the reported literature procedure.¹⁻⁶ Substrate **1n-1v** were isolated in quantitative yield following the literature report.¹ Sodium triflinate was purchased from TCI. PIFA was purchased from a local supplier.

Characterization data for the starting materials:

1. 2-(4-Bromophenyl)-5-propyl-2,4-dihydro-3H-pyrazol-3-one (1n). Light brown solid; mp: 116-120 °C; R_f (20% EtOAc/petroleum ether) 0.5; IR (neat, cm⁻¹): 2963, 1717, 1488, 1325; ¹H NMR (400 MHz, CDCl₃) δ 7.80 (d, J = 8.8 Hz, 2H), 7.48 (d, J = 8.8 Hz, 2H), 3.40 (s, 2H), 2.46 (t, J = 7.6 Hz, 2H), 1.72 - 1.63 (m, 2H), 1.02 (t, J = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ

170.5, 160.3, 137.3, 131.8, 120.2, 117.8, 41.8, 33.2, 20.0, 13.8; HRESI-MS (m/z): Calculated for $C_{12}H_{14}BrN_{2}O (M + H)^{+}$: 281.0290, found $(M + H)^{+}$: 281.0293.

- 2. 4-(5-Oxo-3-propyl-4,5-dihydro-1H-pyrazol-1-yl)benzonitrile (10). Pale yellow solid; mp: 130-134 °C; R_f (20% EtOAc/petroleum ether) 0.4; IR (neat, cm⁻¹): 2963, 2226, 1724, 1600, 1508, 1312; ¹**H NMR** (400 MHz, CDCl₃) δ 8.05 (d, J = 9.2 Hz, 2H), 7.64 (d, J = 8.8 Hz, 2H), 3.47 (s, 2H), 2.49 (t, J = 7.6 Hz, 2H), 1.75 - 1.65 (m, 2H), 1.03 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.9, 161.1, 141.6, 133.0, 118.9, 118.1, 107.4, 41.8, 33.1, 19.7, 13.7; **HRESI-MS** (m/z): Calculated for C₁₃H₁₄N₃O (M + H)⁺: 228.1137, found (M + H)⁺: 228.1139.
- 3. 2-(3-Nitrophenyl)-5-propyl-2,4-dihydro-3H-pyrazol-3-one (1p). yellow semi solid, R_f (20% EtOAc/ petroleum ether) 0.4; IR (neat, cm⁻¹): 2965, 1723, 1530, 1483, 1350; ¹H NMR (400 MHz, CDCl₃) δ 8.75 (s, 1H), 8.33 (d, J = 8.4 Hz, 1H) = 8.00 (dd, J = 8, 1.2 Hz, 1H), 7.54 (t, J = 8 Hz, 1H),3.48 (s, 2H), 2.51 (t, J = 7.6 Hz, 2H), 1.76 – 1.67 (m, 2H), 1.04 (t, J = 7.2

41.9, 33.2, 20.0, 13.8; **HRESI-MS** (m/z): Calculated for C₁₂H₁₄N₃O₃ (M + H)⁺: 248.1035, found $(M + H)^+$: 248.1037.

- 4. 5-Propyl-2-(m-tolyl)-2.4-dihydro-3H-pyrazol-3-one (1g). Colourless oily; \mathbf{R}_{f} EtOAc/petroleum ether) 0.4; IR (neat, cm⁻¹): 2967, 1715, 1633, 1491,1336; ¹**H NMR** (400 MHz, CDCl₃) δ 7.67 – 7.65 (m, 2H), 7.26 (td, J = 8, 1.2 Hz, 1H); 6.99 (d, J = 7.2 Hz, 1H), 3.39 (s, 2H), 2.46 (t, J = 7.6 Hz, 2H), 2.37 (s, 3H), 1.72 - 1.63 (m, 2H), 1.01 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.6, 1q 159.9, 138.8, 138.1, 128.7, 125.9, 119.6, 116.2, 41.8, 33.2, 21.6, 20.1, 13.8; **HRESI-MS** (m/z): Calculated for C₁₃H₁₇N₂O (M + H)⁺: 217.1341, found (M + H)⁺: 217.1344.
- 5. 2-Benzyl-5-propyl-2,4-dihydro-3H-pyrazol-3-one (1r) Colourless solid; mp: 116-118 °C; R_f (20% EtOAc/petroleum ether) 0.1; IR (neat, cm⁻¹): 2962, 1707, 1599, 1555, 1296; ¹H NMR (400 MHz, CDCl₃) δ 7.33 – 7.24 (m, 5H), 4.80 (s, 2H), 3.19 (s, 2H), 2.34 (t, J = 7.6 Hz, 2H), 1.62 - 1.53 (m, 2H), 0.94 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 172.1, 159.5, 136.7, 128.6, 128.2, 127.7, 1r 47.8, 40.1, 33.1, 20.2, 13.7; **HRESI-MS** (m/z): Calculated for C₁₃H₁₇N₂O $(M + H)^+$: 217.1341, found $(M + H)^+$: 217.1340.
- 6. 2-(4-Bromophenyl)-5-isopropyl-2,4-dihydro-3H-pyrazol-3-one (1s). Brown solid; mp: 135-138 °C; R_f (20% EtOAc/petroleum ether) 0.4; IR (neat, cm⁻¹): 2968, 1715, 1488, 1333; ¹H NMR (400 MHz, CDCl₃) δ 7.80 (d, J = 8.8 Hz, 2H), 7.47 (d, J = 8.8 Hz, 2H), 3.41 (s, 2H), 2.82 - 2.72 (m, 1H), 1.24 (d, J = 7.2 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 170.5, 164.7, 137.3, 131.8,

 $C_{12}H_{14}N_3O_3$ (M + H)⁺: 248.1035, found (M + H)⁺: 248.1037.

120.1, 117.6, 39.9, 30.8, 20.1; **HRESI-MS** (m/z): Calculated for C₁₂H₁₄BrN₂O (M + H)⁺: 281.0290, found (M + H)⁺: 281.0290.

- 7. 4-(3-Isopropyl-5-oxo-4,5-dihydro-1H-pyrazol-1-yl)benzonitrile (1t). Brown solid; mp: 124-128 °C; R_f (20% EtOAc/petroleum ether) 0.3; **IR** (neat, cm⁻¹): 2967, 2224, 1718, 1603, 1508, 1337; ¹H NMR (400 MHz, CDCl₃) δ 8.08 (d, J = 8.8 Hz, 2H); 7.66 (d, J = 8.8 Hz, 2H), 3.47 (s, 2H), 2.86 - 2.75 (m, 1H), 1.27 (d, J = 7.2 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 171.0, 165.4, 141.7, 133.1, 1t 119.0, 118.3, 107.6, 40.1, 30.9, 20.0; HRESI-MS (m/z): Calculated for $C_{13}H_{14}N_{3}O (M + H)^{+}$: 228.1137, found $(M + H)^{+}$: 228.1139.
- 8. 5-Isopropyl-2-(3-nitrophenyl)-2,4-dihydro-3H-pyrazol-3-one (1u). yellow oily; R_f (20% EtOAc/petroleum ether) 0.3; IR (neat, cm⁻¹): 2971, 1725, 1531, 1483, 1358; ¹H NMR (400 MHz, CDCl₃) δ 8.74 (s, 1H), 8.32 (dd, J = 8, 0.8 Hz, 1H); 8.00 – 7.97 (m, 1H), 7.53 (t, J = 8.4 Hz, 1H), 3.50 (s, 2H), 2.88 – 2.78 (m, 1H), 1.28 (d, J = 6.8 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 170.8, 165.4, 148.5, 139.1, 129.7, 123.7, 1u 119.1, 113.2, 40.0, 30.8, 20.0; HRESI-MS (m/z): Calculated for
- 9. 5-Isopropyl-2-(m-tolyl)-2,4-dihydro-3H-pyrazol-3-one (1v). Brown oily: R_f (20%) EtOAc/petroleum ether) 0.4; IR (neat, cm⁻¹): 2962, 1715, 1613, 1490, 1328; ¹H NMR (400 MHz, CDCl₃) δ 7.68 – 7.66 (m, 2H), 7.25 (t, J = 7.6 Hz, 1H), 6.98 (d, J =

(20%)

7.2 Hz, 1H), 3.38 (s, 2H), 2.82 – 2.71 (m, 1H), 2.37 (s, 3H), 1.23 (d, J = 7.2 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 170.6, 164.2, 138.7, 138.1, 128.6, 125.8, 119.5, 116.2, 39.8, 30.7, 21.6, 20.1; HRESI-MS (*m*/*z*): Calculated for C₁₃H₁₇N₂O (M + H)⁺: 217.1341, found (M + H)⁺: 217.1344.

Typical experimental procedure for trifluoromethyl sulfonylation of pyrazolones

Pyrazolone derivative (0.30 mmol, 1 equiv), Langlois reagent (0.45 mmol, 1.5 equiv), PIFA (0.60 mmol, 2 equiv) were dissolved in 1 mL of TFE/H₂O mixture (3:1) in a 8-mL screw-cap reaction vial and the reaction mixture was stirred at rt for 5 minutes. After the completion of the reaction (monitored by TLC), the reaction mixture was transferred to a 10mL RB and subjected to a rotary evaporator to remove TFE, followed by extraction of the organic component using DCM water workup. The organic layer was dried over anhydrous Na_2SO_4 and concentrated under reduced pressure. The crude product was purified on a silica gel column using EtOAc/petroleum ether to get the pure products.

Scale-up experimental procedure

Pyrazolone 1a (500mg, 2.87 mmol, 1 equiv), Langlois reagent 2 (672mg, 4.31 mmol, 1.5equiv), PIFA (2.471gm, 5.74 mmol, 2equiv) were dissolved in 10 mL of TFE/H₂O mixture (3:1) in a 24-neck 50ml RB, and the reaction mixture was stirred at the room temperature for 40 minutes. After completing the reaction (monitored by TLC), the TFE was removed under vacuum, followed by extraction of the organic layer using CH_2Cl_2 (3 ×20 mL). The organic layer was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The crude product was purified on a silica gel column using EtOAc/petroleum ether to get pure product **3aa** in 72% (636mg).

Characterization data for the products:

1. 5-Methyl-2-phenyl-1-((trifluoromethyl)sulfonyl)-1,2-dihydro-3H-pyrazol-3-one (3aa).

Colourless solid; Yield- (77mg, 83%); mp: 130-134 °C; Rf (30%) EtOAc/petroleum ether) 0.5; Prepared as shown in general experimental procedure. IR (neat, cm⁻¹): 1709, 1624, 1419, 1215, 1129; ¹H NMR (400 MHz, $CDCl_3$) δ 7.48 – 7.41 (m, 2H), 7.39 – 7.30 (m, 3H), 5.91 (s, 1H), 2.55 (d, J = 1.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.5, 157.2, 137.9,

129.1, 128.2, 124.7, 120.0 (q, $J_{C-F} = 329$ Hz), 110.1, 15.7; ¹⁹F NMR (376 MHz, CDCl₃) δ -68.8; **HRESI-MS** (m/z): Calculated for C₁₁H₁₀F₃N₂O₃S (M +H)⁺: 307.0364, found (M + H)⁺: 307.0363.

2. 2-Phenyl-5-propyl-1-((trifluoromethyl)sulfonyl)-1,2-dihydro-3H-pyrazol-3-one Yellow solid; Yield– (55mg, 55%); mp: 90-94 °C; R_f (20% EtOAc/petroleum ether) 0.7; Prepared as shown in general experimental procedure. IR (neat, cm⁻¹): 1723, 1623, 1423, 1226, 1130; ¹H NMR (400 MHz, CDCl₃) δ 7.47 -7.43 (m, 2H), 7.37 - 7.31 (m, 3H), 5.92 (s, 1H), 2.85 (t, J = 7.2 Hz, 2H), 1.77-1.86 (m, 2H), 1.08 (t, J = 7.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.7,

161.9, 138.0, 129.1, 128.1, 124.5, 120.0 (q, $J_{C-F} = 329$ Hz), 109.3, 31.1, 21.3, 13.6; ¹⁹F NMR (376 MHz, CDCl₃) δ -67.8; **HRESI-MS** (*m/z*): Calculated for C₁₃H₁₄F₃N₂O₃S (M + H)⁺: 335.0677, found (M + H)⁺: 335.0678.

3. 5-Isopropyl-2-phenyl-1-((trifluoromethyl)sulfonyl)-1,2-dihydro-3H-pyrazol-3-one (3ca). Yellow solid; Yield- (66mg, 66%); mp: 127-130 °C; R_f (20% EtOAc/petroleum ether) 0.7; Prepared as shown in general experimental procedure. IR (neat, cm⁻¹): 1733, 1617, 1420, 1220, 1128; ¹**H NMR** (400 MHz, CDCl₃) δ 7.47 – 7.43 (m, 2H),

7.36 - 7.31 (m, 3H), 5.92 (s, 1H), 3.40 - 3.30 (m, 1H), 1.39 (d, J = 6.8 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 168.4, 167.7, 138.2, 129.1, 128.0, 124.2, 3ca 120.0 (q, J_{C-F} = 329 Hz), 107.7, 28.7, 21.9; ¹⁹F NMR (376 MHz, CDCl₃) δ -67.8; **HRESI-MS** (m/z): Calculated for C₁₃H₁₄F₃N₂O₃S (M + H)⁺: 335.0677, found (M + H)⁺: 335.0674.

4. 2,5-Diphenyl-1-((trifluoromethyl)sulfonyl)-1,2-dihydro-3H-pyrazol-3-one (3da). Colourless solid; Yield- (18mg, 16%); mp: 113-118 °C; R_f (20% EtOAc/petroleum ether) 0.6; Prepared as shown in general experimental procedure. **IR** (neat, cm⁻¹): 1740, 1622, 1424, 1238, 1128; ¹H NMR (400 MHz, CDCl₃) δ 7.64 (d, J = 7.2 Hz, 2H), 7.57 – 7.53 (m, 1H), 7.49 – 7.44 (m, 6H), 7.36 – 7.32 (m, 1H), 6.16 (s, 1H); ^{13}C

NMR (100 MHz, CDCl₃) δ 166.7, 159.6, 137.9, 132.3, 129.2, 129.1, 128.7, 3da 127.9, 127.7, 124.1, 120.0 (q, J_{C-F} = 330 Hz), 110.2; ¹⁹F NMR (376 MHz, CDCl₃) δ -66.3; HRESI-MS (m/z): Calculated for C₁₆H₁₁F₃N₂O₃SNa (M + Na)⁺: 391.0340, found $(M + Na)^+$: 391.0339.

5. 2,5-Dimethyl-1-((trifluoromethyl)sulfonyl)-1,2-dihydro-3H-pyrazol-3-one (3ea). yellow oily;

Yield- (37.5mg, 51%); R_f (30% EtOAc/ petroleum ether) 0.5; Prepared as shown in general experimental procedure. IR (neat, cm⁻¹): 1726, 1629, 1416, 1230, 1131; ¹H NMR (400 MHz, CDCl₃) δ 5.85 (s, 1H), 3.42 (s, 3H), 2.44 (d, J

S-6

(3ba).

SO₂CF₃

3ba

SO₂CF₃

3aa

= 1.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.0, 156.1, 120.0(q, J_{C-F} = 328 Hz), 110.4, 35.9, 15.4; ¹⁹F NMR (376 MHz, CDCl₃) δ -63.1; HRESI-MS (*m/z*): Calculated for C₆H₈F₃N₂O₃S (M + H)⁺: 245.0208, found (M + H)⁺: 245.0207.

6. 2-(4-Bromophenyl)-5-methyl-1-((trifluoromethyl)sulfonyl)-1,2-dihydro-3H-pyrazol-3-one

(3fa). yellow solid; Yield- (67mg, 58%); mp: 125-129 °C; R_f (30%) EtOAc/petroleum ether) 0.7; Prepared as shown in general experimental procedure. IR (neat, cm⁻¹): 1729, 1630, 1486, 1422, 1226, 1128; ¹H NMR $(400 \text{ MHz}, \text{CDCl}_3) \delta 7.57 \text{ (d, } J = 8.4 \text{ Hz}, 2\text{H}), 7.21 \text{ (d, } J = 8.8 \text{ Hz}, 2\text{H}), 5.91$ (s, 1H), 2.55 (d, J = 1.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.1, 157.6,

136.9, 132.3, 126.1, 121.9, 120.0 (q, J_{C-F} = 329 Hz), 110.1, 15.8; ¹⁹F NMR (376 MHz, CDCl₃) δ -68.0; **HRESI-MS** (m/z): Calculated for C₁₂H₁₂F₃N₂O₃S (M +H)⁺: 384.9469, found (M + H)⁺: 384.9465.

7. 2-(4-Chlorophenyl)-5-methyl-1-((trifluoromethyl)sulfonyl)-1,2-dihydro-3H-pyrazol-3-one

(3ga). Pale yellow solid; Yield- (72mg, 71%); mp: 130-134 °C; R_f (30%) EtOAc/petroleum ether) 0.6; Prepared as shown in general experimental procedure. IR (neat, cm⁻¹): 1725, 1628, 1490, 1418, 1315, 1228, 1131; ¹H **NMR** (400 MHz, CDCl₃) δ 7.41 (d, J = 8.7 Hz, 2H), 7.27 (d, J = 8.7 Hz, 2H),

5.91 (s, 1H), 2.56 (d, J = 0.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.2, 157.6, 136.4, 134.0, 129.4, 125.9, 120.0 (q, J_{C-F} = 329 Hz), 110.1, 15.8; ¹⁹F NMR (376 MHz, CDCl₃) δ -68.0; HRESI-**MS** (m/z): Calculated for C₁₁H₈ClF₃N₂O₃SNa (M + Na)⁺: 362.9794, found (M + Na)⁺: 362.9791.

8. 4-(3-Methyl-5-oxo-2-((trifluoromethyl)sulfonyl)-2,5-dihydro-1H-pyrazol-1-yl)benzonitrile

(3ha). Pale yellow solid; Yield – (52mg, 52%); *mp*: 146-149 °C; R_f (30%) EtOAc/petroleum ether) 0.4; Prepared as shown in general experimental procedure. **IR** (neat, cm⁻¹): 2230, 1735, 1631, 1419, 1226, 1126; ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, J = 8.8 Hz, 2H), 7.51 (d, J = 8.8 Hz, 2H), 5.95 (s, 1H), 2.59 (d, J = 1.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.4,

158.3, 141.5, 133.0, 124.1, 120.0 (q, $J_{C-F} = 329$ Hz), 118.1, 111.3, 110.1, 15.8; ¹⁹F NMR (376) MHz, CDCl₃) δ -67.6; HRESI-MS (*m/z*): Calculated for C₁₂H₉F₃N₃O₃S (M +H)⁺: 332.0317, found $(M + H)^+$: 332.0319.

9. 5-Methyl-2-(3-nitrophenyl)-1-((trifluoromethyl)sulfonyl)-1,2-dihydro-3H-pyrazol-3-one

(3ia). Yellow solid; Yield- (46mg, 44%); mp: 149-154 °C; R_f (30%) EtOAc/petroleum ether) 0.5; Prepared as shown in general experimental procedure. IR (neat, cm⁻¹): 1730, 1631, 1533, 1421, 1352, 1226, 1129; ¹H **NMR** (400 MHz, CDCl₃) δ 8.23 – 8.21 (m, 2H), 7.74 – 7.71 (m, 1H), 7.67 – 7.62 (m, 1H), 5.96 (s, 1H), 2.61 (d, J = 0.8 Hz, 3H); ¹³C NMR (100 MHz,

CDCl₃) δ 166.8, 158.5, 148.6, 138.9, 130.1, 130.0, 122.6, 120.0 (q, J_{C-F} = 329 Hz), 119.0, 109.9, 15.8; ¹⁹F NMR (376 MHz, CDCl₃) δ -67.7; HRESI-MS (*m/z*): Calculated for C₁₁H₉F₃N₃O₅S (M +H)⁺: 352.0215, found (M + H)⁺: 352.0211.

S-7

SO₂CF₃

3ga

10. 2-(4-Methoxyphenyl)-5-methyl-1-((trifluoromethyl)sulfonyl)-1,2-dihydro-3H-pyrazol-3-one

(3ja). Pale yellow solid; Yield– (51mg, 51%); *mp*: 105-109 °C; R_f (30% EtOAc/petroleum ether) 0.4; Prepared as shown in general experimental procedure. IR (neat, cm⁻¹): 1730, 1620, 1509, 1421, 1225, 1129; ¹H NMR (400 MHz, CDCl₃) δ 7.22 (d, J = 8.8 Hz, 2H), 6.95 (d, J = 8.8 Hz, 2H), 5.91 (s, 1H), 3.82 (s, 3H), 2.54 (d, J = 0.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃)

δ 167.9, 159.6, 156.9, 130.4, 126.9, 120.0(q, J_{C-F} = 329 Hz), 114.4, 110.0, 55.5, 15.8; ¹⁹F NMR (376 MHz, CDCl₃) δ -68.3; **HRESI-MS** (*m*/*z*): Calculated for C₁₂H₁₁F₃N₂O₄SNa (M + Na)⁺: 359.0289, found (M + Na)⁺: 359.0285.

11. 5-Methyl-2-(o-tolyl)-1-((trifluoromethyl)sulfonyl)-1,2-dihydro-3H-pyrazol-3-one (3ka). Pale

yellow solid; Yield– (70mg, 73%); *mp*: 86-90 °C; R_f (30% EtOAc/petroleum ether)) 0.6; Prepared as shown in general experimental procedure. **IR** (neat, cm⁻¹): 1734, 1631, 1421, 1230, 1130; ¹H NMR (400 MHz, CDCl₃) δ 7.30 (d, J = 4.0 Hz, 2H), 7.27 – 7.22 (m, 1H), 7.13 (d, J = 7.6 Hz, 1H), 5.92 (s, 1H), 2.54 (d, J = 1.1 Hz, 3H), 2.29 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ

167.7, 156.8, 137.3, 136.2, 131.5,129.3, 126.7, 126.5, 120.1 (q, J_{C-F} = 328 Hz), 110.1, 17.7, 15.7; ¹⁹F NMR (376 MHz, CDCl₃) δ -68.2; HRESI-MS (*m*/*z*): Calculated for C₁₂H₁₂F₃N₂O₃S (M + H)⁺: 321.0521, found (M + H)⁺: 321.0517.

12. 5-Methyl-2-(m-tolyl)-1-((trifluoromethyl)sulfonyl)-1,2-dihydro-3H-pyrazol-3-one (3la). Pale

yellow solid; Yield– (49mg, 51%); *mp*: 108-113 °C; R_f (30% EtOAc/petroleum ether) 0.6; Prepared as shown in general experimental procedure. **IR** (neat, cm⁻¹): 1724, 1633, 1421, 1229, 1128; ¹H NMR (400 MHz, CDCl₃)) δ 7.32 (t, *J* = 7.7 Hz, 1H), 7.17- 7.10 (m, 3H), 5.90 (s, 1H), 2.54 (d, *J* = 0.8 Hz, 3H), 2.39 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.7,

157.1, 139.2, 137.8, 129.2, 128.9, 125.5, 121.9, 120.1(q, $J_{C-F} = 329$ Hz), 110.2, 21.5, 15.7; ¹⁹F **NMR** (376 MHz, CDCl₃) δ -68.162; **HRESI-MS** (*m/z*): Calculated for C₁₂H₁₁F₃N₂O₃SNa (M + Na)⁺: 343.0340, found (M + Na)⁺: 343.0337.

13. 2-Benzyl-5-methyl-1-((trifluoromethyl)sulfonyl)-1,2-dihydro-3H-pyrazol-3-one (3m

Yellow oily; Yield– (61mg, 63%); R_f (20% EtOAc/petroleum ether) 0.6; Prepared as shown in general experimental procedure. **IR** (neat, cm⁻¹): 1735, 1629, 1416, 1236, 1134; ¹H **NMR** (400 MHz, CDCl₃) δ 7.30 – 7.27 (m, 3H), 7.25 – 7.22 (m, 2H), 5.84 (s, 1H), 5.12 (s, 2H), 3.31 (d, *J* = 0.8 Hz, 3H); ¹³C **NMR** (100 MHz, CDCl₃) δ 169.8, 157.5, 134.3, 128.9, 128.7, 128.5,

120.0 (q, $J_{C-F} = 328$ Hz), 111.1, 51. 9, 15.6; ¹⁹F NMR (376 MHz, CDCl₃) δ -68.4; HRESI-MS (*m/z*): Calculated for C₁₂H₁₁F₃N₂O₃SNa (M + Na)⁺: 343.0340, found (M + Na)⁺: 343.0341.

14. 2-(4-Bromophenyl)-5-propyl-1-((trifluoromethyl)sulfonyl)-1,2-dihydro-

3H-pyrazol-3-one (**3na**). Yellow oily; Yield– (87mg, 70%); R_f (20% EtOAc/petroleum ether) 0.8; Prepared as shown in general experimental procedure. **IR** (neat, cm⁻¹): 1731, 1623, 1424, 1225, 1129; ¹H **NMR** (400 MHz, CDCl₃) δ 7.56 (d, *J* = 8.8 Hz, 2H), 7.20 (d, *J* = 8.8 Hz, 2H), 5.91 (s, 1H),

2.84 (td, J = 7.7, 0.8 Hz, 2H), 1.85 – 1.75 (m, 2H), 1.07 (t, J = 7.3 Hz, 3H); ¹³C NMR (100 MHz,

SO₂CF₃

3ka

(3ma).

 $CDCl_3$) δ 167.3, 162.3, 137.0, 132.3, 125.9, 121.8, 120.0 (q, $J_{C-F} = 263$ Hz), 109.2, 31.1, 21.3, 13.6; ¹⁹F NMR (376 MHz, CDCl₃) δ -67.7; HRESI-MS (*m/z*): Calculated for C₁₃H₁₃BrF₃N₂O₃S $(M + H)^+$: 412.9782, found $(M + H)^+$: 412.9779.

15. 4-(5-Oxo-3-propyl-2-((trifluoromethyl)sulfonyl)-2,5-dihydro-1H-pyrazol-1-yl)benzonitrile

(30a). Yellow solid; Yield- (56mg, 52%); mp: 97-101 °C; R_f (20% EtOAc/petroleum ether) 0.5; Prepared as shown in general experimental procedure. IR (neat, cm⁻¹): 1734, 1627, 1422, 1224, 1127; ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, J = 8.8 Hz, 2H), 7.49 (d, J = 8.8 Hz, 2H), 5.94 (s, 1H), 2.87 (t, J = 7.6 Hz, 2H), 1.87 – 1.78 (m, 2H), 1.09 (t, J = 7.6 Hz, 3H);

¹³C NMR (100 MHz, CDCl₃) δ 166.6, 163.0, 141.6, 133.0, 123.9, 120.0(q, J_{C-F} = 329 Hz), 118.2, 111.2, 109.2, 31.1, 21.3, 13.6; ¹⁹F NMR (376 MHz, CDCl₃) δ -67.4; HRESI-MS (m/z): Calculated for $C_{14}H_{13}F_{3}N_{3}O_{3}S (M + H)^{+}$: 360.0630, found $(M + H)^{+}$: 360.0627.

16. 2-(3-Nitrophenyl)-5-propyl-1-((trifluoromethyl)sulfonyl)-1,2-dihydro-

3H-pyrazol-3-one (3pa). Yellow oily; Yield– (48mg, 42%); R_f (20%) EtOAc/ petroleum ether) 0.4; Prepared as shown in general experimental procedure. IR (neat, cm⁻¹): 1711, 1622, 1529,1435,1352, 1232, 1133; ¹H **NMR** (400 MHz, CDCl₃) δ 8.25 – 8.22 (m, 2H), 7.75 – 7.73 (m, 1H), 7.69

-7.65 (m, 1H), 5.98 (s, 1H), 2.91 (td, J = 7.3, 0.7 Hz, 2H), 1.92 -1.82 (m, 2H), 1.14 (t, J = 7.6Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.0, 163.1, 148.5, 138.9, 129.9, 129.8, 122.5, 120.0 $(q, J_{C-F} = 329 \text{ Hz}), 118.8, 108.9, 31.1, 21.2, 13.6; {}^{19}\text{F} \text{ NMR} (376 \text{ MHz}, \text{CDCl}_3) \delta -67.4; \text{ HRESI-}$ **MS** (m/z): Calculated for C₁₃H₁₃F₃N₃O₅S (M + H)⁺: 380.0528, found (M + H)⁺: 380.0530.

17. 5-Propyl-2-(m-tolyl)-1-((trifluoromethyl)sulfonyl)-1,2-dihydro-3H-pyrazol-3-one (**3qa**).

Colourless solid; Yield– (67mg, 64%); mp: 80-85°C; R_f (20%) EtOAc/petroleum ether) 0.6; Prepared as shown in general experimental procedure. IR (neat, cm⁻¹): 1732, 1619, 1422, 1225, 1130; ¹H NMR (400 MHz, CDCl₃) δ 7.32 (t, J = 7.7 Hz, 1H), 7.16 – 7.09 (m, 3H), 5.91 (s, 1H), 2.84 (t, J = 7.2 Hz, 2H), 2.39 (s, 3H), 1.86 - 1.77 (m, 2H), 1.08 (t, J = 7.3 Hz, 3H);

¹³C NMR (100 MHz, CDCl₃) δ 167.8, 161.8, 139.2, 137.9, 129.1, 128.9, 125.3, 121.7, 120.0(q, $J_{C-F} = 330 \text{ Hz}$, 109.3, 31.1, 21.5, 21.3, 13.6; ¹⁹F NMR (376 MHz, CDCl₃) δ -67.8; HRESI-MS (m/z): Calculated for C₁₄H₁₅F₃N₂O₃SNa (M + Na)⁺: 371.0653, found (M + Na)⁺: 371.0648.

18. 2-Benzvl-5-propvl-1-((trifluoromethyl)sulfonyl)-1,2-dihydro-3H-pyrazol-3-one (3ra) Yellow

oily; Yield- (72mg, 69%); R_f (20% EtOAc/petroleum ether) 0.8; Prepared as shown in general experimental procedure. IR (neat, cm⁻¹): 1727, 1622, 1427, 1230, 1132; ¹**H NMR** (400 MHz, CDCl₃) δ 7.29 – 7.27 (m, 3H), 7.25 – 7.21 (m, 2H), 5.83 (s, 1H), 5.10 (s, 2H), 2.61 (t, J = 7.2 Hz, 2H), 1.52 – 1.43 (m, 2H), 0.73 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.5, 162.6,

134.1, 128.9, 128.7, 128.5, 120.0 (q, J_{C-F} = 328 Hz), 110.6, 52.4, 30.8, 21.2, 12.9; ¹⁹F NMR (376 MHz, CDCl₃) δ -68.2; HRESI-MS (*m/z*): Calculated for C₁₄H₁₅F₃N₂O₃SNa (M + Na)⁺: 371.0653, found $(M + Na)^+$: 371.0651.

19. 2-(4-Bromophenyl)-5-isopropyl-1-((trifluoromethyl)sulfonyl)-1,2dihydro-3H-pyrazol-3-one (3sa). Pale yellow solid; Yield- (57.5mg,

SO₂CF₃

3qa

SO₂CF

SO₂CF₃

3oa

46%); mp: 118-122 °C; R_f (20% EtOAc/petroleum ether) 0.7; Prepared as shown in general experimental procedure. IR (neat, cm⁻¹): 1722, 1618, 1429, 1225, 1123; ¹H NMR (400 MHz, CDCl₃) δ 7.56 (d, J = 8 Hz, 2H), 7.20 (d, J = 8 Hz, 2H), 5.91 (s, 1H), 3.36 – 3.33 (m, 1H), 1.39 (d, J = 6 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 168.7, 167.3, 137.2, 132.3, 125.6, 121.6, 120.0 (q, J_{C-F} = 330 Hz), 107.6, 28.7, 21.9; ¹⁹F NMR (376 MHz, CDCl₃) δ -67.6; HRESI-MS (*m/z*): Calculated for $C_{13}H_{13}BrF_{3}N_{2}O_{3}S(M + H)^{+}$: 412.9782, found $(M + H)^{+}$: 412.9779.

20. 4-(3-Isopropyl-5-oxo-2-((trifluoromethyl)sulfonyl)-2,5-dihydro-1H-pyrazol-1-

yl)benzonitrile (3ta). Colourless solid; Yield- (55mg, 51%); mp: 117-122 °C R_f (20% EtOAc/petroleum ether) 0.7; Prepared as shown in general experimental procedure. **IR** (neat, cm⁻¹): 1735, 1624, 1424, 1224, 1126; ¹**H NMR** (400 MHz, CDCl₃) δ 7.74 (d, J = 8.4 Hz, 2H); 7.50 (d, J = 8.4 Hz, 2H), 5.94 (s, 1H), 3.38 – 3.34 (m, 1H), 1.41 (d, J = 6.8 Hz, 6H); ¹³C NMR

(100 MHz, CDCl₃) δ 169.2, 166.5, 141.7, 133.0, 123.6, 120.0 (q, $J_{C-F} = 329$ Hz), 118.2, 111.0, 107.6, 28.8, 21.8; ¹⁹F NMR (376 MHz, CDCl₃) δ -67.4; HRESI-MS (m/z): Calculated for $C_{14}H_{13}F_3N_3O_3S (M + H)^+$: 360.0630, found $(M + H)^+$: 360.0627.

21. 5-Isopropyl-2-(3-nitrophenyl)-1-((trifluoromethyl)sulfonyl)-1,2-dihydro-3H-pyrazol-3-one (3ua). Pale yellow solid; Yield- (53mg, 46%); mp: 126-130 °C; R_f (20% EtOAc/petroleum ether) 0.4; Prepared as shown in general experimental procedure. IR (neat, cm⁻¹): 1737, 1618, 1534, 1425, 1351, 1225, 1127; ¹H NMR (400 MHz, CDCl₃) δ 8.21 – 8.19 (m, 2H), 7.72 – 7.70 (m, 1H), 7.66 – 7.62 (m, 1H), 5.95 (s, 1H), SO₂CF₃ 3.43 – 3.33 (m, 1H), 1.43 (d, J = 6.8 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 3ua 169.4, 166.9, 148.5, 139.1, 130.0, 129.5, 122.4, 120.0 (q, $J_{C-F} = 329$ Hz),

118.6, 107.5, 28.8, 21.9; ¹⁹F NMR (376 MHz, CDCl₃) δ -67.4; HRESI-MS (m/z): Calculated for $C_{13}H_{13}F_{3}N_{3}O_{5}S (M + H)^{+}$: 380.0528, found $(M + H)^{+}$: 380.0524.

22. 5-Isopropyl-2-(m-tolyl)-1-((trifluoromethyl)sulfonyl)-1,2-dihydro-3H-pyrazol-3-one (3va). Colourless solid; Yield- (38mg, 36%); mp: 113-117 °C; R_f (20% EtOAc/petroleum ether) 0.6; Prepared as shown in general experimental procedure. **IR** (neat, cm⁻¹): 1716,

1613, 1426, 1224, 1126; ¹**H NMR** (400 MHz, CDCl₃) δ 7.32 (t, J = 7.6 Hz, 1H), 7.16 – 7.08 (m, 3H), 5.91 (s, 1H), 3.38 – 3.32 (m, 1H), 2.40 (s, 3H), 1.39 (d, J = 6.8 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 168.3, 167.8, 139.2, 138.1, 129.0, 128.9, 125.0, 121.4, 120.0 (q, $J_{C-F} = 329$ Hz), 107.7, 28.7,

21.9, 21.5; ¹⁹F NMR (376 MHz, CDCl₃) δ -67.8; HRESI-MS (*m/z*): Calculated for $C_{14}H_{16}F_{3}N_{2}O_{3}S (M + H)^{+}: 349.0834$, found $(M + H)^{+}: 349.0829$.

23. 2-Benzyl-5-isopropyl-1-((trifluoromethyl)sulfonyl)-1,2-dihydro-3Hpyrazol-3-one (3wa). Yellow oily; Yield– (64mg, 61%); R_f (20%) EtOAc/petroleum ether) 0.8; Prepared as shown in general experimental procedure. IR (neat, cm⁻¹): 1732, 1617, 1419, 1231, 1132; ¹H NMR (400 MHz, CDCl₃) δ 7.28 – 7.27 (m, 3H), 7.21 – 7.19 (m, 2H), 5.82 (s, 1H), 5.09

(s, 2H), 3.17 - 3.06 (m, 1H), 1.05 (d, J = 6.8 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 170.9, 169.6, 134.0, 128.8, 128.6, 128.5, 120.0 (q, $J_{C-F} = 329$ Hz), 108.6, 53.0, 28.4, 21.5; ¹⁹F NMR (376 MHz, CDCl₃) δ -68.2; HRESI-MS (*m/z*): Calculated for C₁₄H₁₅F₃N₂O₃SNa (M + Na)⁺: 371.0653, found (M + Na)⁺: 371.0649.

SO₂CF₃

3wa

3ta

SO₂CF₃

Crystal data for compound 3ca

Translucent yellow tabular crystals of approximate dimension 0.092 x 0.189 x 0.324mm were selected under a polarizing microscope for single-crystal x-ray diffraction studies. With the help of paratone oil, the sample was taken on a fiber loop and mounted over a diffractometer head. Data collection was done at low temperature (100K or-173.15°C) using the Oxford cyrostream device (N₂ flow). The X-ray intensity data were collected using Bruker APEX-II Ultra (3-circle machine) operated at 40KV voltage and 80mA current. Collected raw images were corrected for Lorentz and polarization effects. Multi-scan absorption corrections were applied using the program SADABS⁷. The structure was solved and refined using SHELXT⁸ and SHELXL⁹ programs, respectively. Spherical atomic-scattering factors were assumed (Independent Atom Model, IAM). All non-hydrogen atoms were modeled anisotropically, and hydrogen atoms were refined as a riding model using HFIX cards. Aromatic phenyl hydrogens and double bond ahydrogen-bonded to C4 atom were added to the model through HFIX 43 card and methyl hydrogen atoms (bonded to C32 and C33) were given HFIX 137(X-C torsion refined) and methine hydrogen (bonded to C31) were added through HFIX 13 cards. For all hydrogen atoms, Uiso values are constrained to 1.2 times that of the parent atom's Uiso (1.5 times for methyl hydrogens). Software used for creating molecular graphics is ORTEP3 for windows¹⁰ and packages used for computing publication materials SHELXLE¹¹ are and WinGX¹⁰.Crystallographic and refinement data are reported in Table 1, and selected bond lengths and angles are reported in Table 2.

Figure 1:(a) Schematic representation of the compound 3ca with atom numbering scheme; (b) ORTEP plot with 50% probability ellipsoid; Color code:C=Black, H=Hollow Sphere with arbitrary radius, N=Blue, O=Red,F=Green,S=Yellow.

Largest positive difference peak of 0.524eÅ⁻³ located at (0.1598, 0.5281, 0.1205) was attributed to the bonding electrons. It is located equidistant between S21 and C21 atoms.Deepest hole of - 0.357eÅ⁻³at (0.2008, 0.5042, 0.1535) was found near S21(distance of 0.37Å). IAM model was

inadequate to model such features. Electron density synthesis with coefficient $[F_o\text{-}F_c]$ was calculated using the program PLATON^{12.}

Identification code	3ca		-30<=l<=30	
Empirical formula	$C_{13} H_{13} F_3 N_2 O_3 S$	Reflections collected	60045	
Formula weight	334.31	Independent	3541 [R(int) = 0369]	
Temperature	100(2) K	reflections		
Wavelength	0.71073 Å	Completeness to	100 00%	
Crystal system	Orthorhombic	theta = 25.242°	100.0070	
Space group	P b c a	Absorption correction	Semi-empirical from	
	a = 8.6070(5) Å		equivalents	
Unit cell dimensions	b = 14.6316(8) Å	Max. and min.	0.7457 and 0.5914	
	c = 22.5134(14) Å	transmission		
Volume	2835.2(3) Å ³	Refinement method	Full-matrix least-	
Ζ	8		squares on F ²	
Density (calculated)	1.566 mg/m ³	Data / restraints /	3541 / 0 / 201	
Absorption	0.277 mm ⁻¹	parameters	5541707201	
coefficient		Goodness-of-fit on F ²	1.153	
F(000)	1376	Final R indices	R1 = 0.0375,	
Crystal size(mm)	0.324 x 0.189 x 0.092	[I>2sigma(I)]	wR2 = 0.0923	
Theta range for data	1.809 to 28.349°	R indices (all data)	R1 = 0.0401,	
collection			wR2 = 0.0938	
	-11<=h<=11,	Extinction coefficient	constrained to zero	
Index ranges	-19<=k<=19,	Largest diff. peak and	0.524 and 0.2570 Å ⁻³	
-	1	hole	0.524 and -0.5570.A	

Table 1: Crystal data and structure refinement for 3ca

Table 2: Selected Bond length and angles of 5-membered pyrazol-3-one ring (Å and °)

N1-C5	1.417(2)
N1-N2	1.422(2)
N1-C11	1.437(2)
N2-C3	1.442(2)
N2-S21	1.678(1)
C3-C4	1.338(2)
C3-C31	1.496(2)
C4-C5	1.455(2)
C5-O51	1.213(2)
C5-N1-N2	108.2(1)
C5-N1-C11	120.0(1)

N2-N1-C11	117.2(1)
N1-N2-C3	107.1(1)
N1-N2-S21	112.4(9)
C3-N2-S21	119.4(1)
C4-C3-N2	108.7(1)
C4-C3-C31	129.8(1)
N2-C3-C31	121.4(1)
C3-C4-C5	110.1(1)
O51-C5-N1	123.4(1)
O51-C5-C4	130.7(1)
N1-C5-C4	105.9(1)

Figure 2: Final difference Fourier synthesis with Coefficients $[F_0-F_c]$; Dashed blue lines represent -ve contours, dotted black represent zero contour, solid red lines represent +ve contours. High +ve contour was found equidistant between S21 and C21. Plane definition: 8.5399x-0.9813y+2.3649z=5.9550; Contour level(eÅ⁻³): -0.30 0.50 0.05

Crystallographic data (including structure factors) for the structures reported in this paper have been deposited with the Cambridge Crystallographic Data Centre. CCDC 2071406 contain the supplementary crystallographic data for this paper. Copies of the data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures.

References:

- 1. X. -H. Xu, X. Wang, G. -K. Liu, E. Tokunaga, N. Shibata. Org. Lett. 2012, 14, 2544.
- 2. R. Maity, C. Gharui, A. K. Sil, S. C. Pan. Org. Lett. 2017, 19, 662.
- 3. A. Thupyai, C. Pimpasri, S. Yotphan. Org. Biomol. Chem. 2018, 16, 424.
- 4. T. kittikool, S. Yotphan. Eur. J. Org. Chem. 2020, 961.
- 5. M. Sera, H. Mizufune, H. Tawada. *Tetrahedron.* **2015**, *71*, 2833.
- 6. K. J. Duffy, M. G.Darcy, E. Delorme, S. B. Dillon, D. F. Eppley, C. E. Miller, L. Giampa, C. B. Hopson, Y. Huang, R. M. Keenan, P. Lamb, L. Leong, N. Liu, S. G. Miller, A. T. Price, J. Rosen, R. Shah, T. N.

Shaw, H. Smith, K. C. Stark, S. –S. Tian, C. Tyree, K. J. Wiggall, L. Zhang, J. l. Luengo. *J. Med. Chem.* **2001**, *44*, 22, 3730.

- 7. L. Krause, R. Herbst-Irmer, G. M. Sheldrick, D. Stalke., J. Appl. Cryst. 2015, 48, 3.
- 8. G. Sheldrick, Acta Crystallogr. Sect. A. 2015, 71, 3.
- 9. G. Sheldrick, Acta Crystallogr. Sect. C: Cryst. Struct. Commun. 2015, 71, 3.
- 10. L. J. Farrugia, J. Appl. Cryst. 2012, 45, 849.
- 11. C. B. Hubschle, G. M. Sheldrick, B. Dittrich. J. Appl. Cryst. 2011, 44, 1281.
- 12. A. L. Spek, J. Appl. Cryst. 2003, 36, 7.

--68.824

				0
00111100000	m	204	0 0 0 0 0 0 0 0 0 0	õ
000MMJM00	0	× 2 ⊂ 2	040H0F080	0
タタタタろろろろろろ	N	$\infty \infty \infty$	00 + 1 - 00000	•
	•	• • •		0
	Ь	200	$\neg \neg $	1

---67.866

Ahwan, Muniraj, and Prabhu/Organic chemistry/IISc

--67.835

Ahwan, Muniraj, and Prabhu/Organic chemistry/IISc

--68.030

S-38

		124.982	77.472 76.837		
O N N 3ia SO ₂ CF ₃ NO ₂ ¹³ C NMR, 100 MHz					
200 190 180 170 160	150 140 1	130 120 110 100	90 80 70 60	50 40 30	20 10 ppm

200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	ppm

--68.262

--68.162

200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	ppm

--68.462

1	.90	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	ppm

て ら の て 4		0 4 0	て80124457	00
0 0 0 0 M U	4	0 2 0	LU400010L	0
77040	Ø	00 00 00	$00H \ 100000000$	•
	•			0
ファファ	ы	$\square \square \square$	$\neg \neg $	1
\searrow \bigvee /				

mo	-	N @ 4 0 M H H D @ 0				
$\circ \infty$	ப	0000440400	$\odot \odot \odot$	00	L_	\sim
0 1	ப	തതയതഥയയനഠത	Γ Ω 4	\sim	L_	00
• •	•		4 1 8	, - 1	\sim	9
с ю	∞	യ ഗ 4 ഗ H യ യ ഥ യ	• • •	•	•	•
00	4	мииииччно	C C 9	\leftarrow	\leftarrow	\sim
\dashv \dashv	\leftarrow	$\neg \neg $	ファフ	Ś	\sim	\leftarrow

		. .						

ΩΩ	Ć	OHOOHJOMO			
72	m	4 9 0 9 7 1 7 9 9	000	00	9
2 5	L_	00000000000	Γ Ω 4	\sim	\sim
• •	•		4 1 8	00	00
00	\leftarrow	343188417		•	•
00	4	миииннно	でての	00	-
\leftarrow	\leftarrow	\neg		\sim	\sim
\setminus /					

--67.424

---67.438

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm

--67.845

200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	ppm

170.911	134.079 128.883 128.595 128.493 124.923 112.633 115.055 115.055	77.477 77.159 76.841	 	
O N N SO ₂ CF ₃ 3wa ¹³ C NMR, 100 MHz				

--68.287

200 190 180 170 160 150 140 130 120 110 100 90

NO₂

¹³C NMR, 100 MHz

