Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Hyungwoo Hahm^a, Jiyun Kim^a, Jeong Yup Ryoo^a, Min Su Han^a, Sukwon Hong^{*a,b}

^aDepartment of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdangwagiro, Buk-gu, Gwangju 61005, Republic of Korea ^bSchool of Materials Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea

Table of Contents

1. Challenging substrates and 4CzBnBN synthesis	S2
2. Detailed Optimization Process	S4
3. Mechanism Experiments	S7
4. Reference	S11
5. ¹ H, ¹³ C, and ¹⁹ F NMR spectra	S12

1. Challenging substrates and 4CzBnBN synthesis

Scheme S1. The reactivity of challenging substrates under known conditions.

Synthetic procedure for 4CzBnBN¹

A 10 mL Schlenk tube was charged with 4CzIPN (94.8 mg, 0.12 mmol), Cs_2CO_3 (156.4 mg, 0.48 mmol), and 2-phenylacetic acid (65.4 mg, 0.48 mmol) in the glovebox. The Schlenk tube was taken out of the glovebox. DMA (8 mL) was added under Ar balloon. Then, the reaction was irradiated with Kessil LED light (A80, Tuna Blue, 15 W; the distance between the schlenk tube and the LED was about 6-8 cm) for 6 h at room temperature (28-32 °C). The reaction was cooled by fan. After completion of the reaction, the mixture was quenched with H₂O (20 mL) and brine (60 mL) and extracted with ethyl acetate (10 mL x 3). The combined organic phase was dried using MgSO₄, filtered, and evaporated of ethyl acetate. The crude material was obtained by recrystallization from Hexane/EA (4:1).

2. Detailed optimization process and reaction setup

+	Me Ne (1) Photocatalyst K_2HPO_4 (3 equiv.), DMF (202) Kessil blue LED (15 W), r.t. 6 h	Me
F	(closed) 2) TMSCHN ₂ , Et ₂ O/MeOH F	
1a	2a 3aa	
entry	photocatalyst (x mol%)	yield ^b
1	[lr(dF(CF ₃)ppy) ₂ (dtbpy)]PF ₆ (1 mol%)	<1%
2	[lr(dF(CF ₃)ppy) ₂ (bpy)]PF ₆ (1 mol%)	<1%
3	[lr(ppy) ₂ (dtbpy)]PF ₆ (1 mol%)	10%
4	lr(ppy)₃ (1 mol%)	<1%
5	4CzIPN (3 mol%)	<1%
6	Ir(ppy) ₃ (1 mol%) + [Ir(dF(CF ₃)ppy) ₂ (dtbpy)]PF ₆ (1 mol%)	20%
7	4CzBnBN (5 mol%)	64%
8	4CzBnBN (3 mol%)	56%

 Table S1. Screening of photocatalysts ^a

^a Conditions: 1) 0.2 mmol **1a**, 0.6 mmol **2a**, 0.6 mmol K₂HPO₄, 1-5 mol% photocatalyst, DMF (2 mL), CO₂ (closed), Kessil blue LED (15 W), 6 h, 2) TMSCHN₂ 2 M in Et₂O (0.2 mL), Et₂O (8 mL), MeOH (2 mL), 1 h. ^b Isolated yield.

 $lr(ppy)_3$

4CzIPN

4CzBnBN

	Me Me + CO	1) 5 mol% 4CzBnBN Base (3 equiv.), solvent Kessil Blue LED (15 W), r.t. 6 h	CO ₂ Me Me
F	(closed)	2) TMSCHN ₂ , Et ₂ O/MeOH F	и Ме
1a	2a		3aa
entry	base	solvent	yield ^b
1	CsOAc	DMF	50%
2	КОАс	DMF	51%
3	NaOAc	DMF	50%
4	KOCOCF ₃	DMF	23%
5	KHCO ₃	DMF	51%
6	K ₂ HPO ₄	DMF	64%
7	K ₂ CO ₃	DMF	35%
8	КОН	DMF	37%
9	K ₂ HPO ₄	DMA	60%
10	K ₂ HPO ₄	NMP	61%
11	K ₂ HPO ₄	DMSO	36%
^a Conditions: 1) ().2 mmol 1a , 0.6 mn	nol 2a , 0.6 mmol base, 5 mol% 4CzB	nBN, solvent (2 mL),

Table S2. Screening of base and solvent^a

 CO_2 (closed), Kessil blue LED (15 W), 15 h, 2) TMSCHN₂ 2 M in Et₂O (0.2 mL), Et₂O (8 mL), MeOH (2 mL), 1 h. ^b Isolated yield.

Table S3. Screening of different stoichiometry ^a												
F +	Me Me +	(closed) 1) 5 mol% 4CzBnBN K_2HPO_4 (3 equiv.), DMF Kessil Blue LED (15 W), r.t. 6 h 2) TMSCHN ₂ , Et ₂ O/MeOH r.t., 1 h	F CO ₂ Me Me									
1a	2a		3aa									
Entry		1a : 2a ratio	Yield ^b									
1		1:1	21%									
2		1:3	64%									
3		1:5	61%									
4		3:1	9%									

^a Conditions: 1) **1a**, **2a**, 0.2-0.6 mmol K_2HPO_4 , 5 mol% 4CzBnBN, DMF (2 mL), CO₂ (closed), Kessil blue LED (15 W), 15 h, 2) TMSCHN₂ 2M in Et₂O (0.2 mL), Et₂O (8 mL), MeOH (2 mL), 1 h. ^b Isolated yield. ^b Isolated yield.

Figure S1. Photochemical reaction set-up

3. Mechanism experiments

Radical inhibition experiment and Isotope-labelling study

Scheme S3. (a)TEMPO was used as additive for the carbocarboxylation (b) D_2O was used as electrophile instead of CO_2

(a) Radical trapping study

Radical trapping study

A 10 mL Schleck tube was charged with 4CzBnBN (8.5 mg), K_2HPO_4 (104.5 mg) and TEMPO (0.6 mmol, 93.8 mg) which was evacuated and refilled with carbon dioxide (CO₂) for 3 times following the usual Schlenk technique. DMF (2 mL), **1f** (0.2 mmol) and **2a** (0.6 mmol) was added under a flow of CO₂ and the Schlenk tube was closed. Then, the reaction was conducted in the schlenk tube irradiated with Kessil LED light (A80, Tuna Blue, 15 W; the distance between the schlenk tube and the LED was about 6-8 cm) for 6 h at room temperature (28-32 °C). The reaction was cooled by fan. After completion of the reaction, the mixture was quenched with 1 M HCl (2 mL) and extracted with ethyl acetate (5 mL x 3). The combined organic phase was dried using MgSO₄, filtered, and evaporated of ethyl acetate. When using TEMPO (3 equiv.) as radical inhibitor, the desired product was not detected by TLC. The formation of **3fa** was inhibited and TEMPO-trapping products were detected by HRMS.

Figure S2. TEMPO-trapping products detected by HRMS

Isotope labelling study with D₂O

A 10 mL Schleck tube was charged with 4CzBnBN (8.5 mg) and K₂HPO₄ (104.5 mg) which was evacuated and refilled with argon for 3 times following the usual Schlenk technique. DMF (2 mL), **1f** (0.2 mmol) and **2a** (0.6 mmol) was added under a flow of Ar and the Schlenk tube was closed. Then, the reaction was conducted in the schlenk tube irradiated with Kessil LED light (A80, Tuna Blue, 15 W; the distance between the schlenk tube and the LED was about 6-8 cm) for 6 h at room temperature (28-32 °C). The reaction was cooled by fan. After completion of the reaction, the mixture was quenched with 1 M HCl (2 mL) and extracted with ethyl acetate (5 mL x 3).). The combined organic phase was dried using MgSO₄, filtered, and evaporated of ethyl acetate. The crude material was separated by silica gel column chromatography (5-10% ethyl acetate/*n*-hexane) and afforded 99%-deuterated product **4** as colorless oil in 65% yield (31 mg).

Figure S3. Isotope labelling study with 1f and D₂O

Luminescence quenching experiments

Emission quenching of 4CzBnBN with styrene

Stock solutions of 4CzBnBN (150 μ M) and styrene (15 mM) were prepared in DMF. Samples containing 4CzBnBN (15 μ M) in absence and presence of styrene (0.15, 0.30, 0.45, 0.60, 0.75, 0.90, 1.05, 1.20, 1.35, 1.50 mM) were prepared. Then the fluorescence spectra were

recorded by the fluorescence spectrophotometer under excitation at 289 nm.

Emission quenching of 4CzBnBN with N,N,4-trimethylaniline

Stock solutions of 4CzBnBN (150 μ M) and *N*,*N*,4-trimethylaniline (15 mM) were prepared in DMF. Samples containing 4CzBnBN (15 μ M) in absence and presence of *N*,*N*,4-trimethylaniline (0.15, 0.30, 0.45, 0.60, 0.75, 0.90, 1.05, 1.20, 1.35, 1.50 mM) were prepared. Then the fluorescence spectra were recorded by the fluorescence spectrophotometer under excitation at 289 nm.

Figure S4. Left: Emission quenching of 4CzBnBN (15 μ M in dry DMF) upon titration with styrene (1f). Right: Corresponding Stern-Volmer plot with a Stern-Volmer constant K_{sv} = 23.0 μ M⁻¹.

Figure S5. Left: Emission quenching of 4CzBnBN (15 μ M in dry DMF) upon titration with 4-*N*,*N*-trimethylaniline (2a). Right: Corresponding Stern-Volmer plot with a Stern-Volmer constant K_{sv} = 113.8 μ M⁻¹.

4. Reference

(1) K. Donabauer, M. Maity, A. L. Berger, G. S. Huff, S. Crespi, and B. König, *Chem. Sci.*, **2019**, *10*, 5162-5166.

5. ¹H, ¹³C, and ¹⁹F NMR spectra Methyl 2-(4-fluorophenyl)-4-(methyl(p-tolyl)amino)butanoate (3aa)

f1 (ppm)

							1 . 1 .	1 . 1 . 1							
100	80	60	40	20	0	-10	-30	-50 f1 (ppm)	-70	-90	-110	-130	-150	-170	-190

Methyl 4-(methyl(p-tolyl)amino)-2-(p-tolyl)butanoate (3ba)

Methyl 2-(4-(tert-butyl)phenyl)-4-(methyl(p-tolyl)amino)butanoate (3ca)

Methyl 2-(4-isobutylphenyl)-4-(methyl(p-tolyl)amino)butanoate (3da)

Methyl 2-(4-methoxyphenyl)-4-(methyl(p-tolyl)amino)butanoate (3ea)

Methyl 4-(methyl(p-tolyl)amino)-2-phenylbutanoate (3fa)

Methyl 2-(2-methoxyphenyl)-4-(methyl(p-tolyl)amino)butanoate (3ga)

Methyl 2-(3-methoxyphenyl)-4-(methyl(p-tolyl)amino)butanoate (3ha)

Methyl 4-(methyl(p-tolyl)amino)-2-(m-tolyl)butanoate (3ia)

f1 (ppm)

Methyl 2-(4-cyanophenyl)-4-(methyl(p-tolyl)amino)butanoate (3la)

Methyl 2-(4-bromophenyl)-4-(methyl(p-tolyl)amino)butanoate (3ma)

Methyl 2-(4-chlorophenyl)-4-(methyl(p-tolyl)amino)butanoate (3na)

Methyl 2-(3,5-bis(trifluoromethyl)phenyl)-4-(methyl(p-tolyl)amino)butanoate (30a)

---62.72

Methyl 2-(3-bromophenyl)-4-(methyl(p-tolyl)amino)butanoate (3qa)

S31

Methyl 2-methyl-4-(methyl(p-tolyl)amino)-2-(4-(trifluoromethyl)phenyl)butanoate (3ra)

---62.43

Methyl 4-(methyl(p-tolyl)amino)-2,2-diphenylbutanoate (3sa)

Methyl 4-(methyl(phenyl)amino)-2-phenylbutanoate (3fb)

Methyl 4-(methyl(m-tolyl)amino)-2-phenylbutanoate (3fc)

Methyl 4-((3,5-dimethylphenyl)(methyl)amino)-2-phenylbutanoate (3fd)

Methyl 4-((4-methoxyphenyl)(methyl)amino)-2-phenylbutanoate (3fe)

Methyl 4-((4-chlorophenyl)(methyl)amino)-2-phenylbutanoate (3ff)

Methyl 4-((4-bromophenyl)(methyl)amino)-2-phenylbutanoate (3fg)

Methyl 4-((4-fluorophenyl)(methyl)amino)-2-phenylbutanoate (3fh)

								1 . 1 . 1							
100	80	60	40	20	0	-10	-30	-50 f1 (ppm)	-70	-90	-110	-130	-150	-170	-190

Methyl 4-(diphenylamino)-2-phenylbutanoate (3fi)

Methyl 4-(9H-carbazol-9-yl)-2-phenylbutanoate (3fj)

210 190 170 150 130 110 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

Methyl 4-(methyl(m-tolyl)amino)-2-(4-(trifluoromethyl)phenyl)butanoate (3kc)

---62.42

Methyl 4-((3,5-dimethylphenyl)(methyl)amino)-2-(4-(trifluoromethyl)phenyl)butanoate (3kd)

Methyl 4-((4-methoxyphenyl)(methyl)amino)-2-(4-(trifluoromethyl)phenyl)butanoate (3ke)

								1 . 1 .							
100	80	60	40	20	0	-10	-30	-50 f1 (ppm)	-70	-90	-110	-130	-150	-170	-190

Methyl 4-((4-chlorophenyl)(methyl)amino)-2-(4-(trifluoromethyl)phenyl)butanoate (3kf)

100 80 60 40 20 0 -10 -30 -50 -70 -90 f1 (ppm)	-110 -130 -150 -170 -190	

Methyl 4-((4-bromophenyl)(methyl)amino)-2-(4-(trifluoromethyl)phenyl)butanoate (3kg)

— -62.44

S58

100	80	60	40	20	0 -10	-30	-50 f1 (ppm)	-70	-90	-110	-130	-150	-170	-190

1-methyl-3-(4-(trifluoromethyl)phenyl)pyrrolidin-2-one (5)

— -62.41

40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -15 f1 (ppm)