Ruthenium-Catalyzed C-H Amination of Aroylsilanes

Feifei Yu, Wenzhou Shen, Yaling Sun, Yilei Liao, Shuqi Jin, Xiunan Lu, Rui He,* Liangjun Zhong,* Guofu Zhong and Jian Zhang*

Email: zhangjian@hznu.edu.cn; zymdxx@163.com; heruiminli@sina.com

Table of Contents

General Methods	S-2
General Procedure for Catalytic C-H Amination	S-3
Characterization Data	S-4
Deuterium-Labeled Experiments	S-18
KIE Experiments	S-23
Competition Reaction	S-27
Synthetic Application	S-28
References	S-30
NMR Spectra	S-31

General Methods

Analytical thin layer chromatography (TLC) was performed using Merck 60 F254 precoated silica gel plate (0.2 mm thickness). Subsequent to elution, plates were visualized using UV radiation (254 nm) on Spectroline Model ENF-24061/F254 nm. Further visualization was possible by staining with basic solution of potassium permanganate or acidic solution of ceric molybdate. Flash column chromatography was performed using Merck aluminium oxide 90 active neutral with freshly distilled solvents. Columns were typically packed as slurry and equilibrated with the appropriate solvent system prior to use. Proton nuclear magnetic resonance spectra (¹H NMR) were recorded on Bruker AMX400 and 500 MHz spectrophotometer (CDCl₃ as solvent). Chemical shifts for ¹H NMR spectra are reported as δ in units of parts per million (ppm) downfield from SiMe₄ (δ 0.0) and relative to the signal of chloroform-d (δ 7.26, singlet). Multiplicities were given as: s (singlet), d (doublet), t (triplet), dd (doublets of doublet) or m (multiplets). The number of protons (n) for a given resonance is indicated by nH. Coupling constants are reported as a J value in Hz. Carbon nuclear magnetic resonance spectra (^{13}C NMR) are reported as δ in units of parts per million (ppm) downfield from SiMe₄ (δ 0.0) and relative to the signal of chloroform-d (δ 77.0, triplet). Mass spectrometry was performed by Waters O-Tof Premier Micromass instrument, using Electro Spray Ionization (ESI) mode. IR spectra were recorded as thin films on KBr or NaCl plates on a Bio-Rad FTS 165 FTIR spectrometer and are reported in frequency of absorption (cm⁻¹). Other reagents, unless otherwise noted below, are commercially available from Alfa Aesar (China) Chemical Co., Ltd. and used without further purification. Acylsilanes were prepared by reported methods.¹⁻²

General Procedure for Ru-Catalyzed C-H Amination

An oven-dried vial was charged with $[Ru(p-cymene)Cl_2]_2$ (5 mol %, 0.005 mmol), AgNTf₂ (20 mol %, 0.02 mmol), Ag₂O (50 mol %, 0.05 mmol), **2a** (0.2 mmol, 63.4 mg) and DCM (0.7 mL). Then, acylsilane **1** (0.1 mmol, 17.8 mg) was added into the solution. The vial was sealed under argon and heated to 90 °C with stirring for 18 hours. After cooling down, the mixture was directly applied to a flash column chromatography (ethyl acetate/petroleum ether mixtures) on silica gel to afford **3**.

An oven-dried vial was charged with $[Ru(p-cymene)Cl_2]_2$ (5 mol %, 0.005 mmol), AgSbF₆ (40 mol %, 0.04 mmol), Cu(OAc)₂•H₂O (1.0 eq, 0.1 mmol), NaOAc (40 mol %, 0.04 mmol) and DCM (0.7 mL). Then, acylsilane **1** (0.1 mmol, 17.8 mg) and **4** (0.2 mmol, 39.4 mg) were added into the solution. The vial was sealed under argon and heated to 90 °C with stirring for 12 hours. After cooling down, the mixture was directly applied to a flash column chromatography (ethyl acetate/petroleum ether mixtures) on silica gel to afford **5**.

Characterization Data

2-(2-((trimethylsilyl)carbonyl)phenyl)isoindoline-1,3-dione

Following the general experiment procedure, **3aa** was obtained as a yellow solid (77%, 25.0 mg), m.p:155.3 °C. ¹H NMR (500 MHz, CDCl₃): $\delta = 11.53$ (s, 1H), $\delta = 7.80$ (dd, J = 7.5, 1.5 Hz, 1H), 7.70 (d, J = 8.5Hz, 2H), 7.65 (dd, J = 8.5, 1.0 Hz, 1H), 7.41 (td, J = 10.5, 1.5 Hz, 2H), 7.21 (d, J =8.0 Hz, 1H), 7.13 (td, J = 7.5, 1 Hz, 1H), 2.35 (s, 3H), 0.31 (s, 9H). ¹³C NMR (125 MHz, CDCl₃): $\delta = 240.21$, 169.32, 141.48, 136.16, 133.96, 133.51, 131.86, 131.02, 130.34, 128.60, 125.58, 2.91. HR-MS (ESI): m/z calculated for C₂₀H₂₇NO₃SSi: [M+H]⁺: 324.1051, found: 324.1054. FTIR (KBr, cm⁻¹): 3384.70, 2945.79, 2828.04, 1647.66, 1534.23, 1403.74, 1028.83.

2-(5-methoxy-2-((trimethylsilyl)carbonyl)phenyl)isoindoline-1,3-dione

Following the general experiment procedure, **3ab** was obtained as a yellow solid (60%, 21.2 mg), m.p:137.9 °C. ¹**H NMR** (500 MHz, CDCl₃): δ = 7.92 (dd, *J* = 5.0, 3.0 Hz, 2H), 7.84 (d, *J* = 8.5 Hz, 1H), 7.77 (dd, *J* = 5.5, 3.1 Hz, 2H), 7.06 (dd, *J* = 8.5, 2.5 Hz, 1H), 6.88 (d, *J* = 2.5 Hz, 1H), 3.89 (s, 3H), 0.31 (s, 9H). ¹³**C NMR** (125 MHz, CDCl₃): δ = 236.86, 169.10, 163.75, 135.81, 134.33, 133.83, 133.62, 130.62, 125.34, 118.07, 115.36, 57.32, 2.62. **HR-MS** (ESI): m/z calculated for C₁₉H₁₉NO₄Si: [M+H]⁺: 354.1156, found:354.1156. **FTIR** (KBr, cm⁻¹): 3383.49, 2973.83, 2938.60, 2839.25, 1476.64, 1392.52, 1032.68, 1016.82.

2-(5-methyl-2-((trimethylsilyl)carbonyl)phenyl)isoindoline-1,3-dione

Following the general experiment procedure, **3ac** was obtained as a yellow solid (62%, 21 mg), m.p:133.2°C. ¹**H** NMR (500 MHz, CDCl₃): δ = 7.92-7.89 (m, 2H), 7.78-7.74 (m, 2H), 7.71 (d, *J* = 7.5 Hz, 1H), 7.36 (d, *J* = 8.0 Hz, 1H), 7.18 (s, 1H), 2.45 (s, 3H), 0.31 (s, 9H). ¹³C NMR (125 MHz, CDCl₃): δ = 239.15, 169.38, 144.53, 138.47, 135.96, 133.95, 132.71, 131.85, 131.04, 128.58, 125.45, 23.23, 2.79. **HR-MS** (ESI): m/z calculated for C₁₉H₁₉NO₃Si: [M+H]⁺: 338.1207, found: 338.121. **FTIR** (KBr, cm⁻¹): 3731.69, 3627.12, 3383.79, 2922.90, 1734.58, 1557.44, 1403.00, 1026.47.

2-(5-ethyl-2-((trimethylsilyl)carbonyl)phenyl)isoindoline-1,3-dione

Following the general experiment procedure, **3ad** was obtained as a yellow solid (70%, 24.5 mg), m.p: 155.0°C. ¹H NMR (500 MHz, CDCl₃): $\delta = 7.92 - 7.89$ (m, 2H), 7.78-7.73 (m, 3H), 7.39 (dd, J = 8.0, 1.5 Hz, 1H), 7.20 (d, J = 1Hz, 1H), 2.76 (q, J = 7.5 Hz, 2H), 1.39 (t, J = 7.5 Hz, 3H), 0.32 (s, 9H). ¹³C NMR (125 MHz, CDCl₃): $\delta = 239.11, 169.37, 150.54, 138.59, 135.94, 133.95, 131.95,$ 131.56, 129.76, 128.64, 125.41, 30.39, 16.53, 2.77. HR-MS (ESI): m/z calculated for $C_{20}H_{21}NO_3Si: [M+H]^+$: 352.1363, found: 352.1364. FTIR (KBr, cm⁻¹): 3850.87, 3748.24, 3667.61, 3564.65, 2357.70, 1731.78, 1557.18, 1028.04.

2-(5-butyl-2-((trimethylsilyl)carbonyl)phenyl)isoindoline-1,3-dione

Following the general experiment procedure, **3ae** was obtained as a yellow solid (65%, 23.8 mg), m.p:165.4°C. ¹**H** NMR (500 MHz, CDCl₃): $\delta = 7.90$ (dd, J = 5.5, 3.0 Hz, 2H), 7.77-7.72 (m, 3H), 7.37 (dd, J = 7.5, 1.5 Hz, 1H), 7.19 (d, J = 1.5 Hz, 1H), 2.70 (t, J = 7.0 Hz, 2H), 1.69-1.63 (ddd, J = 9.5, 5.0, 2.0 Hz, 2H), 1.40 (dd, J = 15.0, 7.5 Hz, 2H), 0.94 (t, J = 7.5 Hz, 3H), 0.32 (s, 9H). ¹³C NMR (125 MHz, CDCl₃): $\delta = 239.10$, 169.34, 149.37, 138.54, 135.93, 133.94, 132.00, 131.84, 130.25, 128.57, 125.39, 37.17, 34.68, 24.12, 15.64, 2.77. **HR-MS** (ESI): m/z calculated for $C_{22}H_{25}F_3NO_3Si$: [M+H]⁺: 380.1676, found: 380.1673. **FTIR** (KBr, cm⁻¹): 3850.96, 3708.81, 3646.24, 3422.68, 2357.60, 1651.54, 1557.31, 1021.07.

2-(5-(tert-butyl)-2-((trimethylsilyl)carbonyl)phenyl)isoindoline-1,3-dione

Following the general experiment procedure, **3af** was obtained as a yellow solid (80%, 30 mg), m.p: 196.0°C. ¹**H** NMR (500 MHz, CDCl₃): $\delta = 7.91$ (dd, J = 5.5, 3.0 Hz, 2H), 7.78- 7.75 (m, 3H), 7.57 (dd, J = 8.0, 2.0 Hz, 1H), 7.35 (d, J = 2.0 Hz, 1H), 1.37 (s, 9H), 0.32 (s, 9H).¹³C NMR (125 MHz, CDCl₃) : $\delta = 238.97$, 169.39, 157.48, 138.17, 135.89, 133.99, 131.80, 129.30, 128.45, 127.31, 125.38, 36.89, 32.77, 32.69, 2.75. **HR-MS** (ESI): m/z calculated for C₂₂H₂₅NO₃Si: [M+H]⁺: 380.1676, found: 380.1673. **FTIR** (KBr, cm⁻¹): 3851.23, 3673.83, 3565.06, 3417.06, 2957.39, 1651.67, 1457.01, 1032.54.

2-(5-isopropyl-2-((trimethylsilyl)carbonyl)phenyl)isoindoline-1,3-dione

Following the general experiment procedure, **3ag** was obtained as a yellow solid (69%, 25 mg), m.p:143.8°C. ¹**H** NMR (500 MHz, CDCl₃): $\delta = 7.91$ (dd, J = 5.5, 3.0 Hz, 2H), 7.77-7.75 (m, 3H), 7.42 (dd, J = 8.0, 1.6 Hz, 1H), 7.22 (d, J = 1.5 Hz, 1H), 3.00 (dt, J = 14, 7.0 Hz, 1H), 1.31 (d, J =6.9 Hz, 6H), 0.32 (s, 9H). ¹³C NMR (125 MHz, CDCl₃): $\delta = 239.01$, 169.36, 155.10, 138.61, 135.91, 133.94, 132.02, 130.34, 128.65, 128.33, 125.39, 35.77, 25.29, 2.76. **HR-MS** (ESI): m/z calculated for C₂₁H₂₃NO₃Si: [M+H]⁺: 366.1520, found: 366.1522. **FTIR** (KBr, cm⁻¹): 3851.60, 3742.79, 3673.89, 3444.21, 1682.51, 1557.45, 1403.03, 1016.82.

2-(4-((trimethylsilyl)carbonyl)-[1,1'-biphenyl]-3-yl)isoindoline-1,3-dione

Following the general experiment procedure, **3ah** was obtained as a yellow solid (65%, 26 mg), m.p:159.0°C. ¹**H** NMR (500 MHz, CDCl₃): δ = 7.93 (dd, *J* = 5.5, 3.0 Hz, 2H), 7.86 (d, *J* = 8.0 Hz, 1H), 7.79-7.76 (m, 3H), 7.65 -7.63 (m, 2H), 7.60 (d, *J* = 1.5 Hz, 1H), 7.47 (t, *J* = 7.5 Hz, 2H), 7.40 (t, *J* = 7.3 Hz, 1H), 0.36 (s, 9H). ¹³C NMR (125 MHz, CDCl₃): δ = 239.37, 169.28, 146.63, 140.83, 139.51, 136.07, 133.93, 131.99, 130.78, 130.72, 130.21, 129.16, 129.12, 128.75, 125.52, 2.80. **HR-MS** (ESI): m/z calculated for C₂₄H₂₁NO₃Si: [M+H]⁺: 400.1363, found: 400.1361. **FTIR** (KBr, cm⁻¹): 3868.36, 3742.97, 3471.24, 2359.32, 1681.31, 1557.66, 1398.11, 668.09.

2-(5-fluoro-2-((trimethylsilyl)carbonyl)phenyl)isoindoline-1,3-dione

Following the general experiment procedure, **3ai** was obtained as a yellow solid (65%, 22.2 mg), m.p:133.9°C. ¹H NMR (500 MHz, CDCl₃): $\delta = 7.92$ (q, J = 3.0 Hz, 2H), 7.80 -7.75 (m, 3H), 7.26 -7.23 (m, 1H), 7.15 (dd, J = 9.0, 2.5 Hz, 1H), 0.33 (s, 9H). ¹³C NMR (125 MHz, CDCl₃): $\delta =$ 238.54, 168.89, 165.47 (d, $J_{C-F} = 252.6$ Hz), 137.88 (d, $J_{C-F} = 3.6$ Hz), 136.34, 133.80, 133.02 (d, $J_{C-F} = 9.7$ Hz), 130.87 (d, $J_{C-F} = 10.9$ Hz), 125.74, 119.69 (d, $J_{C-F} = 23.5$ Hz), 117.23 (d, $J_{C-F} =$ 21.1 Hz), 2.90. **HR-MS** (ESI): m/z calculated for C₁₈H₁₆NO₃Si: [M+H]⁺: 342.0956, found: 342.0950. **FTIR** (KBr, cm⁻¹): 3667.90, 3564.88, 3472.93, 3383.78, 2358.15, 1731.78, 1684.11, 1403.01, 1028.04.

2-(5-chloro-2-((trimethylsilyl)carbonyl)phenyl)isoindoline-1,3-dione

Following the general experiment procedure, **3aj** was obtained as a yellow solid (49%, 17.5 mg), m.p: 130.9°C. ¹H NMR (500 MHz, CDCl₃): δ = 7.92 (dd, *J* = 5.5, 3.0 Hz, 2H), 7.78 (dd, *J* = 5.5, 3.5 Hz, 2H), 7.68 (d, *J* = 8.5 Hz, 1H), 7.53 (dd, *J* = 8.0, 2.0 Hz, 1H), 7.42 (d, *J* = 2.0 Hz, 1H), 0.32 (s, 9H). ¹³C NMR (125 MHz, CDCl₃): δ = 239.11, 168.95, 139.82, 139.15, 136.41, 133.83, 132.21, 131.96, 130.51, 130.00, 125.79, 2.96. HR-MS (ESI): m/z calculated for C₁₈H₁₆ClNO₃Si: [M+H]⁺: 358.0661, found:358.0655. FTIR (KBr, cm⁻¹): 3851.10, 3742.44, 3646.24, 3184.11, 1651.56, 1557.28, 1504.96, 1402.83, 1036.45.

2-(5-bromo-2-((trimethylsilyl)carbonyl)phenyl)isoindoline-1,3-dione

Following the general experiment procedure, **3ak** was obtained as a yellow solid (42%, 17 mg), m.p:75.9 °C. ¹**H** NMR (500 MHz, CDCl₃): δ = 7.91 (dd, *J* = 5.0, 3.0 Hz, 2H), 7.78 (dd, *J* = 5.5, 3.5 Hz, 2H), 7.69 (dd, *J* = 8.0, 1.5 Hz, 1H), 7.60 (d, *J* = 8.0 Hz, 1H), 7.58 (d, *J* = 1.5 Hz, 1H), 0.32 (s, 9H). ¹³C NMR (125 MHz, CDCl₃): δ = 239.29, 168.95, 140.27, 136.43, 135.02, 133.83, 133.48, 132.01, 129.94, 127.20, 125.80, 2.96. **HR-MS** (ESI): m/z calculated for C₁₈H₁₆BrNO₃Si: [M+H]⁺: 402.0156, found:402.0150. **FTIR** (KBr, cm⁻¹): 3686.55, 3654.57, 3417.41, 3209.36, 2958.12, 1731.78, 1650.47, 1555.14, 1025.23, 500.24.

2-(5-(trifluoromethyl)-2-((trimethylsilyl)carbonyl)phenyl)isoindoline-1,3-dione

Following the general experiment procedure, **3al** was obtained as a yellow solid (43%, 16.5 mg), m.p:163.8°C. ¹H NMR (500 MHz, CDCl₃): $\delta = 7.92$ (dd, J = 5.5, 3.0 Hz, 2H), 7.81 -7.77 (m, 4H), 7.70 (s, 1H), 0.34 (s, 9H). ¹³C NMR (125 MHz, CDCl₃): $\delta = 168.77$, 144.55, 136.48, 135.0 (d, $J_{C-F} = 33.2$ Hz), 133.66, 130.31, 129.21, 128.68 (q, $J_{C-F} = 3.7$ Hz), 127.06 (q, $J_{C-F} = 3.7$ Hz), 125.78, 122.84 (q, $J_{C-F} = 271.2$ Hz), 31.58, 2.90. HR-MS (ESI): m/z calculated for C₁₉H₁₆F₃NO₃Si: [M+H]⁺: 392.0924, found: 392.0921. FTIR (KBr, cm⁻¹): 3673.76, 3417.35, 3209.57, 2923.90, 1731.92, 1402.97, 1137.38, 854.21, 716.82.

2-(5-(trifluoromethoxy)-2-((trimethylsilyl)carbonyl)phenyl)isoindoline-1,3-dione

Following the general experiment procedure, **3am** was obtained as a yellow solid (52%, 20.7 mg), m.p:163.8°C. ¹H NMR (500 MHz, CDCl₃): $\delta = 7.92$ (dd, J = 5.5, 3.0 Hz, 2H), 7.80 -7.76 (m, 3H), 7.39 (ddd, J = 8.5, 2.5, 1.5 Hz, 1H), 7.29 (d, J = 1.5 Hz, 1H), 0.34 (s, 9H). ¹³C NMR (125 MHz, CDCl₃): $\delta = 168.84$, 152.53, 152.52, 139.79, 136.49, 133.79, 132.19, 130.56, 125.84, 124.15, 121.74, 2.97. HR-MS (ESI): m/z calculated for C₁₉H₁₆F₃NO₄Si: [M+H]⁺: 408.0873, found: 408.0866. FTIR (KBr, cm⁻¹): 3851.39, 3673.79, 3564.97, 3417.87, 1737.38, 1455.50, 1398.00, 1028.04.

2-(2-((triethylsilyl)carbonyl)phenyl)isoindoline-1,3-dione

Following the general experiment procedure, **3an** was obtained as a yellow solid (50%, 18.5 mg), m.p:123.0°C. ¹H NMR (500 MHz, CDCl₃): δ = 7.91 (dd, *J* = 5.5, 3.0 Hz, 2H), 7.79-7.75 (m, 3H), 7.62-7.55 (m, 2H), 7.37 (dd, *J* = 7.5, 1.5 Hz, 1H), 0.97 (t, *J* = 8.0 Hz, 9H), 0.88-0.83 (m, 6H). ¹³C NMR (125 MHz, CDCl₃): δ = 237.30, 166.71, 139.46, 133.42, 131.35, 130.94, 129.50, 128.58, 127.88, 125.85, 122.87, 6.48, 2.69. **HR-MS** (ESI): m/z calculated for C₂₁H₂₃NO₃Si: [M+H]⁺: 366.1520, found: 366.1521. **FTIR** (KBr, cm⁻¹): 3667.53, 3626.59, 3585.11, 3564.58, 1682.33, 1633.72, 1402.94, 1028.04.

4-methyl-N-(2-((trimethylsilyl)carbonyl)phenyl)benzenesulfonamide

Following the general experiment procedure, **5aa** was obtained as a yellow liquid (79%, 27 mg). ¹**H NMR** (500 MHz, CDCl₃): $\delta = 11.53$ (s, 1H), 7.80 (dd, J = 7.5, 1.54 Hz, 1H), 7.70 (d, J = 8.5Hz, 2H), 7.65 (dd, J = 8.0, 0.5 Hz, 1H), 7.43-7.40 (m, 1H), 7.20 (d, J = 8.0 Hz, 2H), 7.13 (td, J =7.5, 1.0 Hz, 1H), 2.35 (s, 3H), 0.31 (s, 9H). ¹³**C NMR** (125 MHz, CDCl₃): $\delta = 241.44$, 145.23, 138.99, 138.12, 135.53, 135.36, 131.01, 128.68, 128.54, 124.08, 120.98, 22.93. **HR-MS** (ESI): m/z calculated for C₁₇H₂₁NO₃SSi: [M+H]⁺: 348.1084, found: 348.1080. **FTIR** (KBr, cm⁻¹): 3852.36, 3626.72, 3383.51, 1651.53, 1538.26, 1403.03, 1026.73, 963.73.

N-(5-methoxy-2-((trimethylsilyl)carbonyl)phenyl)-4-methylbenzenesulfonamide

Following the general experiment procedure, **5ab** was obtained as a yellow liquid (65%, 25 mg). ¹**H NMR** (500 MHz, CDCl₃): $\delta = 12.10$ (s, 1H), 7.73 (dd, J = 14.5, 8.5 Hz, 3H), 7.23 (d, J = 8.0Hz, 2H), 7.14 (d, J = 2.5 Hz, 1H), 6.58 (dd, J = 9.0, 2.5 Hz, 1H), 3.82 (s, 3H), 2.36 (s, 3H), 0.31 (s, 9H). ¹³**C NMR** (125 MHz, CDCl₃): $\delta = 165.12$, 145.12, 142.00, 138.06, 137.51, 130.91, 128.62, 122.51, 110.01, 104.41, 56.92, 22.82, 2.34. **HR-MS** (ESI): m/z calculated for C₁₈H₂₃NO₄SSi: [M+H]⁺: 378.1190, found: 378.1189. **FTIR** (KBr, cm⁻¹): 3626.63, 3585.09, 3417.52, 2920.56, 1684.11, 1651.55, 1455.18, 1162.62, 1032.53.

4-methyl-N-(5-methyl-2-((trimethylsilyl)carbonyl)phenyl)benzenesulfonamide

Following the general experiment procedure, **5ac** was obtained as a yellow liquid (58%, 21 mg). ¹**H NMR** (500 MHz, CDCl₃): $\delta = 11.62$ (s, 1H), 7.61 (dd, J = 20.0, 7.0 Hz, 3H), 7.46 (s, 1H), 7.21 S11 (d, J = 7.5 Hz, 2H), 6.92 (d, J = 8.0 Hz, 1H), 2.35 (d, J = 9.0 Hz, 6H), 0.30 (s, 9H). ¹³C NMR (125 MHz, CDCl₃): $\delta = 240.17$, 146.88, 145.06, 139.23, 138.25, 135.39, 130.93, 128.65, 126.53, 124.90, 121.20, 23.52, 22.89, 2.43. **HR-MS** (ESI): m/z calculated for C₁₈H₂₃NO₃SSi: [M+H]⁺: 362.1241, found: 362.1232. **FTIR** (KBr, cm⁻¹): 3851.29, 3742.57, 3646.43, 2358.46, 1651.56, 1455.31, 1028.04, 667.77.

N-(5-ethyl-2-((trimethylsilyl)carbonyl)phenyl)-4-methylbenzenesulfonamide

Following the general experiment procedure, **5ad** was obtained as a yellow liquid (60%, 23 mg). ¹**H NMR** (500 MHz, CDCl₃): $\delta = 11.64$ (s, 1H), 7.71 (dd, J = 8.0, 2.5 Hz, 3H), 7.49 (d, J = 1.0 Hz, 1H), 7.20 (d, J = 8.5 Hz, 2H), 6.94 (dd, J = 8.0, 1.0 Hz, 1H), 2.63 (q, J = 7.5 Hz, 2H), 2.35 (s, 3H), 1.20 (t, J = 7.5 Hz, 3H), 0.30 (s, 9H). ¹³**C NMR** (125 MHz, CDCl₃): $\delta = 240.15, 152.90, 145.05,$ 139.31, 138.18, 135.52, 130.87, 128.72, 126.62, 123.61, 120.00, 30.63, 22.87, 16.18, 2.41. **HR-MS** (ESI): m/z calculated for C₁₉H₂₅NO₃SSi: [M+H]⁺: 376.1397, found: 376.1393. **FTIR** (KBr, cm⁻¹): 3851.26, 3646.51, 3444.39, 2358.27, 1651.69, 1557.48, 1402.83, 1022.43.

N-(5-isopropyl-2-((trimethylsilyl)carbonyl)phenyl)-4-methylbenzenesulfonamide

Following the general experiment procedure, **5ae** was obtained as a yellow liquid (60%, 23 mg). ¹**H NMR** (500 MHz, CDCl₃): $\delta = 11.63$ (s, 1H), 7.71 (dd, J = 8.0, 3.0 Hz, 3H), 7.51 (d, J = 1.5 Hz, 1H), 7.20 (d, J = 8.0 Hz, 2H), 6.96 (dd, J = 8.0, 1.5 Hz, 1H), 2.91-2.86 (m, 1H), 2.35 (s, 3H), 1.21 (d, J = 7.0 Hz, 6H), 0.30 (s, 9H). ¹³**C NMR** (125 MHz, CDCl₃): $\delta = 240.15$, 157.38, 145.08, 139.31, 138.06, 135.60, 130.84, 128.77, 126.64, 122.17, 118.61, 35.87, 24.71, 22.87, 2.41. **HR-MS** (ESI): m/z calculated for C₂₀H₂₇NO₃SSi: [M+H]⁺: 390.1550, found: 390.1544. **FTIR** (KBr, cm⁻¹): 3686.48, 3444.48, 3170.89, 1651.56, 1557.22, 1402.85, 1025.15, 449.20.

N-(5-(tert-butyl)-2-((trimethylsilyl)carbonyl)phenyl)-4-methylbenzenesulfonamide

Following the general experiment procedure, **5af** was obtained as a yellow liquid (53%, 21 mg).

¹**H NMR** (500 MHz, CDCl₃): δ = 11.62 (s, 1H), 7.72 (dd, *J* = 8.5, 2.5 Hz, 3H), 7.65 (d, *J* = 2.0 Hz, 1H), 7.21 (d, *J* = 8.0 Hz, 2H), 7.11 (dd, *J* = 8.5, 1.5 Hz, 1H), 2.35 (s, 3H), 1.28 (s, 9H), 0.31 (s, 9H). ¹³**C NMR** (125 MHz, CDCl₃): δ = 240.10, 159.59, 145.06, 139.07, 138.17, 135.25, 130.84, 128.86, 126.19, 120.94, 117.81, 36.88, 32.18, 22.86, 2.41. **HR-MS** (ESI): m/z calculated for C₂₁H₂₉NO₃SSi: [M+H]⁺: 404.1710, found: 404.1702. **FTIR** (KBr, cm⁻¹): 3851.09, 3417.32, 3209.05, 2957.01, 1651.51, 1557.22, 1402.95, 1028.04.

N-(5-butyl-2-((trimethylsilyl)carbonyl)phenyl)-4-methylbenzenesulfonamide

Following the general experiment procedure, **5ag** was obtained as a yellow liquid (62%, 25 mg). ¹**H NMR** (500 MHz, CDCl₃): $\delta = 11.63$ (s, 1H), 7.71-7.67 (m, 3H), 7.46 (d, J = 1.0 Hz, 1H), 7.20 (d, J = 8.0 Hz, 2H), 6.91 (dd, J = 8.0, 1.5 Hz, 1H), 2.59 (t, J = 7.5 Hz, 2H), 2.35 (s, 3H), 1.58-1.52 (m, 2H), 1.30-1.26 (m, 4H), 0.91 (t, J = 7.5 Hz, 3H), 0.30 (s, 9H). ¹³**C NMR** (125 MHz, CDCl₃): δ = 240.14, 151.66, 145.02, 139.20, 138.13, 135.42, 130.85, 128.73, 126.60, 124.19, 120.53, 37.32, 34.18, 23.54, 22.85, 15.26, 2.40. **HR-MS** (ESI): m/z calculated for C₂₁H₂₉NO₃SSi: [M+H]⁺: 404.1710, found: 404.1713. **FTIR** (KBr, cm⁻¹): 3850.83, 3673.41, 3606.00, 3444.07, 1684.11, 1557.15, 1402.95, 1171.03, 1028.04.

4-methyl-N-(4-((trimethylsilyl)carbonyl)-[1,1'-biphenyl]-3-yl)benzenesulfonamide

Following the general experiment procedure, **5ah** was obtained as a yellow liquid (60%, 25 mg). ¹**H NMR** (500 MHz, CDCl₃): $\delta = 11.65$ (s, 1H), 7.91 (d, J = 1.5 Hz, 1H), 7.85 (d, J = 8.0 Hz, 1H), 7.74 (d, J = 8.0 Hz, 2H), 7.58-7.56 (m, 2H), 7.48-7.41 (m, 3H), 7.34 (dd, J = 8.0, 1.5 Hz, 1H), 7.21 (d, J = 8.0 Hz, 2H), 2.35 (s, 3H), 0.33 (s, 9H). ¹³**C NMR** (125 MHz, CDCl₃): $\delta = 240.56$, 148.01, 145.20, 140.58, 139.61, 138.21, 135.78, 131.00, 130.43, 130.16, 128.73, 128.69, 127.17, 122.53, 119.24, 22.89, 2.42. **HR-MS** (ESI): m/z calculated for C₂₃H₂₅NO₃SSi: [M+H]⁺: 424.1397, found: 424.1395. **FTIR** (KBr, cm⁻¹): 3626.65, 3585.10, 1737.38, 1684.11, 1651.44, 1504.91, 1402.95, 1028.04.

N-(5-fluoro-2-((trimethylsilyl)carbonyl)phenyl)-4-methylbenzenesulfonamide

Following the general experiment procedure, **5ai** was obtained as a yellow liquid (64%, 24 mg). ¹**H NMR** (500 MHz, CDCl₃): $\delta = 11.96$ (s, 1H), 7.82 (dd, J = 8.5, 6.0 Hz, 1H), 7.76 (d, J = 8.0 Hz, 2H), 7.37 (dd, J = 11.0, 2.0 Hz, 1H), 7.26 (d, J = 8.5 Hz, 2H), 6.77 (ddd, J = 8.5, 8.0, 2.5 Hz, 1H), 2.38 (s, 3H), 0.33 (s, 9H). ¹³**C NMR** (125 MHz, CDCl₃): $\delta = 239.44$, 167.89, 165.85, 145.57, 142.25 (d, $J_{C-F} = 12.5$ Hz), 137.95, 131.19, 128.72, 124.93 (d, $J_{C-F} = 2.5$ Hz), 110.97 (d, $J_{C-F} = 22.4$ Hz), 107.34 (d, $J_{C-F} = 26.8$ Hz), 22.96, 2.45. **HR-MS** (ESI): m/z calculated for C₁₇H₂₀FNO₃SSi: [M+H]⁺: 366.0990, found: 366.0992. **FTIR** (KBr, cm⁻¹): 3867.95, 3731.10, 3686.54, 2358.07, 1682.41, 1557.32, 1402.90, 1025.85.

(2-amino-4-chlorophenyl)(trimethylsilyl)methanone

Following the general experiment procedure, **5aj** was obtained as a yellow liquid (73%, 28 mg).

¹**H NMR** (500 MHz, CDCl₃): $\delta = 11.71$ (s, 1H), 7.73 (t, J = 8.0 Hz, 3H), 7.68 (d, J = 2.0 Hz, 1H), 7.25 (d, J = 8.0 Hz, 2H), 7.07 (dd, J = 8.5, 2.0 Hz, 1H), 2.38 (s, 3H), 0.31 (s, 9H). ¹³**C NMR** (125)

MHz, CDCl₃): $\delta = 240.36$, 145.64, 141.92, 140.49, 137.89, 136.47, 131.24, 128.75, 126.44, 124.16, 120.50, 23.02, 2.52. HR-MS (ESI): m/z calculated for C₁₇H₂₀ClNO₃SSi: [M+H]⁺: 382.0694, found: 382.0690. FTIR (KBr, cm⁻¹): 3813.78, 3673.59, 3417.25, 2957.01, 1651.54, 1557.26, 1402.91, 1022.43.

N-(5-bromo-2-((trimethylsilyl)carbonyl)phenyl)-4-methylbenzenesulfonamide

Following the general experiment procedure, **5ak** was obtained as a yellow liquid (65%, 28 mg). ¹**H NMR** (500 MHz, CDCl₃): $\delta = 11.64$ (s, 1H), 7.85 (d, J = 2.0 Hz, 1H), 7.73 (d, J = 8.5 Hz, 2H), 7.63 (d, J = 8.5 Hz, 1H), 7.24 (td, J = 8.0, 1.5 Hz, 3H), 2.38 (s, 3H), 0.31 (s, 9H). ¹³**C NMR** (125 MHz, CDCl₃): $\delta = 240.60$, 145.63, 140.32, 137.93, 136.41, 131.24, 130.62, 128.78, 127.15, 126.79, 123.60, 23.03, 2.52. **HR-MS** (ESI): m/z calculated for C₁₇H₂₀BrNO₃SSi: [M+H]⁺: 426.0189, found: 426.0185. **FTIR** (KBr, cm⁻¹): 3852.36, 3627.65, 2358.90, 1682.44, 1651.59, 1505.11, 1455.34, 1393.47.

4-methyl-N-(5-(trifluoromethyl)-2-((trimethylsilyl)carbonyl)phenyl)benzenesulfonamide Following the general experiment procedure, **5ai** was obtained as a yellow liquid (72%, 29 mg). ¹**H NMR** (500 MHz, CDCl₃): δ = 11.50 (s, 1H), 7.96 (d, *J* = 1.0 Hz, 1H), 7.92 (d, *J* = 8.0 Hz, 1H), 7.73 (d, *J* = 8.0 Hz, 2H), 7.36 (dd, *J* = 8.5, 1.5 Hz, 1H), 7.24 (d, *J* = 8.0 Hz, 2H), 2.37 (s, 3H), 0.33 (s, 9H). ¹³**C NMR** (125 MHz, CDCl₃): δ = 241.80, 145.89, 139.63, 137.84, 136.61 (q, *J*_{C-F} = 32.9 Hz), 135.72, 131.36, 128.92, 124.60 (q, *J*_{C-F} = 271.4 Hz), 120.52 (q, *J*_{C-F} = 3.7 Hz), 117.99 (q, *J*_{C-F} = 3.9 Hz), 23.10, 2.61. **HR-MS** (ESI): m/z calculated for C₁₈H₂₀F₃NO₃SSi: [M+H]⁺: 416.0958, found: 416.0955. **FTIR** (KBr, cm⁻¹): 3851.56, 3654.62, 3555.22, 3384.07, 1682.56, 1402.94, 1025.23, 814.95, 667.84.

N-(4-fluoro-2-((trimethylsilyl)carbonyl)phenyl)-4-methylbenzenesulfonamide

Following the general experiment procedure, **5am** was obtained as a yellow liquid (75%, 27 mg). ¹**H NMR** (500 MHz, CDCl₃): $\delta = 10.11$ (s, 1H), 7.67 (d, J = 8.0 Hz, 2H), 7.55-7.52 (m, 1H), 7.26-7.22 (m, 4H), 2.39 (s, 3H), 0.27 (s, 9H). ¹³**C NMR** (125 MHz, CDCl₃): $\delta = 241.04$, 158.05 (d, $J_{C-F} = 252.9$ Hz), 145.24, 138.76 (d, $J_{C-F} = 1.8$ Hz), 135.26, 130.97, 129.48 (d, $J_{C-F} = 3.2$ Hz), 129.04 (d, $J_{C-F} = 0.88$ Hz), 127.25 (d, $J_{C-F} = 7.6$ Hz), 126.27 (d, $J_{C-F} = 12.1$ Hz), 122.58 (d, $J_{C-F} = 20.9$ Hz), 23.20, 2.70. **HR-MS** (ESI): m/z calculated for C₁₇H₂₀FNO₃SSi: [M+H]⁺: 366.0990, found: 366.0993. **FTIR** (KBr, cm⁻¹): 3853.37, 3675.46, 3422.43, 2360.84, 1560.75, 1454.21, 1397.85, 1025.23.

4-methyl-N-(5-(trifluoromethoxy)-2-((trimethylsilyl)carbonyl)phenyl)benzenesulfonamide Following the general experiment procedure, **5an** was obtained as a yellow liquid (62%, 27 mg). ¹**H** NMR (500 MHz, CDCl₃): δ = 11.81 (s, 1H), 7.84 (d, *J* = 8.5 Hz, 1H), 7.76-7.74 (m, 2H), 7.53 (d, *J* = 1.5 Hz, 1H), 7.25 (d, *J* = 8.0 Hz, 2H), 6.92-6.89 (m, 1H), 2.37 (s, 3H), 0.33 (s, 9H). ¹³**C** NMR (125 MHz, CDCl₃): δ = 240.08, 154.14 (d, *J*_{C-F} = 1.5 Hz), 145.74, 141.55, 137.78, 137.32, 131.23, 128.84, 125.99, 121.67 (q, *J*_{C-F} = 258.3 Hz), 114.79, 111.68, 23.01, 2.51. **HR-MS** (ESI): m/z calculated for C₁₈H₂₀F₃NO₄SSi: [M+H]⁺: 432.0907, found: 432.0903. **FTIR** (KBr, cm⁻¹): 3851.17, 3585.34, 3195.50, 1651.55, 1557.26, 1455.23, 1402.95, 1032.09.

$\label{eq:linear} 4-methyl-N-(5-(methylthio)-2-((trimethylsilyl)carbonyl) phenyl) benzenesulfon a mide$

Following the general experiment procedure, 5ao was obtained as a yellow liquid (36%, 14 mg).

¹**H NMR** (500 MHz, CDCl₃): δ = 11.86 (s, 1H), 7.73 (d, *J* = 8.5 Hz, 2H), 7.65 (d, *J* = 8.5 Hz, 1H), 7.42 (d, *J* = 1.5 Hz, 1H), 7.23 (d, *J* = 8.5 Hz, 2H), 6.89 (dd, *J* = 8.5, 2.0 Hz, 1H), 2.47 (s, 3H), 2.37 (s, 3H), 0.30 (s, 9H). ¹³**C NMR** (125 MHz, CDCl₃): δ = 239.06, 149.46, 145.26, 139.78, 138.10, 135.29, 131.00, 128.70, 124.86, 120.28, 115.32, 22.90, 15.91, 2.40. **HR-MS** (ESI): m/z calculated for C₁₈H₂₃NO₃S₂Si: [M+H]⁺: 394.0961, found: 394.0954. **FTIR** (KBr, cm⁻¹): 3731.00, 3646.31, 3417.26, 2358.30, 1651.58, 1557.32, 1455.31, 1027.42.

4-methyl-N-(5-(methylsulfonyl)-2-((trimethylsilyl)carbonyl)phenyl)benzenesulfonamide Following the general experiment procedure, **5ap** was obtained as a yellow liquid (60%, 29 mg). ¹**H** NMR (500 MHz, CDCl3): $\delta = 11.55$ (s, 1H), 8.21 (d, J = 2.0 Hz, 1H), 8.00 (d, J = 8.0 Hz, 1H), 7.78 (d, J = 8.5 Hz, 2H), 7.66 (dd, J = 8.0, 1.5 Hz, 1H), 7.28-7.26 (m, 2H), 3.07 (s, 3H), 2.37 (s, 3H), 0.35 (s, 9H). ¹³**C** NMR (125 MHz, CDCl₃): $\delta = 242.02$, 146.26, 140.02, 137.51, 136.19, 131.50, 129.96, 129.07, 128.03, 121.84, 119.32, 45.59, 23.14, 2.60. **HR-MS** (ESI): m/z calculated for C₁₈H₂₃NO₅S₂Si: [M+H]⁺: 426.0860, found: 426.0857. **FTIR** (KBr, cm⁻¹): 3718.51, 3686.30, 3585.10, 1682.36, 1651.50, 1455.23, 1402.97, 1030.84.

4-methyl-N-(2-((triethylsilyl)carbonyl)phenyl)benzenesulfonamide

Following the general experiment procedure, **5aq** was obtained as a yellow liquid (60%, 23.5 mg). ¹**H NMR** (500 MHz, CDCl₃): $\delta = 11.58$ (s, 1H), 7.78 (dd, J = 8.0, 1.5 Hz, 1H), 7.68 (dd, J = 8.0, 1.5 Hz, 3H), 7.43-7.40 (m, 1H), 7.18 (d, J = 8.0 Hz, 2H), 7.13 (td, J = 7.5, 1.0 Hz, 1H), 2.33 (s, 3H), 0.93-0.90 (m, 9H), 0.85-0.80 (m, 6H). ¹³**C NMR** (125 MHz, CDCl₃): $\delta = 239.25, 142.70, 136.25, 135.70, 133.03, 132.61, 128.53, 127.03, 126.15, 121.75, 118.57, 20.44, 6.31, 2.87.$ **HR-MS** (ESI): m/z calculated for $C_{20}H_{27}NO_3SSi$: $[M+H]^+$: 390.1554, found: 390.1553. **FTIR** (KBr, cm⁻¹): 3384.70, 2945.79, 2828.04, 1647.66, 1403.74, 1028.83.

Deuterium-Labeled Experiments

An oven-dried vial was charged with $[Ru(p-cymene)Cl_2]_2$ (5 mol %, 0.005 mmol, 3.1 mg), AgNTf₂ (20 mol %, 0.02 mmol, 15.6 mg), Ag₂O (50 mol %, 0.05 mmol, 23.2 mg), **1a** (0.1 mmol, 17.8 mg) and DCM (0.7 mL). Then, D₂O (10.0 eq, 1.0 mmol, 20.3 mg) was added into the solution. The vial was sealed under argon and heated to 90 °C with stirring for 6 hours. After cooling down, the mixture was directly applied to a flash column chromatography (ethyl acetate/petroleum ether mixtures), providing deuterium labeled **1a-d** as a yellow oil (10 mg, 56% recovered). The D% was estimated by ¹H NMR.

An oven-dried vial was charged with $[Ru(p-cymene)Cl_2]_2$ (5 mol %, 0.005 mmol, 3.1 mg), AgSbF₆ (40 mol %, 0.04 mmol, 13.6 mg), $Cu(OAc)_2 \cdot H_2O$ (1.0 eq, 0.1 mmol, 20.0 mg), NaOAc (40 mol %, 0.04 mmol, 3.3 mg), **1a** (0.1 mmol, 17.8 mg) and DCM (0.7 mL). Then, D₂O (10.0 eq, 1.0 mmol, 20.3 mg) was added into the solution. The vial was sealed under argon and heated to 90 °C with stirring for 6 hours. After cooling down, the mixture was directly applied to a flash column chromatography (ethyl acetate/petroleum ether mixtures), providing deuterium labeled **1a-d** as a yellow oil (12 mg, 68% recovered). The D% of **1a-d** was estimated by ¹H NMR.

An oven-dried vial was charged with $[Ru(p-cymene)Cl_2]_2$ (5 mol %, 0.005 mmol, 3.1 mg), AgNTf₂ (20 mol %, 0.02 mmol, 15.6 mg), Ag₂O (50 mol %, 0.05 mmol, 23.2 mg), **1a** (0.1 mmol, 17.8 mg), **2a** (0.2 mmol, 63.4 mg) and DCM (0.7 mL). Then, D₂O (10.0 eq, 1.0 mmol, 20.3 mg) was added into the solution. The vial was sealed under argon and heated to 90 °C with stirring for 12 hours. After cooling down, the mixture was directly applied to a flash column chromatography (ethyl acetate/petroleum ether mixtures) on silica gel to afford **3aa** (9.0 mg, 28% yield) and **1a-d** (4.3 mg, 24% recovered). The D% of **1a-d** and **3aa** were estimated by ¹H NMR.

3aa

An oven-dried vial was charged with $[Ru(p-cymene)Cl_2]_2$ (5 mol %, 0.005 mmol, 3.1 mg), AgSbF₆ (40 mol %, 0.04 mmol, 13.6 mg), $Cu(OAc)_2 \cdot H_2O(1.0 \text{ eq}, 0.1 \text{ mmol}, 20.0 \text{ mg})$, NaOAc (40 mol %, 0.04 mmol, 3.3 mg), **1a** (0.1 mmol, 17.8 mg), **4a** (0.2 mmol, 39.4 mg) and DCM (0.7 mL). Then, D₂O (10.0 eq, 1.0 mmol, 20.3 mg) was added into the solution. The vial was sealed under argon and heated to 90 °C with stirring for 12 hours. After cooling down, the mixture was directly applied to a flash column chromatography (ethyl acetate/petroleum ether mixtures) on silica gel to afford **5aa**-*d* (11.6 mg, 33% yield) and **1a**-*d* (7.3 mg, 41% recovered). The D% of **1a**-*d* and **5aa**-*d* were estimated by ¹H NMR.

1a-*d*

S22

Deuterium Experiments

Competitive KIE Experiments

An oven-dried vial was charged with $[Ru(p-cymene)Cl_2]_2$ (5 mol %, 0.005 mmol, 3.1 mg), AgNTf₂ (20 mol %, 0.02 mmol, 15.6 mg), Ag₂O (50 mol %, 0.05 mmol, 23.2 mg), **2a** (0.3 mmol, 95.2 mg) and DCM (0.7 mL). Then, **1a** (0.1 mmol, 17.8 mg) and **1a-d₅** (0.1 mmol, 18.3 mg) were added into the solution. The vial was sealed under argon and heated to 90 °C with stirring for 30 min. After cooling down, the mixture was directly applied to column chromatography for separation. The ratio of **3aa/3aa-d₄** (17.5 mg, 27% yield) was determined by ¹H NMR to be 2.0.

Parallel KIE Experiments

Parallel independent reactions of **1a** or **1a**- d_5 with **2a** were performed to determine the corresponding KIE value. Each 10 mL vial was charged with [Ru(*p*-cymene)Cl₂]₂ (5 mol %, 0.005 mmol, 3.1 mg), AgNTf₂ (20 mol %, 0.02 mmol, 15.6 mg), Ag₂O (50 mol %, 0.05 mmol, 23.2 mg), **2a** (0.2 mmol, 63.4 mg) and DCM (0.7 mL). Then, **1a** (0.1 mmol, 17.8 mg) and **1a**- d_5 (0.1 mmol, 18.3 mg) were added into the solution in sequence. The vials were sealed under Ar and heated to 90°C with stirring for 2, 4, 6, 8 or 10 minutes. After cooling down, the mixture was concentrated in vacuo and purified by column chromatography to determine the product yields. A KIE value was determined to be 2.30.

yield	2	4	6	8	10
ba	3.4%	10.6%	20%	28.7%	36.4%
ba-d ₂	0 %	3.9%	7.6%	11.1%	14.7%

Competitive KIE Experiments

An oven-dried vial was charged with $[Ru(p-cymene)Cl_2]_2$ (5 mol %, 0.005 mmol, 3.1 mg), AgSbF₆ (40 mol %, 0.04 mmol, 13.6 mg), $Cu(OAc)_2 \cdot H_2O(1.0 \text{ eq}, 0.1 \text{ mmol}, 20.0 \text{ mg})$, NaOAc (40 mol %, 0.04 mmol, 3.3 mg) and DCM (0.7 mL). Then, **1a** (0.1 mmol, 17.8 mg), **1a-d**₅ (0.1 mmol, 18.3 mg) and **4a** (0.4 mmol, 79.0 mg) were added into the solution. The vial was sealed under argon and heated to 90°C with stirring for 30 min. After cooling down, the mixture was directly applied to column chromatography for separation. The ratio of **5aa/5aa-d**₄ (34.5 mg, 50% yield) was determined by ¹H NMR to be 2.6.

Parallel KIE Experiments

Parallel independent reactions of **1a** or **1a**- d_5 with **4a** were performed to determine the corresponding KIE value. Each 10 mL vial was charged with [Ru(*p*-cymene)Cl₂]₂ (5 mol %, 0.005 mmol, 3.1 mg), AgSbF₆ (40 mol %, 0.04 mmol, 13.6 mg), Cu(OAc)₂•H₂O (1.0 eq, 0.1 mmol, 20.0 mg), NaOAc (40 mol %, 0.04 mmol, 3.3 mg) and DCM (0.7 mL). Then, **1a** (0.1 mmol, 17.8 mg), **1a**- d_5 (0.1 mmol, 18.3 mg) and **4a** (0.2 mmol, 39.4 mg) were added into the solution. The vials were sealed under Ar and heated to 90°C with stirring for 1.5, 2, 2.5 or 3.0 minutes. After cooling down, the mixture was concentrated in vacuo and purified by column chromatography to determine the product yields. A KIE value was determined to be 1.0.

yield	1.5	2	2.5	3
ba	16%	21%	31.5%	37%
ba-d ₂	10.3 %	15.3%	22.6%	31.7%

Competitive Reaction

An oven-dried vial was charged with $[Ru(p-cymene)Cl_2]_2$ (5 mol%, 0.005 mmol, 3.1 mg), AgNTf₂ (20 mol%, 0.02 mmol, 15.6 mg), Ag₂O (50 mol%, 0.05 mmol, 23.2 mg), **2a** (0.2 mmol, 63.4 mg) and DCM (0.7 mL). Then, **1x** (0.1 mmol, 20.8 mg) and **1y** (0.1 mmol, 23.4 mg) were added into the solution. The vial was sealed under argon and heated to 90 °C with stirring for 12 hours. After cooling down, the mixture was concentrated in vacuo and purified by column chromatography to afford the product **3xa** (26 mg, 37%).

An oven-dried vial was charged with $[Ru(p-cymene)Cl_2]_2$ (5 mol %, 0.005 mmol, 3.1 mg), AgSbF₆ (40 mol %, 0.04 mmol, 13.6 mg), Cu(OAc)₂•H₂O (1.0 eq, 0.1 mmol, 20.0 mg), NaOAc (40 mol%, 0.04 mmol, 3.3 mg) and DCM (0.7 mL). Then, **1x** (0.1 mmol, 17.8 mg), **1y** (0.2 mmol, 39.4 mg) and **4a** was added into the solution. The vial was sealed under argon and heated to 90 °C with stirring for 12 hours. After cooling down, the mixture was concentrated in vacuo and purified by column chromatography to afford the product **5ax** (27 mg, 35%).

A suspension of **3aa** (32.3 mg, 0.1 mmol) and hydrazine (5.0 eq), was stirred at ambient temperature for 4 h. At ambient temperature, the reaction mixture was diluted with CH₂Cl₂ and passed through celite with CH₂Cl₂. The organic layer was dried over Na₂SO₄. After evaporation of the solvent in vacuo, the crude product was purified by column chromatography on silica gel to yield **6** (10.0 mg, 52 %) as a yellow solid. ¹**H NMR** (500 MHz, CDCl₃): δ = 7.06 (td, *J* = 8.0, 1.5 Hz, 1H), 6.77 (dd, *J* = 7.5, 1.5 Hz, 1H), 6.71 (t, *J* = 7.4 Hz, 1H), 6.65 (d, *J* = 8.0 Hz, 1H), 5.68 (s, 2H), 0.08 (s, 9H). ¹³**C NMR** (125 MHz, CDCl₃): δ = 160.80, 144.61, 130.93, 129.73, 123.10, 120.45, 117.57, 2.93. **HR-MS** (ESI): m/z calculated for C₁₀H₁₅NOSi: [M+H]⁺: 194.0996, found:194.0994. **FTIR** (KBr, cm⁻¹): 3851.10, 3646.24, 1651.56, 1557.20, 1504.96, 1404.83.

To a stirred mixture of **3aa** (0.2 mmol, 64.7 mg) and azide (0.36 mmol, 46.5 mg) in CH₂Cl₂ (1 mL) was slowly added TfOH (2.0 equiv, 0.4 mmol). The reaction mixture was kept for 30 min at room temperature, then it was quenched with aqueous KOH (10%, 5 mL), extracted with CH₂Cl₂ (15 mL*3), washed with brine (15 mL), dried over Mg₂SO₄ and concentrated. The residue was purified by flash chromatography (MeOH/DCM mixture) to give **7** as a white sticky liquid (56.3 mg, 80% yield). ¹**H NMR** (500 MHz, CDCl₃): $\delta = 7.95 - 7.89$ (m, 2H), 7.79 - 7.74 (m, 2H), 7.74 - 7.71 (m, 1H), 7.64 - 7.59 (m, 1H), 7.54 - 7.48 (m, 1H), 7.43 - 7.36 (m, 1H), 6.67 (t, *J* = 5.1 Hz, 1H), 4.16 (q, *J* = 7.1 Hz, 2H), 4.05 (d, *J* = 5.1 Hz, 2H), 1.24 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) $\delta = 168.53$, 166.48, 165.80, 133.26, 132.42, 131.07, 130.59, 129.03, 128.15, 127.29, 122.82, 60.53, 40.82, 13.08. **HR-MS** (ESI): m/z calculated for C₁₉H₁₆N₂O₅: [M+H]⁺: 353.1132, found: 353.1130. **FTIR** (KBr, cm⁻¹): 3415.24, 3233.65, 1714.95, 1636.92, 1616.43, 1381.31, 1196.26, 619.44.

To a stirred mixture of **5aa** (0.2 mmol, 69.5 mg) and azide (0.36 mmol, 46.5 mg) in CH₂Cl₂ (1 mL) was slowly added TfOH (2.0 equiv, 0.4 mmol). The reaction mixture was kept for 30 min at room temperature, then it was quenched with aqueous KOH (10%, 5 mL), extracted with CH₂Cl₂ (15 mL*3), washed with brine (15 mL), dried over Mg₂SO₄ and concentrated. The residue was purified by flash chromatography (MeOH/DCM mixture) to give **8** as a light yellow solid (52.6 mg, 70% yield), m. p:128.2 °C. ¹H NMR (500 MHz, CDCl₃): $\delta = 10.69$ (s, 1H), 7.68 – 7.63 (m, 3H), 7.45 – 7.44 (m, 1H), 7.39 – 7.35 (m, 1H), 7.18 (d, *J* = 8.1 Hz, 2H), 7.05 – 7.00 (m, 1H), 6.74 (t, *J* = 5.1 Hz, 1H), 4.25 (q, *J* = 7.1 Hz, 2H), 4.07 (d, *J* = 5.1 Hz, 2H), 2.33 (s, 3H), 1.31 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) $\delta = 169.53$, 168.35, 143.73, 138.88, 136.37, 132.90, 129.53, 127.25, 127.10, 123.55, 121.00, 120.61, 61.86, 41.67, 21.49, 14.16. HR-MS (ESI): m/z calculated for C₁₈H₂₀N₂O₅S: [M+H]⁺: 377.1166, found: 377.1165. FTIR (KBr, cm⁻¹): 2914.95, 1748.60, 1616.82, 1543.93, 1412.15, 1207.48, 1154.21, 1084.11.

A screw-cap vial was charged with KF (1.0 equiv, 0.2 mmol), EtOH/H₂O = 3/1 (1.5 mL/ 0.5 mL). Then **5aa** (0.2 mmol, 69.5 mg) were added into the solution in sequence. The vial was sealed under argon and heated to 50 °C with stirring for 16 h. After cooling down, the mixture was directly applied to a flash column chromatography (ethyl acetate/petroleum ether mixtures) to afford **9** as a white solid (43.4 mg, 79% yield). m. p:146.1 °C. ¹H NMR (500 MHz, CDCl₃): δ = 10.80 (s, 1H), 9.90 – 9.76 (m, 1H), 7.80 – 7.74 (m, 2H), 7.68 (d, *J* = 8.4 Hz, 1H), 7.59 (dd, *J* = 7.6, 1.7 Hz, 1H), 7.50 (ddd, *J* = 8.7, 7.4, 1.7 Hz, 1H), 7.24 (d, *J* = 8.1 Hz, 2H), 7.16 (td, *J* = 7.5, 1.0 Hz, 1H), 2.36 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ = 195.08, 144.24, 139.89, 136.33, 136.17, 135.83, 129.78, 127.26, 123.01, 121.87, 117.71, 21.55. HR-MS (ESI): m/z calculated for C₁₄H₁₃NO₃S: [M+H]⁺: 276.0689, found: 276.0682. FTIR (KBr, cm⁻¹): 3181.31, 1614.02, 1499.07, 1406.54, 1344.86, 1159.81, 1086.92, 927.10.

Gram-Scaled Synthesis

An oven-dried vial was charged with $[Ru(p-cymene)Cl_2]_2$ (5 mol %, 170 mg), AgSbF₆ (40 mol %, 769 mg), Cu(OAc)₂•H₂O (1.0 eq, 1.14 g), NaOAc (40 mol %, 184 mg) and DCM (40 mL). Then, **1a** (1.0 eq, 1.02 g) and **4a** (2.0 eq, 2.76 g) was added into the solution. The vial was sealed under argon and heated to 90 °C with stirring for 12 hours. After cooling down, the mixture was concentrated in vacuo and purified by column chromatography to afford the product **5aa** (1.2 g, 60%).

References:

- 1. H.-J. Zhang, D. L. Priebbenow, C. Bolm, Chem. Soc. Rev. 2013, 42, 8540-8571.
- 2. P. Becker, R. Pirwerdjan, C. Bolm, Angew. Chem. Int. Ed. 2015, 54, 15493-15496.

S31

YFF-SYL-YS-1-2-0516.10.fid PROTON CDC13 E:\\ CCY 1

YFF-SYL-YS-1-1-0614.10.fid PROTON CDC13 E:\\ CCY 21

