Transition-metal free synthesis of N-Aryl carbazoles and their extended analogs

Mikhail Feofanova,b, Vladimir Akhmetovb, Ryo Takayamaa, and Konstantin Amsharov*a,b,c

a. Institute of Chemistry, Organic Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Strasse 2, D-06120 Halle, Germany.
b. Friedrich-Alexander University Erlangen-Nuernberg, Department of Chemistry and Pharmacy, Organic Chemistry II, Nikolaus-Fiebiger Str. 10, 91058 Erlangen, Germany
c. South Ural State University, pr. Lenina 76, 454080 Chelyabinsk, Russia
* email: Konstantin.amsharov@chemie.uni-halle.de

Table of contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instrumental Parameters</td>
<td>2</td>
</tr>
<tr>
<td>Experimental</td>
<td>3</td>
</tr>
<tr>
<td>References</td>
<td>12</td>
</tr>
<tr>
<td>Spectral appendix (1H,13C NMR)</td>
<td>13</td>
</tr>
</tbody>
</table>
Instrumental Parameters

All chemicals and solvents were purchased in reagent grade from commercial suppliers (Acros®, Sigma-Aldrich® or Fluka®, Fluorochem®, Merck®, ChemPur®) and used as received, unless otherwise specified. Solvents in HPLC grade were purchased from VWR® and Sigma-Aldrich®.

Flash column chromatography was performed on a Interchim PuriFlash XS420 using flash grade silica gel from (Machery-Nagel 60 M (40–63 mm, deactivated)).

NMR spectra were recorded on a Bruker Avance 400 at 400 MHz (¹H NMR) and 100 MHz (¹³C NMR), Bruker Avance 300 operating at 300 MHz (¹H NMR), a Bruker Avance Neo 500, operating at 500 MHz (¹H NMR) at 120 °C. The signals were referenced to residual solvent peaks (in parts per million (ppm) ¹H: CDCl₃, 7.27 ppm; CD₂Cl₂, 5.32 ppm; C₂D₂Cl₄, 6.00 ppm. ¹³C: CDCl₃, 77.0 ppm; C₂D₂Cl₄, 73.8 ppm; CD₂Cl₂, 53.84 ppm;). Coupling constants were assigned as observed. The obtained spectra were evaluated with the program MestReNova.

(MA)LDI-MS spectra were recorded on a Shimadzu Biotech AXIMA Confidence MALDI-TOF.

High resolution APPI spectra were recorded on a Bruker ESI TOF maXis 4G instrument. The data was evaluated with the program Bruker Compass DataAnalysis 4.2.

Melting points (MP) were obtained on Buchi B-540
Experimental.

General Procedure.

A glass tube for microwave reactor was charged with fluoroarene (0.1 mmol of difluoroooligophenylene or 0.5 mmol of tetrafluoroooligophenylene or 0.33 mmol of hexafluoroooligophenylene), NaH (6 equiv.) and DMSO (1 ml). The tube was bubbled with argon for 1 minute and corresponding aniline (2 equiv.) was added. The tube was put in microwave reactor and stirred for 3 h at 80 °C. The temperature should not exceed 80ºC, otherwise decomposition of DMSO starts, which causes side reactions. After cooling to room temperature, the mixture was purified via column chromatography using hexane-hexane:EtOAc (10:1) as an eluent. The organic solvent was evaporated under the reduced pressure yielding the product.

Precursors were synthesized according to previously published procedure1.

Scheme S1. Precursors.
9-phenyl-9H-carbazole (3a).

The compound was obtained according to the general procedure using 2,2'-difluoro-1,1'-biphenyl (19 mg), 60% NaH in mineral oil (24 mg) and aniline (20 mg). White solid. Yield 21 mg (85%).

1H NMR (400 MHz, CDCl$_3$) δ 8.05 (dt, $J = 7.7, 0.9$ Hz, 2H), 7.53 – 7.42 (m, 4H), 7.40 – 7.26 (m, 5H), 7.25 – 7.14 (m, 2H).

13C NMR (101 MHz, CDCl$_3$) δ 140.9, 137.7, 129.8, 127.4, 127.1, 125.9, 123.3, 120.3, 119.9, 109.7.

The spectroscopic data were consistent with previously reported2.

3,6-difluoro-9-phenyl-9H-carbazole (3b).

The compound was obtained according to the general procedure using 2,2',5,5'-tetrafluoro-1,1'-biphenyl (23 mg), 60% NaH in mineral oil (24 mg) and aniline (20 mg). White solid. Yield 21 mg (75%). Mp. 65-67 °C.

1H NMR (400 MHz, CDCl$_3$) δ 7.73 (dd, $J = 8.7, 2.5$ Hz, 2H), 7.66 – 7.57 (m, 2H), 7.53 (dt, $J = 3.9, 2.2$ Hz, 2H), 7.51 – 7.46 (m, 1H), 7.32 (dd, $J = 9.0, 4.2$ Hz, 2H), 7.17 (td, $J = 9.0, 2.5$ Hz, 2H).

19F NMR (376 MHz, CDCl$_3$) δ -123.74 (tdd, $J = 8.9, 4.3, 1.5$ Hz, 2F).

13C NMR (101 MHz, CDCl$_3$) δ 157.6 (d, $J = 236.9$ Hz), 138.1 137.4, 130.0, 127.7, 127.0, 123.3 (dd, $J = 9.5, 4.2$ Hz), 114.4 (d, $J = 25.5$ Hz), 110.8 (d, $J = 9.0$ Hz), 106.0 (d, $J = 24.0$ Hz).

HRMS (m/z): [M]$^+$ calcd. for C$_{18}$H$_{13}$F$_2$N, 279.0855; found, 279.0863
4,5-difluoro-9-phenyl-9H-carbazole (3c).

The compound was obtained according to the general procedure using 2,2',6,6'-tetrafluoro-1,1'-biphenyl (23 mg), 60% NaH in mineral oil (24 mg) and aniline (20 mg). White solid. Yield 13 mg (46%). Mp. 60-62 °C.

1H NMR (400 MHz, CD$_2$Cl$_2$) δ 7.68 – 7.60 (m, 2H), 7.59 – 7.50 (m, 3H), 7.43 – 7.34 (m, 2H), 7.14 (dd, $J = 8.3$, 0.5 Hz, 2H), 7.01 (ddd, $J = 8.0$, 5.6, 0.7 Hz, 2H).

19F NMR (376 MHz, CD$_2$Cl$_2$) δ -113.08 (ddd, $J = 7.7$, 4.8, 2.5 Hz, 2F).

13C NMR (101 MHz, CD$_2$Cl$_2$) δ 157.7 (dd, $J = 260.5$, 10.4 Hz), 143.6 (t, $J = 5.0$ Hz), 137.4, 130.5, 128.8, 127.8, 127.7 (t, $J = 4.5$ Hz), 109.3 (dd, $J = 11.5$, 8.1 Hz), 106.8 (dd, $J = 12.5$, 8.3 Hz), 106.2 (t, $J = 1.5$ Hz).

HRMS (m/z): [M]$^+$ calcd. for C$_{18}$H$_{11}$F$_2$N, 279.0855; found, 279.0870

5-fluoro-N,9-diphenyl-9H-carbazol-4-amine (3c').

The compound was obtained according to the general procedure using 2,2',6,6'-tetrafluoro-1,1'-biphenyl (23 mg), 60% NaH in mineral oil (24 mg) and aniline (20 mg). Brown oil. Yield 5 mg (14%).

1H NMR (400 MHz, CDCl$_3$) δ 7.65 – 7.59 (m, 2H), 7.53 – 7.49 (m, 3H), 7.40 – 7.33 (m, 4H), 7.33 – 7.24 (m, 2H), 7.19 (dd, $J = 8.0$, 0.8 Hz, 1H), 7.10 (d, $J = 8.2$ Hz, 1H), 7.07 – 6.92 (m, 2H), 6.79 (dd, $J = 8.0$, 0.8 Hz, 1H), 2.73 (d, $J = 9.7$ Hz, 1H).

19F NMR (376 MHz, CDCl$_3$) δ -109.81 (dd, $J = 12.8$, 5.4 Hz, 1F).

13C NMR (101 MHz, CDCl$_3$) δ 156.5 (d, $J = 240.7$ Hz), 142.9, 142.6, 139.1, 137.3, 123.0, 129.3, 128.2, 127.9, 127.5, 125.7 (d, $J = 9.9$ Hz), 121.9, 119.7, 106.1 – 105.8 (m), 101.2.

HRMS (m/z): [M]$^+$ calcd. for C$_{24}$H$_{17}$FN$_2$, 352.1371; found, 352.1388
N4,5,9-triphenyl-9H-carbazole-4,5-diamine (3c’’).

The compound was obtained according to the general procedure using 2,2',6,6'-tetrafluoro-1,1'-biphenyl (23 mg), 60% NaH in mineral oil (24 mg) and aniline (20 mg). Brown semi-solid. Yield 6 mg (13%).

1H NMR (400 MHz, CDCl\textsubscript{3}) \(\delta\) 7.61 (dd, \(J = 9.6, 3.4\) Hz, 4H), 7.54 – 7.41 (m, 1H), 7.22 – 7.17 (m, 6H), 7.12 – 7.09 (m, 4H), 7.00 (t, \(J = 7.3\) Hz, 4H), 6.67 (d, \(J = 7.9\) Hz, 2H), 6.07 (d, \(J = 13.9\) Hz, 1H), 5.11 (d, \(J = 14.3\) Hz, 1H).

13C NMR (101 MHz, CDCl\textsubscript{3}) \(\delta\) 147.2, 144.1, 142.1, 138.0, 129.8, 129.2, 127.5, 127.1, 125.6, 123.7, 123.6, 115.8, 109.9, 102.2.

HRMS (m/z): [M]+ calcd. for C\textsubscript{30}H\textsubscript{23}N\textsubscript{3}, 425.1887; found, 425.1897.

9-phenyl-3,6-bis(trifluoromethyl)-9H-carbazole (3d).

The compound was obtained according to the general procedure using 2,2'-difluoro-5,5'-bis(trifluoromethyl)-1,1'-biphenyl (32 mg), 60% NaH in mineral oil (24 mg) and aniline (20 mg). White solid. Yield 14 mg (37%). Mp. 150-152 °C.

1H NMR (500 MHz, CDCl\textsubscript{3}) \(\delta\) 8.51 – 8.44 (m, 2H), 7.71 (dd, \(J = 8.6, 1.2\) Hz, 2H), 7.68 (dt, \(J = 10.0, 1.9\) Hz, 2H), 7.60 – 7.56 (m, 1H), 7.54 (dd, \(J = 8.4, 1.2\) Hz, 2H), 7.47 (d, \(J = 8.6\) Hz, 2H).

19F NMR (470 MHz, CDCl\textsubscript{3}) \(\delta\) -60.48 (s, 6F).

13C NMR (126 MHz, CDCl\textsubscript{3}) \(\delta\) 143.1 , 136.3, 130.3, 128.7, 127.2, 124.9 (q, \(J =216\) Hz), 123.7 (q, \(J = 3.5\) Hz), 123.1 (q, \(J = 32.4\) Hz), 122.5, 118.3 (q, \(J = 4.1\) Hz).

HRMS (m/z): [M]+ calcd. for C\textsubscript{20}H\textsubscript{11}F\textsubscript{6}N, 379.0791; found, 379.0805

3,6-dimethoxy-9-phenyl-9H-carbazole (3g).

The compound was obtained according to the general procedure using 2,2'-difluoro-5,5'-dimethoxy-1,1'-biphenyl (25 mg), 60% NaH in mineral oil (24 mg) and aniline (20 mg). Brown solid. Yield 8 mg (27%).
\[^1\text{H NMR} \ (400 \text{ MHz, CDCl}_3) \delta 7.63 - 7.52 \text{ (m, 6H)}, \ 7.48 - 7.39 \text{ (m, 1H)}, \ 7.34 \text{ (d, } J = 8.9 \text{ Hz, 2H)}, \ 7.05 \text{ (dd, } J = 8.9, 2.5 \text{ Hz, 2H)}, \ 3.96 \text{ (s, 6H).} \]

\[^{13}\text{C NMR} \ (101 \text{ MHz, CDCl}_3) \delta 154.0, 138.2, 136.3, 129.8, 126.9, 126.7, 123.6, 115.2, 110.7, 102.9, 56.1. \]

The spectroscopic data were consistent with previously reported\(^3\)

1,8-dimethyl-9-phenyl-9H-carbazole (3h).

[Chemical Structure]

The compound was obtained according to the general procedure using 2,2'-difluoro-3,3'-dimethyl-1,1'-biphenyl (22 mg), 60% NaH in mineral oil (24 mg) and aniline (20 mg). White solid. Yield 7 mg (26%). Mp. 71-72 °C.

\[^1\text{H NMR} \ (400 \text{ MHz, CDCl}_3) \delta 8.00 \text{ (d, } J = 7.6 \text{ Hz, 2H)}, \ 7.52 \text{ (dd, } J = 9.9, 5.1 \text{ Hz, 3H)}, \ 7.48 - 7.41 \text{ (m, 2H)}, \ 7.15 \text{ (t, } J = 7.4 \text{ Hz, 2H)}, \ 7.09 \text{ (d, } J = 7.2 \text{ Hz, 2H)}, \ 1.90 \text{ (s, 6H).} \]

HRMS (m/z): \([\text{M}]^+\) calcd. for C\(_{20}\)H\(_{17}\)N, 271.1356; found, 271.1378

2,7-dimethyl-9-phenyl-9H-carbazole (3i).

[Chemical Structure]

The compound was obtained according to the general procedure using 2,2'-difluoro-4,4'-dimethyl-1,1'-biphenyl (22 mg), 60% NaH in mineral oil (24 mg) and aniline (20 mg). White solid. Yield 14 mg (50%). Mp. 80-83 °C.

\[^1\text{H NMR} \ (400 \text{ MHz, CDCl}_3) \delta 7.97 \text{ (d, } J = 7.9 \text{ Hz, 2H)}, \ 7.65 - 7.58 \text{ (m, 2H)}, \ 7.57 - 7.52 \text{ (m, 2H)}, \ 7.51 - 7.42 \text{ (m, 1H)}, \ 7.16 \text{ (s, 2H)}, \ 7.11 - 7.05 \text{ (m, 2H)}, \ 2.48 \text{ (s, 6H).} \]

\[^{13}\text{C NMR} \ (101 \text{ MHz, CDCl}_3) \delta 141.4, 137.9, 135.5, 129.8, 127.3, 121.3, 121.1, 119.6, 109.8, 22.1. \]

HRMS (m/z): \([\text{M}]^+\) calcd. for C\(_{20}\)H\(_{17}\)N, 271.1356; found, 271.1362
3,6-dimethyl-9-phenyl-9H-carbazole (3j).

The compound was obtained according to the general procedure using 2,2'-difluoro-5,5'-dimethyl-1,1'-biphenyl (22 mg), 60% NaH in mineral oil (24 mg) and aniline (20 mg). White solid. Yield 6 mg (22%). Mp. 55-57 °C.

1H NMR (400 MHz, CDCl$_3$) δ 7.93 – 7.87 (m, 2H), 7.64 – 7.52 (m, 4H), 7.49 – 7.40 (m, 1H), 7.31 (d, $J = 8.3$ Hz, 2H), 7.21 (dd, $J = 8.5$, 1.4 Hz, 2H), 2.55 (s, 6H).

13C NMR (101 MHz, CDCl$_3$) δ 139.3, 138.2, 129.7, 129.0, 127.0, 127.0, 126.9, 123.4, 120.1, 109.4, 21.4.

HRMS (m/z): [M]$^+$ calcd. for C$_{20}$H$_{17}$N, 271.1356; found, 271.1373

13-phenyl-13H-dibenzo[a,i]carbazole (3k).

The compound was obtained according to the general procedure using 1,1'-difluoro-2,2'-binaphthalene (29 mg), 60% NaH in mineral oil (24 mg) and aniline (20 mg). Brown solid. Yield 29 mg (85%). Mp. 141-143 °C.

1H NMR (400 MHz, CDCl$_3$) δ 8.29 (d, $J = 8.5$ Hz, 1H), 8.00 (d, $J = 7.6$ Hz, 1H), 7.86 – 7.69 (m, 3H), 7.41 (ddd, $J = 8.1$, 6.6, 1.4 Hz, 1H), 7.29 – 7.16 (m, 2H).

13C NMR (101 MHz, CDCl$_3$) δ 142.7, 134.7, 133.1, 130.6, 130.3, 130.0, 129.3, 125.1, 124.3, 122.6, 121.8, 121.4, 119.7, 118.6.

HRMS (m/z): [M]$^+$ calcd. for C$_{26}$H$_{17}$N, 343.1356; found, 343.1377.

9-(p-tolyl)-9H-carbazole (3l).

The compound was obtained according to the general procedure using 2,2'-difluoro -1,1'-biphenyl (19 mg), 60% NaH in mineral oil (24 mg) and 4-methylaniline (22 mg). White solid. Yield 14 mg (54%).

1H NMR (500 MHz, CDCl$_3$) δ 8.15 (d, $J = 7.8$ Hz, 1H), 7.48 – 7.42 (m, 2H), 7.42 – 7.36 (m, 6H), 7.31 – 7.26 (m, 2H), 2.50 (s, 3H).
The spectroscopic data were consistent with previously reported2

9-(4-methoxyphenyl)-9H-carbazole (3m).

\[\text{Chemical Formula: } \text{C}_{19}\text{H}_{15}\text{NO} \]
\[\text{Molecular Weight: } 273.3350 \]

The compound was obtained according to the general procedure using 2,2'-difluoro -1,1'-biphenyl (19 mg), 60% NaH in mineral oil (24 mg) and 4-methoxylaniline (25 mg). White solid. Yield 13 mg (48%).

\[^1\text{H NMR} \text{ (400 MHz, CDCl}_3\text{)} \delta 8.19 – 8.07 \text{ (m, 2H)}, 7.49 – 7.43 \text{ (m, 2H)}, 7.41 \text{ (ddd, } J = 8.2, 7.0, 1.2 \text{ Hz, 2H)}, 7.33 \text{ (dd, } J = 8.2, 0.8 \text{ Hz, 2H)}, 7.31 – 7.25 \text{ (m, 2H)}, 7.16 – 7.07 \text{ (m, 2H)}, 3.92 \text{ (s, 3H).} \]

\[^{13}\text{C NMR} \text{ (101 MHz, CDCl}_3\text{)} \delta 158.9, 141.4, 130.3, 128.6, 125.8, 123.1, 120.2, 119.6, 115.1, 109.7, 55.6. \]

The spectroscopic data were consistent with previously reported3

9-(4-chlorophenyl)-9H-carbazole (3q).

\[\text{Chemical Formula: } \text{C}_{18}\text{H}_{12}\text{ClN} \]
\[\text{Molecular Weight: } 277.7510 \]

The compound was obtained according to the general procedure using 2,2'-difluoro -1,1'-biphenyl (19 mg), 60% NaH in mineral oil (24 mg) and 4-chlorolaniline (27 mg). White solid. Yield 7.5 mg (27%).

\[^1\text{H NMR} \text{ (400 MHz, CDCl}_3\text{)} \delta 8.14 \text{ (d, } J = 7.8 \text{ Hz, 1H)}, 7.62 – 7.56 \text{ (m, 1H)}, 7.56 – 7.50 \text{ (m, 1H)}, 7.46 – 7.34 \text{ (m, 2H)}, 7.30 \text{ (ddd, } J = 7.9, 6.9, 1.3 \text{ Hz, 1H).} \]

\[^{13}\text{C NMR} \text{ (101 MHz, CDCl}_3\text{)} \delta 140.7, 136.3, 133.0, 130.1, 128.4, 126.1, 123.5, 120.4, 120.2, 109.5. \]

The spectroscopic data were consistent with previously reported4.

9-phenyl-9H-tribenzo[b,d,f]azepine (3r).

\[\text{Chemical Formula: } \text{C}_{24}\text{H}_{17}\text{N} \]
\[\text{Molecular Weight: } 319.4070 \]

The compound was obtained according to the general procedure using 2,2''-difluoro-1,1':2',1''-terphenyl (27 mg), 60% NaH in mineral oil (24 mg) and aniline (20 mg). White solid. Yield 13 mg (41%).

\[^1\text{H NMR} \text{ (400 MHz, CDCl}_3\text{)} \delta 7.66 \text{ (dd, } J = 7.7, 1.6 \text{ Hz, 2H)}, 7.60 \text{ (dd, } J = 5.8, 3.4 \text{ Hz, 2H)}, 7.56 \text{ (dd, } J = 7.8, 1.4 \text{ Hz, 2H)}, 7.46 \]
J = 7.6, 1.7 Hz, 2H), 7.43 – 7.34 (m, 4H), 7.01 – 6.92 (m, 2H), 6.62 – 6.57 (m, 1H), 6.57 – 6.53 (m, 2H).

^13^C NMR (101 MHz, CDCl$_3$) δ 147.4, 146.0, 139.1, 137.6, 130.9, 129.4, 128.9, 128.7, 128.6, 127.7, 127.3, 117.4, 111.8.

The spectroscopic data were consistent with previously reported\(^5\).

5,11-diphenyl-5,11-dihydroindol[3,2-b]carbazole (3s).

The compound was obtained according to the general procedure using 2,2',2'',5'-tetrafluoro-1,1':4',1''-terphenyl (15 mg), 60% NaH in mineral oil (24 mg) and aniline (20 mg). Brown solid. Yield 20 mg (98%).

^1^H NMR (400 MHz, CDCl$_3$) δ 8.13 (d, J = 7.8 Hz, 2H), 8.08 (s, 2H), 7.74 – 7.65 (m, 8H), 7.57 – 7.50 (m, 2H), 7.47 – 7.38 (m, 4H), 7.28 – 7.22 (m, 2H).

^13^C NMR (101 MHz, CDCl$_3$) δ 142.1, 138.4, 137.1, 130.0, 127.3, 126.0, 123.5, 123.4, 120.3, 119.3, 109.5, 99.8.

The spectroscopic data were consistent with previously reported\(^6\).

5,7-diphenyl-5,7-dihydroindol[2,3-b]carbazole (3t).

The compound was obtained according to the general procedure using 2,2'',4',6'-tetrafluoro-1,1':3',1''-terphenyl (15 mg), 60% NaH in mineral oil (24 mg) and aniline (20 mg). Brown solid. Mp. 160-162 °C.

^1^H NMR (400 MHz, CDCl$_3$) δ 8.84 (s, 1H), 8.26 (d, J = 7.5 Hz, 2H), 7.58 (d, J = 4.3 Hz, 8H), 7.43 (td, J = 8.4, 4.0 Hz, 2H), 7.39 – 7.29 (m, 6H), 7.25 (d, J = 3.7 Hz, 1H).

^13^C NMR (101 MHz, CDCl$_3$) δ 141.7, 141.4, 138.0, 129.9, 127.3, 127.1, 125.0, 123.9, 119.9, 119.6, 118.7, 111.4, 109.4, 89.1.

HRMS (m/z): [M]$^+$ calcd. for C$_{30}$H$_{20}$N$_2$, 408.1616; found, 408.1631.
11,12-diphenyl-11,12-dihydroindolo[2,3-a]carbazole (3u).

The compound was obtained according to the general procedure using 2,2',2'',3'-tetrafluoro-1,1':4',1''-terphenyl (15 mg), 60% NaH in mineral oil (24 mg) and aniline (20 mg). Brown solid. Yield 13 mg (63%). Mp. 184-186 °C.

\[^{1}H\text{ NMR}\ (400\text{ MHz, CDCl}_{3})\ \delta\ 8.22 - 8.15 (m, 2H),
\delta\ 8.12 (s, 2H),
\delta\ 7.35 - 7.25 (m, 6H),
\delta\ 7.15 - 7.05 (m, 6H),
\delta\ 6.82 - 6.75 (m, 4H).\]

\[^{13}C\text{ NMR}\ (101\text{ MHz, CDCl}_{3})\ \delta\ 143.4, 140.3, 128.9, 128.1, 126.3, 126.0, 125.5, 125.4, 124.9, 121.0, 119.8, 113.6, 110.9.\]

\[^{13}C\text{ NMR}\ (101\text{ MHz, CDCl}_{3})\ \delta\ 143.9, 142.8, 140.7, 135.3, 129.4, 129.2, 128.7, 127.9, 127.8, 126.9, 126.3, 126.0, 125.4, 125.2, 125.0, 120.9, 119.5, 115.4, 113.1, 110.7.\]

\[^{13}C\text{ NMR}\ (101\text{ MHz, CDCl}_{3})\ \delta\ 143.9, 142.8, 140.7, 135.3, 129.4, 129.2, 128.7, 127.9, 127.8, 126.9, 126.3, 126.0, 125.4, 125.2, 125.0, 120.9, 119.5, 115.4, 113.1, 110.7.\]

HRMS (m/z): [M]\(^{+}\) calcd. for C\(_{30}\)H\(_{20}\)N\(_{2}\), 408.1621; found, 408.1639

13,14,15-triphenyl-14,15-dihydro-13H-pyrrolo[2,3-a:5,4-a']dicarbazole (3v).

The compound was obtained according to the general procedure using 2,2',2'',2''',3',3''-hexafluoro-1,1':4',1''':4'',1'''-quaterphenyl (13 mg), 60% NaH in mineral oil (24 mg) and aniline (20 mg). Brown solid. Yield 20 mg (95%). Mp. 220-223 °C.

\[^{1}H\text{ NMR}\ (400\text{ MHz, CDCl}_{3})\ \delta\ 8.15 (s, 4H),
\delta\ 8.13 - 8.07 (m, 2H),
\delta\ 7.48 - 7.32 (m, 6H),
\delta\ 7.32 - 7.21 (m, 8H),
\delta\ 7.07 (dt, J = 8.8, 2.8 Hz, 4H),
\delta\ 6.78 (t, J = 6.8 Hz, 1H),
\delta\ 6.45 (t, J = 7.0 Hz, 2H).\]

HRMS (m/z): [M]\(^{+}\) calcd. for C\(_{42}\)H\(_{27}\)N\(_{3}\), 573.2200; found, 573.2191
References.

Spectral appendix (1\text{H}, 13\text{C} NMR).

Figure S1. 1\text{H} NMR (400 MHz, CDCl\textsubscript{3}, 293 K) spectrum of 9-phenyl-9H-carbazole.

Figure S2. 13\text{C} NMR (101 MHz, CDCl\textsubscript{3}, 293 K) spectrum of 9-phenyl-9H-carbazole.
Figure S3. 1H NMR (400 MHz, CDCl$_3$, 293 K) spectrum of 3,6-difluoro-9-phenyl-9H-carbazole.

Figure S4. 19F NMR (376 MHz, CDCl$_3$, 293 K) spectrum of 3,6-difluoro-9-phenyl-9H-carbazole.
Figure S5. 13C NMR (101 MHz, CDCl$_3$, 293 K) spectrum of 3,6-difluoro-9-phenyl-9H-carbazole.

Figure S6. 1H NMR (400 MHz, CD$_2$Cl$_2$, 293 K) spectrum of 4,5-difluoro-9-phenyl-9H-carbazole.
Figure S7. 19F NMR (376 MHz, CD$_2$Cl$_2$, 293 K) spectrum of 4,5-difluoro-9-phenyl-9H-carbazole.

Figure S8. 13C NMR (101 MHz, CD$_2$Cl$_2$, 293 K) spectrum of 4,5-difluoro-9-phenyl-9H-carbazole.
Figure S9. 1H NMR (400 MHz, CDCl$_3$, 293 K) spectrum of 5-fluoro-N,9-diphenyl-9H-carbazol-4-amine.

Figure S10. 19F NMR (376 MHz, CDCl$_3$, 293 K) spectrum of 5-fluoro-N,9-diphenyl-9H-carbazol-4-amine.
Figure S11. 13C NMR (101 MHz, CDCl$_3$, 293 K) spectrum of 5-fluoro-N,9-diphenyl-9H-carbazol-4-amine.

Figure S12. 1H NMR (400 MHz, CDCl$_3$, 293 K) spectrum of N$_4$N$_5$-triphenyl-9H-carbazole-4,5-diamine.
Figure S13. 13C NMR (101 MHz, CDCl$_3$, 293 K) spectrum of N$_4$N$_5$-triphenyl-9H-carbazole-4,5-diamine.

Figure S14. 1H NMR (500 MHz, CDCl$_3$, 293 K) spectrum of 9-phenyl-3,6-bis(trifluoromethyl)-9H-carbazole.
Figure S15. 19F NMR (470 MHz, CDCl$_3$, 293 K) spectrum of 9-phenyl-3,6-bis(trifluoromethyl)-9H-carbazole.

Figure S16. 13C NMR (126 MHz, CDCl$_3$, 293 K) spectrum of 9-phenyl-3,6-bis(trifluoromethyl)-9H-carbazole.
Figure S17. 1H NMR (400 MHz, CDCl$_3$, 293 K) spectrum of 3,6-dimethoxy-9-phenyl-9H-carbazole.

Figure S18. 13C NMR (101 MHz, CDCl$_3$, 293 K) spectrum of 3,6-dimethoxy-9-phenyl-9H-carbazole.
Figure S19. 1H NMR (400 MHz, CDCl$_3$, 293 K) spectrum of 1,8-dimethyl-9-phenyl-9H-carbazole.

Figure S20. 13C NMR (101 MHz, CDCl$_3$, 293 K) spectrum of 1,8-dimethyl-9-phenyl-9H-carbazole.
Figure S21. 1H NMR (400 MHz, CDCl$_3$, 293 K) spectrum of 2,7-dimethyl-9-phenyl-9H-carbazole.

Figure S22. 13C NMR (101 MHz, CDCl$_3$, 293 K) spectrum of 2,7-dimethyl-9-phenyl-9H-carbazole.
Figure S23. 1H NMR (400 MHz, CDCl$_3$, 293 K) spectrum of 3,6-dimethyl-9-phenyl-9H-carbazole.

Figure S24. 13C NMR (101 MHz, CDCl$_3$, 293 K) spectrum of 3,6-dimethyl-9-phenyl-9H-carbazole.
Figure S25. 1H NMR (400 MHz, CDCl$_3$, 293 K) spectrum of 7-phenyl-7H-dibenzo[c,g] carbazole.

Figure S26. 13C NMR (101 MHz, CDCl$_3$, 293 K) spectrum of 7-phenyl-7H-dibenzo[c,g] carbazole.
Figure S27. 1H NMR (400 MHz, CDCl$_3$, 293 K) spectrum of 9-phenyl-9H-tribenzo[b,d,f]azepine.

Figure S28. 13C NMR (101 MHz, CDCl$_3$, 293 K) spectrum of 9-phenyl-9H-tribenzo[b,d,f]azepine.
Figure S29. 1H NMR (500 MHz, CDCl$_3$, 293 K) spectrum of 9-(p-tolyl)-9H-carbazole.

Figure S30. 13C NMR (136 MHz, CDCl$_3$, 293 K) spectrum of 9-(p-tolyl)-9H-carbazole.
Figure S31. 1H NMR (400 MHz, CDCl$_3$, 293 K) spectrum of 9-(4-methoxyphenyl)-9H-carbazole.

Figure S32. 13C NMR (101 MHz, CDCl$_3$, 293 K) spectrum of 9-(4-methoxyphenyl)-9H-carbazole.
Figure S33. 1H NMR (400 MHz, CDCl$_3$, 293 K) spectrum of 9-(4-chlorophenyl)-9H-carbazole.

Figure S34. 13C NMR (101 MHz, CDCl$_3$, 293 K) spectrum of 9-(4-chlorophenyl)-9H-carbazole.
Figure S35. 1H NMR (400 MHz, CDCl$_3$, 293 K) spectrum of 5,11-diphenyl-5,11-dihydroindolo[3,2-b]carbazole.

Figure S36. 13C NMR (101 MHz, CDCl$_3$, 293 K) spectrum of 5,11-diphenyl-5,11-dihydroindolo[3,2-b]carbazole.
Figure S37. 1H NMR (400 MHz, CDCl$_3$, 293 K) spectrum of 5,7-diphenyl-5,7-dihydroindolo[2,3-b]carbazole.

Figure S38. 13C NMR (101 MHz, CDCl$_3$, 293 K) spectrum of 5,7-diphenyl-5,7-dihydroindolo[2,3-b]carbazole.
Figure S39. 1H NMR (400 MHz, CDCl$_3$, 293 K) spectrum of 11,12-diphenyl-11,12-dihydroindolo[2,3-a]carbazole.

Figure S40. 13C NMR (101 MHz, CDCl$_3$, 293 K) spectrum of 11,12-diphenyl-11,12-dihydroindolo[2,3-a]carbazole.
Figure S41. 1H NMR (400 MHz, CDCl$_3$, 293 K) spectrum of 13,14,15-triphenyl-14,15-dihydro-13H-pyrrolo[2,3-a:5,4-a']dicarbazole.

Figure S42. 13C NMR (101 MHz, CDCl$_3$, 293 K) spectrum of 13,14,15-triphenyl-14,15-dihydro-13H-pyrrolo[2,3-a:5,4-a']dicarbazole.