Fluorescent Glutamine and Asparagine as Promising Probes for Chemical Biology

Kiran Bajaj, ${ }^{*}{ }^{a}$ Karishma Pidiyara, ${ }^{\text {a }}$ Shahid Khan, ${ }^{\text {b }}$ Prabhat N Jha, ${ }^{\text {b }}$ Rajeev Sakhuja ${ }^{\text {a }}$ and Dalip Kumar ${ }^{\text {a }}$
${ }^{\text {a}}$ Department of Chemistry, Birla Institute of Technology and Science, Pilani 333031, Rajasthan, India
${ }^{\text {b }}$ Department of Biological Science, Birla Institute of Technology and Science, Pilani 333031, Rajasthan, India
E-mail: kbajaj26@gmail.com

Table of contents

1. UV and Fluorescent Instrumentation and Characterization 2
1.1. Fluorescence Quantum Yield Measurement 2
1.2. Photostability Study 2
1.3. Solvachromatic Study 3
1.4. Optical Rotation Measurement 3
2. Cell Culture and Confocal Imaging 3
3. Protein Extraction and Fluorescence Spectrum Analysis 4
4. References 4
5. NMR Spectra of Reported Compounds 5

1. UV and Fluorescent Instrumentation and characterization.

UV-Vis absorption spectra were collected on a Jasco V-750 UV-Visible spectrophotometer using a 1.0 cm quartz cuvette at room temperature over a wavelength range of 200-600 nm . Fluorescence spectra were recorded on a FlouroMax-4 steady state spectrofluorometer using a 1.0 cm quartz cuvette at 293 K . The fluorescence spectra of $7 \mathbf{a}$ and $\mathbf{7 b}$ were collected in various solvents at excitation wavelength ($\lambda_{\text {ex }}$) of 323 nm with an excitation slit 5 nm and emission slit 5 nm . The data were analyzed using related software.
1.1. Fluorescence quantum yield measurement. Quinine sulfate standard solution $\left(10^{-3} \mathrm{M}\right)$ was prepared by dissolving (0.0037 g) in $0.1 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}(0.005 \mathrm{~L}) .10^{-5} \mathrm{M}$ Quinine sulfate was prepared by diluting $10^{-3} \mathrm{M}$ concentration in $0.1 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$. Stock solutions of $7 \mathbf{a}$ and $7 \mathbf{b}\left(10^{-3} \mathrm{M}\right)$ were prepared by dissolving $(0.00150 \mathrm{~g})$ of $\mathbf{7 a}$ and $(0.00160 \mathrm{~g})$ of $\mathbf{7 b}$ in different solvents $(0.005$ L). Further dilutions ($10^{-5} \mathrm{M}$ concentration) were made by diluting aliquots of $10^{-3} \mathrm{M}$ concentrations in relevant solvents. Each solution was mixed using vortex. Fluorescence spectra of quinine sulfate was recorded at an excitation wavelength of 345 nm and emission wavelength set at $360-800 \mathrm{~nm}$ and using an excitation and emission slit width of 5 nm . The emission and excitation spectra of $\mathbf{7 a}$ and $\mathbf{7 b}$ were set at 323 nm and $338-700 \mathrm{~nm}$ respectively. The data were compared with standard quinine sulfate ($\Phi_{\mathrm{r}}=0.54$ in $0.1 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$) using equation (Eq.1). The quantum yields of $7 \mathbf{a}$ and $\mathbf{7 b}\left(\Phi_{\mathrm{S}}\right)$ are calculated and the results were incorporated in table 1.

$$
\phi_{s}=\phi_{r} \frac{F_{s} A_{r} \eta_{s}^{2}}{F_{r} A_{s} \eta_{r}^{2}} \ldots \text { (Eq. 1) }
$$

Where, A_{r} and A_{s} are the integrated absorbance spectrum area (area under the absorbance curve, peak area); F_{r} and F_{s} are the relative integrated fluorescent intensities (area under the fluorescence curve, peak area) of the reference and samples respectively. η_{r} and η_{s} are respectively the refractive indices of the solvents in which the reference standard and samples are prepared.
1.2 Photostability study. A series of fluorescence spectra ($\lambda_{\mathrm{ex}}=323 \mathrm{~nm}$, excitation slit of 5 nm and emission slit of 5 nm) of $\mathbf{7 a}$ and $\mathbf{7 b}$ samples $\left(10^{-5} \mathrm{M}\right.$ concentration in water) were recorded at 293 K over a period of 2 h .61 scans were collected over a period of 2 h and each spectrum was recorded 120 seconds after the previous spectrum until 61 spectra was recorded. An insignificant
decrement in the fluorescence intensity ($\lambda_{\mathrm{em}}=464 \mathrm{~nm}$) of $7 \mathbf{a}(5.8 \%)$ and $7 \mathbf{b}(7.8 \%)$ was observed, which demonstrates that the compounds 7a and 7b were resistant to photobleaching.
1.3. Solvachromatic study. Solvent study was carried out by dissolving requisite amount of compounds 7a and 7b in Water, Methanol, DMF, DMSO and PBS buffer respectively. Due to the low solubility of $\mathbf{7 a}$ and $\mathbf{7 b}$ in Acetonitrile (CAN), stock solution was prepared in 1:1 solvent mixture of ACN :Water. The solutions were mixed using a vortex and fluorescence emission spectra ($\lambda_{\mathrm{ex}}=323 \mathrm{~nm}$, excitation slit of 5 nm and emission slit of 5 nm) were recorded at 295 K .

1.4. Optical Rotation measurement

Optical rotation was measured by optical spectrophotometry using a Rudolph Research Analytical Autopol III Automatic Polarimeter. The specific rotation ([$\alpha]$) of the FAA 7a and 7b $(1 \mathrm{mg} / \mathrm{mL}$ in MeOH$)$ was measured by optical spectrophotometry using a Rudolph Research Analytical Autopol III Automatic Polarimeter at 589 nm wavelength, 303 K and with an optical path length 100 mm , and calculated according to given formula:

Specific Rotation $[\alpha]^{\mathrm{T}}{ }_{\lambda}=\alpha / l x c$
Where, $\alpha=$ degree of rotation, $l=$ optical path length (in dm), $c=$ concentration in g / mL

2. Cell Culture and Confocal imaging

HT-29 cell line obtained from NCCS, Pune, India was seeded on glass coverslip placed in Tarson six-well cell culture plate at 5000 cells per well. Cells were grown overnight in DMEM (Dulbecco's Modified Eagle Medium) media with 10% FBS (Fetal bovine serum) at $37{ }^{\circ} \mathrm{C}$ in a $5 \% \mathrm{CO}_{2}$ incubator (Thermo Scientific, India). Before treatment with fluorescent derivative compounds, cells were washed with PBS to removed unbound cells. Finally, to investigate the biocompatibility of chemically synthesized fluorescent amino acids (FAAs) in live cells, $5 \mu \mathrm{M}$ of the final concentration of both $7 \mathbf{a}$ and $7 \mathbf{b}$ were added separately in the well and allowed to incubate for 1 hr . Cells were washed 4 times to remove the surface-bound and free FAAs before microscopy. Confocal microscopy images were obtained using a confocal laser scanning microscope-880 (Zeiss, Germany).

3. Protein extraction and fluorescence spectrum analysis

To further explore the genetically incorporation of an unnatural fluorescent amino acid into a peptide, around 50,000 cells were treated with both the compound with a final concentration of 5 $\mu \mathrm{M}$ and incubated overnight. Cells were washed with PBS and total protein was extracted using RIPA buffer. ${ }^{1}$ The fluorescence spectrum of total protein of cells treated with $\mathbf{7 a}$ and $\mathbf{7 b}$ and nontreated cells were captured using Fluorolog Horiba, USA.

4. References

1. Y. Liu, W. F. Bodme, PNAS. 2006, 103, 976.

5. NMR Spectra of Reported Compounds

${ }^{1}$ H NMR of 3a

${ }^{13}$ C NMR of 3a

${ }^{1}$ H NMR of 3b
(1)

${ }^{13}$ C NMR of 3b

${ }^{1} \mathrm{H}$ NMR of $\mathbf{5 a}$

${ }^{13}$ C NMR of 5a

${ }^{1}$ H NMR of $\mathbf{5 b}$

${ }^{13}$ C NMR of 5b

${ }^{1}$ H NMR of $\mathbf{6 a}$

${ }^{13}$ C NMR of 6a

HSQC of 6a

${ }^{\mathbf{1}} \mathbf{H}$ NMR of 6b

${ }^{13}$ C NMR of 6b

${ }^{1}$ H NMR of 7a

${ }^{13}$ C NMR of $7 \mathbf{a}$

HSQC of 7a

${ }^{1}$ H NMR of 7b

${ }^{13}$ C NMR of 7b

HSQC of 7b

