Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2021

Solid-phase synthesis of coralmycin A/epicoralmycin A and desmethoxycoralmycin A

Paige M. E. Hawkins,^{a,b} Dennis Y. Liu,^c Roger G. Linington,^c and Richard J. Pavne^{*a,b}

^a School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia.

^b Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, NSW 2006, Australia

^c Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada.

Table of Contents

General Methods and Materials	2
Synthesis of Fmoc-PABA-OH (7)	3
Synthesis of PABA-OAII (8)	3
Synthesis of Fmoc-L-Asp-PABA-OAII (6)	4
Synthesis of Fmoc-L- <i>erythro</i> -β-methoxy-Asp-PABA-OAII (25)	5
NMR Data for Coralmycin A (1)	10
Analytical HPLC Trace of Coralmycin A (1/ <i>epi</i> -1)	12
¹ H NMR Spectrum of Coralmycin A (1/ <i>epi</i> -1) showing diastereomeric ratio	12
NMR Data for Desmethoxycoralmycin A (5)	13
Analytical HPLC Trace of Desmethoxycoralmycin A (5)	14
Analytical chiral LC Trace of Desmethoxycoralmycin A (5)	15
Conditions for the attempted amidation of resin-bound 11 with PABA-OAII (8)	16
Antimicrobial screening methods and data	17
References	18
NMR Spectra	
Crystallographic Information File for nitrobenzaldehyde 20	

General Methods and Materials

All reactions were carried out under an argon atmosphere and at room temperature (22 °C) unless the reaction was performed under aqueous conditions or unless otherwise specified. The reactions carried out at 0 °C employed a bath of water and ice and reactions carried at -40 °C employed a bath of dry ice and MeCN. Anhydrous THF, CH₂Cl₂, MeOH, MeCN, DMF, and toluene were obtained using a PureSolv[®] solvent purification system. The reactions were monitored by thin layer chromatography (TLC) on aluminium backed silica plates (Merck Silica Gel 60 F254). Visualisation of TLC plates was undertaken with an ultraviolet (UV) light at $\lambda = 254$ nm and staining with solutions of vanillin, ninhydrin, and potassium permanganate followed by exposure of the stained plates to heat. Silica flash column chromatography (Merck Silica Gel 60 40 – 63 µm) was undertaken to purify crude reaction mixtures using solvents as specified. Fractions were collected manually or with a Biotage Isolera Spektra automated flash purification system.

All commercially available reagents were used as obtained from Sigma-Aldrich, Merck, Acros Organics or AK Scientific. Amino acids, coupling reagents and Trityl-OH ChemMatrix[®] resins were obtained from NovaBiochem, PCAS, GL Biochem, or Mimotopes and peptide synthesis grade DMF was obtained from Merck or Labscan. All non-commercially available reagents were synthesized according to literature procedures as referenced.

¹H NMR spectra were obtained using a Bruker DRX 300, DRX 400 or DRX 500 at frequencies of 300 MHz, 400 MHz or 500 MHz respectively in CDCl₃, MeOD, acetone-d⁶, or DMSO-d⁶ Chemical shifts are reported in parts per million (ppm) and coupling constants in Hertz (Hz). ¹H NMR data is reported as follows: chemical shift values (ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad), coupling constant(s) and relative integral. ¹³C NMR spectra were obtained using a Bruker DRX 400 or DRX 500 at 100 MHz or 125 MHz in CDCl₃, MeOD, CD₃CN, DMSO-d⁶, and acetone-d⁶ unless otherwise specified. ¹³C NMR data is reported as chemical shift values (ppm). Any rotamers were confirmed *via* variable temperature NMR experiments or saturation transfer NMR experiments. Low resolution mass spectra for novel compounds were recorded on a Bruker amaZon SL mass spectrometer (ESI) operating in positive/negative mode. High resolution mass spectra were recorded on a Bruker accorded on a Bruker and Comparison of the spectra were recorded on a Bruker and Spectra were recorded on a Bruker and Spectra were recorded on a Bruker and Spectra were recorded on a Bruker amaZon SL mass spectrometer operating in positive/negative mode. High resolution mass spectra were recorded on a Bruker and Spectra bruker and Spectra were recorded on a Bruker and Spectra br

LC-MS was performed on a Shimadzu UPLC-MS instrument with an LC-M20A pump, SPD-M30A diode array detector and a Shimadzu 2020 (ESI) mass spectrometer operating in positive mode. Separations on the UPLC system were performed on a Waters Acquity 1.7 μ m, 2.1 x 50 mm (C18) column. These separations were performed using a mobile phase of 0.1 vol % trifluoroacetic acid in water (Solvent A) and 0.1 vol % trifluoroacetic acid in MeCN (Solvent B) using linear gradients. Preparative reverse-phase HPLC was performed using a Waters 500 pump with a 2996 photodiode array detector and a Waters 600 Multisolvent Delivery System.

Synthesis of Fmoc-PABA-OH (7)

4-Aminobenzoic acid (1.00 g, 7.29 mmol), Fmoc-OSu (2.58 g, 7.66 mmol) and NaHCO₃ (1.67 g) were dissolved in 1,4-dioxane/water (1:1, v/v, 40 mL) and the reaction solution was stirred at room temperature for 16 h. The resulting reaction mixture was acidified to pH 1 *via* addition of 2 M aqueous HCl and the resulting precipitate was collected and dried *in vacuo* to afford the title compound (2.14 g, 5.94 mmol, 81%) as a white solid. ¹H NMR (DMSO-d⁶, 400 MHz) δ (ppm); 12.63 (br s, 1H), 10.08 (s, 1H), 7.91 (m, 2H), 7.85 (m, 2H), 7.76 (m, 2H), 7.56 (m, 2H), 7.43 (m, 2H), 7.35 (m, 2H), 4.53 (d, *J* = 6.4 Hz, 1H); ¹³C NMR (DMSO-d⁶, 125 MHz) δ (ppm); 166.9, 153.3, 143.7, 143.2, 140.8, 130.4, 127.7, 127.1, 125.1, 124.5, 120.2, 117.4, 65.8, 46.6; LR-MS: (-ESI) *m/z* 358 [M-H]⁻; HR-MS: (+ESI) Calc. for C₂₂H₁₈NO₄: 382.1050 [M+Na]⁺, Found: 382.1048 [M+Na]⁺; IR (ATR): v_{max} = 3347, 2971, 2941, 1709, 1676, 1610, 1592, 1526, 1511, 1450, 1412, 1311, 1282, 1223 cm⁻¹; mp: 240 – 241 °C. This data is in agreement with that previously reported by Van der Plas *et al.*^[1]

Synthesis of PABA-OAII (8)

4-Aminobenzoic acid (3.98 g, 29.0 mmol) and K₂CO₃ (4.00 g, 29.0 mmol) were dissolved in DMF (116 mL) and to this solution was added allyl bromide (3.80 mL, 43.6 mmol). The resulting reaction mixture was stirred at room temperature for 16 h. The reaction mixture was diluted with water (300 mL) and extracted with ethyl acetate (2 x 150 mL). The combined organic extracts were washed with saturated aqueous NaHCO₃ solution (100 mL), water (100 mL) and brine (100 mL), dried over anhydrous Na₂SO₄, filtered and concentrated *in vacuo*. The crude residue was purified by flash chromatography (30 – 40% v/v EtOAc in *n*-hexanes) to afford allyl 4-aminobenzoate (3.43 g, 19.3 mmol, 67%) as a yellow solid. ¹H **NMR** (CDCl₃, 500 MHz) δ (ppm); 7.87 (m, 2H), 6.63 (m, 2H), 6.02 (ddt, *J* = 17.5, 10.4, 5.6, 1H), 5.38 (m, 1H), 5.25 (m, 1H), 4.77 (dt, *J* = 5.6, 1.4), 4.10 (br s, 1H); ¹³C **NMR** (CDCl₃, 125 MHz) δ (ppm); 166.4, 151.1, 132.8, 131.8, 119.7, 117.8, 113.9, 65.1; **LR-MS**: (+ESI) *m/z* 178 [M+H]⁺; **HR-MS**: (+ESI) Calc. for C₁₀H₁₁NO₂: 178.0863 [M+H]⁺, Found: 178.0859 [M+H]⁺; **IR (ATR)**: v_{max} = 3418, 3330, 3214, 1685, 1636, 1596, 1574, 1513, 1459, 1443, 1359, 1309, 1276, 1237 cm⁻¹; **mp:** 53 – 54 °C. This data is in agreement with that previously reported by Garrido-Hernandez *et al.*^[2]

Synthesis of Fmoc-L-Asp-PABA-OAII (6)

Allyl (S)-4-(2-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-4-(tert-butoxy)-4-oxobutanamido)benzoate (S1)

Fmoc-L-aspartic acid 4-tert-butyl ester (1.23 g, 2.99 mmol), HATU (1.14 g, 2.99 mmol) and HOAt (813 mg, 5.97 mmol) were dissolved in DMF (4 mL) and to this solution was added *i*Pr₂NEt (1.04 mL, 5.97 mmol). The resulting reaction mixture was stirred at room temperature for 10 minutes at which point PABA-OAll (8) (353 mg, 1.99 mmol) was added. The reaction mixture was stirred at room temperature for 16 h. The reaction solution was washed with saturated aqueous NaHCO₃ (50 mL) and extracted with EtOAc (2 x 25 mL). The combined organic extracts were washed with brine (50 mL), dried over anhydrous Na₂SO₄, filtered and concentrated in vacuo. The crude residue was purified by flash chromatography (20 – 30% v/v EtOAc in *n*-hexane) to afford the title compound (998 mg, 1.75 mmol, 88%) as a pale brown solid. ¹**H NMR** (CDCl₃, 400 MHz) δ (ppm); 8.82 (br s, 1H), 8.02 (m, 2H), 7.76 (m, 2H), 7.56-7.59 (m, 4H), 7.39 (m, 2H), 7.28 (m, 2H), 6.11 (br s, 1H), 6.04 (ddt, J = 17.2, 10.5, 5.6 Hz, 1H), 5.40 (m, 1H), 5.29 (m, 1H), 4.81 (dt, J = 5.6, 1.5 Hz, 2H), 4.67 (br s, 1H), 4.48 (d, J = 6.7 Hz, 2H), 4.22 (t, *J* = 6.7 Hz, 1H), 2.95 (dd, *J* = 16.6, 3.0 Hz, 1H), 2.70 (dd, *J* = 16.6, 6.4 Hz, 1H), 1.46 (s, 9H); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm); 171.4, 169.0, 165.8, 143.7, 143.6, 141.8, 141.5, 132.4, 131.0, 128.0, 127.2, 126.2, 125.0, 120.2, 119.2, 118.3, 82.5, 67.5, 65.6, 52.0, 47.3, 37.4, 28.1; LR-MS: (+ESI) *m/z* 593 [M+Na]⁺; **HR-MS**: (+ESI) Calc. for C₃₃H₃₄N₂O₇: 593.2258 [M+Na]⁺, Found: 593.2256 [M+Na]⁺; $[\alpha]_{D}^{20} = -18.0^{\circ}$ (c = 0.63 in CHCl₃); **IR (ATR):** $v_{max} = 3324, 3306, 3066, 2977, 2935, 1716, 1694, 1601, 1604, 1601, 1604, 1601, 1604, 1601, 1604, 1601, 1604, 1601, 1604, 1601, 1604, 1601, 1604, 1601, 1604, 1601, 1604, 1601, 1604, 1601, 1604, 1601, 1604, 1601, 1604, 1601, 1604, 1601, 1604, 1601, 1604, 1601, 1604, 1601, 1604$ 1537 cm⁻¹; **mp:** 143 – 144 °C.

Fmoc-L-Asp-PABA-OAII (6)

Allyl (S)-4-(2-((((9*H*-fluoren-9-yl)methoxy)carbonyl)amino)-4-(*tert*-butoxy)-4-oxobutanamido)benzoate ester (S1) (2.62 g, 4.60 mmol) was dissolved in CH₂Cl₂/TFA (1:1, v/v, 8 mL) and stirred at room

temperature for 1 h. The reaction mixture was concentrated *in vacuo*, azeotroping with toluene to afford the title compound (2.37 g, 4.60 mmol, quantitative) as a brown solid. ¹H NMR (CDCl₃, 400 MHz) δ (ppm); 9.70 (br s, 1H), 7.80 (m, 2H), 7.82 (m, 2H), 7.68 (m, 2H), 7.37 (m, 2H), 7.28 (m, 2H), 7.14 (br d, J = 8.2 Hz, 1H), 6.07 (ddt, J = 17.0, 10.7, 5.5 Hz, 1H), 5.41 (m, 1H), 5.25 (m, 1H), 4.78-4.81 (m, 3H), 4.33-4.43 (m, 2H), 4.22 (t, J = 6.9 Hz, 1H), 3.05 (dd, J = 16.8, 6.3 Hz, 1H), 2.90 (dd, J = 16.8, 6.9 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm); 172.4, 170.6, 165.9, 157.2, 144.8, 144.0, 142.0, 133.7, 131.2, 128.5, 127.9, 126.1, 126.0, 120.7, 119.8, 118.0, 67.5, 65.7, 53.4, 47.9, 36.5; LR-MS: (+ESI) *m/z* 515 [M+H]⁺; HR-MS: (+ESI) Calc. for C₂₉H₂₆N₂O₇: 537.1632 [M+Na]⁺, Found: 537.1632 [M+Na]⁺; [α]_D²⁰ = -18.3° (c = 1.0 in DMSO); IR (ATR): v_{max} = 3326, 3068, 3047, 1703, 1599, 1540, 1512 cm⁻¹; mp: 182 – 183 °C.

Synthesis of a suitably protected *erythro*-β-methoxy-L-Asp-PABA-OAII compound (25)

Methyl (E)-3-(4-methoxyphenyl)acrylate (S2)

Thionyl chloride (4.06 mL) was added dropwise to anhydrous MeOH at 0 °C followed by *E*-methoxy cinnamic acid (4.99 g, 28.0 mmol). The resulting reaction mixture was stirred at reflux for 1.5 h. The reaction mixture was concentrated *in vacuo* redissolved in EtOAc (75 mL) and washed with water (50 mL) and saturated aqueous NaHCO₃ solution (50 mL). The organic layer was then dried over anhydrous Na₂SO₄, filtered and concentrated *in vacuo* to afford the title compound as a white flaky solid which was sufficiently pure to be used in the next step without purification (4.89 g, 25.5 mmol, 91%). ¹H NMR (CDCl₃, 400 MHz) δ (ppm); 7.65 (d, *J* = 16.1 Hz, 1H), 7.47 (m, 2H) 6.90 (m, 2H), 6.31 (d, *J* = 16.1 Hz, 1H), 3.83 (s, 3H), 3.79 (s, 3H); LR-MS: (+ESI) *m/z* 193 [M+H]⁺; mp: 91 – 92 °C. This data is in agreement with that previously reported by Zhang *et al.*^[3]

Methyl (2S,3R)-3-((tert-butoxycarbonyl)amino)-2-hydroxy-3-(4-methoxyphenyl)propanoate (S3)

tert-Butyl carbamate (1.34 g, 11.4 mmol) was dissolved in *n*-PrOH (19 mL) and a freshly prepared aqueous NaOH solution (0.31 M, 36 mL) was added. To this mixture was added *tert*-butyl hypochlorite (7.4 M, 1.51 mL) dropwise followed by (DHQD)₂PHAL in *n*-PrOH (17 mL). The resulting reaction mixture was stirred at 25 °C for 10 min after which methyl (*E*)-3-(4-methoxyphenyl)acrylate (**S2**) (916 mg, 4.77

mmol) was added and mixture was sonicated until all the acrylate was dissolved. Upon dissolution of the acrylate, potassium osmate (VI) dihydrate was added in one portion causing the solution to turn black. The resulting reaction mixture was stirred at room temperature for 16 h providing a golden-brown solution. The reaction mixture was extracted with EtOAc (3 x 50 mL) and washed with water (75 mL) and brine (75 mL), dried over anhydrous Na₂SO₄, filtered and concentrated *in vacuo*. The crude residue was purified by flash chromatography (20 – 30% v/v EtOAc in *n*-hexanes) to afford the title compound as a white flaky solid (1.17 g, 3.60 mmol, 75%). ¹H NMR (CDCl₃, 500 MHz) δ (ppm); 7.29 (m, 2H), 6.88 (m, 2H), 5.32 (d, *J* = 9.1 Hz, 1H), 5.15 (d, *J* = 9.1 Hz, 1H), 4.43 (s, 1H), 3.83 (s, 3H), 3.79 (s, 3H), 3.13 (br s, 1H), 1.41 (s, 9H); ¹³C NMR (CDCl₃, 125 MHz) δ (ppm); 173.6, 159.3, 155.3, 128.1, 127.4, 114.2, 80.0, 73.8, 55.4, 53.2, 28.4, 28.4; LR-MS: (+ESI) *m/z* 348 [M+Na]⁺; HR-MS: (+ESI) Calc. for C₁₆H₂₃NO₆: 348.1418 [M+Na]⁺, Found: 348.1417 [M+Na]⁺; [α]_p²⁰ = -4.7° (c = 0.96 in MeOH); IR (ATR): v_{max} = 3373, 2977, 2935, 1694, 1612, 1512, 1392, 1366, 1246 cm⁻¹; mp: 81 – 83 °C. This data is in agreement with that previously reported by Mishra *et al.*^[4]

(1R,2R)-1-((tert-Butoxycarbonyl)amino)-3-methoxy-1-(4-methoxyphenyl)-3-oxopropan-2-yl 4nitrobenzoate (**S4**)

Methyl (2*S*,3*R*)-3-((*tert*-butoxycarbonyl)amino)-2-hydroxy-3-(4-methoxyphenyl)propanoate (**S3**) (1.33 g, 4.10 mmol), triphenylphosphine (2.37 g, 9.02 mmol) and *p*-nitrobenzoic acid (1.51 g, 9.02 mmol) was dissolved in THF (55 mL) and to this solution was added DIAD (1.78 mL, 9.02 mmol) at 0 °C. The resulting reaction mixture was protected from light, warmed to room temperature and stirred for 16 h. The reaction mixture was concentrated *in vacuo*. The crude material was purified by repeated flash chromatography (50% v/v CH₂Cl₂ in *n*-hexanes to 2% v/v MeOH in CH₂Cl₂) to afford the title compound as a white crystalline solid (1.42 g, 2.99 mmol, 73%). ¹H NMR (CDCl₃, 500 MHz) δ (ppm); 8.28 (m, 2H), 8.18 (m, 2H), 7.28 (m, 2H), 6.90 (m, 2H), 5.65 (d, *J* = 4.8 Hz, 1H), 5.38 (br s, 1H), 5.32 (br d, *J* = 7.9 Hz, 1H), 3.80 (s, 3H), 3.68 (s, 3H), 1.42 (s, 9H); ¹³C NMR (CDCl₃, 125 MHz) δ (ppm); 167.9, 164.0, 159.7, 155.0, 151.0, 134.6, 131.2, 128.7, 128.4, 123.8, 114.3, 80.5, 75.5, 55.4, 54.6, 52.7, 28.4; LR-MS: (+ESI) *m/z* 497 [M+Na]⁺; **HR-MS**: (+ESI) Calc. for C₂₃H₂₆N₂O₉: 497.1531 [M+Na]⁺, Found: 497.1530 [M+Na]⁺; [**a**]_b²⁰ = -24.9° (c = 0.52 in CHCl₃); **IR (ATR):** v_{max} = 3323, 3062, 2976, 1698, 1601, 1536 cm⁻¹; **mp:** 142 – 144 °C. This data is in agreement with that previously reported by Mishra *et al.*^[4]

(1R,2R)-1-((*tert*-Butoxycarbonyl)amino)-3-methoxy-1-(4-methoxyphenyl)-3-oxopropan-2-yl 4-nitrobenzoate (**S4**) (1.51 g, 3.17 mmol) was dissolved in anhydrous MeOH (45 mL) and to this solution was added sodium azide (1.03 g, 15.9 mmol). The resulting reaction mixture was stirred at 45 °C for 48 h. The reaction mixture was concentrated *in vacuo*. The crude material was purified by flash chromatography (30% v/v EtOAc in *n*-hexanes) to afford the title compound as a white solid (956 mg, 2.94 mmol, 93%). ¹H NMR (CDCl₃, 500 MHz) δ (ppm); 7.16 (m, 2H), 6.82 (m, 2H), 5.54 (br d, *J* = 7.6 Hz, 1H), 5.04 (br d, *J* = 7.6 Hz, 1H), 4.57 (br s, 1H), 3.77 (s, 3H), 3.70 (s, 3H), 2.90 (br s, 1H), 1.42 (s, 9H); ¹³C NMR (CDCl₃, 125 MHz) δ (ppm); 172.6, 159.5, 155.1, 129.1, 128.6, 114.0, 80.0, 73.5, 56.3, 55.3, 52.7, 28.5; LR-MS: (+ESI) *m/z* 348 [M+Na]⁺; HR-MS: (+ESI) Calc. for C₁₆H₂₃NO₆: 348.1418 [M+Na]⁺, Found: 348.1422 [M+Na]⁺; [**a**]_b²⁰ = -47.0° (c = 2.0 in MeOH); IR (ATR): v_{max} = 3394, 2976, 2937, 2843, 1740, 1712, 1613, 1512, 1367, 1295, 1248 cm⁻¹; mp: 151 – 152 °C. This data is in agreement with that previously reported by Mishra *et al.*^[4]

Methyl (2R,3R)-3-((tert-butoxycarbonyl)amino)-2-methoxy-3-(4-methoxyphenyl)propanoate (S6)

Methyl (2*R*,3*R*)-3-((*tert*-butoxycarbonyl)amino)-2-hydroxy-3-(4-methoxyphenyl)propanoate (**S5**) (227 mg, 0.70 mmol) was dissolved in anhydrous MeCN (6 mL) and to this solution was added silver (I) oxide (827 mg, 3.57 mmol) and iodomethane (443 μ L, 7.14 mmol). The resulting reaction mixture was protected from the light and stirred at room temperature for 16 h after which additional silver (I) oxide (827 mg, 3.57 mmol) was added. The reaction mixture was stirred for a further 16 h then filtered through Celite[®] eluting with EtOAc (100 mL) and concentrated in vacuo. The crude material was purified by flash chromatography (20% v/v EtOAc in n-hexanes) to afford the title compound as a white solid (230 mg, 0.68 mmol, 97%). ¹H NMR (CDCl₃, 500 MHz) δ (ppm); 7.20 (m, 2H), 6.81 (m, 2H), 5.45 (br d, J = 6.9 Hz, 1H), 5.06 (br s, 1H), 4.41 (br s, 1H), 3.77 (s, 3H), 3.60 (s, 3H), 3.46 (s, 3H), 1.42 (s, 9H); ¹³C NMR (CDCl₃, 125 MHz) δ (ppm); 170.4, 159.3, 155.1, 130.0, 128.8, 113.9, 83.0, 79.9, 59.4, 55.4, 55.3, 52.0, 28.5; LR-MS: (+ESI) m/z 362 [M+Na]⁺; HR-MS: (+ESI) Calc. for C₁₇H₂₅NO₆: 362.1574 [M+Na]⁺, Found: 362.1573 [M+Na]⁺; [**a**]p²⁰ = -5.1° (c = 1.46, CHCl₃); IR (ATR): v_{max} = 3370, 2975, 2956, 2934, 2837, 1753, 1709, 1612, 1511 cm⁻¹; mp: 90 – 91 °C.

Allyl 4-((2S,3R)-2-((tert-butoxycarbonyl)amino)-3,4-dimethoxy-4-oxobutanamido)benzoate (S7)

Oxidation:

Methyl (2R,3R)-3-((tert-butoxycarbonyl)amino)-2-methoxy-3-(4-methoxyphenyl)propanoate (S6) (504 mg, 1.48 mmol) was dissolved in EtOAc/MeCN (1:1, v/v, 34 mL) and to this solution was added sodium periodate (5.75 g, 26.9 mmol) in water (135 mL). The resulting reaction mixture was stirred mechanically at room temperature for 30 min after which ruthenium (III) trichloride trihydrate (77 mg, 0.30 mmol) was added followed by NaHCO₃ (485 mg, 5.80 mmol). The resulting reaction mixture was stirred mechanically at room temperature for 16 h. The reaction mixture was poured onto saturated aqueous NaHCO₃ solution (600 mL) and washed with CH₂Cl₂ (2 x 200 mL). The organic layer was further extracted with saturated aqueous NaHCO₃ solution (600 mL). Aqueous extracts were combined, acidified to pH 1 via addition of 2 M aqueous HCI, extracted with EtOAc (6 x 300 mL), dried over filtered and concentrated in vacuo) afford anhydrous Na₂SO₄, to (2S,3R)-2-((tertbutoxycarbonyl)amino)-3,4-dimethoxy-4-oxobutanoic acid as a brown foam which was sufficiently pure to be used in the next step without purification.

Amidation: The crude residue, HATU (562 mg, 1.48 mmol), HOAt (402 mg, 2.96 mmol) and allyl 4aminobenzoate (8) (1.05 g, 5.92 mmol) were dissolved in DMF (15 mL) and to this solution was added *I*Pr₂NEt (516 μL, 2.96 mmol) at 0 °C. The reaction mixture was warmed to room temperature and stirred for 16 h. The reaction mixture was poured onto water (100 mL) and extracted with EtOAc (2 x 50 mL). Organic extracts were combined and washed with 2 M HCI (100 mL), saturated aqueous NaHCO3 solution (100 mL), water (100 mL), brine (100 mL), dried over anhydrous Na₂SO₄, filtered and concentrated in vacuo. The crude material was purified by flash chromatography (10 - 30% v/v EtOAc in n-hexanes) to afford the title compound (419 mg, 0.96 mmol, 65% over 2 steps) as a pale brown solid. ¹H NMR spectroscopic analysis indicated a 5:1 mixture of rotamers through integration of the singlets at δ 3.81 and 3.77 ppm. ¹**H NMR** (CDCl₃, 400 MHz, rotamers) δ (ppm); 8.51 (br s, 1H), 8.04 (m, 0.3H), 8.01 (m, 1.7H), 7.62 (m, 0.3H), 7.59 (m, 1.7H), 6.03 (ddt, J = 17.2, 10.5, 5.6 Hz, 1H), 5.61 (br d, 0.8H), 5.51 (br d, 0.2H), 5.40 (m, 1H), 5.28 (m, 1H), 4.80 (dt, J = 5.7, 1.4 Hz, 2H), 4.78 (m, 1H), 4.15 (d, J = 5.0 Hz, 1H), 3.81 (s, 2.5H), 3.77 (s, 0.5H), 3.52 (s, 2.5H), 3.49 (s, 0.5H), 1.48 (s, 7H), 1.47 (s, 2H); ¹³**C NMR** (CDCl₃, 100 MHz, rotamers) δ (ppm); 170.6, 167.3, 165.8, 141.6, 132.4, 131.0, 126.2, 119.3, 119.2, 118.3, 80.1, 65.6, 59.7, 59.5, 52.7, 28.4, 28.3, 1.2; HR-MS: (+ESI) Calc. for C₂₁H₂₈N₂O₈: 459.1738 [M+Na]⁺, Found: 459.1739 [M+Na]⁺; [α]_D²⁰ = -3.0° (c = 1.15, CHCl₃); **IR (ATR):** ν_{max} = 3331, 2977, 2962, 2905, 2836, 1714, 1689, 1600, 1530, 1514 cm⁻¹; **mp:** 143 – 144 °C.

(2R,3S)-3-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-4-((4-((allyloxy)carbonyl)phenyl)amino)-2methoxy-4-oxobutanoic acid (**25**)

<u>Methyl ester deprotection:</u> Allyl 4-((2S,3R)-2-((tert-butoxycarbonyl)amino)-3,4-dimethoxy-4-oxobutanamido)benzoate (**S7**) (392 mg, 0.90 mmol) was dissolved in THF (15 mL) and to this solution was added a 0.6 M aqueous LiOH solution (1.8 mL) at 0 °C. The resulting reaction mixture was stirred at 0 °C for 40 min, poured onto 2 M HCl (25 mL) and extracted with EtOAc (2 x 25 mL). The organic layer dried over anhydrous Na₂SO₄, filtered and concentrated in vacuo.

<u>Boc-deprotection</u>: The crude residue was dissolved in trifluoroacetic acid:CH₂Cl₂ (1:1, v/v, 6 mL) and stirred at room temperature for 1 h. The reaction mixture was concentrated in vacuo.

Emoc-protection: The crude residue was suspended in THF/saturated aqueous NaHCO3 solution (2:1 v/v, 6 mL) and to this suspension was added Fmoc-OSu (353 mg, 0.95 mmol). The resulting reaction mixture was stirred at room temperature for 16 h. The reaction mixture was then acidified to pH 1 via addition of 2 M aqueous HCl and extracted with ethyl acetate (3 x 25 mL). The combined organic extracts were washed with brine (50 mL), dried over anhydrous Na₂SO₄, filtered and concentrated in vacuo. The crude residue was purified by flash chromatography $(0 - 10\% v/v \text{ MeOH in CH}_2\text{Cl}_2)$ to afford the title compound (272 mg, 0.51 mmol, 57% over 3 steps) as a yellow solid. ¹H NMR spectroscopic analysis indicated a 1:3 mixture of rotamers through integration of the singlets at δ 3.43 and 3.41 ppm. ¹H NMR (MeOD, 400 MHz, rotamers) δ (ppm); 8.00-7.93 (m, 2H), 7.78-7.64 (m, 6H), 7.38-7.27 (m, 4H), 6.05 (ddt, J = 17.3, 10.5, 5.4 Hz, 1H), 5.39 (br dd, J = 1.5, 17.3 Hz, 1H), 5.27 (br dd, J = 1.4, 10.5 Hz, 1H), 4.79 (br dt, J = 1.3, 5.5 Hz, 2H), 4.71 (br d, J = 5.8 Hz, 1H), 4.44-4.33 (m, 2H), 4.22 (br t, J = 6.8 Hz, 1H), 4.02 (br d, J = 5.4 Hz, 1H), 3.43 (s, 0.8H), 3.41 (s, 2.2H); ¹³C NMR (MeOD, 100 MHz) δ (ppm); 167.2, 145.2, 145.1, 144.0, 142.6, 133.8, 131.5, 131.5, 128.8, 128.2, 126.7, 126.3, 126.2, 120.9, 120.7, 120.6, 118.4, 68.4, 68.3, 66.5, 59.4, 59.2, 58.7; LR-MS: (+ESI) m/z 545 [M+H]+; HR-MS: (+ESI) Calc. for C₃₀H₂₈N₂O₈: 567.1738 [M+Na]⁺, Found: 567.1737 [M+Na]⁺; [α]_D²⁰ = -13.0° (c = 0.6 in MeOH); IR (ATR): v_{max} = 3308, 2938, 1715, 1695, 1600, 1529, 1450, 1410, 1271, 1251 cm⁻¹; mp: 126 – 129 °C.

NMR Data for Coralmycin A (1)

Table S1 ¹H-NMR (500 MHz) and ¹³C-NMR (125 MHz) of synthetic coralmycin A (**1**) in DMSO-d⁶ referenced at 2.50 and 39.52 ppm, respectively. ¹³C signals were extracted from the HSQC and HMBC spectra. All assignments were made based on COSY, HSQC and HMBC data, in comparison the isolated natural product.^[5] Only the correct diastereomer was assigned. *Assignment difficult due to signal overlap. n.d. = not determined (due to overlapping signals, preventing assignment). ^value reported by Kim *et al.* does not match their included spectra.^[5]

Residue	Position	Natural δ ¹ H /ppm (mult, <i>J</i> Hz)	Synthetic δ ¹ H /ppm (mult, <i>J</i> Hz)	Δ/ppm	Natural δ ¹³ C /ppm	Synthetic δ ¹³ C /ppm	Δ/ppm
	1				n.d.	n.d.	
	2				n.d.	n.d.	
	3				n.d.	n.d.	
	4				n.d.	n.d.	
Δ	5				n.d.	n.d.	
^	6	n.d.	n.d.		n.d.	n.d.	
	7	n.d.	n.d.		n.d.	n.d.	
	8	4.72 (m)	4.69 (m)	0.03	72.3	72.7*	0.4
	9,10	1.23 (d, 6.0)	1.23 (d, 6.1)	0	21.9	22*	0.1
	NH	n.d.	n.d.				
	1				n.d.	n.d.	
	2				n.d.	n.d.	
	3				n.d.	n.d.	
	4				n.d.	n.d.	
в	5				n.d.	n.d.	
	6	n.d.	n.d.		n.d.	n.d.	
	7	n.d.	n.d.		n.d.	n.d.	
	8	4.38 (m)^	4.65 (m)		75.2	72.7*	0.5
	9.10	1.26 (d, 6.5)	1.25 (d, 6.0)	0.01	22	22*	0
	NH	9.53 (br s)	n.d.				
С	1				n.d.	n.d.	

	2				128.6	n.d.	
	3,7	7.96 (d, 8.5)	n.d.		128.4	n.d.	
	4,6	7.83 (d, 8.5)	7.82 (m)	0.01	118.8	119.0	0.2
	5				142	n.d.	
	NH	10.56 (s)	n.d.				
	α C=O				n.d.	n.d.	
	αCH	4.92 (dd, 8.0, 8.5)	4.92 (m)	0	55.7	55.7	0
	β СН	4.10 (d, 8.5)	4.14 (d, 7.9)	0.04	79.9	80.0	0.1
L-Asn	β ОМе	3.31 (s)	3.30 (s)	0.01	57.9	57.8	0.1
	β C=O				n.d.	n.d.	
	αNH	8.48 (d, 8.0)	n.d.				
		7.48 (br s)	n.d.				
	Y INI 12	7.56 (br s)	n.d.				
	1				n.d.	n.d.	
	2				128.5	n.d.	
П	3,7	7.91 (m)	n.d.		128.2	n.d.	
	4,6	7.91 (m)	7.92 (m)	0.01	119.4	119.5	0.1
	5				141.8	n.d.	
	NH	10.8 (s)	n.d.				
	1				164.2	n.d.	
	2				140.2	140.1	0.1
E	3,7	8.21 (d, 8.5)	8.22 (m)	0.01	129.3	129.1	0.2
	4,6	8.39 (d, 8.5)	8.36 (d, 7.5)	0.03	123.4	123.4	0
	5				149.2	149.1	0.1

Analytical HPLC Trace of Coralmycin A (1/epi-1)

Figure S1 RP-HPLC trace of coralmycin A (1/*epi*-1) with mass spectrum (+ESI) insert. Gradient: 0 – 100 vol % MeCN:water (0.1% TFA) linear gradient over 5 min. λ = 220 nm.

¹H NMR Spectrum of Coralmycin A (1/epi-1) showing diastereomeric ratio

Figure S2 ¹H spectrum of synthetic coralmycin A (1/*epi*-1) showing expected signals (green) and additional signals observed (blue).

NMR Data for Desmethoxycoralmycin (5)

Table S2 ¹H-NMR (500 MHz) and ¹³C-NMR (125 MHz) of **5** in DMSO-d⁶ referenced at 2.50 and 39.52 ppm, respectively. ¹³C signals were extracted from the HSQC and HMBC spectra. All assignments were made based on COSY, HSQC and HMBC data. *Assignment difficult due to signal overlap.

Residue	Position	δ ¹ H /ppm (mult, <i>J</i> Hz)	δ ¹³ C /ppm
	1		163.5
	2		111.1
	3		151.7
	4		135.2
	5		137.3
A	6	7.99 (m)*	117.3
	7	7.42 (m)*	123.7
	8	4.32 (m)	71.5*
	9,10	1.25 (m)*	21.9
	NH	11.28 (s)	
	1		163.6
	2		116.3
	3		150.4
	4		138.2
В	5		136.2
	6	7.51 (d, 8.7)	115.0
	7	7.79 (m)*	124.8
	8	4.70 (m)	71.4*
	9,10	1.25 (m)*	21.9
	NH	9.6 (m)	
	1		164.3
	2		128.4
C	3,7	7.82 (m)*	128.4
	4,6	7.98 (m)*	118.8
	5		142.3
	NH	7.79 (m)*	
L-Asn	α C=O		170.6

	αCH	4.92 (dd, 7.1, 7.1)	51.7
	βCH_2	2.70 (d, 6.9)	36.8
	β C=O		171.3
	αNH	8.69 (d, 7.3)	
	v NHo	7.42 (s)	
	Y IVI 2	6.98 (s)	
	1		165.7
	2		129.2
П	3,7	7.96 (m)*	128.3
	4,6	7.92 (m)*	119.6
	5		141.5
	NH	10.81 (s)	
	1		164.2
	2		140.3
E	3,7	8.22 (d, 8.4)	129.3
	4,6	8.38 (d, 8.4)	123.5
	5		149.3

Analytical HPLC Trace of Desmethoxycoralmycin A (5)

Figure S3 RP-HPLC trace of desmethoxycoralmycin A (5) with mass spectrum (+ESI) insert. Gradient: 0 - 100 vol % MeCN:water (0.1% TFA) linear gradient over 5 min. $\lambda = 220$ nm.

Figure S4 Liquid chromatography-MS chiral trace of desmethoxycoralmycin A using a Daicel Chiral CHIRALCEL[®] OJ-RH analytical column (pore size 5 μ m, 4.6 x 150 mm) with mass spectrum (+ESI) insert. Gradient: 30 – 70 vol% MeCN:H₂O (0.1% formic acid) linear gradient over 60 min (0.2 mL/min). $\lambda = 210$ nm.

Conditions for the attempted amidation of resin-bound 11 with PABA-OAII (8)

Scheme S1 Attempted synthesis of resin-bound S8.

Table S3 Conditions trialled for the amidation of **11**. Results based on integration of peaks *via* UPLC-MS analysis. SM = starting material; HATU = 1-[bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5b]pyridinium 3-oxid hexafluorophosphate; HOAt = <math>1-hydroxy-7-azabenzotriazole; DMTMM.BF₄ = 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium tetrafluoroborate; TFFH = tetramethylfluoroformamidinium hexafluorophosphate.

Entry	Conditions	Result	
1	HATU (4 eq.), HOAt (8 eq.), <i>i</i> Pr ₂ NEt (8 eq.), in	SM:HOAt active ester (7:3)	
I	DMF, rt, 16 h	SM. TOAT delive ester (7.5)	
2	HATU (4 eq,), HOAt (8 eq.), <i>i</i> Pr ₂ NEt (8 eq.), cat.	Product:HOAt active ester:dimethylamide	
Z	DMAP in DMF, rt, 16 h x 2	product^ (6:14:4)	
2	HATU (8 eq.), HOAt (16 eq.), <i>i</i> Pr ₂ NEt (16 eq.),	HOAt active ester:dimethylamide product^	
3	cat. DMAP in DMF, µW, 50 °C, 1 h	(7:3)	
4	N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline	014	
4	(4 eq.), DMF, rt, 16 h	SIM	
C *	DMTMM.BF ₄ (4 eq.), <i>i</i> Pr ₂ NEt (5 eq.) in DMF, μ W,	CMULIOAt active actor (9:2)	
5	50 °C, 2 h	SM.HOAI active ester (6.2)	
6*	TFFH (4 eq,), <i>i</i> Pr ₂ NEt (4 eq.) in DMF, rt, 16 h	SM:acid fluoride (17:3)	

*Reaction trialled on desnitro 11

^Product arising from the amidation of **11** with dimethylamine impurities (present in low quantities in DMF)

Antimicrobial data

Table S4	Target Panel	Bacterial	Strains and	Growth	Conditions
----------	--------------	-----------	-------------	--------	------------

Strain Nama	Strain Decignotion	DEI	Growth Modium	Growth
Strain Name	Strain Designation		Growin Medium	Condition
	Gram-Positive			
Bacillus subtilis	ATCC 6051	1	NB	37°C
Enterococcus faecalis	ATCC 29212	2	BHI	37°C
Enterococcus faecium	ATCC 6569	2	BHI	37°C
Staphylococcus aureus (Methicillin-	BAA-44	2	TSB	37°C
Resistant/Multidrug-Resistant)				
Staphylococcus aureus (Methicillin-Sensitive)	ATCC 29213	2	TSB	37°C
Staphylococcus epidermidis	ATCC 14990	1	TSB	37°C
Streptococcus pneumoniae	ATCC 49619	2	BHI	37°C; 5% CO ₂
	Gram-Negative			
Acinetobacter baumanii	ATCC 19606	2	TSB	37°C
Escherichia coli	K-12 MG1655	1	NB	37°C
Klebsiella aerogenes	ATCC 35029	1	NB	37°C
Klebsiella pneumoniae	ATCC 700603	2	NB	37°C
Providencia alcalifaciens	ATCC 9886	1	TSB	37°C
Pseudomonas aeruginosa	ATCC 27853	2	TSB	37°C
Salmonella enterica	ATCC 13311	2	NB	37°C
Shigella sonnei	ATCC 25931	2	NB	37°C
Vibrio cholerae	A1552 El Tor	2	TSB	37°C
Yersinia pseudotuberculosis	ATCC 6904	2	BHI	37°C

 Table S5 Biological activity of coralmycin A (1/epi-1), desmethoxycoralmycin A (5), and various controls against a range of Gram-negative and Gram-positive bacteria.

					MIC (µM)				
Gram-negative Bacteria	Coralmycin A (1/<i>epi</i>-1)	Desmethoxy coralmycin A (5)	Ampicillin	Gentamicin		Ciprofloxacin	Levofloxacin	Sparfloxacin	Norfloxacin
E. coli	2	0.83	0.09	0.25		0.17	0.10	0.13	0.25
K. aerogenes	21	1.7	>128	0.5		2.8	0.33	0.25	2
K. pneumoniae	128	21	>128	1		2	4	8	5.8
P. alcalifaciens	19	1	1.8	9.3		0.13	0.42	1.7	0.25
S. enterica	4	1	0.02	2		0.05	0.06	0.06	0.17
S. sonnei	1.5	0.15	0.03	0.25		0.08	0.13	0.06	0.25
Y. pseudotuberculosis	32	5.3	0.02	1.3		0.14	0.13	0.06	0.5
A. baumanii	8	1	>128	1.7		2	1	0.08	32
P. aeruginosa	128	21	>128	1.7		0.5	3.3	4	5.3
V. cholerae	1.3	0.46	0.75	0.83		0.02	0.02	0.004	0.15
Gram-positive		•	Penicillin	Vancomycin	Azithromycin		•		
Bacteria			G	vancontycin	Azitinomycin				
B. subtilis	2.2	0.5	2.13	0.19	12	0.38	0.19	0.19	128
MSSA	2.8	0.38	14	1.5	1.3	1.2	1	0.25	8

MRSA	3.3	0.8	>128	2	>128	64	32	128	>128
S. epidermidis	2.7	0.5	>128	4	1	1.3	1.7	1	8
E. faecium	0.33	0.06	8	1	10.7	0.67	1	0.5	2
E. faecalis	2	0.33	8	26.7	4	1	2.7	1.3	8
S. pneumoniae	0.13	0.05	0.33	32	0.1	>128	0.83	1	2

References

- [1] S. E. Van der Plas, A. Gea, S. Figaroli, P. J. De Clercq, A. Madder, Eur. J. Org. Chem. 2008, 2008, 1582.
- H. Garrido-Hernandez, K. D. Moon, R. L. Geahlen, R. F. Borch, J. Med. Chem. 2006, 49, [2] 3368.
- [3]
- Z. Zhang, Z. Wang, *J. Org. Chem.* **2006**, *71*, 7485. R. K. Mishra, C. M. Coates, K. D. Revell, E. Turos, *Org. Lett.* **2007**, *9*, 575. [4]
- Y. K. Kim, H.-J. Kim, G.-W. Kim, K. Cho, S. Takahashi, H. Koshino, W.-G. Kim, J. Nat. Prod. [5] **2016**, *79*, 2223.

NMR Spectra

	F2 - Pr SI WDW SSB LB GB PC	F2 - Ac Date_ Time INSRUM PULPROG TD PROBHD PULPROG TD PROBHD SUS SUS SUS SUS SUS SUS SUS TD0 SF01 SF01 SF01 SF01 SF02 NUC1 PLM1 SF02 CPDPRG[PCM2 PLW12 PLW13	Current NAME EXPNO PROCNO
	ocessing parameters 100.6127577 MHz EM 1.00 Hz 1.00 Hz 1.40	quisition Parameters 20191002 15.40 h spect 2108618_0516 (25252.525 Hz 0.770646 Hz 1.297646 Hz 1.297646 Hz 1.297646 Hz 1.297646 Sec 2.0000000 sec 0.03000000 sec 130 sec 100.6228303 MHz 130 usec 77.9830017 W 400.1316005 MHz 2 walt z16 90.00 W 0.32877001 W 0.16537000 W	Data Parameters PH-12-98A2 4
170 160 150 140 130 120 110 100 9		v v v v v v v v v v	156.225 153.965 148.676 148.102 146.231 138.956 133.827 133.379 133.083 132.258 128.887 128.054 127.863 127.841 127.863 127.841 127.742 126.802 126.697 125.505 123.617 120.036 109.598 107.849
080			
70			73.460
60			$< \frac{56.677}{56.430}$
50			
40			
30			
20			
udd Ll.			

Crystallographic Information File for 20

Table 1 Crystal data and structure refinement for rjp18pt2_s1634.

Identification code	rjp18pt2_s1634
Empirical formula	C ₁₄ H ₁₁ NO ₇ S
Formula weight	337.30
Temperature/K	100(2)
Crystal system	monoclinic
Space group	P21/c
a/Å	10.61747(19)
b/Å	13.02984(15)
c/Å	10.52228(16)
α/°	90
β/°	101.8819(16)
γ/°	90
Volume/Å ³	1424.50(4)
Z	4
$ ho_{calc}g/cm^3$	1.573
µ/mm ⁻¹	2.397
F(000)	696.0
Crystal size/mm ³	0.167 × 0.151 × 0.078
Radiation	Cu Kα (λ = 1.54184)
2Θ range for data collection/°	8.51 to 152.934
Index ranges	$-13 \le h \le 13, -16 \le k \le 16, -13 \le l \le 13$
Reflections collected	29696
Independent reflections	2981 [$R_{int} = 0.0259$, $R_{sigma} = 0.0110$]
Data/restraints/parameters	2981/0/212
Goodness-of-fit on F ²	1.076

Final R indexes [I>=2σ (I)]	R ₁ = 0.0344, wR ₂ = 0.0975
Final R indexes [all data]	$R_1 = 0.0358$, $wR_2 = 0.0992$
Largest diff. peak/hole / e Å $^{-3}$	0.41/-0.39

Table 2 Fractional Atomic Coordinates ($\times 10^4$) and Equivalent Isotropic Displacement Parameters (Å² $\times 10^3$) for rjp18pt2_s1634. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

x	У	Z	U(eq)
8732.8(3)	7080.0(2)	9276.9(3)	22.94(12)
8743.1(10)	7471.6(7)	10739.7(9)	26.7(2)
6737.1(10)	8710.5(8)	10341.6(11)	32.1(3)
5956.9(11)	10604.7(9)	10420.5(14)	44.4(3)
7259.2(12)	11823.0(9)	11222.6(13)	41.0(3)
12425.1(11)	8544.6(10)	11702.8(13)	41.6(3)
9990.0(10)	6687.2(8)	9295.4(11)	31.9(3)
8253.4(11)	7887.3(7)	8394.8(10)	29.2(2)
7042.7(13)	10928.2(10)	10908.4(14)	32.3(3)
8960.7(14)	8519.4(10)	10985.1(13)	23.7(3)
7872.8(14)	9157.7(11)	10793.1(13)	25.8(3)
8105.1(14)	10200.3(11)	11104.5(14)	27.3(3)
9339.8(14)	10578.2(11)	11579.5(14)	27.7(3)
10377.4(14)	9934.7(11)	11735.0(13)	26.9(3)
10195.7(14)	8887.2(11)	11431.3(13)	25.8(3)
11347.1(15)	8206.8(13)	11579.4(15)	31.6(3)
7619.8(13)	6080.0(10)	9147.5(13)	24.2(3)
8001.5(15)	5129.6(11)	9688.4(15)	28.5(3)
7118.8(16)	4331.4(12)	9506.2(17)	34.5(3)
5877.7(17)	4468.3(13)	8785.4(17)	37.4(4)
5519.0(17)	5430.9(15)	8269.2(18)	42.3(4)
6380.4(16)	6245.3(13)	8444.6(17)	35.7(4)
4953(2)	3574.9(17)	8544(2)	56.4(6)
	x 8732.8(3) 8743.1(10) 6737.1(10) 5956.9(11) 7259.2(12) 12425.1(11) 9990.0(10) 8253.4(11) 7042.7(13) 8960.7(14) 7872.8(14) 8105.1(14) 9339.8(14) 10377.4(14) 10377.4(14) 10195.7(14) 11347.1(15) 7619.8(13) 8001.5(15) 7118.8(16) 5877.7(17) 5519.0(17) 6380.4(16) 4953(2)	x y 8732.8(3) 7080.0(2) 8743.1(10) 7471.6(7) 6737.1(10) 8710.5(8) 5956.9(11) 10604.7(9) 7259.2(12) 11823.0(9) 12425.1(11) 8544.6(10) 9990.0(10) 6687.2(8) 8253.4(11) 7887.3(7) 7042.7(13) 10928.2(10) 8960.7(14) 8519.4(10) 8960.7(14) 8519.4(10) 7872.8(14) 9157.7(11) 8105.1(14) 10200.3(11) 9339.8(14) 10578.2(11) 10377.4(14) 9934.7(11) 10195.7(14) 8887.2(11) 10377.4(14) 9934.7(11) 10195.7(14) 8887.2(11) 11347.1(15) 8206.8(13) 7619.8(13) 6080.0(10) 8001.5(15) 5129.6(11) 7118.8(16) 4331.4(12) 5877.7(17) 4468.3(13) 5519.0(17) 5430.9(15) 6380.4(16) 6245.3(13) 4953(2) 3574.9(17)	y z 8732.8(3) 7080.0(2) 9276.9(3) 8743.1(10) 7471.6(7) 10739.7(9) 6737.1(10) 8710.5(8) 10341.6(11) 5956.9(11) 10604.7(9) 10420.5(14) 7259.2(12) 11823.0(9) 11222.6(13) 12425.1(11) 8544.6(10) 11702.8(13) 9990.0(10) 6687.2(8) 9295.4(11) 8253.4(11) 7887.3(7) 8394.8(10) 7042.7(13) 10928.2(10) 10908.4(14) 8960.7(14) 8519.4(10) 10985.1(13) 7872.8(14) 9157.7(11) 10793.1(3) 8105.1(14) 10200.3(11) 11104.5(14) 9339.8(14) 10578.2(11) 11579.5(14) 10377.4(14) 9934.7(11) 11735.0(13) 10195.7(14) 8887.2(11) 11431.3(13) 11347.1(15) 8206.8(13) 11579.4(15) 7619.8(13) 6080.0(10) 9147.5(13) 8001.5(15) 5129.6(11) 9688.4(15) 7118.8(16) 4331.4(12) 9506.2(17) <t< td=""></t<>

Table 3 Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for rjp18pt2_s1634. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atom	U11	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U 12
S1	26.9(2)	19.35(19)	23.10(19)	-2.45(11)	6.42(13)	-2.49(11)
O1	39.0(6)	19.7(5)	22.9(5)	-1.4(4)	9.4(4)	-5.2(4)
O2	26.6(5)	27.0(5)	43.8(6)	-9.7(4)	9.6(5)	-6.5(4)
O3	25.2(6)	34.1(6)	73.7(9)	-12.1(6)	9.5(6)	-4.2(5)
O4	40.1(7)	25.9(5)	56.3(8)	-13.1(5)	8.2(5)	-1.8(5)
O5	30.2(6)	41.5(7)	50.2(7)	7.6(5)	1.7(5)	1.2(5)
O6	26.0(5)	33.7(6)	36.8(6)	-6.0(4)	8.4(4)	-2.5(4)
07	41.4(6)	22.6(5)	24.0(5)	0.6(4)	7.2(4)	-3.2(4)
N1	30.8(7)	25.7(6)	42.4(7)	-8.2(5)	11.9(5)	-3.3(5)

32.8(7)	19.9(6)	19.6(6)	-1.4(5)	8.2(5)	-4.6(5)
27.7(7)	26.0(7)	25.5(6)	-3.9(5)	9.6(5)	-5.9(5)
30.0(7)	23.8(7)	30.4(7)	-4.7(5)	11.3(6)	-2.0(5)
34.3(8)	24.6(7)	25.5(7)	-5.2(5)	9.5(6)	-7.1(6)
29.0(7)	28.9(7)	22.0(6)	-1.7(5)	3.9(5)	-8.3(6)
30.6(7)	28.0(7)	18.5(6)	1.1(5)	4.2(5)	-2.1(6)
33.8(8)	31.3(7)	26.6(7)	3.6(6)	-0.9(6)	0.3(6)
25.6(7)	20.2(6)	26.3(6)	-2.3(5)	4.3(5)	-2.1(5)
28.5(7)	22.6(7)	33.9(7)	0.0(6)	5.1(6)	0.5(5)
41.0(9)	20.7(7)	43.3(9)	-1.1(6)	12.0(7)	-2.6(6)
38.1(9)	33.5(8)	40.8(9)	-9.8(7)	8.9(7)	-13.4(7)
28.8(8)	48.5(10)	44.7(9)	-0.6(8)	-4.0(7)	-6.4(7)
31.6(8)	30.5(8)	41.6(8)	4.7(6)	-0.2(6)	1.8(6)
58.7(13)	49.8(11)	61.2(13)	-18.0(10)	13.7(10)	-31.9(10)
	32.8(7) 27.7(7) 30.0(7) 34.3(8) 29.0(7) 30.6(7) 33.8(8) 25.6(7) 28.5(7) 41.0(9) 38.1(9) 28.8(8) 31.6(8) 58.7(13)	32.8(7)19.9(6)27.7(7)26.0(7)30.0(7)23.8(7)34.3(8)24.6(7)29.0(7)28.9(7)30.6(7)28.0(7)33.8(8)31.3(7)25.6(7)20.2(6)28.5(7)22.6(7)41.0(9)20.7(7)38.1(9)33.5(8)28.8(8)48.5(10)31.6(8)30.5(8)58.7(13)49.8(11)	32.8(7) $19.9(6)$ $19.6(6)$ $27.7(7)$ $26.0(7)$ $25.5(6)$ $30.0(7)$ $23.8(7)$ $30.4(7)$ $34.3(8)$ $24.6(7)$ $25.5(7)$ $29.0(7)$ $28.9(7)$ $22.0(6)$ $30.6(7)$ $28.0(7)$ $18.5(6)$ $33.8(8)$ $31.3(7)$ $26.6(7)$ $25.6(7)$ $20.2(6)$ $26.3(6)$ $28.5(7)$ $22.6(7)$ $33.9(7)$ $41.0(9)$ $20.7(7)$ $43.3(9)$ $38.1(9)$ $33.5(8)$ $40.8(9)$ $28.8(8)$ $48.5(10)$ $44.7(9)$ $31.6(8)$ $30.5(8)$ $41.6(8)$ $58.7(13)$ $49.8(11)$ $61.2(13)$	32.8(7) $19.9(6)$ $19.6(6)$ $-1.4(5)$ $27.7(7)$ $26.0(7)$ $25.5(6)$ $-3.9(5)$ $30.0(7)$ $23.8(7)$ $30.4(7)$ $-4.7(5)$ $34.3(8)$ $24.6(7)$ $25.5(7)$ $-5.2(5)$ $29.0(7)$ $28.9(7)$ $22.0(6)$ $-1.7(5)$ $30.6(7)$ $28.0(7)$ $18.5(6)$ $1.1(5)$ $33.8(8)$ $31.3(7)$ $26.6(7)$ $3.6(6)$ $25.6(7)$ $20.2(6)$ $26.3(6)$ $-2.3(5)$ $28.5(7)$ $22.6(7)$ $33.9(7)$ $0.0(6)$ $41.0(9)$ $20.7(7)$ $43.3(9)$ $-1.1(6)$ $38.1(9)$ $33.5(8)$ $40.8(9)$ $-9.8(7)$ $28.8(8)$ $48.5(10)$ $44.7(9)$ $-0.6(8)$ $31.6(8)$ $30.5(8)$ $41.6(8)$ $4.7(6)$ $58.7(13)$ $49.8(11)$ $61.2(13)$ $-18.0(10)$	32.8(7) $19.9(6)$ $19.6(6)$ $-1.4(5)$ $8.2(5)$ $27.7(7)$ $26.0(7)$ $25.5(6)$ $-3.9(5)$ $9.6(5)$ $30.0(7)$ $23.8(7)$ $30.4(7)$ $-4.7(5)$ $11.3(6)$ $34.3(8)$ $24.6(7)$ $25.5(7)$ $-5.2(5)$ $9.5(6)$ $29.0(7)$ $28.9(7)$ $22.0(6)$ $-1.7(5)$ $3.9(5)$ $30.6(7)$ $28.0(7)$ $18.5(6)$ $1.1(5)$ $4.2(5)$ $33.8(8)$ $31.3(7)$ $26.6(7)$ $3.6(6)$ $-0.9(6)$ $25.6(7)$ $20.2(6)$ $26.3(6)$ $-2.3(5)$ $4.3(5)$ $28.5(7)$ $22.6(7)$ $33.9(7)$ $0.0(6)$ $5.1(6)$ $41.0(9)$ $20.7(7)$ $43.3(9)$ $-1.1(6)$ $12.0(7)$ $38.1(9)$ $33.5(8)$ $40.8(9)$ $-9.8(7)$ $8.9(7)$ $28.8(8)$ $48.5(10)$ $44.7(9)$ $-0.6(8)$ $-4.0(7)$ $31.6(8)$ $30.5(8)$ $41.6(8)$ $4.7(6)$ $-0.2(6)$ $58.7(13)$ $49.8(11)$ $61.2(13)$ $-18.0(10)$ $13.7(10)$

Table 4 Bond Lengths for rjp18pt2_s1634.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
S1	O1	1.6194(10)	C2	C3	1.407(2)
S1	O6	1.4259(11)	C3	C4	1.393(2)
S1	07	1.4256(11)	C4	C5	1.367(2)
S1	C8	1.7454(14)	C5	C6	1.406(2)
01	C1	1.3998(16)	C6	C7	1.492(2)
02	C2	1.3354(17)	C8	C9	1.388(2)
O3	N1	1.2355(18)	C8	C13	1.387(2)
04	N1	1.2208(17)	C9	C10	1.387(2)
O5	C7	1.208(2)	C10	C11	1.390(2)
N1	C3	1.4556(19)	C11	C12	1.388(3)
C1	C2	1.404(2)	C11	C14	1.510(2)
C1	C6	1.384(2)	C12	C13	1.388(2)

Table 5 Bond Angles for rjp18pt2_s1634.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle	e/°
O1	S1	C8	100.45(6)	C4	C3	C2		122.11(14)
O6	S1	O1	106.08(6)	C5	C4	C3		120.12(13)
06	S1	C8	110.48(7)	C4	C5	C6		119.91(13)
07	S1	O1	108.54(6)	C1	C6	C5		119.29(14)
07	S1	O6	118.78(7)	C1	C6	C7		121.89(13)
07	S1	C8	110.78(7)	C5	C6	C7		118.81(13)
C1	O1	S1	116.82(8)	O5	C7	C6		122.18(15)
O3	N1	C3	117.79(13)	C9	C8	S1		119.88(11)
O4	N1	O3	123.09(14)	C13	C8	S1		118.57(11)
O4	N1	C3	119.12(13)	C13	C8	C9		121.47(14)

O1	C1	C2	116.85(12)	C10	C9	C8	118.72(14)
C6	C1	O1	120.60(13)	C9	C10	C11	121.13(15)
C6	C1	C2	122.53(13)	C10	C11	C14	120.20(17)
O2	C2	C1	116.65(13)	C12	C11	C10	118.83(14)
O2	C2	C3	127.32(14)	C12	C11	C14	120.95(18)
C1	C2	C3	116.03(13)	C13	C12	C11	121.22(15)
C2	C3	N1	120.16(13)	C8	C13	C12	118.61(15)
C4	C3	N1	117.72(13)				

Table 6 Hydrogen Bonds for rjp18pt2_s1634.

DHA	d(D-H)/Å	d(H-A)/Å	d(D-A)/Å	D-H-A/°
O2 H2 O3	0.87(2)	1.85(2)	2.6103(16)	145(2)
O2 H2 O31	0.87(2)	2.24(2)	2.9456(17)	138(2)

¹1-X,2-Y,2-Z

Table 7 Torsion Angles for rjp18pt2_s1634.

Α	в	С	D	Angle/°	Α	В	С	D	Angle/°
S1	01	C1	C2	90.13(13)	N1	C3	C4	C5	-177.52(13)
S1	01	C1	C6	-91.66(14)	C1	C2	C3	N1	178.48(12)
S1	C8	C9	C10	-176.25(12)	C1	C2	C3	C4	-0.2(2)
S1	C8	C13	C12	175.83(14)	C1	C6	C7	O5	164.24(15)
01	S1	C8	C9	-80.33(13)	C2	C1	C6	C5	1.5(2)
01	S1	C8	C13	102.78(13)	C2	C1	C6	C7	-177.47(13)
01	C1	C2	02	-2.74(18)	C2	C3	C4	C5	1.2(2)
01	C1	C2	C3	177.04(12)	C3	C4	C5	C6	-0.9(2)
01	C1	C6	C5	-176.63(12)	C4	C5	C6	C1	-0.4(2)
01	C1	C6	C7	4.4(2)	C4	C5	C6	C7	178.53(13)
02	C2	C3	N1	-1.8(2)	C5	C6	C7	O5	-14.7(2)
02	C2	C3	C4	179.55(14)	C6	C1	C2	02	179.08(13)
О3	N1	C3	C2	-2.6(2)	C6	C1	C2	C3	-1.1(2)
03	N1	C3	C4	176.10(14)	C8	S1	O1	C1	-147.98(10)
04	N1	C3	C2	177.73(14)	C8	C9	C10	C11	0.7(2)
04	N1	C3	C4	-3.5(2)	C9	C8	C13	C12	-1.0(2)
06	S1	O1	C1	96.97(11)	C9	C10	C11	C12	-1.5(3)
06	S1	C8	C9	31.36(14)	C9	C10	C11	C14	176.99(17)
06	S1	C8	C13	-145.53(12)	C10	C11	C12	C13	1.0(3)
07	S1	01	C1	-31.72(12)	C11	C12	C13	8C8	0.2(3)
07	S1	C8	C9	165.10(11)	C13	C8	C9	C10	0.5(2)
07	S1	C8	C13	-11.79(15)	C14	C11	C12	C13	-177.45(18)

Table 8 Hydrogen Atom Coordinates (Å×10 ⁴) and Isotropic	Displacement Parameters	(Ų×10³) for rjp18pt2_	s1634.
	, ,		•	/ / / –	

Atom	x	У	Z	U(eq)
H2	6180(20)	9207(19)	10250(20)	48
H4	9461	11284.18	11795.62	33
H5	11220.03	10195.05	12047.86	32
H7	11228.51	7484.09	11576.53	38
H9	8851.01	5027.96	10174.11	34
H10	7366.63	3679.83	9880.52	41
H12	4668.38	5534.04	7787.02	51
H13	6126.46	6902.18	8090.74	43
H14A	5009.77	3242.45	7722.62	85
H14B	4074.03	3823.31	8498.8	85
H14C	5176.69	3079.17	9255.66	85

Experimental

Single crystals of $C_{14}H_{11}NO_7S$ [rjp18pt2_s1634] were [crystallised from a mixture of ethyl acetate and petroleum benzine]. A suitable crystal was selected and [in paratone on a nylon loop] on a SuperNova, Dual, Cu at home/near, Atlas diffractometer. The crystal was kept at 100(2) K during data collection. Using Olex2 [1], the structure was solved with the olex2.solve [2] structure solution program using Charge Flipping and refined with the SHELXL [3] refinement package using Least Squares minimisation.

- 1. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. & Puschmann, H. (2009), J. Appl. Cryst. 42, 339-341.
- 2. Bourhis, L.J., Dolomanov, O.V., Gildea, R.J., Howard, J.A.K., Puschmann, H. (2015). Acta Cryst. A71, 59-75.
- 3. Sheldrick, G.M. (2015). Acta Cryst. C71, 3-8.

Crystal structure determination of [rjp18pt2_s1634]

Crystal Data for C₁₄H₁₁NO₇S (*M*=337.30 g/mol): monoclinic, space group P2₁/c (no. 14), *a* = 10.61747(19) Å, *b* = 13.02984(15) Å, *c* = 10.52228(16) Å, *β* = 101.8819(16)°, *V* = 1424.50(4) Å³, *Z* = 4, *T* = 100(2) K, μ (Cu K α) = 2.397 mm⁻¹, *Dcalc* = 1.573 g/cm³, 29696 reflections measured (8.51° ≤ 20 ≤ 152.934°), 2981 unique (*R*_{int} = 0.0259, R_{sigma} = 0.0110) which were used in all calculations. The final *R*₁ was 0.0344 (I > 2 σ (I)) and *wR*₂ was 0.0992 (all data).

Refinement model description

Number of restraints - 0, number of constraints - unknown.

Details: 1. Fixed Uiso At 1.2 times of: All C(H) groups At 1.5 times of: All C(H,H,H) groups, All O(H) groups 2.a Aromatic/amide H refined with riding coordinates: C4(H4), C5(H5), C7(H7), C9(H9), C10(H10), C12(H12), C13(H13) 2.b Idealised Me refined as rotating group: C14(H14A,H14B,H14C)