Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2021

> Electronic Supplementary Material (ESI) This journal is © The Royal Society of Chemistry 2021

# Supporting Information for Microfluidic synthesis of pyrrolidin-2-ones via photoinduced organocatalyzed cyclization of styrene, α-bromoalkyl ester and primary amine<sup>†</sup>

Minghui Wei<sup>a</sup>, Jingming Zhang<sup>a</sup>, Chengkou Liu<sup>a</sup>, Wei He<sup>a</sup>, Tingyu Wanga, Xiaobing Yang<sup>d</sup>, Zhao Yang<sup>b\*</sup>, Zheng Fang<sup>a,c\*</sup>, Kai Guo<sup>a,c</sup>

a. College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University ,30 Puzhu Rd S., Nanjing, 211816, China.

E-mail: guok@njtech.edu.cn, fzcpu@163.com; Fax: +8625 5813 9935; Tel: +8625 5813 9926

b. College of Engineering, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210003, China. E-mail: yzcpu@163.com

c. State Key Laboratory of Materials-Oriented Chemical Engineering, 30 Puzhu Rd S., Nanjing, 211816, China

d. Biology and Medicine Department, Jiangsu industrial technology research institute, Nanjing

210031, P.R. China, yangxb@jitri.org

#### Contents

| 1.General Information                                 | 2  |
|-------------------------------------------------------|----|
| 2. Batch and Microfluidic Reactor Device              | 3  |
| 3. Select Optimization Results                        | 4  |
| 4. Experiments for Mechanistic Studies                | 11 |
| 5. Analytical data for isolated compounds             | 14 |
| 6. <sup>1</sup> H NMR and <sup>13</sup> C NMR spectra | 23 |

#### **1.General Information**

1H/13C NMR spectra were recorded on magnet system 400'54 ascend instrument purchased from Bruker Biospin AG. All chemical shifts are given in parts per million and are measured relative to CDCl<sub>3</sub> as an internal standard. ESI-MS spectra were recorded on Agilent Q-TOF 6520. Products were purified by flash chromatogrgraphy on 200-300 mesh silica gel and visualized using a UV lamp (254 nm or 365 nm). All the solvents were used without further purification, unless otherwise state. the other commercial chemicals were used without further purification. All reactions were performed under an inert atmosphere of nitrogend. General procedure for the synthesis of 4 (4aaa as an example): An oven-dried 5 mL reaction syringe was charged with styrene (1 mmol, 1 equiv), ethyl 2-bromo-2-methylpropanoate (1 mmol, 1 equiv), aniline (1 mmol, 1 equiv), PC-B (1 mol %) and Pyridine (1.1 mmol, 1.1 equiv). And add 2 mL Dichloroethane (0.5 M) solution. Pass the solutions through a Quartz tubing (id = 0.5 mm, length =1.0 m) to building the pyrrolidin-2-ones during 20 minutes of residence time under the simulated solar lamp (300W, 220V, wavelength 250nm-780nm). The reaction mixture was diluted with HCl (30, 0.3 M) and extracted by ethyl acetate (30 mL) or dichloromethane (30 mL). The separated organic layers

were dried over by anhydrous Na<sub>2</sub>SO<sub>4</sub> and filtered. The filtrate was concentrated under reduced pressure and the residue was chromatographed on silica gel using hexane/ethyl acetate or dichloromethane/methanol to afford the desired product 4aaa (90% yield).



### 2. Batch and Microfluidic Reactor Device

Figure S1. Batch reactor device



Figure S2. Microfluidic reactor device

Note: The light source is a simulated solar lamp (300W, 220V, wavelength 250nm-780nm).

# **3. Select Optimization Results**

#### 3.1 Table 1. Varying the wavelength of light.<sup>a</sup>

| +     | Br | +         | NH <sub>2</sub><br>FC-B (2<br>K <sub>3</sub> PO <sub>4</sub> (1.<br>DCE (0.2<br>rt 12 | %)<br>1 equiv)<br>25 M)<br>h |
|-------|----|-----------|---------------------------------------------------------------------------------------|------------------------------|
| 1a    | 2a | 3a        |                                                                                       | 4aaa                         |
| Entry | W  | avelength | of Light                                                                              | yield 4aaa <sup>ь</sup> (%)  |
| 1     |    | 360-370   | nm                                                                                    | 84                           |
| 2     |    | 380-385   | nm                                                                                    | 73                           |
| 3     |    | 390-398   | nm                                                                                    | 61                           |
| 4     |    | 420-430   | nm                                                                                    | 58                           |
| 5     |    | 435-445   | nm                                                                                    | 45                           |
| 6°    |    | 250-780   | nm                                                                                    | 81                           |

<sup>a</sup> In a nitrogen-filled glovebox an oven-dried 10-mL reaction vial was charged with PC-B (2 % equiv), K<sub>3</sub>PO<sub>4</sub> (1.1 mmol, 1.1 equiv), and a stir bar. Add 4 mL DCE (0.25 M) solution. This was followed by styrene (1 mmol, 1 equiv), ethyl 2-bromo-2-methylpropanoate (2 mmol, 2 equiv), aniline (1 mmol, 1 equiv). Cover with a rubber stopper and stir at 660 rpm for 12 h at room temperature. Unless otherwise specified, the model of all lamps used is 10W, 220V, LED.
<sup>b</sup> In situ yield determined by NMR analysis (Dibromomethane as an internal standard).
<sup>c</sup> Simulated Sunlight.

#### 3.2 Table 2. Varying the Catalyst.<sup>a</sup>

|       |       |                 | Visible L                           | ight |                       |
|-------|-------|-----------------|-------------------------------------|------|-----------------------|
|       | + Br  |                 | NH <sub>2</sub><br>PC<br>Conditions |      |                       |
|       | 1a 2a | За              |                                     | 4aaa | a                     |
| ]     |       | CF <sub>3</sub> | °0<br>↓<br>↓<br>N ↓ √               |      |                       |
|       | N I I | N N             | ↓ ↓ ↓                               | L N  |                       |
| [     |       | $\bigcirc$      |                                     |      |                       |
|       |       | CF <sub>3</sub> | 0                                   |      |                       |
| Р     | C-A   | PC-B            | PC-C                                | PC   | -D                    |
| Entry | PC    | Base            | Solvent                             | Time | yield                 |
|       |       |                 |                                     |      | 4aaa <sup>b</sup> (%) |
| 1     | PC-A  | $K_3PO_4$       | DCE                                 | 12   | 75                    |
| 2     | PC-B  | $K_3PO_4$       | DCE                                 | 12   | 81                    |
| 3     | PC-C  | $K_3PO_4$       | DCE                                 | 12   | 73                    |
| 4     | PC-D  | $K_3PO_4$       | DCE                                 | 12   | 71                    |
| 5     | None  | $K_3PO_4$       | DCE                                 | 12   | None                  |
| 6°    | PC-B  | $K_3PO_4$       | DCE                                 | 12   | None                  |

<sup>a</sup> In a nitrogen-filled glovebox an oven-dried 10-mL reaction vial was charged with PC (2 % equiv),  $K_3PO_4$  (1.1 mmol, 1.1 equiv), and a stir bar. Add 4 mL DCE (0.25 M) solution. This was followed by styrene (1 mmol, 1 equiv), ethyl 2-bromo-2-methylpropanoate (2 mmol, 2 equiv), aniline (1 mmol, 1 equiv). Cover with a rubber stopper and stir at 660 rpm for 12 h at room temperature. <sup>b</sup> In situ yield determined by NMR analysis (Dibromomethane as an internal standard). <sup>c</sup> No light

| 1a 2a 3a 4aaa Visible Light PC-B (2 %) Base (1.1 equiv) DCE (0.25 M) rt 12 h 4aaa 4aaa |      |                    |         |      | aaa                     |
|----------------------------------------------------------------------------------------|------|--------------------|---------|------|-------------------------|
| Entry                                                                                  | PC   | Base               | Solvent | Time | yield 4aaa <sup>b</sup> |
|                                                                                        |      |                    |         |      | (%)                     |
| 1                                                                                      | PC-B | $K_3PO_4$          | DCE     | 12   | 81                      |
| 2                                                                                      | PC-B | $K_2CO_3$          | DCE     | 12   | 63                      |
| 3                                                                                      | PC-B | NaHCO <sub>3</sub> | DCE     | 12   | 58                      |
| 4                                                                                      | PC-B | LiOtBu             | DCE     | 12   | 67                      |
| 5                                                                                      | PC-B | Et₃N               | DCE     | 12   | None                    |
| 6                                                                                      | PC-B | DMAP               | DCE     | 12   | 79                      |
| 7                                                                                      | PC-B | DBU                | DCE     | 12   | 32                      |
| 8                                                                                      | PC-B | Pyridine           | DCE     | 12   | 84                      |
| 9                                                                                      | PC-B | None               | DCE     | 12   | 45                      |

#### 3.3 Table 3. Varying the Base.<sup>a</sup>

<sup>a</sup> In a nitrogen-filled glovebox an oven-dried 10-mL reaction vial was charged with PC (2 % equiv), Base (1.1 mmol, 1.1 equiv), and a stir bar. Add 4 mL DCE (0.25 M) solution.This was followed by styrene (1 mmol, 1 equiv), ethyl 2-bromo-2-methylpropanoate (2 mmol, 2 equiv), aniline (1 mmol, 1 equiv). Cover with a rubber stopper and stir at 660 rpm for 12 h at room temperature. <sup>b</sup> In situ yield determined by NMR analysis (Dibromomethane as an internal standard).

#### 3.4 Table 4. Varying the Solvent.<sup>a</sup>

| + $Br$ + $H_2$ Visible Light<br>PC-B (2 %)<br>Pyridine (1.1equiv)<br>Solvent (0.25 M)<br>rt 12 h |      |          |         |      |                       |  |
|--------------------------------------------------------------------------------------------------|------|----------|---------|------|-----------------------|--|
| 1a                                                                                               | 2    | a 3      | а       | 4aa  | aa                    |  |
| Entry                                                                                            | PC   | Base     | Solvent | Time | yield                 |  |
|                                                                                                  |      |          |         |      | 4aaa <sup>b</sup> (%) |  |
| 1                                                                                                | PC-B | Pyridine | DCE     | 12   | 84                    |  |
| 2                                                                                                | PC-B | Pyridine | MeCN    | 12   | 51                    |  |
| 3                                                                                                | PC-B | Pyridine | THF     | 12   | 45                    |  |
| 4                                                                                                | PC-B | Pyridine | DMA     | 12   | 23                    |  |
| 5                                                                                                | PC-B | Pyridine | DMF     | 12   | 31                    |  |

<sup>a</sup> In a nitrogen-filled glovebox an oven-dried 10-mL reaction vial was charged with PC (2 % equiv), Pyridine (1.1 mmol, 1.1 equiv), and a stir bar. Add X mL (0.25 M) solution. This was followed by styrene (1 mmol, 1 equiv), ethyl 2-bromo-2-methylpropanoate (2 mmol, 2 equiv), aniline (1 mmol, 1 equiv). Cover with a rubber stopper and stir at 660 rpm for 12 h at room temperature. <sup>b</sup> In situ yield determined by NMR analysis (Dibromomethane as an internal standard).

#### Visible Light NH, PC-B (2 %) Pyridine (1.1equiv) DCE (X M) rt 12 h 1a 3a 2a 4aaa Entry Concentration yield 4aaa<sup>b</sup> (%) 1 1.0 M 81 2 0.5 M 86 3 0.25 M 84 4 0.10 M 73

#### 3.5 Table 5. Concentration.<sup>a</sup>

<sup>a</sup> In a nitrogen-filled glovebox an oven-dried 10-mL reaction vial was charged with PC (2 % equiv), Pyridine (1.1 mmol, 1.1 equiv), and a stir bar. Add DCE (X M) solution. This was followed by styrene (1 mmol, 1 equiv), ethyl 2-bromo-2-methylpropanoate (2 mmol, 2 equiv), aniline (1 mmol, 1 equiv). Cover with a rubber stopper and stir at 660 rpm for 12 h at room temperature.
<sup>b</sup> In situ yield determined by NMR analysis (Dibromomethane as an internal standard).

| +     | Br | + NH <sub>2</sub> | Visible Light<br>PC-B (X %)<br>Pyridine (1.1 equiv)<br>DCE (0.5 M) |                             |
|-------|----|-------------------|--------------------------------------------------------------------|-----------------------------|
| 1a    | 2a | 3а                | rt 12 h                                                            | 4aaa                        |
| Entry |    | PC (X mol %)      |                                                                    | yield 4aaa <sup>b</sup> (%) |
| 1     |    | 2                 |                                                                    | 86                          |
| 2     |    | 1                 |                                                                    | 71                          |
| 3     |    | 0.5               |                                                                    | 65                          |
| 4     |    | 0.1               |                                                                    | 48                          |
| 5     |    | 0.05              |                                                                    | 29                          |
| 6     |    | None              |                                                                    | None                        |

#### 3.6 Table 6. Catalyst concentration.<sup>a</sup>

<sup>a</sup> In a nitrogen-filled glovebox an oven-dried 10-mL reaction vial was charged with PC (X % equiv), Pyridine (1.1 mmol, 1.1 equiv), and a stir bar. Add 2 mL DCE (0.5 M) solution. This was followed by styrene (1 mmol, 1 equiv), ethyl 2-bromo-2-methylpropanoate (2 mmol, 2 equiv), aniline (1 mmol, 1 equiv). Cover with a rubber stopper and stir at 660 rpm for 12 h at room temperature. <sup>b</sup> In situ yield determined by NMR analysis (Dibromomethane as an internal standard).

| +     | Br 0 + ( | NH <sub>2</sub> | Visible Light<br>PC-B (2 %)<br>Pyridine (1.1 equiv)<br>DCE (0.5 M) |
|-------|----------|-----------------|--------------------------------------------------------------------|
| 1a    | 2a       | 3a              | 4aaa                                                               |
| Entry | Time(h)  |                 | yield 4aaa⁵ (%)                                                    |
| 1     | 1        |                 | 23                                                                 |
| 2     | 2        |                 | 31                                                                 |
| 3     | 3        |                 | 59                                                                 |
| 4     | 4        |                 | 84                                                                 |
| 5     | 6        |                 | 86                                                                 |
| 6     | 12       |                 | 86                                                                 |

#### 3.7 Table 7. Residence time.<sup>a</sup>

<sup>a</sup> In a nitrogen-filled glovebox an oven-dried 10-mL reaction vial was charged with PC (2 % equiv), Pyridine (1.1 mmol, 1.1 equiv), and a stir bar. Add 2 mL DCE (0.5 M) solution. This was followed by styrene (1 mmol, 1 equiv), ethyl 2-bromo-2-methylpropanoate (2 mmol, 2 equiv), aniline (1 mmol, 1 equiv). Cover with a rubber stopper and stir at 660 rpm in room temperature. <sup>b</sup> In situ yield determined by NMR analysis (Dibromomethane as an internal standard).

|       | + Br           | 0<br>           | NH <sub>2</sub><br>Visible Light<br>PC-B (2 %)<br>Pyridine (1.1 equiv<br>DCE (0.5 M)<br>rt 4 h | 4aaa                    |
|-------|----------------|-----------------|------------------------------------------------------------------------------------------------|-------------------------|
| Entry | Ethyl 2-bromo- | 2-methylpropano | ate Aniline                                                                                    | yield 4aaa <sup>b</sup> |
|       |                |                 |                                                                                                | (%)                     |
| 1     |                | 2               | 1                                                                                              | 84                      |
| 2     |                | 2               | 3                                                                                              | 87                      |
| 3     |                | 2               | 5                                                                                              | 89                      |
| 4     |                | 1               | 1                                                                                              | 63                      |
| 5     |                | 3               | 1                                                                                              | 88                      |
| 6     |                | 5               | 1                                                                                              | 87                      |

~

#### 3.8 Table 8. Reagent Loadings.<sup>a</sup>

<sup>a</sup> In a nitrogen-filled glovebox an oven-dried 10-mL reaction vial was charged with PC (2 % equiv), Pyridine (1.1 mmol, 1.1 equiv), and a stir bar. Add 2 mL DCE (0.5 M) solution. This was followed by styrene (1 mmol, 1 equiv), ethyl 2-bromo-2-methylpropanoate (1-5 mmol), aniline (1-5 mmol). Cover with a rubber stopper and stir at 660 rpm for 4 h at room temperature.

<sup>b</sup> In situ yield determined by NMR analysis (Dibromomethane as an internal standard).

#### 3.9 Table 9. Reagent Loadings.<sup>a</sup>

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |          |        | Visible Light |              | CF3               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------|--------|---------------|--------------|-------------------|
| $ \begin{array}{c} O \\ + Br \end{array} \rightarrow O \\ + O \\$ |         |          |        |               |              |                   |
| 1a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2       | 2a       | 3a     | it.           | 4aaa i       | PC-B              |
| Entry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PC-B    | Tube     | Tube   | Flow rate     | Residence    | yield             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (euqiv) | diameter | length | (μL /         | time(minute) | 4aaa <sup>b</sup> |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         | (mm)     | (m)    | minute)       |              | (%)               |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2%      | 2        | 1      | 104.7         | 30           | 89                |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1%      | 2        | 1      | 104.7         | 30           | 87                |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.5%    | 2        | 1      | 104.7         | 30           | 63                |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.1%    | 2        | 1      | 104.7         | 30           | 48                |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1%      | 1        | 1      | 26.2          | 30           | 90                |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1%      | 0.5      | 1      | 6.5           | 30           | 93                |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1%      | 0.5      | 0.5    | 3.3           | 30           | 68                |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1%      | 0.5      | 2      | 13.1          | 30           | 91                |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1%      | 0.5      | 1      | 39.3          | 5            | 46                |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1%      | 0.5      | 1      | 19.6          | 10           | 72                |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1%      | 0.5      | 1      | 9.8           | 20           | 93                |
| 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1%      | 0.5      | 1      | 4.9           | 40           | 94                |

<sup>a</sup> Reaction conditions: Pyridine (1.1 mmol, 1.1 equiv), styrene (1 mmol, 1 equiv), ethyl 2-bromo-2methylpropanoate (1 mmol, 1 equiv), aniline (1 mmol, 1 equiv) and 2 mL DCE (0.5 M) solution, room temperature.

<sup>b</sup> In situ yield determined by NMR analysis (Dibromomethane as an internal standard).

#### 3. 10 A Scale-up Continuous Flow Reaction.<sup>a</sup>



<sup>a</sup> Reaction conditions: 1 (10 mmol), 2 (1 equiv), 3 (1equiv), DCE (20 mL), Pyridine (1.1 equiv), and PC-B (1 % equiv.) at room temperature for 20 minutes. <sup>b</sup> Isolated yield.



В

# 4. Experiments for Mechanistic Studies

Proposed mechanism.

# **Electrospray Ionization-Time-of-Flight-Mass Spectrometry**

#### (ESI-TOF-MS) of some intermediates and byproducts.



Cyclic voltammograms (vs. Ag/AgCl) of catalysts PC-B in DCE.



#### 5. Analytical data for isolated compounds



3,3-dimethyl-1,5-diphenylpyrrolidin-2-one:

Reddish brown oily (239.5mg, 90% yield); <sup>1</sup>H NMR (400 MHz, Chloroform-*d*)  $\delta$  7.42 – 7.25 (m, 7H), 7.24 – 7.01 (m, 3H), 5.42 (dd, *J* = 10.2, 6.0 Hz, 1H), 2.43 (dd, *J* = 12.7, 6.0 Hz, 1H), 2.04 (d, *J* = 3.8 Hz, 1H), 1.44 (d, *J* = 13.4 Hz, 6H). <sup>13</sup>C NMR (101 MHz, Chloroform-*d*)  $\delta$  139.20, 127.59, 127.53, 127.08, 124.39, 122.52, 121.71, 79.14, 46.23, 40.83, 28.68, 25.30, 25.18 .HRMS calcd for C18H19NO [M+H]<sup>+</sup> 266.1539 found 266.1508.



3,3-dimethyl-5-phenyl-1-(4-(trifluoromethyl)phenyl)pyrrolidin-2-one: Reddish brown oily (177.1mg, 53% yield); <sup>1</sup>H NMR (400 MHz, Chloroform-*d*)  $\delta$  7.42 (d, *J* = 8.3 Hz, 2H), 7.25 (dd, *J* = 8.1, 6.3 Hz, 2H), 7.20 – 7.14 (m, 3H), 7.07 (d, *J* = 8.2 Hz, 2H), 5.30 (dd, *J* = 10.2, 6.0 Hz, 1H), 2.32 (dd, *J* = 12.7, 6.0 Hz, 1H), 1.94 (dd, *J* = 12.8, 10.2 Hz, 1H), 1.33 (d, *J* = 13.8 Hz, 6H). <sup>13</sup>C NMR (101 MHz, Chloroform-*d*)  $\delta$  168.17, 149.85, 138.79, 127.65, 127.23, 124.94, 124.71 (q, *J* = 3.7 Hz), 124.35, 121.70, 111.09, 79.38, 45.97, 40.86, 25.16, 25.05.<sup>19</sup>F NMR (376 MHz, Chloroform-*d*)  $\delta$  -61.04. HRMS calcd for C19H18F3NO [M+H]<sup>+</sup> 334.1413 found 334.1393



1-(4-fluorophenyl)-3,3-dimethyl-5-phenylpyrrolidin-2-one:

Brown oil(201.7mg, 71% yield);<sup>1</sup>H NMR (400 MHz, Chloroform-*d*) δ 7.43 – 7.31 (m, 6H), 7.21 – 7.15 (m, 2H), 7.04 – 6.96 (m, 2H), 5.45 (dd, J = 10.4, 5.9 Hz, 1H), 2.45 (dd, J = 12.7, 6.0 Hz, 1H), 2.06 (dd, J = 12.7, 10.3 Hz, 1H), 1.46 (d, J = 11.5 Hz, 6H). <sup>13</sup>C NMR (101 MHz, Chloroform-*d*) δ 167.13 , 159.39 , 156.99 , 142.08 , 139.08 , 127.57 , 127.08 , 124.34 , 123.29 (d, J = 7.9 Hz), 114.10 , 113.87 , 79.02 , 45.96 , 40.76 , 25.25 , 25.05 .<sup>19</sup>F NMR (376 MH<sub>z</sub>, Chloroform-*d*) δ -120.18. HRMS calcd for C18H18FNO [M+H]<sup>+</sup> 284.1445 found 284.1446.



1-(4-chlorophenyl)-3,3-dimethyl-5-phenylpyrrolidin-2-one:

Reddish brown oily (186.1mg, 62% yield); <sup>1</sup>H NMR (400 MHz, Chloroform-*d*)  $\delta$  7.45 – 7.21 (m, 7H), 7.08 (d, J = 8.2 Hz, 2H), 5.41 (dd, J = 10.3, 5.9 Hz, 1H), 2.42 (dd, J = 12.7, 5.9 Hz, 1H), 2.12 – 1.95 (m, 1H), 1.42 (d, J = 13.3 Hz, 6H).<sup>13</sup>C NMR (101 MHz, Chloroform-*d*)  $\delta$  168.80, 140.01, 128.71, 128.64, 128.59, 128.25, 125.43, 124.28, 80.32, 47.10, 41.96, 26.31, 26.17. <sup>13</sup>C NMR (101 MHz, Chloroform-*d*)  $\delta$  168.80, 145.74, 140.01, 128.71, 128.59, 128.25, 125.43, 124.28, 80.32, 47.10, 41.96, 26.31, 26.17. <sup>13</sup>C NMR (101 MHz, Chloroform-*d*)  $\delta$  168.80, 145.74, 140.01, 128.71, 128.59, 128.25, 125.43, 124.28, 80.32, 47.10, 41.96, 26.31, 26.17. <sup>13</sup>C NMR (101 MHz, Chloroform-*d*)  $\delta$  168.80, 145.74, 140.01, 128.71, 128.59, 128.25, 125.43, 124.28, 80.32, 47.10, 41.96, 26.31, 26.17. <sup>13</sup>C NMR (101 MHz, Chloroform-*d*)  $\delta$  168.80, 145.74, 140.01, 128.71, 128.59, 128.25, 125.43, 124.28, 80.32, 47.10, 41.96, 26.31, 26.17. <sup>13</sup>C NMR (101 MHz, Chloroform-*d*)  $\delta$  168.80, 145.74, 140.01, 128.71, 128.59, 128.25, 125.43, 124.28, 80.32, 47.10, 41.96, 26.31, 26.17. <sup>13</sup>C NMR (101 MHz, Chloroform-*d*)  $\delta$  168.80, 145.74, 140.01, 128.71, 128.59, 128.25, 125.43, 124.28, 80.32, 47.10, 41.96, 26.31, 26.17. <sup>13</sup>C NMR (101 MHz, Chloroform-*d*)  $\delta$  168.80, 145.74, 140.01, 128.71, 128.59, 128.25, 125.43, 124.28, 80.32, 47.10, 41.96, 26.31, 26.17. <sup>13</sup>C NMR (101 MHz, Chloroform-*d*)  $\delta$  168.80, 145.74, 140.01, 128.71, 128.59, 128.25, 125.43, 124.28, 80.32, 47.10, 41.96, 26.31, 26.17. <sup>13</sup>C NMR (101 MHz, Chloroform-*d*)  $\delta$  168.80, 145.74, 140.01, 128.71, 128.59, 128.25, 125.43, 124.28, 80.32, 47.10, 41.96, 26.31, 26.17. <sup>13</sup>C NMR (101 MHz, Chloroform-*d*)  $\delta$  168.80, 145.74, 140.01, 128.71, 128.59, 128.25, 125.43, 124.28, 80.32, 47.10, 41.96, 26.31, 26.17. <sup>13</sup>C NMR (101 MHz, 128.71, 128.59, 128.54, 128.55, 125.43, 124.28, 128.55, 125.43, 124.28, 128.55, 125.43, 124.28, 128.55, 125.43, 124.28, 128.55, 128.55, 128.55, 128.55, 128.55, 128.55, 128.55, 128.55, 128.55, 128.55, 128.55, 128.55, 128.55, 128.55, 128.55, 128.55,



3,3-dimethyl-5-phenyl-1-(p-tolyl)pyrrolidin-2-one:

Brown yellow solid (232.5mg, 83% yield); <sup>1</sup>H NMR (400 MHz, Chloroform-*d*) δ 7.38 – 7.27 (m, 5H), 7.15 – 6.97 (m, 4H), 5.39 (dd, *J* = 10.1, 6.0 Hz, 1H), 2.41 (dd, *J* = 12.7, 6.0 Hz, 1H), 2.29 (s, 3H), 2.01 (dd, *J* = 12.6, 10.1 Hz, 1H), 1.42 (d, *J* = 12.1 Hz, 6H).<sup>13</sup>C NMR (101 MHz, Chloroform-*d*) δ 167.92 , 144.33 , 140.39 , 132.86 , 129.13 , 128.72 , 128.58 , 128.03 , 125.41 , 125.31 , 122.67 , 79.95 , 77.60 , 77.23 , 47.31 , 41.75 , 26.37 , 26.22 , 20.91 . HRMS calcd for C19H21NO [M+H]<sup>+</sup> 280.1696 found 280.1689.



3,3-dimethyl-5-phenyl-1-(o-tolyl)pyrrolidin-2-one:

Reddish brown oil(226.9mg, 81% yield); <sup>1</sup>H NMR (400 MHz, Chloroform-*d*)  $\delta$  7.35 – 7.25 (m, 4H), 7.23 – 7.09 (m, 3H), 6.97 – 6.90 (m, 2H), 5.36 (dd, J = 10.1, 6.0 Hz, 1H), 2.42 (dd, J = 12.7, 6.0 Hz, 1H), 2.20 (s, 3H), 2.06 – 2.01 (m, 1H), 1.46 (d, J = 13.2 Hz, 6H). <sup>13</sup>C NMR (101 MHz, Chloroform-*d*)  $\delta$  166.46 , 139.21 , 128.98 , 128.10 , 127.51 , 127.01 , 125.00 , 124.42 , 122.07 , 120.01 , 78.75 , 46.33 , 40.51 , 25.38 , 25.26 , 16.85 .HRMS calcd for C19H21NO [M+H]<sup>+</sup> 280.1693 found 280.1663.



3,3-dimethyl-5-phenyl-1-(m-tolyl)pyrrolidin-2-one:

Reddish brown oil(221.3mg, 79% yield); <sup>1</sup>H NMR (400 MHz, Chloroform-*d*)  $\delta$  7.36 – 7.33 (m, 2H), 7.29 (t, J = 3.1 Hz, 2H), 7.21 – 7.08 (m, 2H), 6.94 (d, J = 7.5 Hz, 2H), 6.84 (d, J = 7.4 Hz, 1H), 5.39 (dd, J = 10.1, 6.0 Hz, 1H), 2.41 (dd, J = 12.6, 6.0 Hz, 1H), 2.34 – 2.28 (m, 3H), 2.01 (dd, J = 12.5, 10.0 Hz, 1H), 1.42 (d, J = 14.9 Hz, 6H).<sup>13</sup>C NMR (101 MHz, Chloroform-*d*)  $\delta$  167.87, 147.22, 140.49, 138.21, 128.76, 128.61, 128.38, 128.04, 125.43, 124.23, 123.46, 119.56, 79.85, 47.34, 41.69, 26.39, 26.28, 21.49 HRMS calcd for C19H21NO [M+H]<sup>+</sup> 280.1704 found 280.1693.



1-(2-fluorophenyl)-3,3-dimethyl-5-phenylpyrrolidin-2-one:

Brown oil (196.1mg, 69% yield);<sup>1</sup>H NMR (400 MHz, Chloroform-*d*)  $\delta$  7.40 – 7.31 (m, 5H), 7.13 – 7.01 (m, 4H), 5.44 (dd, J = 10.2, 5.9 Hz, 1H), 2.46 (dd, J = 12.7, 5.9 Hz, 1H), 2.08 (dd, J = 12.8, 10.1 Hz, 1H), 1.49 (d, J = 12.6 Hz, 6H). <sup>13</sup>C NMR (101 MHz, )  $\delta$  170.33 , 155.36 , 152.92 , 140.06 , 135.55 (d, J = 13.5 Hz), 128.63 , 128.17 , 125.51 , 124.31 – 124.01 (m), 123.91 (d, J = 3.6 Hz), 115.66 (d, J = 20.4 Hz), 80.43 , 47.68 , 41.89 , 26.26 , 26.15 .<sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -124.80.HRMS calcd for C18H18FNO [M+H]<sup>+</sup> 284.1445 found 284.1437.



5-(3-fluorophenyl)-3,3-dimethyl-1-phenylpyrrolidin-2-one:

Brown oil(184.7mg, 65% yield);<sup>1</sup>H NMR (400 MHz, Chloroform-*d*) δ 7.42 – 7.30 (m, 5H), 7.24 (d, J = 8.1 Hz, 1H), 6.95 – 6.87 (m, 2H), 6.77 (td, J = 8.4, 2.5 Hz, 1H), 5.46 (dd, J = 10.2, 6.0 Hz, 1H), 2.46 (dd, J = 12.7, 6.0 Hz, 1H), 2.07 (dd, J = 12.7, 10.2 Hz, 1H), 1.46 (d, J = 15.0 Hz, 6H). <sup>13</sup>C NMR (101 MHz, Chloroform-*d*) δ 167.75, 163.17, 160.74, 148.10 (d, J = 9.5 Hz), 138.96, 128.45 (d, J = 9.4 Hz), 127.62, 127.14, 124.35, 117.61 (d, J = 2.8 Hz), 109.01 (dd, J = 21.9, 19.5 Hz), 79.23, 46.01, 40.83, 25.22, 25.08.<sup>19</sup>F NMR (376 MH<sub>z</sub>, Chloroform-*d*) δ -113.62.HRMS calcd for C18H18FNO [M+H]<sup>+</sup> 284.1445 found 284.1441.



1-(3,5-dimethylphenyl)-3,3-dimethyl-5-phenylpyrrolidin-2-one:

Brown oil(214.8mg, 73% yield); <sup>1</sup>H NMR (400 MHz, Chloroform-*d*)  $\delta$  7.32 – 7.25 (m, 5H), 6.75 (s, 2H), 6.66 (s, 1H), 5.36 (dd, J = 10.0, 6.0 Hz, 1H), 2.40 – 2.35 (m, 1H), 2.26 (s, 6H), 1.98 (dd, J = 12.6, 10.1 Hz, 1H), 1.40 (d, J = 14.0 Hz, 6H). <sup>13</sup>C NMR (101 MHz, Chloroform-*d*)  $\delta$  167.71, 147.24, 140.64, 137.99, 128.62, 128.04, 125.45, 125.22, 120.39, 79.81, 47.37, 41.67, 26.46, 26.33, 21.46 .HRMS calcd for C20H23NO [M+H]<sup>+</sup>294.1837 found 294.1854.



1-(4-isopropylphenyl)-3,3-dimethyl-5-phenylpyrrolidin-2-one: Brown oil (234.2mg, 76% yield);<sup>1</sup>H NMR (400 MHz, Chloroform-*d*)  $\delta$  7.42 – 7.34 (m, 5H), 7.16 (d, *J* = 2.9 Hz, 4H), 5.43 (dd, *J* = 10.2, 6.0 Hz, 1H), 2.89 (p, *J* = 6.9 Hz, 1H), 2.44 (dd, *J* = 12.6, 6.0 Hz, 1H), 2.05 (dd, *J* = 12.7, 10.3 Hz, 1H), 1.46 (d, *J* = 10.1 Hz, 6H), 1.25 (d, *J* = 6.9 Hz, 6H).<sup>13</sup>C NMR (101 MHz, Chloroform-*d*)  $\delta$  167.68, 144.53, 143.99, 140.47, 129.32, 128.64, 128.09, 127.93, 126.51, 125.52, 122.89, 116.21, 79.99, 59.86, 49.51, 47.39, 41.82, 33.60, 27.70, 26.43, 26.27, 24.21,

24.16 , 24.13 , 24.00 .HRMS calcd for C21H25NO  $[M\text{+}H]^{+}\,308.2009$  found 308.2008.



1-([1,1'-biphenyl]-4-yl)-3,3-dimethyl-5-phenylpyrrolidin-2-one: Reddish brown solid(290.9mg, 85% yield);<sup>1</sup>H NMR (400 MHz, Chloroform-*d*)  $\delta$  7.54 (dd, *J* = 17.5, 7.8 Hz, 4H), 7.43 – 7.29 (m, 6H), 7.23 (d, *J* = 8.1 Hz, 4H), 5.39 (dd, *J* = 10.2, 6.0 Hz, 1H), 2.39 (dd, *J* = 12.7, 6.1 Hz, 1H), 2.02 (d, *J* = 10.8 Hz, 1H), 1.42 (d, *J* = 9.1 Hz, 6H). <sup>13</sup>C NMR (101 MHz, Chloroform-*d*)  $\delta$  168.34, 146.60, 141.19, 140.35, 136.35, 128.89, 128.74, 128.21, 127.34, 126.91, 126.81, 125.53, 123.40, 80.18, 47.29, 41.94, 26.46, 26.32 .HRMS calcd for C24H23NO [M+H]<sup>+</sup> 342.1852 found 342.1848.



3,3-dimethyl-1-(naphthalen-1-yl)-5-phenylpyrrolidin-2-one:

Brown oil (275.1mg, 87% yield);<sup>1</sup>H NMR (400 MHz, Chloroform-*d*) δ 8.15 – 8.08 (m, 1H), 7.86 – 7.82 (m, 1H), 7.59 (d, *J* = 8.2 Hz, 1H), 7.51 – 7.47 (m, 2H), 7.45 – 7.41 (m, 1H), 7.35 – 7.29 (m, 3H), 7.22 (td, *J* = 8.0, 7.4, 1.5 Hz, 3H), 5.45 (dd, *J* = 10.0, 6.0 Hz, 1H), 2.52 (dd, *J* = 12.7, 6.1 Hz, 1H), 2.13 (dd, *J* = 12.7, 10.0 Hz, 1H), 1.62 (d, *J* = 7.8 Hz, 6H). <sup>13</sup>C NMR (101 MHz, Chloroform-*d*) δ 140.07, 134.19, 128.58, 128.09, 127.91, 127.87, 125.82, 125.77, 125.36, 125.20, 123.64, 123.54, 116.98, 80.38, 47.41, 42.20, 29.74, 26.57, 26.43 .HRMS calcd for C22H21NO [M+H]<sup>+</sup>316.1696 found 316.1682.



3,3-dimethyl-1-phenyl-5-(p-tolyl)pyrrolidin-2-one:

Yellow solid (218.5mg, 78% yield);<sup>1</sup>H NMR (400 MHz, Chloroform-*d*)  $\delta$  7.28 – 7.23 (m, 2H), 7.19 – 7.11 (m, 6H), 7.01 (tt, *J* = 7.2, 1.3 Hz, 1H), 5.35 (dd, *J* = 10.2, 5.9 Hz, 1H), 2.39 – 2.35 (m, 1H), 2.32 (s, 3H), 2.00 (dd, *J* = 12.7, 10.2 Hz, 1H), 1.42 (d, *J* = 8.6 Hz, 6H).<sup>13</sup>C NMR (101 MHz, Chloroform-*d*)  $\delta$  168.22, 147.29, 137.93, 137.29, 129.42, 129.31, 128.56, 125.57, 125.46, 123.45, 122.84, 80.06, 47.28, 41.83, 26.42, 26.26, 21.20 .HRMS calcd for C19H21NO [M+H]<sup>+</sup> 280.1685 found 280.1696.



3,3-dimethyl-1-phenyl-5-(o-tolyl)pyrrolidin-2-one:

Reddish brown oil (201.7mg, 72% yield);<sup>1</sup>H NMR (400 MHz, Chloroform-*d*)  $\delta$  7.40 (d, J = 2.8 Hz, 1H), 7.38 – 7.24 (m, 2H), 7.24 – 7.00 (m, 6H), 5.62 (d, J = 3.2 Hz, 1H), 2.52 – 2.48 (m, 1H), 2.33 (s, 3H), 1.99 (d, J = 3.2 Hz, 1H), 1.34 (d, J = 28.3 Hz, 6H). <sup>13</sup>C NMR (101 MHz, Chloroform-*d*)  $\delta$  181.86, 137.71, 134.20, 130.66, 128.58, 128.06, 126.51, 124.37, 122.72, 75.43, 44.78, 40.64, 25.20, 24.54, 19.10 .HRMS calcd for C19H21NO [M+H]<sup>+</sup>280.1696 found 280.1697.



3,3-dimethyl-1-phenyl-5-(m-tolyl)pyrrolidin-2-one:

Reddish brown oil (198.9mg, 71% yield); <sup>1</sup>H NMR (400 MHz, Chloroform-*d*)  $\delta$  7.33 – 7.22 (m, 3H), 7.22 – 7.00 (m, 6H), 5.41 (dd, J = 9.9, 6.2 Hz, 1H), 2.46 (dd, J = 12.8, 6.3 Hz, 1H), 2.36 (s, 3H), 2.06 (d, J = 2.9 Hz, 1H), 1.33 (d, J = 21.4 Hz, 6H).<sup>13</sup>C NMR (101 MHz, Chloroform-*d*)  $\delta$  181.75, 139.40, 138.49, 129.05, 128.85, 128.59, 128.52, 126.16, 125.93, 122.77, 122.51, 122.37, 77.66, 77.25, 47.20, 46.08, 40.76, 26.33, 26.17, 24.94, 24.20, 21.41. HRMS calcd for C19H21NO [M+H]<sup>+</sup> 280.1696 found 280.1696.



5-(4-fluorophenyl)-3,3-dimethyl-1-phenylpyrrolidin-2-one:

Reddish brown oil (190.4mg, 67% yield); <sup>1</sup>H NMR (400 MHz, Chloroform-*d*) δ 7.27 – 7.22 (m, 1H), 7.22 – 7.17 (m, 3H), 7.09 – 7.01 (m, 2H), 7.01 – 6.93 (m, 3H), 5.32 (dd, J = 10.6, 5.9 Hz, 1H), 2.35 (dd, J = 12.7, 6.0 Hz, 1H), 1.93 (dd, J = 12.7, 10.2 Hz, 1H), 1.38 (d, J = 9.1 Hz, 6H). <sup>13</sup>C NMR (101 MHz, Chloroform-*d*) δ 166.68, 146.16, 135.00 (d, J = 3.4 Hz), 127.51, 126.19 (d, J = 8.1 Hz), 122.42, 121.60, 114.76 – 114.46 (m), 114.35, 78.26, 46.17, 40.67, 25.28, 25.10. <sup>19</sup>F NMR (376 MHz, Chloroform-*d*) δ -113.52. HRMS calcd for C20H21NO3 [M+H]<sup>+</sup> 284.1445 found 284.1448.



3,3,5-trimethyl-1,5-diphenylpyrrolidin-2-one:

Reddish brown oil (238.1mg, 85% yield);<sup>1</sup>H NMR (400 MHz, Chloroform-*d*)  $\delta$  7.38 – 7.29 (m, 6H), 7.26 – 7.16 (m, 3H), 7.10 – 7.03 (m, 1H), 2.54 – 2.49 (m, 1H), 2.29 (d, J = 2.3 Hz, 1H), 1.63 (d, J = 27.9 Hz, 3H), 1.37 (d, J = 46.3 Hz, 3H), 0.99 (d, J = 37.2 Hz, 3H).<sup>13</sup>C NMR (101 MHz, Chloroform-*d*)  $\delta$  168.25, 147.76, 145.95, 129.28, 128.68, 128.63, 128.54, 127.41, 127.10, 124.10, 124.03, 123.35, 122.76, 85.87, 83.50, 51.44, 50.65, 41.89, 40.88, 32.10, 32.01, 28.59, 27.84, 26.75, 25.94 .HRMS calcd for C19H21NO [M+H]<sup>+</sup> 280.1696 found 280.1696.



5-(4-(tert-butyl)phenyl)-3,3-dimethyl-1-phenylpyrrolidin-2-one:

Reddish brown oil (225.6mg, 70% yield);<sup>1</sup>H NMR (400 MHz, Chloroform-*d*)  $\delta$  7.42 – 7.37 (m, 3H), 7.34 – 7.01 (m, 6H), 5.43 (d, *J* = 3.9 Hz, 1H), 2.48 – 2.43 (m, 1H), 2.09 (d, *J* = 2.9 Hz, 1H), 1.32 (s, 9H), 1.31 (d, *J* = 1.3 Hz, 6H). <sup>13</sup>C NMR (101 MHz, Chloroform-*d*)  $\delta$  181.82, 151.49, 136.35, 128.56, 125.66, 125.56, 125.38, 125.24, 122.83, 77.67, 45.95, 40.85, 34.64, 34.01, 31.34, 25.00, 24.24. HRMS calcd for C22H27NO [M+H]<sup>+</sup> 322.2165 found 322.2190.



3,3-dimethyl-1,5,5-triphenylpyrrolidin-2-one:

Brown yellow solid (328.5mg, 96% yield);<sup>1</sup>H NMR (400 MHz, Chloroform-*d*)  $\delta$  7.46 – 7.43 (m, 1H), 7.38 – 7.33 (m, 6H), 7.31 – 7.24 (m, 5H), 7.17 (d, *J* = 7.0 Hz, 2H), 7.10 (t, *J* = 7.5 Hz, 1H), 2.86 (s, 2H), 1.22 (s, 6H).<sup>13</sup>C NMR (101 MHz, Chloroform-*d*)  $\delta$  167.45, 147.56, 145.42, 144.80, 128.72, 128.61, 127.67, 127.38, 125.06, 123.56, 122.80, 88.47, 50.97, 49.97, 41.71, 40.68, 27.75, 25.88 .HRMS calcd for C24H23NO [M+H]<sup>+</sup> 342.1852 found 342.1855.



5-([1,1'-biphenyl]-4-yl)-3,3-dimethyl-1-phenylpyrrolidin-2-one:

Brown yellow solid (280.6mg, 82% yield);<sup>1</sup>H NMR (400 MHz, Chloroform-*d*)  $\delta$  7.58 – 7.53 (m, 4H), 7.40 (t, *J* = 7.5 Hz, 2H), 7.31 (dd, *J* = 15.4, 8.2 Hz, 4H), 7.24 – 7.07 (m, 3H), 7.02 (tt, *J* = 7.2, 1.3 Hz, 1H), 5.40 (dd, *J* = 10.2, 6.0 Hz, 1H), 2.40 (dd, *J* = 12.6, 6.0 Hz, 1H), 2.03 (dd, *J* = 12.6, 10.2 Hz, 1H), 1.43 (d, *J* = 7.3 Hz, 6H).<sup>13</sup>C NMR (101 MHz, Chloroform-*d*)  $\delta$  167.94, 147.16, 140.97, 140.49, 139.21, 129.20, 128.77, 128.52, 127.40, 127.28, 127.01, 125.88, 123.43, 122.72, 114.99, 79.72, 47.10, 41.72, 26.33, 26.16. HRMS calcd for C24H23NO [M+H]<sup>+</sup> 342.1852 found 342.1853.



3,3-dimethyl-5-(naphthalen-2-yl)-1-phenylpyrrolidin-2-one:

Brown yellow solid (271.9mg, 86% yield);<sup>1</sup>H NMR (400 MHz, Chloroform-*d*)  $\delta$  7.93 – 7.72 (m, 6H), 7.51 – 7.46 (m, 3H), 7.41 – 7.27 (m, 2H), 7.23 – 7.03 (m, 1H), 5.59 (dd, *J* = 9.9, 6.3 Hz, 1H), 2.52 (dd, *J* = 12.9, 6.3 Hz, 1H), 2.16 – 2.10 (m, 1H), 1.35 (d, *J* = 27.4 Hz, 6H).<sup>13</sup>C NMR (101 MHz, Chloroform-*d*)  $\delta$  181.85, 136.84, 133.17, 133.12, 129.00, 128.79, 128.67, 128.06, 127.80, 127.77, 126.61, 126.43, 124.40, 122.95, 122.85, 119.82, 77.80, 46.03, 40.85, 25.39, 25.04, 24.33 .HRMS calcd for C22H21NO [M+H]<sup>+</sup> 316.1696 found 316.1695.



1-benzyl-3,3-dimethyl-5-(p-tolyl)pyrrolidin-2-one:

Yellow oil(179.5mg, 61% yield); <sup>1</sup>H NMR (400 MHz, Chloroform-*d*)  $\delta$  7.32 (dd, J = 18.8, 7.1 Hz, 3H), 7.17 (dtd, J = 11.9, 8.2, 2.9 Hz, 6H), 5.31 (dd, J = 10.3, 5.8 Hz, 1H), 4.60 – 4.50 (m, 2H), 2.33 (s, 3H), 2.32 – 2.27 (m, 1H), 1.92 (dd, J = 12.6, 10.3 Hz, 1H), 1.34 (d, J = 7.9 Hz, 6H).<sup>13</sup>C NMR (101 MHz, Chloroform-*d*)  $\delta$  169.01, 141.37, 137.89, 137.66, 129.44, 129.33, 128.23, 127.60, 126.25, 125.62, 125.49, 79.20, 77.74, 50.85, 47.82, 41.16, 26.43, 26.27, 21.24 .HRMS calcd for C20H23NO [M+H]<sup>+</sup> 294.1852 found 294.1867.



ethyl 3-methyl-2-oxo-1,5-diphenylpyrrolidine-3-carboxylate:

Reddish brown oil (171.8mg, 53% yield); <sup>1</sup>H NMR (400 MHz, Chloroform-*d*)  $\delta$  7.41 – 7.26 (m, 7H), 7.15 (d, *J* = 7.8 Hz, 2H), 7.05 (t, *J* = 7.3 Hz, 1H), 5.57 (dd, *J* = 10.3, 5.9 Hz, 1H), 4.35 – 4.26 (m, 2H), 3.01 (dd, *J* = 13.2, 6.0 Hz, 1H), 2.05 (dd, *J* = 13.2, 10.3 Hz, 1H), 1.67 (s, 3H), 1.35 (t, *J* = 7.1 Hz, 3H).<sup>13</sup>C NMR (101 MHz, Chloroform-*d*)  $\delta$  172.36, 162.07, 146.65, 139.60, 128.72, 128.57, 128.38, 125.51, 123.87, 122.73, 81.27, 78.98, 77.25, 61.96, 52.73, 44.83, 22.23, 14.23. HRMS calcd for C20H21NO3 [M+H]<sup>+</sup> 324.1594 found 324.1599.



ethyl 3-methyl-2-oxo-5-phenyl-1-(p-tolyl)pyrrolidine-3-carboxylate: Brown oil (142.1mg, 42% yield); <sup>1</sup>H NMR (400 MHz, Chloroform-*d*)  $\delta$  7.42 – 7.24 (m, 6H), 7.09 (s, 3H), 5.56 (dd, *J* = 10.3, 5.1 Hz, 1H), 4.33 – 4.26 (m, 2H), 2.99 (dd, *J* = 13.2, 6.0 Hz, 1H), 2.29 (s, 3H), 2.04 (dd, *J* = 13.2, 10.3 Hz, 1H), 1.62 (d, *J* = 38.0 Hz, 3H), 1.36 – 1.31 (m, 3H).<sup>13</sup>C NMR (101 MHz, Chloroform-*d*)  $\delta$  172.38, 143.82, 139.69, 138.64, 133.40, 129.17, 128.87, 128.71, 128.36, 125.54, 125.44, 122.78, 81.30, 78.98, 61.93, 52.76, 44.86, 43.90, 22.26, 20.97, 14.23 .HRMS calcd for C21H23NO3 [M+H]<sup>+</sup> 338.1751 found 338.1755.

# 6. <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra

4aaa





4aab







4aad







4aag















4aam





4caa























