Divergent reactivity in the syntheses of indolizines and pyrazolo[1,5-a]pyridines via [3+2]-annulation of pyridinium ylides with 1-chloro-2-nitrostyrenes

Alexander V. Aksenov,^{a*} Nikolai A. Arutiunov,^a Nikita K. Kirilov,^a Dmitrii A. Aksenov,^a Igor Yu. Grishin,^a Nicolai A. Aksenov,^a Huifen Wang,^b Liqin Du,^b Alexander Kornienko,^{b*} and Michael Rubin^{a,c*}.

^a Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355009, Russia; E-mail: <u>aaksenov@ncfu.ru</u>

;^b Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, 78666, USA. E-mail: <u>a k76@txstate.edu</u>;

^c Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, KS 66045, USA. E-mail: <u>mrubin@ku.edu</u>

Supporting Information

NMR Spectral Charts	S2
1H and 13C NMR spectral charts for quaternary pyridinium salts	S2
1H and 13C NMR spectral charts for starting nitrochloroalkenes	S6
1H and 13C NMR spectral charts for indolizines	S12
1H and 13C NMR spectral charts for pyrazolo[1,5-a]pyridines	S34
HRMS charts	S52
HRMS charts for quaternary pyridinium salts	S52
HRMS charts for nitrochloroalkenes	S53
HRMS charts for indolizines	S54
HRMS charts for pyrazolo[1,5-a]pyridines	S58
X-Ray crystallography data	S62
References	S70

¹H and ¹³C NMR spectral charts for quaternary pyridinium salts. ¹H NMR spectrum (400 MHz, DMSO) of **1f**

¹³C NMR spectrum (101MHz, DMSO) of **1f**

¹H NMR spectrum (400 MHz, DMSO) of 1g

13 C NMR spectrum (101MHz, DMSO) of **1g**

¹H and ¹³C NMR spectral charts for starting nitrochloroalkenes. ¹H NMR spectrum (400 MHz, CDCl₃) of **7a (E)**

¹³C NMR spectrum (101MHz, CDCl₃) of 7a (E)

¹H NMR spectrum (400 MHz, CDCl₃) of **7a (Z)**

¹³C NMR spectrum (101MHz, CDCl₃) of 7a (Z)

¹H NMR spectrum (400 MHz, CDCl₃) of 7c

¹H and ¹³C NMR spectral charts for indolizines. ¹H NMR spectrum (400 MHz, CDCl₃) of **9aa**

¹³C NMR spectrum (101MHz, CDCl₃) of 9aa

¹H NMR spectrum (400 MHz, CDCl₃) of **9ac**

¹³C NMR spectrum (101MHz, CDCl₃) of **9ac**

¹³C NMR spectrum (101MHz, CDCl₃) of **9cb**

¹³C NMR spectrum (101MHz, CDCl₃) of **6cb**

¹H NMR spectrum (400 MHz, CDCl₃) of **9cc**

¹³C NMR spectrum (101MHz, CDCl₃) of **9cc**

¹H NMR spectrum (400 MHz, CDCl₃) of **6cc**

¹³C NMR spectrum (101MHz, CDCl₃) of **6cc**

¹³C NMR spectrum (101MHz, CDCl₃) of **9db**

¹H NMR spectrum (400 MHz, CDCl₃) of **9fc**

¹³C NMR spectrum (101MHz, CDCl₃) of **9fc**

¹H NMR spectrum (400 MHz, CDCl₃) of **9ga**

¹³C NMR spectrum (101MHz, CDCl₃) of **9ga**

¹H NMR spectrum (400 MHz, CDCl₃) of **9ec**

¹H NMR spectrum (400 MHz, CDCl₃) of **9ha**

¹³C NMR spectrum (101MHz, CDCl₃) of **9ha**

¹H and ¹³C NMR spectral charts for pyrazolo[1,5-*a*]pyridines.

¹H NMR spectrum (400 MHz, CDCl₃) of **14aa**

¹³C NMR spectrum (101MHz, CDCl₃) of **14aa**

¹H NMR spectrum (400 MHz, CDCl₃) of **14ab**

¹³C NMR spectrum (101MHz, CDCl₃) of **14ab**

¹H NMR spectrum (400 MHz, CDCl₃) of **14ac**

¹H NMR spectrum (400 MHz, CDCl₃) of **14ba**

¹³C NMR spectrum (101MHz, CDCl₃) of **14ba**

¹H NMR spectrum (400 MHz, CDCl₃) of **14bb**

¹³C NMR spectrum (101MHz, CDCl₃) of **14bb**

¹H NMR spectrum (400 MHz, CDCl₃) of **14bc**

¹³C NMR spectrum (101MHz, CDCl₃) of **14bc**

¹H NMR spectrum (400 MHz, CDCl₃) of 14ca

¹³C NMR spectrum (101MHz, CDCl₃) of **14ca**

¹³C NMR spectrum (101MHz, CDCl₃) of **14cb**

¹H NMR spectrum (400 MHz, CDCl₃) of 14cc

HRMS charts for quaternary pyridinium salts

HRMS charts for pyrazolo[1,5-*a*]pyridines

X-Ray crystallography data

Figure S1. ORTEP drawing of the crystal structure (left) and microphotography of the single crystal of compound 9db used for X-Ray diffraction analysis (right)

Table S1	Crystal data	and structure	refinement for	9db

Identification code	ANNA_ARK480_4
Empirical formula	$C_{22}H_{16}BrNO_2$
Formula weight	406.27
Temperature/K	100.00(10)
Crystal system	triclinic
Space group	P-1
a/Å	8.7634(2)
b/Å	10.22041(19)
c/Å	10.3147(2)
$\alpha/^{\circ}$	83.8073(16)
β/°	70.137(2)
$\gamma^{/\circ}$	83.8485(17)
Volume/Å ³	861.35(3)
Z	2
$\rho_{calc}g/cm^3$	1.566
μ/mm^{-1}	3.383
F(000)	412.0
Crystal size/mm ³	$0.329 \times 0.22 \times 0.102$
Radiation	Cu Ka ($\lambda = 1.54184$)
2Θ range for data collection/°	8.728 to 152.788
Index ranges	$-11 \le h \le 10, -11 \le k \le 12, -12 \le l \le 12$
Reflections collected	18049
Independent reflections	3583 [$R_{int} = 0.0395$, $R_{sigma} = 0.0219$]
Data/restraints/parameters	3583/0/236
Goodness-of-fit on F ²	1.032
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0345, wR_2 = 0.0834$
Final R indexes [all data]	$R_1 = 0.0360, wR_2 = 0.0845$
Largest diff. peak/hole / e Å ⁻³	1.15/-0.66

Atom	x	у	Z	U(eq)
Br1	-1075.4(3)	7875.2(2)	9559.7(2)	30.83(10)
01	3116.1(19)	2893.6(14)	6925.0(17)	26.7(3)
02	-1244(2)	8221.3(16)	6714.7(17)	29.6(3)
N1	5849(2)	3298.3(17)	7728.1(18)	22.1(4)
С9	3313(2)	4004(2)	7189(2)	20.6(4)
C2	5258(3)	5505(2)	7686(2)	22.1(4)
C1	4703(2)	4300(2)	7522(2)	21.0(4)
C13	-142(3)	7194(2)	6768(2)	23.5(4)
C11	1249(2)	5884(2)	8193(2)	21.7(4)
C12	137(3)	6895(2)	8029(2)	23.3(4)
C15	1745(3)	5366(2)	5859(2)	23.2(4)
C4	7063(3)	3863(2)	8017(2)	24.6(4)
C21	4606(3)	6878(2)	7459(2)	23.1(4)
C3	6678(3)	5226(2)	8015(2)	25.9(4)
C14	671(3)	6413(2)	5684(2)	24.7(4)
C10	2073(2)	5113(2)	7100(2)	21.4(4)
C8	5878(3)	1951(2)	7709(2)	26.5(4)
C5	8385(3)	3043(2)	8206(2)	29.7(5)
C17	3765(3)	8622(2)	6017(2)	29.1(5)
C16	4356(3)	7331(2)	6215(2)	25.8(4)
C20	4310(3)	7763(2)	8473(2)	28.1(5)
C18	3414(3)	9484(2)	7048(3)	31.6(5)
C6	8425(3)	1710(3)	8155(2)	32.3(5)
C7	7138(3)	1163(2)	7922(3)	31.5(5)
C19	3704(3)	9055(2)	8268(3)	32.7(5)
C22	-1600(3)	8490(3)	5451(3)	38.0(6)

Table S2 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters ($Å^2 \times 10^3$) for 9db. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Atom	U11	U22	U33	U23	U 13	U ₁₂
Br1	31.65(14)	34.60(15)	25.89(14)	-11.32(10)	-11.17(10)	13.55(10)
01	30.5(8)	18.3(7)	33.9(8)	-6.4(6)	-14.2(7)	2.8(6)
02	32.5(8)	29.9(8)	28.6(8)	-6.1(6)	-16.2(7)	12.3(7)
N1	22.0(8)	20.9(9)	22.7(9)	-2.6(7)	-7.7(7)	3.4(7)
С9	22.4(10)	18.5(9)	19.3(9)	-2.9(7)	-5.3(8)	2.2(8)
C2	24.5(10)	21.0(10)	19.5(10)	-1.2(7)	-6.0(8)	-1.0(8)
C1	21.7(10)	18.4(9)	21.7(10)	-2.4(7)	-6.7(8)	3.5(8)
C13	22.0(10)	22.2(10)	26.5(11)	-2.3(8)	-9.4(8)	2.5(8)
C11	21.6(10)	21.3(10)	21.9(10)	-0.9(8)	-7.3(8)	-0.4(8)
C12	23.1(10)	22.3(10)	23.9(10)	-4.4(8)	-7.1(8)	1.1(8)
C15	24.2(10)	22.1(10)	23.2(10)	-5.8(8)	-7.5(8)	1.4(8)
C4	24.0(10)	29.1(11)	20.2(10)	-1.1(8)	-7.0(8)	-1.3(8)
C21	23.8(10)	19.0(10)	24.7(10)	-0.3(8)	-5.8(8)	-3.4(8)
C3	26.9(11)	25.9(11)	25.7(11)	0.4(8)	-9.9(9)	-4.3(8)
C14	25.8(10)	27.4(11)	22.4(10)	-2.1(8)	-10.6(8)	0.2(8)
C10	20.0(9)	17.4(9)	26.5(10)	-2.5(8)	-7.5(8)	0.2(7)
C8	31.1(11)	20.6(10)	28.8(11)	-5.7(8)	-12.1(9)	4.3(8)
C5	24.9(11)	38.8(13)	26.2(11)	0.0(9)	-11.3(9)	0.9(9)
C17	33.4(12)	24.6(11)	29.5(12)	4.5(9)	-12.0(9)	-3.9(9)
C16	28.7(11)	22.3(10)	25.1(11)	-1.1(8)	-6.9(9)	-3.7(8)
C20	33.9(12)	24.3(11)	25.2(11)	-1.9(8)	-8.4(9)	-3.3(9)
C18	35.8(12)	18.1(10)	39.5(13)	0.6(9)	-11.7(10)	-0.7(9)
C6	29.1(11)	38.8(13)	27.6(12)	-3.4(10)	-11.5(9)	12.4(10)
C7	38.6(13)	25.3(11)	31.6(12)	-6.5(9)	-15.4(10)	10.3(9)
C19	42.2(13)	22.5(11)	31.5(12)	-6.6(9)	-8.4(10)	-2.0(10)
C22	45.6(15)	39.1(14)	33.9(13)	-5.7(10)	-24.4(11)	17.4(11)

Table S3 Anisotropic Displacement Parameters (Å2×103) for 9db. The Anisotropic displacement factor exponent takes the form: - $2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Tabl	Table S4 Bond Lengths for 9db.							
Atom	Atom	Length/Å	Atom Atom Length/Å					
Br1	C12	1.897(2)	C11	C10	1.390(3)			
01	C9	1.238(3)	C15	C14	1.386(3)			
O2	C13	1.358(3)	C15	C10	1.396(3)			
O2	C22	1.433(3)	C4	C3	1.397(3)			
N1	C1	1.407(3)	C4	C5	1.411(3)			
N1	C4	1.392(3)	C21	C16	1.396(3)			
N1	C8	1.377(3)	C21	C20	1.395(3)			
C9	C1	1.441(3)	C8	C7	1.361(3)			
C9	C10	1.502(3)	C5	C6	1.366(4)			
C2	C1	1.419(3)	C17	C16	1.385(3)			
C2	C21	1.483(3)	C17	C18	1.388(3)			
C2	C3	1.391(3)	C20	C19	1.391(3)			
C13	C12	1.399(3)	C18	C19	1.383(4)			
C13	C14	1.387(3)	C6	C7	1.410(4)			
C11	C12	1.380(3)						

 Table S5 Bond Angles for 9db.

Atom	n Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C13	02	C22	116.98(18)	N1	C4	C3	107.70(19)
C4	N1	C1	109.26(17)	N1	C4	C5	119.1(2)
C8	N1	C1	130.01(18)	C3	C4	C5	133.2(2)
C8	N1	C4	120.72(18)	C16	C21	C2	121.27(19)
01	C9	C1	123.47(19)	C20	C21	C2	119.9(2)
01	C9	C10	118.19(18)	C20	C21	C16	118.8(2)
C1	C9	C10	118.29(18)	C2	C3	C4	108.35(19)
C1	C2	C21	129.24(19)	C15	C14	C13	119.9(2)
C3	C2	C1	108.57(19)	C11	C10	C9	122.77(19)
C3	C2	C21	122.02(19)	C11	C10	C15	119.33(19)
N1	C1	C9	121.53(18)	C15	C10	C9	117.90(19)
N1	C1	C2	106.10(18)	C7	C8	N1	119.8(2)
C2	C1	C9	132.36(19)	C6	C5	C4	119.8(2)
O2	C13	C12	116.62(19)	C16	C17	C18	120.6(2)
O2	C13	C14	124.58(19)	C17	C16	C21	120.4(2)
C14	C13	C12	118.76(19)	C19	C20	C21	120.4(2)
C12	C11	C10	119.46(19)	C19	C18	C17	119.4(2)
C13	C12	Br1	119.29(16)	C5	C6	C7	119.7(2)
C11	C12	Br1	119.19(16)	C8	C7	C6	120.8(2)
C11	C12	C13	121.50(19)	C18	C19	C20	120.4(2)
C14	C15	C10	120.9(2)				

 Table S6 Torsion Angles for 9db.

Α	B	С	D	Angle/°	Α	B	С	D	Angle/°
01	C9	C1	N1	-7.6(3)	C21	C2	C3	C4	- 173.79(19)
01	C9	C1	C2	171.1(2)	C21	C20	C19	C18	-1.1(4)
01	C9	C10	C11	124.6(2)	C3	C2	C1	N1	-1.4(2)
01	C9	C10	C15	-55.3(3)	C3	C2	C1	C9	179.8(2)
02	C13	C12	Br1	2.5(3)	C3	C2	C21	C16	122.1(2)
02	C13	C12	C11	- 179.03(19)	C3	C2	C21	C20	-54.6(3)
02	C13	C14	C15	-178.5(2)	C3	C4	C5	C6	179.8(2)
N1	C4	C3	C2	-1.7(2)	C14	C13	C12	Br1	- 175.66(16)
N1	C4	C5	C6	-2.4(3)	C14	C13	C12	C11	2.9(3)
N1	C8	C7	C6	-0.4(4)	C14	C15	C10	C9	_ 177.00(19)
C2	C21	C16	C17	-179.2(2)	C14	C15	C10	C11	3.1(3)
C2	C21	C20	C19	179.7(2)	C10	C9	C1	N1	175.05(18)
C1	N1	C4	C3	0.8(2)	C10	C9	C1	C2	-6.3(3)
C1	N1	C4	C5	_ 177.44(19)	C10	C11	C12	Br1	176.31(15)
C1	N1	C8	C7	179.2(2)	C10	C11	C12	C13	-2.2(3)
C1	C9	C10	C11	-57.9(3)	C10	C15	C14	C13	-2.5(3)
C1	C9	C10	C15	122.2(2)	C8	N1	C1	C9	-2.2(3)
C1	C2	C21	C16	-52.7(3)	C8	N1	C1	C2	178.8(2)
C1	C2	C21	C20	130.7(2)	C8	N1	C4	C3	- 177.79(19)
C1	C2	C3	C4	1.9(2)	C8	N1	C4	C5	4.0(3)
C12	C13	C14	C15	-0.5(3)	C5	C4	C3	C2	176.2(2)
C12	C11	C10	C9	179.34(19)	C5	C6	C7	C8	1.9(4)
C12	C11	C10	C15	-0.8(3)	C17	C18	C19	C20	-1.3(4)
C4	N1	C1	C9	179.32(18)	C16	C21	C20	C19	3.0(3)

 Table S6 Torsion Angles for 9db.

Α	В	С	D	Angle/°	Α	B	С	D	Angle/°
C4	N1	C1	C2	0.3(2)	C160	C17	C18	C19	1.8(4)
C4	N1	C8	C7	-2.5(3)	C200	221	C16	C17	-2.5(3)
C4	C5	C6	C7	-0.4(3)	C180	C17	C16	C21	0.1(3)
C21	C2	C1	N1	173.9(2)	C22 ()2	C13	C12	-176.8(2)
C21	C2	C1	C9	-4.9(4)	C22 C	02	C13	C14	1.2(3)

Table S7 Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for 9db.

Atom	x	у	Ζ	U(eq)
H11	1445.21	5719.43	9029.59	26
H15	2254.84	4825.77	5140.55	28
H3	7270.1	5840.57	8200.72	31
H14	495.02	6591.4	4840.71	30
H8	5039.81	1580.21	7550.36	32
H5	9225.72	3409.05	8365.2	36
H17	3601.02	8912.99	5184.73	35
H16	4588.97	6762.86	5515.36	31
H20	4518.17	7487.44	9289.29	34
H18	2987.78	10342.55	6921.21	38
H6	9296.02	1164.92	8272.13	39
H7	7149.87	252.58	7915.08	38
H19	3492.91	9633.94	8955.29	39
H22A	-659.19	8800.59	4730.49	57
H22B	-2490.77	9152.6	5574.13	57
H22C	-1889.53	7696.82	5200.5	57

Experimental

Single crystals of $C_{22}H_{16}BrNO_2$ **9db** were prepared by slow evaporation of EtOAc solution. A suitable crystal was selected and mounted on the glass stick by acrylic glue on a SuperNova, Dual, Cu at home/near, AtlasS2 diffractometer. The crystal was kept at 100.00(10) K during data collection. Using Olex2 [1], the structure was solved with the SHELXT [2] structure solution program using Intrinsic Phasing and refined with the SHELXL [3] refinement package using Least Squares minimisation.

Crystal structure determination of 9db

Crystal Data for C₂₂H₁₆BrNO₂ (M = 406.27 g/mol): triclinic, space group P-1 (no. 2), a = 8.7634(2) Å, b = 10.22041(19) Å, c = 10.3147(2) Å, $a = 83.8073(16)^\circ$, $\beta = 70.137(2)^\circ$, $\gamma = 83.8485(17)^\circ$, V = 861.35(3) Å³, Z = 2, T = 100.00(10) K, μ (Cu K α) = 3.383 mm⁻¹, *Dcalc* = 1.566 g/cm³, 18049 reflections measured ($8.728^\circ \le 2\Theta \le 152.788^\circ$), 3583 unique ($R_{int} = 0.0395$, $R_{sigma} = 0.0219$) which were used in all calculations. The final R_1 was 0.0345 (I > 2 σ (I)) and wR_2 was 0.0845 (all data).

Refinement model description

Number of restraints - 0, number of constraints - unknown.

Details: 1. Fixed Uiso At 1.2 times of: All C(H) groups At 1.5 times of: All C(H,H,H) groups 2.a Aromatic/amide H refined with riding coordinates: C11(H11), C15(H15), C3(H3), C14(H14), C8(H8), C5(H5), C17(H17), C16(H16), C20(H20), C18(H18), C6(H6), C7(H7), C19(H19) 2.b Idealised Me refined as rotating group: C22(H22A,H22B,H22C)

This report has been created with Olex2, compiled on 2020.11.12 svn.r5f609507 for OlexSys. Please let us know if there are any errors or if you would like to have additional features.

References

(S1) Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX 2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Cryst. 2009, 42, 339-341.

(S2) Sheldrick, G. M. SHELXT – Integrated Space-Group and Crystal-Structure Determination. Acta Cryst. 2015, A71, 3-8.

(S3) Sheldrick, G. M. Crystal Structure Refinement with SHELXL. Acta Cryst. 2015, C71, 3-8