Supporting Information

Metal-free, oxidative decarboxylation of aryldifluoroacetic acid

with formation of ArS-CF₂ bond

Contents

1. General information	3
2. General synthetic procedure for the synthesis of difluoromethylated derivatives	3
3. Single crystal X-ray analysis of 3ai	4
4. Optimization of the reaction condition	8
5. Preliminary mechanistic study1	1
6. Characterization of the products	2
7. Copies of ¹ H NMR, ¹⁹ F NMR, ¹³ C NMR spectra of the products	2

1. General information

¹H-, ¹³C- and ¹⁹F- NMR spectra were recorded in CDCl₃ on a Bruker AV-500. Chemical shifts for ¹H NMR spectra are reported in ppm relative to residual CHCl₃ as internal reference (δ 7.26 ppm for ¹H) downfield from TMS, chemical shifts for ¹³C NMR spectra are reported in ppm relative to internal CDCl₃ (δ 77.16 ppm for ¹³C), and chemical shifts for ¹⁹F NMR spectra are reported in ppm downfield from internal fluorotrichloromethane (CFCl₃). Coupling constants (J) are given in Hertz (Hz). The terms m, s, d, t, q refer to multiplet, singlet, doublet, triplet, quartlet, respectively; br refers to a broad signal. The structures were solved by direct method with SHELXS-97 program and refined by full matrix least-squares on F2 with SHELXL-97 program. All non-hydrogen atoms were refined anisotropically, and hydrogen atoms were located and included at their calculated position. Infrared spectra (IR) were recorded on AVATAR 370 FT-IR spectrometer, absorbance frequencies are given at maximum of intensity in cm⁻¹. High resolution mass spectra (HRMS) and Mass spectra (MS) were recorded using an Electron impact (EI) or Electrospray ionization (ESI) techniques. High resolution mass spectra (HRMS) was recorded on Thermo Fisher Scientific LTQ FT Ultra.

2. General synthetic procedure for the synthesis of difluoromethylated derivatives

Method A: A mixture of aryl difluoroacetic acid (0.50 mmol), aryl disulfides (0.5 mmol), and $(NH_4)_2S_2O_8$ (2.0 mmol) in 10 mL of DMSO and H₂O (v/v, 10:1) under N₂ atmosphere. The solution was stirred at 60 °C for 12 h. Then the reaction mixture was extracted with ethyl acetate and water. The combined organic layer was dried over Na₂SO₄, filtered and concentrated. The residue was purified by recrystallization or flash column chromatography on silica gel to give the desired aryl difluoromethylthio ether compounds. (**3aa-3ha & 3ab-3al**).

Method B: A mixture of aryl difluoroacetic acid (0.50 mmol), thiophenols (0.5

mmol), and $(NH_4)_2S_2O_8$ (2.0 mmol) in 10 mL of DMSO and H₂O (v/v, 10:1) under N₂ atmosphere. The solution was stirred at 60 °C for 12 h. Then the reaction mixture was extracted with ethyl acetate and water. The combined organic layer was dried over Na₂SO₄, filtered and concentrated. The residue was purified by recrystallization or flash column chromatography on silica gel to give the desired aryl difluoromethylthio ether compounds. (**3ab-3an**)

3 Single crystal X-ray analysis of 3ai (CCDC: 2080867)

Figure S1. Crystal structure of 3ai (gray for carbon atoms, yellow for sulfur atoms, red for fluorine atom and green for oxygen atom). Thermal ellipsoids are drawn at the 50%.

The crystals suitable for X-ray crystallographic analysis were obtained by recrystallization from a solution (Hexane/Ethyl Acetate = 6/1). Crystallographic data and structural refinement results are summarized in Table S1. Bond lengths for 3ai are listed in Table S2. Bond angles for 3ai are listed in Table S3. Crystallographic data for the structure reported in the paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication, CCDC 2080867 for 3ai. The data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Compounds	3ai
Formula	$C_{15}H_{11}F_2NOS_2$
F_{w}	323.37 g/mol
Temperature	303(2) K
Crystal system	orthorhombic
Space group	P 21 21 21
$a(\text{\AA})$	5.89830(10)
$b(\text{\AA})$	15.4491(2)
$c(\text{\AA})$	15.8136(3)
α(°)	90
β(°)	90
γ(°)	90
$V(\text{\AA}^3)$	1440.99(4)
Ζ	4
$Dc (gcm^{-3})$	1.491
F (000)	664
GOF on F^2	1.065
R_1 , $wR_2[I \ge 2\sigma(I)]$	0.0291,0.0902
R ₁ , wR ₂ (all data)	0.0292,0.0904

Table S1. Crystal data and structure refinement for 3ai

Table S2. Bond lengths (A) for 3ai			
S1-C1	1.719(3)	S1-C7	1.736(3)
S2-C7	1.767(3)	S2-C8	1.808(3)
F1-C8	1.339(4)	F2-C8	1.359(5)
O1-C12	1.365(3)	O1-C15	1.433(4)
N1-C7	1.294(4)	N1-C6	1.395(3)
C1-C6	1.396(4)	C1-C2	1.400(4)
C2-C3	1.374(5)	C2-H2	0.93
C3-C4	1.385(5)	С3-Н3	0.93
C4-C5	1.380(5)	C4-H4	0.93
C5-C6	1.392(4)	С5-Н5	0.93
C8-C9	1.494(4)	C9-C14	1.379(5)
C9-C10	1.386(4)	C10-C11	1.375(4)
С10-Н10	0.93	C11-C12	1.384(4)
C11-H11	0.93	C12-C13	1.382(4)
C13-C14	1.387(4)	С13-Н13	0.93
C14-H14	0.93	C15-H15A	0.96
C15-H15B	0.96	C15-H15C	0.96

Table S2. Bond lengths (Å) for 3ai

Table S3. Bond angles (°) for 3ai

C1-S1-C7	88.58(13)	C7-S2-C8	101.36(13)
C12-O1-C15	117.8(2)	C7-N1-C6	109.1(2)
C6-C1-C2	121.0(3)	C6-C1-S1	109.8(2)
C2-C1-S1	129.1(2)	C3-C2-C1	117.8(3)
С3-С2-Н2	121.1	С1-С2-Н2	121.1
C2-C3-C4	121.7(3)	С2-С3-Н3	119.2
С4-С3-Н3	119.2	C5-C4-C3	120.8(3)

С5-С4-Н4	119.6	C3-C4-H4	119.6
C4-C5-C6	118.8(3)	С4-С5-Н5	120.6
С6-С5-Н5	120.6	C5-C6-N1	124.9(3)
C5-C6-C1	119.9(2)	N1-C6-C1	115.2(2)
N1-C7-S1	117.3(2)	N1-C7-S2	123.3(2)
S1-C7-S2	119.29(16)	F1-C8-F2	104.2(3)
F1-C8-C9	112.2(3)	F2-C8-C9	111.6(3)
F1-C8-S2	110.3(3)	F2-C8-S2	108.8(2)
C9-C8-S2	109.6(2)	C14-C9-C10	119.4(3)
C14-C9-C8	120.2(3)	C10-C9-C8	120.4(3)
C11-C10-C9	120.0(3)	С11-С10-Н10	120.0
С9-С10-Н10	120.0	C10-C11-C12	120.4(3)
C10-C11-H11	119.8	C12-C11-H11	119.8
O1-C12-C13	124.2(3)	O1-C12-C11	115.7(2)
C13-C12-C11	120.1(3)	C12-C13-C14	119.1(3)
С12-С13-Н13	120.5	C14-C13-H13	120.5
C9-C14-C13	121.0(3)	C9-C14-H14	119.5
C13-C14-H14	119.5	O1-C15-H15A	109.5
O1-C15-H15B	109.5	H15A-C15-H15B	109.5
O1-C15-H15C	109.5	H15A-C15-H15C	109.5
H15B-C15-H15C	109.5		

4. Optimization of the reaction conditions

F COOH	+ Catalyst, oxida Solvent Tem., time	The second secon
1a	2a	3aa
Ta	able S4. Optimization varying differen	nt catalyst
Entry	Catalyst	Yield (%)
1	CuO, AgNO ₃	56
2	CuCl、AgNO ₃	0
3	CuSO ₄ , AgNO ₃	50
4	None, AgNO ₃	52
5	CH ₃ CO ₂ Ag 10%	51
6	AgBF ₄ 10%	35
8	none	48

Determined by ¹⁹F NMR spectroscopy using PhCF₃ as an internal standard, in the presence of **1a** (0.10 mmol), **2a** (0.10 mmol), (NH₄)₂S₂O₈ (0.20 mmol), with different catalyst, 12 h, N₂ atmosphere at 80 °C temperature. **Conclusion: initially we choose metal-free catalysis.**

Entry	Oxidant	Yield (%)
1	(NH ₄) ₂ S ₂ O ₈ (2eq)	48
2	K ₂ S ₂ O ₈ (2eq)	10
3	$Na_2S_2O_8$ (2eq)	28
4	None	0
5	(NH ₄) ₂ S ₂ O ₈ (2eq)	48
6	(NH4)2S2O8 (4eq)	61
7	(NH ₄) ₂ S ₂ O ₈ (6eq)	50

Table S5. Optimization varying different oxidant

Determined by ¹⁹F NMR spectroscopy using PhCF₃ as an internal standard, in the presence of **1a** (0.10 mmol), **2a** (0.10 mmol), with different oxidant (0.2 mmol or 0.4 mmol), 12 h, N₂ atmosphere at 80 °C temperature. **Conclusion: we found that (NH₄)₂S₂O₈ (4eq) gave best result.**

-		
Entry	Solvent	Yield (%)
1	DMSO	61
2	DMF	0
3	NMP	0
4	Acetone	0
5	Toluene	0
6	1,4-dioxane	0
7	DMSO/H ₂ O (v:v, 1:1)	5
8	DMSO/H ₂ O (v:v, 5:1)	62
9	DMSO/H ₂ O (v:v, 10:1)	74

Table S6. Optimization varying different solvent

Determined by ¹⁹F NMR spectroscopy using PhCF₃ as an internal standard, in the presence of **1a** (0.10 mmol), **2a** (0.10 mmol), (NH₄)₂S₂O₈ (0.40 mmol), with different ratio of solvent, 12 h, N₂ atmosphere at 80 °C temperature. **Conclusion: we found that DMSO/H₂O (v:v, 10:1) gave best result.**

Entry	Temperature (°C)	Yield (%)
1	90	57
2	80	74
3	70	76
4	60	93
5	50	78

 Table S7. Optimization varying different temperature.

Determined by ¹⁹F NMR spectroscopy using PhCF₃ as an internal standard, in the presence of **1a** (0.10 mmol), **2a** (0.10 mmol), (NH₄)₂S₂O₈ (0.40 mmol), with different temperature, 12 h, N₂ atmosphere.

Conclusion: we found that 60 °C gave best result.

Entry	Time (h)	Yield (%)
1	6	60
2	12	93
3	18	85
4	24	75

Table S8. Optimization varying different time.

Determined by ¹⁹F NMR spectroscopy using PhCF₃ as an internal standard, in the presence of **1a** (0.10 mmol), **2a** (0.10 mmol), (NH₄)₂S₂O₈ (0.40 mmol), with different time, N₂ atmosphere at 60 °C temperature. **Conclusion: we found that 12 h gave best result.**

Entry	Reagent Ratio (1/2)	Yield (%)
1	1:0.5	83
2	1:0.8	85
3	1:1	93
4	1:1.2	92
5	1:1.5	90
6	1:2	90

Table S9. Optimization varying different ratios of reagent.

Determined by ¹⁹F NMR spectroscopy using PhCF₃ as an internal standard, in the presence of **1a** (0.10 mmol), **2a**, $(NH_4)_2S_2O_8$ (0.40 mmol), with different ratios of reagent, N₂ atmosphere at 60 °C temperature.

Conclusion: we found that 1/2 = 1:1 gave reasonable result.

5. Preliminary mechanistic study

Reaction condition: **1a** (0.10 mmol), **2a** (0.10 mmol) and (NH₄)₂S₂O₈ (0.40 mmol), under N₂ at 60 °C for 12 h. Yields determined by ¹⁹F NMR analysis with PhCF₃ as the internal stander.

A mixture of aryldifluoroacetic acid (0.10 mmol) **1a**, diphenyl disulfide (0.10 mmol) **2a**, and $(NH_4)_2S_2O_8$ (0.40 mmol), in 2.0 mL of DMSO/H₂O (v/v, 10: 1) under N₂ atmosphere. The solution was stirred at 60 °C for 12 h. When 3.0 equiv TEMPO was added, the reaction yield decreased to 43%. When 0.50 equiv 1,4-Benzoquinone was added, the reaction yield decreased to 10%. When 0.50 equiv hydroquinone was added, no product was observed. The reaction was completely suppressed. But unfortunately we did not capture TEMPO-CF₂Ph, probably because this species is unstable at high temperatures.

6. Characterization of the products

6.1 (difluoro(4-methoxyphenyl)methyl)(phenyl)sulfane (3aa)

Purification by recrystallization (95% EtOH). Yield: 90%, white solid, m.p: 75-77 °C. ¹H NMR (500 MHz, CDCl₃) δ ppm 7.64 (d, *J* = 7.3 Hz, 2H), 7.53 (d, *J* = 8.6 Hz, 2H), 7.45-7.37 (m, 3H), 6.92 (d, *J* = 8.6 Hz,2H), 3.84 (s, 3H); ¹⁹F NMR (471 MHz, CDCl₃) δ ppm -69.90 (s, CF₂); ¹³C NMR (125 MHz, CDCl₃) δ ppm 161.4, 136.3, 129.9, 129.1, 128.4 (t, *J* = 25.4 Hz), 128.0, 127.9 (t, *J* = 276.1 Hz), 127.2 (t, *J* = 4.5 Hz), 113.8, 55.5. IR (KBr, cm⁻¹): v_{max} = 3066, 2964, 2840, 1610, 1511, 1311, 1254, 1042, 826, 751, 692. HRMS (ESI) calcd. for C₁₄H₁₃F₂OS [M+H]⁺ 267.0650, found 267.0654.

6.2 (difluoro(p-tolyl)methyl)(phenyl)sulfane (3ba)

Purification by recrystallization (95% EtOH). Yield: 60%, white solid, m.p: 74-76 °C ¹H NMR (500 MHz, CDCl₃) δ ppm 7.67 (d, *J* = 7.8 Hz, 2H), 7.51 (d, *J* = 8.0 Hz, 2H), 7.46-7.39 (m, 3H), 7.24 (d, *J* = 8.0 Hz, 2H), 2.41 (s, 3H); ¹⁹F NMR (471 MHz, CDCl₃) δ ppm -70.91 (s, CF₂); ¹³C NMR (125 MHz, CDCl₃) δ ppm 140.8, 136.3, 133.2 (t, *J* = 25.0 Hz), 129.8, 129.0, 129.0, 127.8 (t, *J* = 278.5 Hz), 127.8, 125.4 (t, *J* = 4.6 Hz), 21.4. IR (KBr, cm⁻¹): v_{max} = 2923, 2859, 1470, 1265, 1045, 919, 806, 748, 689. HRMS (ESI) calcd. for C₁₄H₁₃F₂S [M+H]⁺ 251.0701, found 251.0703.

6.3 ((3,4-dimethylphenyl)difluoromethyl)(phenyl)sulfane (3ca)

Purification by recrystallization (95% EtOH). Yield: 72%, white solid, m.p: 55-57 °C ¹H NMR (500 MHz, CDCl₃) δ ppm 7.72 (d, J = 6.9 Hz, 2H), 7.49-7.40 (m, 5H), 7.23 (d, J = 7.9 Hz, 1H), 2.34 (s, 3H), 2.33 (s, 3H); ¹⁹F NMR (471 MHz, CDCl₃) δ ppm - 70.73 (s, CF₂); ¹³C NMR (125 MHz, CDCl₃) δ ppm 139.6, 136.9, 136.3, 133.5 (t, J = 24.7 Hz), 129.8, 129.7, 129.0, 127.9, 127.8 (t, J = 276.9 Hz), 126.5 (t, J = 4.5 Hz), 122.9 (t, J = 4.7 Hz), 19.9, 19.8. **IR** (KBr, cm⁻¹): $\nu_{\text{max}} = 2936$, 1446, 1263, 1055, 955, 848, 812, 748, 690. **HRMS (ESI)** calcd. for C₁₅H₁₅F₂S [M+H]⁺ 265.0857, found 265.0853.

6.4 (difluoro(mesityl)methyl)(phenyl)sulfane (3da)

Purification by recrystallization (95% EtOH). Yield: 85%, white solid, m.p: 65-67 °C ¹H NMR (500 MHz, CDCl₃) δ ppm 7.74 (d, *J* = 6.9 Hz, 2H), 7.53-7.45 (m, 3H), 6.96 (s, 2H), 2.58 (s, 6H), 2.33 (s, 3H); ¹⁹F NMR (471 MHz, CDCl₃) δ ppm -63.11 (s, CF₂); ¹³C NMR (125 MHz, CDCl₃) δ ppm 140.0, 137.3 (t, *J* = 2.4 Hz), 136.5, 131.0, 129.8, 129.8 (t, *J* = 20.2 Hz), 129.7 (t, *J* = 280.0 Hz), 129.0, 127.7, 22.2, 20.9. **IR** (KBr, cm⁻¹): *v*_{max} = 2978, 2924, 2867, 1604, 1439, 1235, 1055, 891, 721, 686. **HRMS (ESI)** calcd. for C₁₆H₁₇F₂S [M+H]⁺ 279.1014, found 279.1015.

6.5 ((4-(tert-butyl)phenyl)difluoromethyl)(phenyl)sulfane (3ea)

Purification by recrystallization (95% EtOH). Yield: 55%, white solid, m.p: 41-43 °C ¹**H NMR** (600 MHz, CDCl₃) δ ppm 7.65 (d, *J* = 7.0 Hz, 2H), 7.53 (d, *J* = 8.5 Hz, 2H), 7.45-7.42 (m, 3H), 7.40-7.37 (m, 2H), 1.34 (s, 9H); ¹⁹**F** NMR (471 MHz, CDCl₃) δ ppm -70.96 (s, CF₂); ¹³**C** NMR (125 MHz, CDCl₃) δ ppm 153.9, 136.3, 133.1 (t, *J* = 24.6 Hz), 129.8, 128.9, 127.8, 127.7 (t, *J* = 276.8 Hz), 125.3, 125.2 (t, *J* = 4.4 Hz), 34.9, 31.2. **IR** (KBr, cm⁻¹): ν_{max} = 3062, 2959, 2870, 1611, 1470, 1269, 1047, 920, 825, 739, 690. **HRMS (ESI)** calcd. for C₁₇H₁₉F₂S [M+H]⁺293.1170, found 293.1166.

6.6 ([1,1'-biphenyl]-4-yldifluoromethyl)(phenyl)sulfane (3fa)

Purification by recrystallization (95% EtOH). Yield: 65%, white solid, m.p: 143-145 °C

¹**H NMR** (500 MHz, CDCl₃) δ ppm 7.70-7.65 (m, 6H), 7.63 (d, J = 7.5 Hz, 2H), 7.51-7.45 (m, 3H), 7.43 – 7.40 (m, 3H); ¹⁹**F NMR** (471 MHz, CDCl₃) δ ppm -71.30 (s, CF₂); ¹³**C NMR** (125 MHz, CDCl₃) δ ppm 143.5, 140.1, 136.4, 134.8 (t, J = 25.1 Hz), 130.0, 129.1, 129.0, 128.0, 127.7 (t, J = 277.0 Hz), 127.6, 127.3, 127.1, 126.0 (t, J = 4.5 Hz). **IR** (KBr, cm⁻¹): $v_{max} = 3063$, 2924, 1481, 1270, 1048, 922, 833, 756, 690. **HRMS (ESI)** calcd. for C₁₉H₁₅F₂S [M+H]⁺ 313.0857, found 313.0856.

6.7 (difluoro(naphthalen-1-yl)methyl)(phenyl)sulfane (3ga)

Purification by recrystallization (Hexane/Acetone). Yield: 52%, white solid, m.p: 77-79 $^{\mathrm{o}}\mathrm{C}$

¹**H NMR** (500 MHz, CDCl₃) δ ppm 8.65 (d, *J* = 8.6 Hz, 1H), 7.95 (d, *J* = 8.2 Hz, 1H), 7.91 (d, J = 8.2 Hz, 1H), 7.72 (d, *J* = 7.4 Hz, 1H), 7.68-7.65 (m, 3H), 7.58 (t, *J* = 7.4

Hz, 1H), 7.46 – 7.43 (m, 2H), 7.41 - 7.38 (m, 2H); ¹⁹**F** NMR (471 MHz, CDCl₃) δ ppm -68.19 (s, CF₂); ¹³**C** NMR (125 MHz, CDCl₃) δ ppm 136.4, 134.1, 131.9, 131.1 (t, *J* = 22.6 Hz), 130.0, 129.3, 129.0, 128.7, 128.0 (t, *J* = 277.9 Hz), 127.6, 126.8, 126.2, 125.7 (t, *J* = 2.9 Hz), 124.7 (t, *J* = 7.7 Hz), 124.3. **IR** (KBr, cm⁻¹): ν_{max} = 3049, 2918, 2848, 1236, 1078, 1019, 987, 912, 797, 757, 689. **HRMS (ESI)** calcd. for C₁₇H₁₃F₂S [M+H]⁺ 287.0701, found 287.0704.

6.8 Methyl 4-(difluoro(phenylthio)methyl)benzoate (3ha)

Purification by column chromatography on silica gel (petroleum ether/EtOAc = 50/1). Yield: 15%, white solid, m.p: 61-63 °C

¹**H NMR** (500 MHz, CDCl₃) δ ppm 8.06 (d, J = 8.6 Hz, 2H), 7.60 (d, J = 8.6 Hz, 2H), 7.59-7.57 (m, 2H), 7.45-7.41 (m, 1H), 7.38-7.35 (m, 2H), 3.94 (s, 3H); ¹⁹**F NMR** (471 MHz, CDCl₃) δ ppm -72.81 (s, CF₂); ¹³**C NMR** (125 MHz, CDCl₃) δ ppm 166.3, 140.2 (t, J = 25.4 Hz), 136.6, 132.2, 130. 2, 129.7, 129.2, 127.3 (t, J = 277.1 Hz), 127.0, 125.6 (t, J = 4.5 Hz), 52.5. **IR** (KBr, cm⁻¹): $\nu_{max} = 2950$, 1729, 1441, 1271, 1111, 1048, 925, 852, 756. **HRMS** (**ESI**) calcd. for C₁₅H₁₃F₂O₂S [M+H]⁺ 295.0599, found 295.0595.

6.9 (difluoro(4-methoxyphenyl)methyl)(p-tolyl)sulfane (3ab)

Purification by recrystallization (95% EtOH). Yield: 85%, white solid, m.p: 90-93 °C ¹H NMR (500 MHz, CDCl₃) δ ppm 7.53 (d, J = 8.9 Hz, 2H), 7.52 (d, J = 7.9 Hz, 2H), 7.19 (d, J = 7.9 Hz, 2H), 6.92 (d, J = 8.9 Hz, 2H), 3.84 (s, 3H), 2.38 (s, 3H); ¹⁹F NMR

(471 MHz, CDCl₃) δ ppm -70.25 (s, CF₂); ¹³C NMR (125 MHz, CDCl₃) δ ppm 161.2, 140.2, 136.3, 129.8, 128.4 (t, *J* = 25.2 Hz), 127.7 (t, *J* = 276.1 Hz), 127.1 (t, *J* = 4.5 Hz), 124.3, 113.6, 55.4, 21.3. **IR** (KBr, cm⁻¹): $v_{\text{max}} = 2971$, 2847, 1608, 1508, 1254, 1174, 1027, 912, 822, 655. **HRMS (ESI)** calcd. for C₁₅H₁₅F₂OS [M+H]⁺ 281.0806, found 281.0802.

6.10 (difluoro(4-methoxyphenyl)methyl)(4-methoxyphenyl)sulfane

(3ac)

Purification by recrystallization (95% EtOH). Yield: 62%, white solid, m.p: 133-135 $^{\circ}$ C

¹**H NMR** (600 MHz, CDCl₃) δ ppm 7.54 (d, J = 8.5 Hz, 2H), 7.51 (d, J = 8.6 Hz, 2H), 6.91 (t, J = 8.0 Hz, 4H), 3.83 (s, 3H), 3.82 (s, 3H); ¹⁹**F NMR** (471 MHz, CDCl₃) δ ppm -70.90 (s, CF₂); ¹³**C NMR** (125 MHz, CDCl₃) δ ppm 161.3, 161.2, 138.3, 128.4 (t, J =25.4 Hz), 127.8 (t, J = 276.0 Hz), 127.1 (t, J = 4.5 Hz), 118.5, 114.6, 113.7, 55.5, 55.5. **IR** (KBr, cm⁻¹): $v_{max} = 2968$, 2840, 2039, 1914, 1601, 1505, 1304, 1248, 1170, 1038, 914, 828, 643. **HRMS (ESI)** calcd. for C₁₅H₁₅F₂O₂S [M+H]⁺297.0755, found 297.0751.

6.11 (difluoro(4-methoxyphenyl)methyl)(2-fluorophenyl)sulfane (3

ad)

Purification by recrystallization (Hexane). Yield: 55%, white solid, m.p: 53-55 °C ¹H NMR (500 MHz, CDCl₃) δ ppm 7.66 (t, *J* = 7.3 Hz, 1H), 7.55 (d, *J* = 8.8 Hz, 2H),

7.46-7.41 (m, 1H), 7.19-7.17 (m, 1H), 7.16-7.13 (m, 1H), 6.92 (d, J = 8.8 Hz, 2H), 3.84 (s, 3H); ¹⁹**F** NMR (471 MHz, CDCl₃) δ ppm -69.30 (s, CF₂), -105.65- -105.71 (m, F); ¹³**C** NMR (125 MHz, CDCl₃) δ ppm 163.5 (d, J = 248.8 Hz), 161.5, 139.1, 132.7 (d, J = 8.1 Hz), 127.9 (t, J = 25.0 Hz), 127.7 (t, J = 277.8 Hz), 127.2 (t, J = 4.6 Hz), 124.6 (d, J = 3.8 Hz), 116.4, 115.0 (d, J = 18.2 Hz), 113.8, 55.5. **IR** (KBr, cm⁻¹): $v_{max} = 2927$, 1608, 1511, 1472, 1257, 1041, 910, 824, 760, 650. **HRMS (ESI)** calcd. for C₁₄H₁₂F₃OS [M+H]⁺ 285.0555, found 285.0558.

6.12 (4-chlorophenyl)(difluoro(4-methoxyphenyl)methyl)sulfane

Purification by recrystallization (EtOH). Yield: 50%, white solid, m.p: 73-75 °C ¹H NMR (500 MHz, CDCl₃) δ ppm 7.55 (d, *J* = 8.5 Hz, 2H), 7.51 (d, *J* = 8.8 Hz, 2H), 7.35 (d, *J* = 8.5 Hz, 2H), 6.93 (d, *J* = 8.8 Hz, 2H), 3.84 (s, 3H); ¹⁹F NMR (471 MHz, CDCl₃) δ ppm -69.87 (s, CF₂); ¹³C NMR (125 MHz, CDCl₃) δ ppm 161.5, 137.6, 136.5, 129.33, 128.0 (t, *J* = 25.1 Hz), 127.7 (t, *J* = 277.2 Hz), 127.2 (t, *J* = 4.5 Hz), 126.4, 113.8, 55.5. IR (KBr, cm⁻¹): v_{max} = 2968, 1610, 1509, 1465, 1254, 1043, 912, 825, 735, 651. HRMS (ESI) calcd. for C₁₄H₁₂ClF₂OS [M+H]⁺ 301.0260, found 301.0261.

6.13 (3,5-dichlorophenyl)(difluoro(4-methoxyphenyl)methyl)sulfane

(3af)

Purification by recrystallization (EtOH/ Hexane). Yield: 52%, white solid, m.p: 62-64 $^{\circ}C$

¹**H NMR** (500 MHz, CDCl₃) δ ppm 7.53 (d, J = 1.9 Hz, 2H), 7.51 (d, J = 8.8 Hz, 2H), 7.42 (t, J = 1.9 Hz, 1H), 6.94 (d, J = 8.8 Hz, 2H), 3.84 (s, 3H); ¹⁹**F NMR** (471 MHz, CDCl₃) δ ppm -69.17 (s, CF₂); ¹³**C NMR** (125 MHz, CDCl₃) δ ppm 161.7, 135.2, 133.8, 131.1, 130.1, 127.6 (t, J = 278.0 Hz), 127.5 (t, J = 25.0 Hz), 127.2 (t, J = 4.7 Hz), 114.0, 55.6. **IR** (KBr, cm⁻¹): $v_{max} = 2932$, 2843, 1607, 1558, 1510, 1255, 1049, 910, 821, 794, 659. **HRMS (ESI)** calcd. for C₁₄H₁₁Cl₂F₂OS [M+H]⁺ 334.9870, found 334.9865.

6.14 N-(2((difluoro(4methoxyphenyl)methyl)thio)phenyl)benzamide

(3ag)

Purification by column chromatography on silica gel (petroleum ether/EtOAc = 10/1). Yield: 45%, white solid, m.p: 86-88 °C

¹**H NMR** (500 MHz, CDCl₃) δ ppm 9.22 (s, 1H), 8.66 (d, J = 8.4 Hz, 1H), 7.93 (d, J = 7.2 Hz, 2H), 7.61-7.58 (m, 2H), 7.55-7.50 (m, 3H), 7.38 (d, J = 8.8 Hz, 2H), 7.11 (t, J = 7.6 Hz, 1H), 6.84(d, J = 8.8 Hz, 2H), 3.80 (s, 3H); ¹⁹**F NMR** (471 MHz, CDCl₃) δ ppm -69.63 (s, CF₂); ¹³**C NMR** (125 MHz, CDCl₃) δ ppm 165.1, 161.5, 141.5, 139.1, 135.0, 132.5, 132.2, 129.0, 127.8 (t, J = 278.7 Hz), 127.6 (t, J = 25.2 Hz), 127.2, 126.73 (t, J = 4.8 Hz), 124.2, 120.6, 115.6, 113.9, 55.5. **IR** (KBr, cm⁻¹): $v_{max} = 3401$, 2922, 2846, 1690, 1584, 1522, 1434, 1307, 1257, 1047, 903, 824, 752, 698. **HRMS (ESI)** calcd. for C₂₁H₁₈F₂NO₂S [M+H]⁺ 386.1021, found 386.1017.

6.15 2-((difluoro(4-methoxyphenyl)methyl)thio)thiophene (3ah)

Purification by column chromatography on silica gel (petroleum ether/EtOAc = 100/1). Yield: 50%, white solid, m.p: 56-58 °C

¹**H NMR** (500 MHz, CDCl₃) δ ppm 7.53 (d, J = 5.3 Hz, 1H), 7.49 (d, J = 8.8 Hz, 2H), 7.30 (d, J = 3.6 Hz, 1H), 7.07 (dd, J = 5.3, 3.6 Hz, 1H), 6.92 (d, J = 8.8 Hz, 2H), 3.84 (s, 3H); ¹⁹**F NMR** (471 MHz, CDCl₃) δ ppm -71.85 (s, CF₂); ¹³**C NMR** (125 MHz, CDCl₃) δ ppm 161.4, 138.2, 132.8, 127.8, 127.4 (t, J = 5.0 Hz), 127.1 (t, J = 2.9 Hz), 126.9 (t, J = 278.4 Hz), 125.0, 113.7, 55.4. **IR** (KBr, cm⁻¹): $v_{max} = 2962$, 2924, 2849, 1610, 1510, 1258, 1093, 1042, 910, 804, 720. **HRMS** (**ESI**) calcd. for C₁₂H₁₁F₂OS₂ [M+H]⁺ 273.0214, found 273.0211.

6.16 2-((difluoro(4-methoxyphenyl)methyl)thio)benzo[d]thiazole

Purification by column chromatography on silica gel (petroleum ether/EtOAc = 15/1). Yield: 75%, white solid, m.p: 87-89 °C

¹**H NMR** (500 MHz, CDCl₃) δ ppm 8.10 (d, J = 8.0 Hz, 1H), 7.86 (d, J = 8.0 Hz, 1H), 7.62 (d, J = 8.8 Hz, 2H), 7.52-7.49 (m, 1H), 7.45-7.41 (m, 1H), 6.95 (d, J = 8.8 Hz, 2H), 3.83 (s, 3H); ¹⁹**F NMR** (471 MHz, CDCl₃) δ ppm -67.11 (s, CF₂); ¹³**C NMR** (125 MHz, CDCl₃) δ ppm 161.9, 156.3, 153.0, 137.8, 127.4 (t, J = 280.5 Hz), 127.4 (t, J = 4.4 Hz), 126.6 (t, J = 24.0 Hz), 126.5, 126.0, 123.7, 121.2, 114.0, 55.5. **IR** (KBr, cm⁻¹): $v_{\text{max}} =$ 3061, 2924, 2853, 1601, 1504, 1451, 1310, 1251, 1042, 899, 823, 757, 657, 568. **HRMS (ESI)** calcd. for C₁₅H₁₂F₂NOS₂ [M+H]⁺ 324.0323, found 324.0325.

6.17 2-((difluoro(4-methoxyphenyl)methyl)thio)pyridine (3aj)

Purification by column chromatography on silica gel (petroleum ether/EtOAc = 10/1). Yield: 47%, white solid, m.p: 53-55 °C

¹**H** NMR (500 MHz, CDCl₃) δ ppm 8.57 (d, J = 4.8 Hz, 1H), 7.71-7.65 (m, 2H), 7.58 (d, J = 8.8 Hz, 2H), 7.24-7.22 (m, 1H), 6.92 (d, J = 8.8 Hz, 2H), 3.82 (s, 3H); ¹⁹**F** NMR (471 MHz, CDCl₃) δ ppm -68.68 (s, CF₂); ¹³**C** NMR (125 MHz, CDCl₃) δ ppm 161.6, 152.9, 150.3, 137.2, 128.5, 128.3 (t, J = 277.7 Hz), 127.9 (t, J = 24.8 Hz), 127.3 (t, J = 4.8 Hz), 123.1, 113.9, 55.5; **IR** (KBr, cm⁻¹): $\nu_{max} = 3049$, 2972, 2927, 2847, 1610, 1570, 1514, 1258, 1181, 1037, 914, 829, 768, 656; **HRMS (ESI)** calcd. for C₁₃H₁₁F₂NOS [M+H]⁺ 268.0602, found 268.0603. **HRMS (ESI)** calcd. for C₁₃H₁₂F₂NOS [M+H]⁺ 268.0602, found 268.0605.

6.18 4-((difluoro(4-methoxyphenyl)methyl)thio)pyridine (3ak)

Purification by column chromatography on silica gel (petroleum ether/EtOAc = 3/1). Yield: 73%, white solid, m.p: 38-40 °C

¹**H NMR** (500 MHz, CDCl₃) δ ppm 8.55 (d, J = 5.5 Hz, 2H), 7.51 (d, J = 8.6 Hz, 2H), 7.46 (d, J = 5.8 Hz, 2H), 6.91 (d, J = 8.6 Hz, 2H), 3.79 (s, 3H); ¹⁹**F NMR** (471 MHz, CDCl₃) δ ppm -68.27 (s, CF₂); ¹³**C NMR** (125 MHz, CDCl₃) δ ppm 161.6, 150.0, 139.8, 127.8 (t, J = 278.7 Hz), 127.3 (t, J = 24.9 Hz), 127.3, 127.1 (t, J = 4.6 Hz), 113.8, 55.4. **IR** (KBr, cm⁻¹): $\nu_{max} = 3041$, 2954, 2837, 1611, 1572, 1511, 1254, 1173, 1050, 915, 829, 801, 695, 657. **HRMS** (**ESI**) calcd. for C₁₃H₁₂F₂NOS [M+H]⁺ 268.0602, found 268.0603.

6.19 (difluoro(4-methoxyphenyl)methyl)(2,6-dimethylphenyl)sulfane

(3am)

Purification by recrystallization (95% EtOH). Yield: 80%, white solid, m.p: 64-67 °C ¹H NMR (500 MHz, CDCl₃) δ ppm 7.56 (d, J = 8.8 Hz, 2H), 7.25-7.23 (m, 1H), 7.18 (d, J = 7.5 Hz, 2H), 6.94 (d, J = 8.8 Hz, 2H), 3.83 (s, 3H), 2.61 (s, 6H); ¹⁹F NMR (471 MHz, CDCl₃) δ ppm -69.0 (s, CF₂); ¹³C NMR (125 MHz, CDCl₃) δ ppm 161.3, 145.6, 130.2, 128.8 (t, J = 277.7 Hz), 128.7 (t, J = 25.0 Hz), 128.3, 126.8 (t, J = 4.6 Hz), 126.7, 113.7, 55.4, 22.5. **IR** (KBr, cm⁻¹): $\nu_{max} = 2924$, 2841, 1609, 1509, 1456, 1307, 1257, 1171, 1018, 909, 822, 775, 647. **HRMS (ESI)** calcd. for C₁₆H₁₇F₂OS [M+H]⁺ 295.0963, found 295.0967.

6.20 2-((difluoro(4-methoxyphenyl)methyl)thio)pyrimidine (3an)

Purification by column chromatography on silica gel (petroleum ether/EtOAc = 5/1). Yield: 16%, white solid, m.p: 38-41 °C

¹**H NMR** (500 MHz, CDCl₃) δ ppm 8.60 (d, J = 5.0 Hz, 2H), 7.65 (d, J = 8.9 Hz, 2H), 7.09 (t, J = 5.0 Hz, 1H), 6.93 (d, J = 8.9 Hz, 2H), 3.83 (s, 3H); ¹⁹**F NMR** (471 MHz, CDCl₃) δ ppm -71.03 (s, CF₂); ¹³**C NMR** (125 MHz, CDCl₃) δ ppm 168.2, 161.5, 157.7, 128.0 (t, J = 24.6 Hz), 127.6 (t, J = 5.0 Hz), 127.3 (t, J = 277.9 Hz), 118.4, 113.7, 55.4. **IR** (KBr, cm⁻¹): $v_{max} = 2964$, 1614, 1557, 1512, 1386, 1314, 1257, 1177, 1054, 914, 830. **HRMS (ESI)** calcd. for C₁₂H₁₁F₂N₂OS [M+H]⁺ 269.0555, found 269.0557.

7. Copies of ¹H NMR, ¹⁹F NMR, ¹³C NMR spectra of the products

¹H NMR Spectra of **3aa**

¹³C NMR Spectra of **3aa**

¹H NMR Spectra of **3ba**

¹⁹F NMR Spectra of **3ba**

¹H NMR Spectra of **3ca**

¹³C NMR Spectra of **3ca**

¹H NMR Spectra of **3da**

¹³C NMR Spectra of **3da**

¹⁹F NMR Spectra of **3da**

¹H NMR Spectra of **3ea**

¹³C NMR Spectra of **3ea**

¹H NMR Spectra of **3fa**

¹³C NMR Spectra of **3fa**

¹⁹F NMR Spectra of **3fa**

¹H NMR Spectra of **3ga**

¹³C NMR Spectra of **3ga**

¹H NMR Spectra of **3ha**

¹³C NMR Spectra of **3ha**

¹⁹F NMR Spectra of **3ha**

¹H NMR Spectra of **3ab** From Method A

¹H NMR Spectra of **3ab** From Method B

¹³C NMR Spectra of **3ab** From Method A

¹⁹F NMR Spectra of **3ab** From Method A

¹⁹F NMR Spectra of **3ab** From Method B

¹H NMR Spectra of **3ac** From Method A

¹H NMR Spectra of **3ac** From Method B

¹³C NMR Spectra of **3ac** From Method A

¹⁹F NMR Spectra of **3ac** From Method A

¹⁹F NMR Spectra of **3ac** From Method B

¹H NMR Spectra of **3ad**

¹³C NMR Spectra of **3ad**

¹H NMR Spectra of **3ae** From Method A

¹H NMR Spectra of **3ae** From Method B

¹³C NMR Spectra of **3ae** From Method A

¹⁹F NMR Spectra of **3ae** From Method A

¹⁹F NMR Spectra of **3ae** From Method B

¹H NMR Spectra of **3af**

¹³C NMR Spectra of **3af**

¹H NMR Spectra of **3ag**

¹³C NMR Spectra of **3ag**

¹⁹F NMR Spectra of **3ag**

¹H NMR Spectra of **3ah** From Method A

¹H NMR Spectra of **3ah** From Method B

¹³C NMR Spectra of **3ah** From Method A

¹⁹F NMR Spectra of **3ah** From Method A

¹⁹F NMR Spectra of **3ah** From Method B

¹H NMR Spectra of **3ai** From Method A

¹H NMR Spectra of **3ai** From Method B

¹³C NMR Spectra of **3ai** From Method A

¹⁹F NMR Spectra of **3ai** From Method A

¹⁹F NMR Spectra of **3ai** From Method B

¹H NMR Spectra of **3aj** From Method A

¹H NMR Spectra of **3aj** From Method B

¹³C NMR Spectra of **3aj** From Method A

¹⁹F NMR Spectra of **3aj** From Method A

¹⁹F NMR Spectra of **3aj** From Method B

¹³C NMR Spectra of **3ak**

¹⁹F NMR Spectra of **3ak**

¹H NMR Spectra of **3am**

¹³C NMR Spectra of **3am**

¹H NMR Spectra of **3an**

¹³C NMR Spectra of **3an**

¹⁹F NMR Spectra of **3an**

