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Section S1. Materials and methods

All solvents and chemicals were purchased from commercial suppliers and used without further
purification. Solvents, when needed, were dried by standard distillation techniques or for larger amounts
(>10 mL), the solvent was tapped from a Solvent Purification System (SPS) from mbraun (MB SPS-800, with
standard mbraun drying columns). Pyridine and DMF were obtained as ‘extra dry’ grade in septum sealed
bottles and used as received. Reactions were carried out under a Nitrogen atmosphere using standard
Schlenk techniques, where dry solvents are specified. Silica gel column chromatography was performed
using Silica Gel 60 from Macherey-Nagel (0.040 - 0.063 nm). Bis-ethylester B as well as bromide A and
bis-pentafluorophenyl ester E? were prepared according to literature procedures. Tetrakis[3,5-
bis(trifluoromethyl)phenyl]borate is abbreviated as BArf in the text.

Nuclear Magnetic Resonance (NMR) spectra were recorded on a Bruker DRX 500 (125.72 MHz for 3C),
Bruker AMX 400 (100.62 MHz for 3C), Bruker DRX 300 (75.48 MHz for 3C) or on a Varian Mercury 300
(75.48 MHz for 3C or 282.32 MHz for °F) spectrometer at room temperature or specifically specified
otherwise. The residual solvent peaks were used as internal standards (*H: § 7.26 p.p.m., C{*H}: 6 77.16
p.p.m. for CDCls; *H: & 5.32 p.p.m., 3C{*H}: & 53.84 p.p.m. for CD,Cly; *H: § 2.50 p.p.m., BC{*H}: § 39.52
p.p.m. for DMSO-dg; H: 8§ 1.94 p.p.m., B3C{*H}: & 1.32 p.p.m. for CD3sCN), while °F NMR spectra were
externally referenced to CF3COOH (-76.55 p.p.m.). Chemical shifts (6) are given in parts per million (p.p.m.)
and coupling constants (/) are quoted in hertz (Hz). Resonances are described as singlet (s), doublet (d),
triplet (t), quartet (qg), quintet (quint), a combination thereof, broad singlet (br s) or multiplet (m). High
Resolution Mass Spectra (HRMS) of the organic molecules were recorded on a JEOL AccuTOFC-plus JMS-
T100LP mass spectrometer, with the indicated ionization method. The high resolution mass spectra of the
complexes were recorded after electronspray-ionization using a HR-ToF Bruker Daltonik GmbH (Bremen,
Germany) Impact Il, an ESI-ToF MS capable of resolution of at least 40000 FWHM, which was coupled to a
Bruker cryo-spray unit. Detection was in positive-ion mode and the source voltage was between 4 and 6
kV. The sample was introduced with a syringe pump at a flow rate of 18 ul/hr. The drying gas (N,) was held
at 40°C and the spray gas was held at 60°C. The machine was calibrated prior to every experiment via direct
infusion of a TFA-Na solution, which provided a m/z range of singly charged peaks up to 3500 Da in both
ion modes. Software acquisition Compass 2.0 for Otof series. Software processing m- mass.

'H NMR titrations were performed using a Bruker DRX 500 spectrometer operating at 298 K or specifically
specified otherwise. The titrations were performed by titrating a solution of carbohydrate or nitrate salt to
a solution containing freshly prepared Pd-complex. The carbohydrates 3, 4 and 6 were purified by silica gel
column chromatography prior to use (using acetone as the eluent, the column was first thoroughly flushed
with the solvent). Association constants (K.) were determined by monitoring the change in chemical shift
(A8) for (a) selected proton resonance(s) of a Pd complex and fitting these shifts to a binding model using
HypNMR.B! An estimated goodness of fit was calculated as r? from all the observed and fitted AS values
used in HypNMR. The titration data with glycosides fitted very well to a 1:1 model when using the data until
about 25 mM glycodise. When using the full concentration range (~150 mM), the 1:1 model failed. Fitting
the data to a 1:2 model also did not work out (not shown). The data could be reasonably modelled with a
1:3 stoichiometry with very weak 1:2 and 1:3 binding. The exact values for K;*? and K.'* had little impact
on r? of the model in the range 2-5 M and it was decided to model both as the same constant at ~3 M.
As we could not genuinely fit these 1:2 and 1:3 constants and because we suspect the shifts may in part be
due to polarity effects at elevated levels of glycoside, we do not report these stoichiometries in the main
text. Moreover, the K, obtained from the fit to a 1:1 stoichiometry (with data until 25 mM glucoside) and
obtained from modelling to a 1:3 stoichiometry (data until ~150 mM glycoside) were nearly identical. For
completeness, we do show these 1:3 models alongside the data here in the supporting information.



Section S2. Synthetic procedures

Section S2a. Overview of syntheses
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Scheme S1. OverV|eW of the synthetic pathway towards bidentate dipyridyl ligands 1 and 2 and their Pd(ii)
complexes. Compound B, and A and E? were prepared using literature procedures.



Section S2b. Synthesis of bidendate dipyridyl ligands 1 and 2
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Bis-ethylester C. Bromide A (1.0 eq., 5.0 mmol, 3.06 g), alcohol B (1.2 eq., 6.0 mmol, 1.44 g) and K2CO3
(3.0 eq., 15.0 mmol, 2.07 g) were placed in a Schlenk flask. Dry DMF (60 mL) was added and the reaction
mixture was heated to 90°C for 18 h. After cooling to room temperature the solvent was removed by rotary
evaporation. The residue was triturated with water and the solids were collected by filtration. The solids
were dissolved in CH,Cl; and dried over Na,SOy, filtered and concentrated in vacuo. The residue was further
purified by column chromatography (1:1 PE 40-60/CH,Cl, to CH,Cl, to 5% EtOAc) to afford the product C
(3.33 g, 4.3 mmol, 86%) as white solid.

IH NMR (500 MHz, CDCl3) & 7.86 (s, 2H), 7.23 (d, J = 7.8 Hz, 6H), 7.14 — 6.99 (m, 8H), 6.80 (d, J = 8.2 Hz, 2H),
4.65—4.40 (m, 6H), 4.35 (s, 2H), 1.45 (t, J = 6.7 Hz, 6H), 1.30 (s, 27H). 3C NMR (126 MHz, CDCl3) § 166.81,
164.81, 156.15, 150.40, 148.52, 144.16, 140.61, 132.54, 130.84, 124.22, 114.59, 113.18, 67.50, 65.89,
63.21, 62.56, 34.44, 31.52, 14.35. MS (MS FD+ eiFi, m/z) calc. for CsoHsoN:Oe [M]*: 769.4342,
found:769.4350.
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Figure S1. 'H NMR spectrum of bis-ethylester Cin CDCls.
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Figure S2. 3C NMR spectrum of bis-ethylester C in CDCls.
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Bis-pentafluorphenyl ester D. Bis-ethylester C (1.0 eq., 4.3 mmol, 3.33 g) was dissolved in a mixture of CH,Cl,
(45 mL) and MeOH (5 mL) and ground NaOH (10.0 eq., 43.0 mmol, 1.72 g) was added portionwise. After
stirring for 16h the solvent was removed by rotary evaporation and the residue was resuspended in CH,Cl,.
The solution was brought to pH 7 by addition of HCI (1M in H,0) after which the CH,Cl, was removed by
rotary evaporation. The resulting white solids (2.76 g, theoretically 3.89 mmol, 91%) were collected by
filtration and dried in vacuo at 80°C. Due to insolubility of this diacid the compound was directly used in
the following step without further characterization. The (presumed) diacid (2.75 g, 3.85 mmol) was
suspended in dry THF (60 mL) containing pentafluorophenol (2.5 eq., 9.63 mmol, 1.77 g). The mixture was
cooled to 0°C and a solution of N,N'-dicyclohexylcarbodiimide (DCC, 2.5 eq., 9.63 mmol, 1.99 g) in dry THF
(20 mL) was added portionwise. A few minutes after complete addition, 4-dimethylaminopyridine (DMAP,
5 mol%, 0.19 mmol, 23.5 mg) was added and the ice bath was removed. After stirring for 16h the reaction
mixture was filtered and concentrated in vacuo. The residue was dried on SiO, and purified by column
chromatography (2:1 to 1:1 PE 40-60/CH,Cl,) to afford the product as crystalline white solid (400 mg, 0.38
mmol, 10%). NB: product D readily hydrolyses in the presence of H,O and undergoes transesterification in
the presence of alcohols e.g., MeQOH.

IH NMR (500 MHz, CD,Cl) & 8.13 (s, 2H), 7.27 (d, J = 8.5 Hz, 6H), 7.21 — 7.09 (m, 8H), 6.82 (d, J = 8.8 Hz,
2H), 4.60 (s, 2H), 4.41 (d, J = 2.2 Hz, 2H), 1.30 (s, 27H). 3C NMR (126 MHz, CD,Cl,) § 167.73, 160.86, 156.43,
148.90, 147.90, 144.77, 142.68, 141.07, 140.60, 139.50, 137.47, 132.49, 130.79, 125.56, 124.73, 117.54,
113.63, 68.60, 66.38, 63.53, 34.60, 31.47.°F NMR (282 MHz, CD,Cl,) 6 -152.49 (d, /= 17.2 Hz), -157.91 (t,
J=21.6 Hz),-162.58 (dd, J = 21.6, 17.2 Hz). MS (MS FD+ eiFi, m/z) calc. for CssHasF10N106 [M]*: 1045.3400,
found:1045.3348.
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Figure S3. IH NMR spectrum of bis-pentafluorophenyl ester D in CD,Cls.
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Figure S4. 13C NMR spectrum of bis-pentafluorophenyl ester D in CD,Cl,.
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Figure S5. 1°F NMR spectrum of bis-pentafluorophenyl ester D in CD,Cls.
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Dipyridyl ligand 1. Bis-pentafuorophenyl ester F? (1.0 eq., 0.5 mmol, 523 mg), 3-aminopyridine (40 eq.,
20.0 mmol, 1882 mg) and dry pyridine (5 mL) were mixed in a Schlenk flask. The mixture was heated to
110°C and stirred for 17h. After cooling to room temperature the pyridine was evaporated by rotary
evaporation. The residue was redissolved in CH,Cl, (50 mL) and washed with H,O (50 mL) and brine (50
mL). The organic layer was dried over Na,SOy, filtered and concentrated in vacuo. The residue was further
purified by flash column chromatography (CH>Cl, to 5% MeOH in CH,Cl,). Fractions containing the product
were concentrated in vacuo. The residual solids were triturated with MeOH and filtered to afford dipyridyl
ligand 1 (176 mg, 0.2 mmol, 41%) as white solid.

1H NMR (300 MHz, 10% dmso-ds in CD,Cly) 6 10.01 (s, 2H, s3-NH), 8.92 (s, 2H, p2), 8.31 (d, J = 4.0 Hz, 2H,
p3), 8.27 (ddd, /= 8.4, 2.4, 1.5 Hz, 2H, p5), 8.23 (s, 2H, s4), 7.79 (d, J = 1.3 Hz, 2H, s2), 7.36 — 7.21 (m, 8H,
p4 and d10), 7.21 - 7.09 (m, 8H, d5 and d9), 6.82 (d, J = 8.9 Hz, 2H, d4), 4.46 (dd, / = 5.6, 2.9 Hz, 2H, d1),
4.34 (dd, J=5.4,3.1 Hz, 2H, d2), 1.28 (s, 27H, d13). 3C NMR (75 MHz, 10% dmso-ds in CD,Cl;) § 165.65 (s3-
CO), 159.25 (s1), 156.66 (d3), 148.73 (d11), 145.31 (p3), 144.72 (d8), 142.65 (p2), 140.57 (d6), 136.59 (s3),
136.15 (p1), 132.35 (d5), 130.71 (d9), 127.79 (p5), 124.61 (d10), 123.66 (p4), 119.81 (s4), 117.66 (s2),
113.55 (d4), 67.54 (d1), 66.71 (d2), 63.41 (d7), 34.51 (d12), 31.41 (d13). MS (MS FD+ eiFi, m/z) calc. for
C57H60N404 [M]+I 864.4615, found: 864.4618.
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Figure S6. 1H NMR spectrum of dipyridyl ligand 1 in CD,Cl, with 10% dmso-ds, fully assigned.
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Figure S7. 3C NMR spectrum of dipyridyl ligand 6 in CD,Cl, with 10% dmso-ds, fully assigned.
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Dipyridyl ligand 2: Bis-pentafluorophenyl ester D (1.0 eq., 0.46 mmol, 481 mg), 3-aminopyridine (40 eq.,
18.4 mmol, 1731 mg) and dry pyridine (5 mL) were mixed in a Schlenk flask. The mixture was heated to
110°C and stirred for 15h. After cooling to room temperature the product was precipitated by addition of
H,0 (30 mL). The product was filtered, triturated with MeOH and filtered again. The residue was redissolved
in CH,Cl, (50 mL) dried over Na,SO,, filtered and concentrated in vacuo. The residue was further purified
by flash column chromatography (2.5% MeOH in CH,Cl, to 5% MeOH in CH,Cl,). Fractions containing the
product were concentrated in vacuo. The residual solids were triturated with MeOH and filtered to afford
dipyridyl ligand 2 (314 mg, 0.36 mmol, 79%) as white solid.

IH NMR (500 MHz, 10% dmso-ds in CD,Cl,) 6 10.95 (s, 2H, s3-NH), 9.09 (s, 2H, p2), 8.53 — 8.21 (m, 4H, p5
and p3), 7.99 (s, 2H, s2), 7.32 (dd, /=3.2 Hz, J=4.6 Hz 2H, p4), 7.23 (d, / = 8.3 Hz, 6H, d10), 7.17 - 7.07 (m,
8H, d9 and d5), 6.80 (d, J = 8.6 Hz, 2H, d4), 4.55 (s, 2H, d1), 4.36 (s, 2H, d2), 1.26 (s, 27H, d13).2*CNMR (126
MHz, 10% dmso-ds in CD,Cl,) 6§ 168.04 (s3-CO), 162.49 (s1), 156.43 (d3), 151.17 (s3), 148.61 (d11), 145.61
(p3), 144.62 (d8), 143.22 (p2), 140.59 (d6), 135.30 (p1), 132.25 (d5), 130.62 (d9), 128.11 (p5), 124.53 (d10),
123.60 (p4), 113.56 (d4), 112.06 (s2), 67.94 (d1), 66.32 (d2), 63.32 (d7), 34.42 (d12), 31.34 (d13). MS (MS
FD+ eiFi, m/z) calc. for CsgHsoNsO4 [M]*: 865.4567, found: 865.4585.
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Figure S11. 'H NMR spectrum of dipyridyl ligand 2 in CD,Cl; with 10% dmso-ds, fully assigned.
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Section S2c. Synthesis and characterizations of Pd complexes

Cages [Pd214][BFs]a and [Pd224][BF4]s: The M,lLs cages were prepared by slow addition of the
[Pd(CHsCN)4][BF4], precursor in dmso-ds to a solution of the desired ligand (1 or 2) in CH,Cl, with the
remainder of dmso-ds to end up at 5 v/v% of dmso-de. Initially, multiple products are formed which
converge to the thermodynamic ML cages by stirring for approximately 1 week. See also Figure S36 and
Figure S37 for the formation studies.

[Pd214][BF4]4 (Figure S16— Figure S23 and Figure S33)

IH NMR (500 MHz, 5% dmso-ds in CD,Cl,) § 10.21 (s, 8H, s3-NH), 9.85 (s, 8H, p2), 9.10 (d, J = 4.5 Hz, 8H,
p3), 8.62 (d, J = 6.8 Hz, 8H, p5), 8.44 (s, 4H, s4), 7.85 (s, 8H, s2), 7.50 (dd, J = 8.5, 5.8 Hz, 8H, p4), 7.22 (d, J
= 8.6 Hz, 24H, d10), 7.13 —7.09 (t, J = 9.6 Hz, 32H, d5 and d9), 6.75 (d, J = 9.0 Hz, 8H, d4), 4.39 (s, 8H, d1),
4.27 (s, 8H, d2), 1.26 (s, 108H, d13).23C NMR (126 MHz, 5% dmso-ds in CD,Cl,) & 165.39 (s3-CO), 159.50
(s1), 156.56 (d3), 148.75 (d11), 146.53 (p3), 144.67 (d8), 142.34 (p2), 140.61 (d6), 139.11 (p1), 135.27 (s3),
132.34(d5), 131.34 (p5), 130.67 (d9), 127.36 (p4), 124.60 (d10), 119.25 (s4), 118.59 (s2), 113.44 (d4), 67.66
(d1), 66.56 (d2), 63.38 (d7), 34.49 (d12), 31.39 (d13). **F NMR (282 MHz, 5% dmso-ds in CD,Cl;) § -148.52.
CSI HRMS: m/z calculated for [Pdy(Cs7HsoN4O4)a]* = 918.1650, found 918.1582; {[Pd2(Cs7HeoN2O4)a][BF4}* =
1253.2214, found 1253.2121; {[Pd2(Cs7HsoN4O4)4] [BF4],}2 = 1923.3342, found 1923.3190.

[Pd224][BF4]4 (Figure S24 — Figure S33)

IH NMR (500 MHz, 5% dmso-ds in CD,Cly) 6 10.49 (s, 8H, s3-NH), 9.09 (d, J = 9.0 Hz, 8H, p5), 8.90 (s, 8H,
p2), 8.73 (d, J = 5.8 Hz, 8H, p3), 7.95 (s, 8H, s2), 7.53 (dd, / = 8.6, 5.8 Hz, 8H, p4), 7.22 (d, J = 8.5 Hz, 24H,
d10), 7.13 -7.10 (m, 32H, d9 and d5), 6.76 (d, /= 8.9 Hz, 8H, d4), 4.47 (s, 8H, d1), 4.30 (s, 8H, d2), 1.26 (s,
108H, d13). 3C NMR (126 MHz, CD,Cl;) § 168.09 (s3-CO), 163.06 (s1), 156.39 (d3), 150.54 (s3), 148.73
(d11), 147.00 (p3), 144.66 (d8), 143.70 (p2), 140.86 (d6), 138.16 (p1), 132.50 (p5), 132.33 (d5), 130.68 (d9),
127.23 (p4), 124.60 (d10), 113.54 (s2), 113.27 (d4), 68.05 (d1), 66.61 (d2), 63.92 (d7), 34.49 (d12), 31.39
(d13). ¥F NMR (282 MHz, 5% dmso-ds in CD,Cl) & -148.13. CSI HRMS: m/z calculated for
[P(’jz(Cs,eH59N504)4]4+ = 919.1602, found 919.1588; {[sz(C56H59N504)4][BF4]}3+ = 1254.5483, found
1254.5385; {[Pd(CssHs9Ns04)a] [BF4]2}** = 1925.3246, found 1925.3095.
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Figure S16. 1H NMR spectrum of [Pd;14][BF4]4 in CD,Cl, with 5% dmso-ds, fully assigned.
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Figure S18. 1°F NMR spectrum of [Pd;14][BF4]4 in CD,Cl, with 5% dmso-ds, fully assigned.
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Figure S26. 1°F NMR spectrum of [Pd;24][BF4]4 in CD,Cl; with 5% dmso-ds, fully assigned.
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Figure S33. DOSY NMR spectra of both ligand 1 and 2 (left) and their [Pd;(Ligand)4][BF4]a complexes (right). The solvent is CD,Cly
with 5% dmso-ds. Applying the Stokes-Einstein equation to the average diffusion constants of both ligands and both complexes,
and assuming the weighted average viscosity of the solvents (p = 0.4811 g/ml, based on the molar fractions with p (25 °C) = 0.413
for DCM and 1.991 for DMSO) in indicate that the average radius of the complexes are 5.85 A (Pd,(1)4]) and 5.97 A (Pd,(2)s]) larger
than those of their ligands. While this difference is on the small side, these spectra evidence that both complexes have a larger
diffusion constant than their parent ligands. This is consistent with the formation of complexes that are larger than the ligand used
to make the complex. Moreover, it is well-known that the measured diffusion constant can be greatly affected by some self-
aggregation and by the solvation of charged species.[l Solvation is likely different for the ligand and its complex, and some
aggregation in the apolar matric of mostly CD,Cl, is most likely for the ligands but not the cages (as evidenced by the dilution
studies shown in Figure S38 and Figure S39).
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Section S3. Titration experiments

Section S3a. Formation of Pd complexes
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Figure S34. 'H NMR spectra of a titration experiment to form [Pd;14][BArf]s complex in 5% DMSO-ds in CD,Cl, by stepwise addition

of [Pd(DMSO-ds)a][BArf]; to 1.
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Figure S35. 'H NMR spectra of a titration experiment in an attempt to form [Pd,24][BF4], complex in 5% DMSO-ds in CD,Cl, by

stepwise addition of [Pd(DMSO-de)4][BArf]; to 2.
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Figure S36. 'H NMR spectra of a titration experiment to form [Pd;14][BF4]s complex in 5% DMSO-ds in CD,Cl, by stepwise addition
of [Pd(NCM€3)4][BF4]2 to 1.
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Figure S37. 'H NMR spectra of a titration experiment to form [Pd;24][BF4]4 complex in 5% DMSO-ds in CD,Cl, by stepwise addition
of [Pd(NCM63)4][BF4]2 to 2.

Section S3b. Dilution of Pd complexes
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Figure S38. 'H NMR spectra of a dilution study of form [Pd,14][BF4]s complex in 5% DMSO-ds in CD,Cl; in the range relevant for
binding studies (0.64 — 0.27 mM) showing no significant shifting of peaks. NB: the shifts observed in a typical binding study are in
the range of |A§] 20.1 p.p.m..
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Figure 539. 'H NMR spectra of a dilution study of form [Pd,24][BF4]s complex in 5% DMSO-ds in CD,Cl; in the range relevant for
binding studies (0.64 — 0.27 mM) showing no significant shifting of peaks.



Section S3c. Binding studies of [Pd214][BF4)4
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Figure S40. Top: 'H NMR spectra and assignment of 0.6 mL of a 0.64 mM solution [Pd;14][BF4]4 to which an 258 mM solution of n-
octyl-a-D-Mannoside 3 was added to a concentration of 147 mM. The solvent is CD,Cl; with 5% DMSO-ds. Bottom: The chemical
shift differences of indicated resonances could be fitted using HypNMR. The data until 25 mM 3 could be fitted accurately (r? =
0.9862 over 91 data points) to a 1:1 binding model with K, = 541 M1, Also using the data until 147 mM of 3 could be fitted with a
1:3 binding model with K11 = 484 M1 and K32 = K,13 = 3 Mt and r2 = 0.9622 over all 147 data points. As the 1:1 binding event is
nearly identical in both fits and the higher stoichiometries are negligible, we opted for using only the data until 25 mM 3 in the
main text and report the main 1:1 binding with a comment that higher stoichiometries become relevant at high concentrations of
3. Speciation is also plotted as unbound [Pd,14][BFals (H, green) and complex bound to carbohydrate (HG, blue; HG,, brown).
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Figure S41. Top: 'H NMR spectra and assignment of 0.6 mL of a 0.64 mM solution [Pd;14][BF4]4 to which an 253 mM solution of n-
octyl-a-D-Glucoside 4 was added to a concentration of 144 mM. The solvent is CD,Cl, with 5% DMSO-ds. Bottom: The chemical
shift differences of indicated resonances could be fitted using HypNMR. The data until 25 mM 4 could be fitted accurately (r? =
0.9723 over 91 data points) to a 1:1 binding model with K, = 262 M1, Also using the data until 144 mM of 4 could be fitted with a
1:3 binding model with K311 = 280 M1 and K;12 = K313 = 3 M1 and r2 = 0.9852 over all 147 data points. As the 1:1 binding event is
nearly identical in both fits and the higher stoichiometries are negligible, we opted for using only the data until 25 mM 4 in the
main text and report the main 1:1 binding with a comment that higher stoichiometries become relevant at high concentrations of
4. Speciation is also plotted as unbound [Pd,14][BF4]4 (H, green) and complex bound to carbohydrate (HG, blue; HG,, brown).
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Figure S42. Top: 'H NMR spectra and assignment of 0.6 mL of a 0.64 mM solution [Pd;14][BF4]4 to which an 253 mM solution of n-
octyl-B-D-Glucoside 5 was added to a concentration of 144 mM. The solvent is CD,Cl; with 5% DMSO-ds. Bottom: The chemical
shift differences of indicated resonances could be fitted using HypNMR. The data until 25 mM 5 could be fitted accurately (r? =
0.9735 over 91 data points) to a 1:1 binding model with K; = 447 M1, Also using the data until 144 mM of 5 could be fitted with a
1:3 binding model with K11 = 471 M1 and K32 = K,13 = 3 Mt and r2 = 0.9858 over all 147 data points. As the 1:1 binding event is
nearly identical in both fits and the higher stoichiometries are negligible, we opted for using only the data until 25 mM 5 in the
main text and report the main 1:1 binding with a comment that higher stoichiometries become relevant at high concentrations of
5. Speciation is also plotted as unbound [Pd,14][BF4]4 (H, green) and complex bound to carbohydrate (HG, blue; HG,, brown).
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Figure S43. a) 2.5 mM solution of [Pd;14][BF4]s in CD,Cl, with 5% dmso-ds; b) idem as ‘a’, but also containing 15 mM n-octyl-B-D-
glucoside 5; c) 1D-selective nOe spectrum recorded of the solution in ‘b’ after excitation at 3.1 p.p.m. in the pyranose region (t, =
300 ms), showing nOe signals with the inwards facing s3-NH, p2 and s4; d) schematic representation and labeling of [Pd;14]4+; €)
plot of the integral (in arbitrary units) of the nOe signal of p2 as a function of the mixing time (tm). The linear relationship evidences
that spin diffusion is insignificant at the mixing time used (300 ms).
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Figure S44. ESI-MS spectrum of [Pd,14]** and its BFs~ adducts in the presence of n-octyl-B-D-glucoside 5 as measured (top) and
simulated (bottom). The inset figure shows the measured and simulated monoisotopic mass distribution of the largest peak

containing 5, [Pda14 * 5]4*
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Figure S45. Top: 'H NMR spectra and assignment of 0.6 mL of a 0.64 mM solution [Pd;14][BF4]4 to which an 256 mM solution of n-
octyl-B-D-Galactoside 6 was added to a concentration of 147 mM. The solvent is CD,Cl, with 5% DMSO-ds. Bottom: The chemical
shift differences of indicated resonances could be fitted using HypNMR. The data until 25 mM 6 could be fitted accurately (r? =
0.9716 over 90 data points) to a 1:1 binding model with K; = 262 M1, Also using the data until 144 mM of 6 could be fitted with a
1:3 binding model with K311 = 244 M1 and K12 = K;13 =3 M1 and r2 = 0.9735 over all 134 data points. As the 1:1 binding event is
nearly identical in both fits and the higher stoichiometries are negligible, we opted for using only the data until 25 mM 6 in the
main text and report the main 1:1 binding with a comment that higher stoichiometries become relevant at high concentrations of
6. Speciation is also plotted as unbound [Pd,14][BF4]4 (H, green) and complex bound to carbohydrate (HG, blue; HG,, brown). NB:
the resonances broadened significantly, but were sharpened when nitrate was added, as detailed in Figure S46.
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Figure S46. Top: 'H NMR spectra of a solution of 0.6 mL 0.74mM [Pd;14][BF4]a with 99 mM n-octyl-B-D-Galactoside 6 (about the
same as final point in the titration, see Figure $45), that was titrated with a 266 mM solution of (n-Bu)sN*NOs™~. The solvent is CD,Cl»
with 5% DMSO-ds. Bottom: The chemical shift differences of indicated resonances could be modelled using HypNMR. The model
incorporated the presence of 6 and the 1:1 binding constant of [Pd,14]** for 6 determined here (Figure $45, K, = 262 M) and also
incorporated a 2:1 complex:NOs~ stoichiometry of 100 M that has been required in a similar system.[®! The data was thus further
modelled with a 1:3 complex: NOs~ stoichiometry with K311 = 1,862 M1, K12 = 5370 and K13 = 3160 M1 and r2 = 0.9957 over all
126 data points. Speciation is also plotted as unbound [Pd,14][BF4]s (H, blue), the complex bound to 6 (H*Gal, brown), and the
complex bound to one nitrate (dark blue), two nitrate (orange) and three nitrate (gold).
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Figure S47. 1D-selective nOe studies (t, = 350 ms) of a 2.3 mM solution of [Pd,14][BF4]4 containing 100 mM n-octyl-B-D-Galactoside
6. Irradiation of a frequency representative of the inwards facing p2 and s4 gave the clearest nOe signals in the pyranose region
(indicated with red arrows) as opposed to irradiation of the outwards facing p3 and p4. See also Figure S45 for the titration, the
concentration of 6 is similar in the spectrum after the first 100 uL addition.
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Section S3d. Binding studies of [Pd224][BF4)4
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Figure S48. 'H NMR spectra and assignment of 0.6 mL of a 0.64 mM solution [Pd224][BF4]4 to which an 258 mM solution of n-octyl-
a-D-Mannoside 3 was added (solvent = CD,Cl; with 5% DMSO-ds) The spectra shown are to a total concentration of 25 mM 3
revealing only marginal peak shifting (p2 was particularly stationary). This contrasts sharply with the titration of [Pd,14][BFa]s with
3, where saturation is evident at 25 mM of 3 (see Figure S40). As a result, these spectra were interpreted as evidence for non-
binding (or at least binding that is much weaker than observed with [Pd;14][BF4]4).
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Figure S49. 1H NMR spectra and assignment of 0.6 mL of a 0.64 mM solution [Pd,24][BF4)4 to which an 253 mM solution of n-octyl-
a-D-Glucoside 4 was added (solvent = CD,Cl, with 5% DMSO-ds) The spectra shown are to a total concentration of 25 mM 4
revealing only marginal peak shifting (p2 was particularly stationary). This contrasts sharply with the titration of [Pd,14][BF4]s with
4, where saturation is evident at 25 mM of 4 (see Figure S41). As a result, these spectra were interpreted as evidence for non-
binding (or at least binding that is much weaker than observed with [Pd;14][BF4]4).
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Figure S50. 'H NMR spectra and assignment of 0.6 mL of a 0.64 mM solution [Pd224][BF4]4 to which an 253 mM solution of n-octyl-
B-D-Glucoside 5 was added (solvent = CD,Cl, with 5% DMSO-ds) The spectra shown are to a total concentration of 25 mM 5
revealing only marginal peak shifting (p2 was particularly stationary). This contrasts sharply with the titration of [Pd214][BFa]s with
5, where saturation is evident at 25 mM of 5 (see Figure S42). As a result, these spectra were interpreted as evidence for non-
binding (or at least binding that is much weaker than observed with [Pd;14][BFa4]a).
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Figure S51. IH NMR spectra and assignment of 0.6 mL of a 0.64 mM solution [Pd,24][BF4)4 to which an 258 mM solution of n-octyl-
B-D-Galactoside 6 was added (solvent = CD,Cl, with 5% DMSO-dg) The spectra shown are to a total concentration of 25 mM 6
revealing only marginal peak shifting (p2 was particularly stationary). This contrasts sharply with the titration of [Pd,14][BF4]s with
6, where saturation is evident at 25 mM of 6 (see Figure S45). As a result, these spectra were interpreted as evidence for non-
binding (or at least binding that is much weaker than observed with [Pd;14][BF4]4).
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Figure S52. Top: 'H NMR spectra and assignment of 0.6 mL of a 0.64 mM solution [Pd»24][BF4]4 to which an 266 mM solution of (n-
Bu)sN*NOs~ was added. The solvent is CD,Cl, with 5% DMSO-ds. Bottom: The chemical shift differences of indicated resonances
could be modelled using HypNMR. The model incorporated a 2:1 complex:NOs~ stoichiometry of 100 M-! that has been required
in a similar system.® The data was thus further modelled with a 1:3 complex: NO3~ stoichiometry with K311 = 159 M1, K12 = 63
and K313 =31 M1 and r2 = 0.9978 over all 90 data points. Speciation is also plotted as unbound [Pd;14][BF4]4 (H, light green) and
the complex bound to one nitrate (brown), two nitrate (dark green) and three nitrate (dark blue). NB: nitrate binding with
[Pd224][BF4]4 is thus two orders of magnitude weaker than nitrate binding to [Pd214][BF4]4 (with K311 = 13,490 M1 see Figure S46).
This is also consistent with the lack of binding observed between [Pd,24][BF4]s and carbohydrates.
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Section S4. Computational details

Computations were done using Spartan 2018 running on 32 cores operating at 4 GHz and done at the
wB97X-D / 6-31G* level of theory (in vacuo) for calculations using density functional theory (DFT). Initial

geometries were drawn in Spartan and allowed to geometry optimize without any constraints. Models were
rendered using PyMol.
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amideNH---HC = 2.14 A amideNH---Npyridyl = 2 16 A

vdWeer = —0.04 A vdWeer = —0.48 A
dihedral HNCH = 56° dihedral HNCN = 1.7°

Figure S53. Geometry optimized molecular models of ligands 1 and 2 to visualize the steric clash in 1 and the preorganizing feature
of 2. The van der Waals corrected distances (vdW<) are the indicated intramolecular distances minus the van der Waals radii of
the atoms in close contact (H = 1.09 A and N = 1.55 A).
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DFT models

DALKIL [Pd,1,]% [Pd,2,]% YAZMU)

Figure S54. Comparison of the two DFT-generated models (centre) to very similar complexes extracted from crystal structures with
indicated refcodes. The interior heights of the structures is calculated by measuring by the distance between the H4 centroids
consisting of the inwards facing CH H’s of the Pd(pyridyl)s moieties and subtracting twice the van der Waals radius of hydrogen
(1.09 A). Distances are in A.
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BF,” @ [Pd,1,]* BF,” @[Pd,2,]*
N 9.1 kcal-mol?
L, (-5.5 @ solvation)

2.1

2.8
contracted contracted
L ~0.4 A
average C—H--F = average C—H--F =
2.49+0.03 A 2.30+0.02 A

Figure S55. Comparison of the DFT-generated models of both cages bound to BF4~. The interior heights of the structures was
calculated as described in the caption of Figure $54 and indicate that the cage with 1 contracted much more (~1.1 A) than the cage
with 2 (~0.4 A) after binding BF4~. Also, the intermolecular C—H---F distances with the cages derived from 1 (2.49 A) are —on
average- 0.2 A longer than in the cage with 2 (2.30 A). Both geometrical data suggest that BF,~ is more tightly bound by [Pd;24]*
(right) than by [Pd,14]** (left). The adduct with [Pd;24]*" is also 9.1 kcal-mol* more stable when calculated in the gas phase. When
using these geometries in an energy calculation with the COSMO explicit solvation model and a dielectric constant of 10.72 the
energy difference is still =5.5 kcal-mol in favour of [Pd,24]**. These models thus providing an additional rationale for the reduced
binding properties of [Pd;24]*. All distances are in A and the dielectric constant of 10.72 is the weighted average of
dichloromethane (8.82) and dimethylsulfoxide (46.83) in the ratio of 95:5 employed.
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