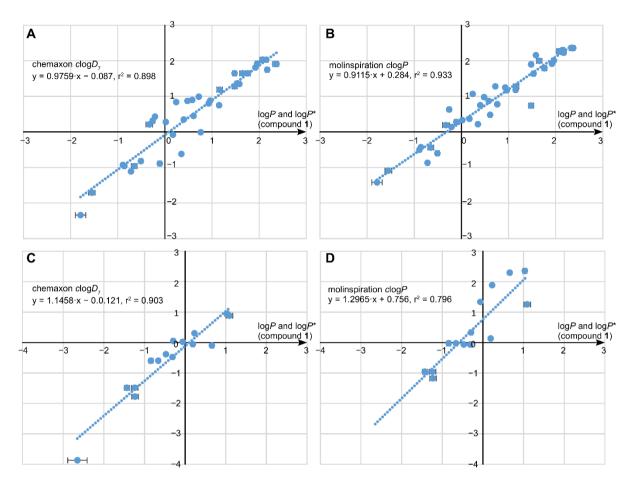
# Electronic supplementary information


# Experimental lipophilicity scale for coded and noncoded amino acid residues

#### by Vladimir Kubyshkin

Chemistry Department, University of Manitoba, 144 Dysart road, Winnipeg, Manitoba, Canada, R3T 2N2

## Index

| Fig. S1 Correlations for noncoded residues                                        | S2  |
|-----------------------------------------------------------------------------------|-----|
| Protocols                                                                         | S3  |
| Experimental lipophilicity values                                                 | S7  |
| Table S1         Summarized experimental logP data for model compounds 1          | S7  |
| <b>Table S2</b> Summarized experimental $\log D_7$ data for compounds 2           | S14 |
| Table S3 Summarized experimental logD data for compounds 1                        | S15 |
| Table S4 Summarized experimental $\log P / \log D_7$ data for substituted indoles | S16 |
| Table S5 Distribution of Dopa derivative 1 in the presence of iron                | S17 |
| NMR spectra of model compounds 1                                                  | S18 |
| NMR spectra for difluoroethyl esters                                              | S55 |
| An example of spectra analysis                                                    | S61 |
| References                                                                        | S73 |



**Fig. S1** Correlations between experimental (x axes) and computed (y axes)  $\log P$  ( $\log D_7$ ) values for noncoded amino acid residues. Panels A and B show correlations for 38 noncoded amino acids based on alanine core structure (aromatic, Phe, Tyr, Trp, Met, Lys and others in Table S1). Panels C and D show correlations for 15 proline analogues separately.

The set of analogues:

General (panels A, B):  $\alpha$ -Nal,  $\beta$ -Nal, Azu, 4-CF<sub>3</sub>-Phe, 4-Br-Phe, 4-CI-Phe, 4-N<sub>3</sub>-Phe, 4-F-Phe, (Me)Tyr, 4-CN-Phe, 4-AcNH-Phe, 4-NH<sub>2</sub>-Phe, 3-I-Tyr, 3-NO<sub>2</sub>-Tyr, 3-F-Tyr, Dopa, 6-Br-Trp, 5-Br-Trp, 5-CI-Trp, 5-CH<sub>3</sub>-Trp, 1-CH<sub>3</sub>-Trp, 5-F-Trp, 5-OH-Trp, 5-NH<sub>2</sub>-Trp, NIe, TfnIe, Nva, Sem, Aha, Mox, MetO, (Boc)Lys, Sac, (Pro)Lys, (Ac)Lys, (Me)Glu, (Me)Asp, Citr.

Proline analogues (panels C, D): (Bn)Hyp, Oic, (Boc)Amp, 4TfmPro, Ash, Mep, Cys[ΨPro], Dfp, Dhp, Flp, flp, (Ac)Amp, Hyp, hyp, Amp (panel C only).

## Protocols

All reactions and manipulations were performed at the room temperature: 21-23°C. The starting amino acids and the reagents were of commercial grade. The solvents were of standard grade ("ACS certified"), and they were used without additional purification. NMR spectra were measured at a spectrometer machine operating at 500 MHz <sup>1</sup>H and 471 MHz <sup>19</sup>F frequencies at 298 K.

Preparation of compounds 1:

### N-acetylation:

**Protocol 1:** An amino acid (1 mmol) was mixed with dichloromethane (10 ml), and acetic anhydride was added either as one equivalent (0.1 ml) or in excess (0.5 ml) depending from the presence of the other reactive groups in the structure. The mixture was stirred for a few hours or overnight (5-20 h). A successful reaction produced a clear solution of the product (unreacted amino acids are not soluble in dichloromethane). The reaction vial was left open under a fume hood overnight (20 h) to allow dichloromethane to fully evaporate. Optionally, the residue was dissolved in water or water-acetonitrile (10-20 ml) and freeze-dried.

**Protocol 2:** An amino acid (1 mmol) was mixed with dichloromethane (10 ml), and an excess of acetic anhydride (0.5 ml) was added. *N*,*N*-Diisopropylethylamine (0.5 ml) was added, and the reaction was stirred overnight (20 h). A successful reaction produced a clear solution (unreacted amino acid is not soluble in dichloromethane). The reaction vial was left open under a fume hood overnight (20 h) allowing the solvent to dry out. Optionally, the residue was dissolved in water or water-acetonitrile (10-20 ml) and freeze-dried, otherwise the material was used in the next step without purification.

**Protocol 3:** An amino acid (1 mmol) was mixed with dichloromethane (10 ml) and *N*,*N*-diisopropylethylamine (0.7 ml, 4 equiv.). Trimethylsilylchloride (0.4 ml, 3.2 equiv.) was added, and the mixture was stirred for about 15 min. Typically, the reaction produced a clear or slightly turbid solution (unreacted amino acid is not soluble in dichloromethane). Acetic anhydride was added either as one equivalent (0.1 ml) or in excess (0.5 ml) depending from the presence of other potential reactive groups in the structure. The reaction mixture was stirred for about 2-3 h, and then the reaction vial was left open under a fume hood overnight (20 h) allowing the solvent to evaporate. Optionally, the residue was dissolved in water or water-acetonitrile (10-20 ml) and freeze-dried.

*N.B.*: unless a substance contained acetylatable groups in the side-chain, the substance was first acetylated using Protocol 1. If the solution did not clear overnight, the protocol was changed to Protocol 2. If this did not lead to clearance of the solution, the substance was processed by Protocol 3. Protocol 3 was chosen for all substances that contained side-chain groups susceptible to acetylation: thiol, phenol, etc.

### Ion-exchange:

**Protocol 4:** The product of the freeze-drying was dissolved in either water (for polar amino acids) or acetonitrile-water 1:1 mixture (for nonpolar amino acids). A cation exchange resin was pre-washed with 1:2 hydrochloric acid and then thoroughly washed with water until a neutral reaction was observed in the eluate (by pH paper). The substance solution was placed on the column and eluted with the solvent. Acidic fractions were collected and freeze-dried affording the *N*-acetylamino acid as a powder.

*N.B.*: Passing through a cation-exchange column removes *N*,*N*-diisopropylethylamine and (if any) remaining non-reacted amino acid. The step was not essential, but highly desirable, as it significantly simplified the next esterification and purification steps. A material coming out from the cation-exchange column is typically acidic, such that relatively small amounts of trimethylsilylchloride were sufficient for methanol acidification in Protocol 5. In contrast, material containing *N*,*N*-diisopropylethylamine required much higher amounts of added acid and prolonged reaction times. Though, for moderately hydrophilic amino acids (log*P* of threonine derivative or lower), a cation-exchange step was essential, since silica gel purification (Protocol 6) was not efficient of separating target product **1** from remaining Hünig's base.

### Esterification:

**Protocol 5:** A product from the Protocol 1-4 was dissolved in methanol (2-5 ml). Trimethylsilylchloride was added to create acidic reaction of the medium. Typically, 0.2-0.5 ml of the reagent was added. The strongly acidic reaction of the medium was checked on a pH paper. The solution was stirred overnight (20 h). The solvent was removed under reduced pressure on a rotary evaporator using bath temperature of about 30-35°C.

**Protocol 6:** The residue from the esterification step was purified on a short silica gel column (about 20 g) using ethyl acetate – methanol 20:1 mixture as a starting eluent. For polar amino acids, the original elution with the 20:1 mixture was continued with a changing solvent ratio  $20:1 \rightarrow 5:1 \rightarrow 2:1$ . Alternatively, the elution was continued with dichloromethane – methanol  $9:1 \rightarrow 2:1$  mixture. The fractions were collected and analysed by thin layer chromatography, which was visualized in an iodine chamber. Iodine visualization worked only for intermediate and nonpolar substances ( $\log P \ge -0.5$ ). Alternatively, the fractions were analysed by dry weight after drying the fraction vials under the fume hood overnight. Fractions were checked by taking a tiny amount in a capillary tube and placing it on a pH paper. If some fraction gave an acidic reaction, their purification was repeated typically resulting in non-acidic material. Compound **1** was obtained as either solid or an oily material in 100-300 mg amount depending from the molecular weight. The identity of the compounds was checked by <sup>1</sup>H NMR spectra in methanol-d<sub>4</sub> or DMSO-d<sub>6</sub> solution.

Preparation of compounds 2:

Esterification:

**Protocol 7:** Commercial Fmoc-amino acids were taken on 0.3 mmol amount: Fmoc-(Boc)Lys-OH, Fmoc-(Pbf)Arg-OH, Fmoc(tBu)Asp-OH, Fmoc-(tBu)Glu-OH, Fmoc-(tBu)Ser-OH, and Fmoc-(Boc)Amp-OH, where Amp stands for (*4R*)-aminoproline. The substances were mixed with chloroform (5 ml each). Difluoroethylamine (0.4 g) was mixed with chloroform (30 ml) and *tert*-butyl nitrite (0.8 ml) was added. The solution was stirred for 10 min, and then 5 ml portions were added in every vial containing the Fmoc-amino acids. After about one hour a clear or slightly turbid solution was observed in each reaction vial (unreacted material is poorly soluble in chloroform) indicating successful completion of the reactions. The reaction vials were left open under a fume hood overnight to allow the solvent to dry out. Each crude material was purified on a short silica gel column (20 g) using ethyl acetate – methanol 20:1 mixture as an eluent. Fractions were analysed by thin layer chromatography (iodine chamber) and dry weight after drying the fraction vials overnight. Esters of the Fmoc-amino acids were collected as either solid or greasy material in about 150 mg amount each.

Deprotection:

**Protocol 8:** A purified product of the previous step (50 mg) was dissolved in dichloromethane (100  $\mu$ l) and trifluoroacetic acid (100  $\mu$ l) was added. The solution was stirred for one hour, and 50  $\mu$ l aliquots were taken to 4 ml vials. The volatiles were blown off by an intense argon stream affording compounds **2**, which were launched directly into the partition measurements. Buffer (2 ml, pH 7) and octan-1-ol (2 ml) was added and the mixture was vigorously shaken for over two hours. The NMR samples were prepared as described in Protocol 9. The measurements of relative concentrations were accomplished by <sup>19</sup>F{<sup>1</sup>H} NMR in 60-degree pulse experiments below the Ernst angle (acquisition+recycling time either 0.5 or 0.8 s).

In the case of (Pbf)Arg, the deprotection was performed by mixing with 200  $\mu l$  pure trifluoroacetic acid for two hours.

## Partitioning:

**Protocol 9:** A substance (5-10 mg) was placed in a 4 ml glass vial with a screw cap. Water (1 ml) and octan-1-ol (1 ml) was added and the mixture was intensively shaken for over two hours. The vials were let to stand still for a few minutes to allow phase separation, otherwise a quick centrifugation was used to sped up the process. Fractions of each phase were carefully taken using 1 ml plastic syringes (accuracy 0.01 ml) with needles. 0.35 ml of each fraction were placed in identical type 5 mm NMR tubes and 0.20 ml of same deuterated solvent (DMSO-d<sub>6</sub>, methanol-d<sub>4</sub>, or acetonitrile-d<sub>3</sub>) was placed in each tube, creating the total volume of 0.55 ml, which corresponds to over 4 cm height of the solution in the tube. The solutions in the tubes were mixed, and the samples were subjected to the NMR measurements. For each chemical structure the operation was performed in triplicate.

### Distribution:

**Protocol 10:** The distribution between buffer (1-2 ml) and octan-1-ol (1 ml) was performed in the same manner as described in Protocol 9. The aqueous phase was either of the buffers:

pH 6: 150 mM 2-(*N*-morpholino)ethanesulfonic acid (MES) buffer adjusted by hydrochloric acid;

pH 7: 150 mM potassium phosphate buffer adjusted by concentrated potassium hydroxide;

pH 8: 150 mM tris(hydroxymethyl)aminomethane (Tris) buffer adjusted by hydrochloric acid;

pH 9: 150 mM borate buffer adjusted by concentrated potassium hydroxide.

The pH accuracy was ±0.1.

It was observed that for non-ionized molecules the experimental log*D* values obtained in this way were slightly higher compared to the log*P* values by  $\leq 0.1$  units. This observation may be caused by the salting-out effect that occurs in the measurements against 150 mM buffers.

#### NMR measurements:

**Protocol 11:** NMR tubes were placed in the NMR probes at the conventional depth. The samples were locker, tuned, and shimmed for every sample. All measurements were performed at 298 K. The datasets were copied and applied for measurements without readjustment of acquisition or processing parameters (except zero-order phase) and without readjustment of the receiver gain. <sup>1</sup>H NMR spectra were recorded for all samples, <sup>19</sup>F NMR and <sup>19</sup>F{<sup>1</sup>H} NMR spectra were recorder for fluorine-containing analytes (inverse-gated decoupling for decoupled spectra). One-scan and multi-scan measurement were performed on the samples. A single 90-degree pulse experiment with no dummy scans was used for single scan experiments, and a 30-degree pulse experiment with 8 dummy scans was used

for multiscan measurements. In case when the amount of the substance in two phases was drastically different (logP/D > 2 or logP/D < -2), 16-64 scans were used to acquire the spectrum for the concentrated phase, and up to 8,000 scans were used for the less concentrated phase. In this case, the comparison between the phases was made taking into account linear dependence of the resonance intensity from the number of scans.

The spectra were processed in a conventional manner using Fourier transform with 1-2 Hz line broadening and a 5-degree polynomial baseline correction. Baseline correction in selected region of the spectra was used whenever possible. The comparison of the relative analyte concentration in the phases was made by comparison of the absolute integral values and/or by overlaying resonances from two spectra on each other. P/D values were read out for several separate resonances for each sample. Averaging these values produced the final  $\log P/D$  value and the standard deviation. An example of the spectra analysis is shown in a dedicated section below.

Distribution of the Dopa derivative **1** in the presence of iron ions:

**Protocol 12:** Dopa derivative **1** was placed in 4 ml glass vials, 5 mg in each vial. Fresh 30 mM iron (II) sulphate solution in deionized water was prepared. Aliquotes of this solution (1 ml, 0.66 ml, 0.33 ml, and 0.17 ml) were placed in the vials containing **1** and water was added to adjust the total volume of the aqueous phase to 1 ml. The final concentration of the iron ions was 5, 10, 20, 30 mM, while one equivalent of **1** corresponded to 1 ml of 20 mM solution. Octan-1-ol (1 ml) was added to each vial and the vials were shaken vigorously for over two hours. Samples of each phase (0.35 ml) were taken by 1 ml plastic syringes into NMR tubes. DMSO-d<sub>6</sub> (0.20 ml) was added to each tube. The measurements were performed according to the Protocol 11. The results are summarised in Table S5.

Special additions to the protocols:

For histidine derivative **1**: in the column chromatography purification (Protocol 6), the substance was placed in the original (20:1 ethyl acetate – methanol) eluent. After few fraction, the elution was continued with the eluent mixed with some amount of trimethylamine solution (45 w%, about 0.5 ml).

For cysteine derivative **1**: partitioning and distribution (Protocol 9 and Protocol 10) were performed in the presence of 1-1.5  $\mu$ l of mercaptoethanol.

For derivatization of 3,5-diiodotyrosine using Protocol 3, the substance was taken as a dihydrate. The substance produced a jelly in the first step. Solution cleared after two more equivalents of *N*,*N*-diisopropylethylamine and trimethylsilylchloride were added to compensate for the water molecules, then processed as usual.

In case of amino-tryptophan and amino-phenylalanine, the acetylation was performed with one equivalent of acetic anhydride. The reaction produced a mixture of amino- and *N*-acetylamino derivatives, which was used for partitioning without separation. *N*-acetylamino derivatives were slightly more lipophilc as seen using by the resonance of the additional acetyl group.

Esterification (Protocol 7) for amino acids containing *N*-butyloxycarbonyl moiety in the sidechain (Boc-lysine or Boc-aminoproline). The substance was filtered on an ion-exchange column after *N*-acetylation. After freeze-drying, the substance was taken up in methanol, and a couple of small drops of trimethylsilylchloride was added (less than 0.025 ml). The mixture was left for prolonged time (about few days), then processed as usual.

# Experimental lipophilicity values

| group | amino acid code | structure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | log <i>P</i> | reference |
|-------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------|
| coded | Trp             | O<br>H <sub>3</sub> C N<br>CO <sub>2</sub> CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | +1.20±0.05   | -         |
| coded | Phe             | H <sub>3</sub> C <sup>N</sup> CO <sub>2</sub> CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | +0.92±0.03   | [S1]      |
| coded | Leu             | $H_3C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | +0.84±0.04   | [S1]      |
| coded | lle             | H <sub>3</sub> C<br>H <sub>3</sub> C | +0.77±0.04   | [S1]      |
| coded | Tyr             | O<br>H <sub>3</sub> C N CO <sub>2</sub> CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | +0.29±0.02   | -         |
| coded | Val             | $H_{3C} \rightarrow CH_{3}$<br>$H_{3C} \rightarrow CH_{3}$<br>$H_{3C} \rightarrow CO_{2}CH_{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | +0.26±0.03   | [S1]      |
| coded | Met             | H <sub>3</sub> C N CO <sub>2</sub> CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | +0.13±0.03   | -         |
| coded | Cys             | H <sub>3</sub> C N CO <sub>2</sub> CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.19±0.05   | -         |
| coded | Pro             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -0.50±0.02   | ([S2])    |
| coded | Ala             | $H_3C \xrightarrow{O} CH_3 CO_2CH_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.54±0.03   | [S1]      |
| coded | Gly             | H <sub>3</sub> C <sup>O</sup> N <sup>CO2</sup> CH <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -0.92±0.05   | [S1]      |
| coded | His             | H <sub>3</sub> C N CO <sub>2</sub> CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.99±0.04   | -         |
| coded | Thr             | H <sub>3</sub> C OH<br>H <sub>3</sub> C N CO <sub>2</sub> CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -1.01±0.06   | -         |
| coded | Ser             | H <sub>3</sub> C N CO <sub>2</sub> CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -1.31±0.05   | -         |

# Table S1 Summarized experimental logP data for model compounds 1.

| group         | amino acid code        | structure                                                                                                                | log <i>P</i> | reference |
|---------------|------------------------|--------------------------------------------------------------------------------------------------------------------------|--------------|-----------|
| coded         | Gln                    | H <sub>3</sub> C H <sub>2</sub><br>CO <sub>2</sub> CH <sub>3</sub>                                                       | -1.60±0.04   | -         |
| coded         | Asn                    | H <sub>3</sub> C H CO <sub>2</sub> CH <sub>3</sub>                                                                       | −1.74±0.06   | -         |
| aromatic      | α-Nal                  | H <sub>3</sub> C H <sub>1</sub> CO <sub>2</sub> CH <sub>3</sub>                                                          | +2.08±0.06   | -         |
| aromatic      | β-Nal                  | H <sub>3</sub> C N CO <sub>2</sub> CH <sub>3</sub>                                                                       | +2.15±0.04   | -         |
| aromatic      | Azu                    | H <sub>3</sub> C N CO <sub>2</sub> CH <sub>3</sub>                                                                       | +2.07±0.04   | -         |
| Phe analogues | 4-CF <sub>3</sub> -Phe | H<br>$CF_3$<br>$H_3C$ $N$ $CO_2CH_3$                                                                                     | +1.96±0.04   | -         |
| Phe analogues | 4-Br-Phe               | H <sub>3</sub> C <sup>H</sup> H <sup>CO<sub>2</sub>CH<sub>3</sub></sup>                                                  | +1.92±0.03   | -         |
| Phe analogues | 4-Cl-Phe               | H <sub>3</sub> C <sup>I</sup> N<br>H <sub>3</sub> C <sup>I</sup> N<br>H                                                  | +1.76±0.05   | -         |
| Phe analogues | 4-N₃-Phe               | H <sub>3</sub> C <sup>N</sup> H <sup>N3</sup><br>H <sub>3</sub> C <sup>N</sup> H <sup>CO<sub>2</sub>CH<sub>3</sub></sup> | +1.58±0.02   | -         |
| Phe analogues | 4-F-Phe                | H <sub>3</sub> C H <sub>1</sub> C CO <sub>2</sub> CH <sub>3</sub>                                                        | +1.16±0.06   | -         |
| Phe analogues | (Me)Tyr                | H <sub>3</sub> C H <sub>3</sub> C CO <sub>2</sub> CH <sub>3</sub>                                                        | +0.92±0.01   | -         |
| Phe analogues | 4-CN-Phe               | H <sub>3</sub> C N CO <sub>2</sub> CH <sub>3</sub>                                                                       | +0.58±0.02   | -         |
| Phe analogues | 4-AcNH-Phe             | $H_{3C} \xrightarrow{H}_{H} CO_{2C}H_{3}$                                                                                | +0.02±0.03   | -         |

| group         | amino acid code        | structure                                                                            | log <i>P</i> | reference |
|---------------|------------------------|--------------------------------------------------------------------------------------|--------------|-----------|
| Phe analogues | 4-NH2-Phe              | H <sub>3</sub> C NH <sub>2</sub><br>H <sub>3</sub> C CO <sub>2</sub> CH <sub>3</sub> | -0.33±0.07   | -         |
| Tyr analogues | 3,5-dil-Tyr            | H <sub>3</sub> C N CO <sub>2</sub> CH <sub>3</sub>                                   | +1.58±0.15   |           |
| Tyr analogues | 3-I-Tyr                | OH<br>H <sub>3</sub> C N CO <sub>2</sub> CH <sub>3</sub>                             | +1.48±0.04   | -         |
| Tyr analogues | 2,3,5,6-tetraF-<br>Tyr | H <sub>3</sub> C H                                                                   | +0.98±0.12   | -         |
| Tyr analogues | 3-NO <sub>2</sub> -Tyr | H <sub>3</sub> C H <sub>1</sub> CO <sub>2</sub> CH <sub>3</sub>                      | +0.76±0.03   | -         |
| Tyr analogues | 3-F-Tyr                | H <sub>3</sub> C N CO <sub>2</sub> CH <sub>3</sub>                                   | +0.48±0.02   | -         |
| Tyr analogues | Dopa                   | H <sub>3</sub> C N CO <sub>2</sub> CH <sub>3</sub>                                   | -0.21±0.02   | -         |
| Trp analogues | 6-Br-Trp               | H <sub>3</sub> C H <sub>1</sub> CO <sub>2</sub> CH <sub>3</sub>                      | +2.37±0.04   | -         |
| Trp analogues | 5-Br-Trp               | H <sub>3</sub> C H <sub>1</sub> CO <sub>2</sub> CH <sub>3</sub>                      | +2.34±0.05   | -         |
| Trp analogues | 5-Cl-Trp               | H <sub>3</sub> C NH<br>H <sub>3</sub> C CO <sub>2</sub> CH <sub>3</sub>              | +2.17±0.04   | -         |

| group         | amino acid code        | structure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | log <i>P</i> | reference |
|---------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------|
| Trp analogues | 5-CH₃-Trp              | H <sub>3</sub> C<br>H <sub>3</sub> C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | +1.65±0.06   | -         |
| Trp analogues | 1-CH₃-Trp              | H <sub>3</sub> C N-CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +1.53±0.04   | -         |
| Trp analogues | 5-F-Trp                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | +1.48±0.05   | -         |
| Trp analogues | 5-OH-Trp               | HO<br>H <sub>3</sub> C NH<br>H <sub>3</sub> C CO <sub>2</sub> CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | +0.24±0.02   | -         |
| Trp analogues | 5-NH <sub>2</sub> -Trp | H <sub>2</sub> N<br>H <sub>3</sub> C NH<br>H <sub>3</sub> C CO <sub>2</sub> CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.26±0.04   | -         |
| Met analogues | NIe                    | $H_{3}C$ $H$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | +0.93±0.01   | -         |
| Met analogues | Tfnle                  | $H_{3}C$ $H_{3}C$ $H_{3}C$ $H_{3}C$ $H_{3}C$ $H_{3}C$ $H_{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | +0.72±0.02   | -         |
| Met analogues | Eth                    | H <sub>3</sub> C | +0.56±0.03   | -         |
| Met analogues | Nva                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | +0.40±0.02   | -         |
| Met analogues | Sem                    | $H_{3}C \xrightarrow{O} H_{3}C \xrightarrow{O} CP_{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | +0.35±0.02   | -         |
| Met analogues | Aha                    | $H_{3}C \xrightarrow{O}_{H} CO_{2}CH_{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.11±0.04   | -         |

| group         | amino acid code | structure                                                                            | log <i>P</i> | reference |
|---------------|-----------------|--------------------------------------------------------------------------------------|--------------|-----------|
| Met analogues | Мох             | $H_{3}C \overset{O}{\underset{N}{}} H_{3}C \overset{O}{\underset{N}{}} CO_{2}CH_{3}$ | -0.65±0.06   | -         |
| Met analogues | MetO            | H <sub>3</sub> C N CO <sub>2</sub> CH <sub>3</sub>                                   | −1.79±0.11   | -         |
| Pro analogues | (Bn)Hyp         |                                                                                      | +1.09±0.08   | -         |
| Pro analogues | Oic             |                                                                                      | +1.03±0.05   | [S1]      |
| Pro analogues | (Boc)Amp        |                                                                                      | +0.66±0.04   | -         |
| Pro analogues | 2TfmPro         | H <sub>3</sub> C O CH <sub>3</sub>                                                   | +0.41±0.04   | [S3]      |
| Pro analogues | 3TfmPro         | $H_3C \rightarrow O CH_3$<br>$F_3C$                                                  | +0.35±0.05   | [S3]      |
| Pro analogues | 4TfmPro         |                                                                                      | +0.23±0.02   | [S3,S4]   |
| Pro analogues | 4TfmPro         | $F_3C$<br>N<br>$H_3C$<br>O<br>$CH_3$                                                 | +0.24±0.01   | [S4]      |
| Pro analogues | 5TfmPro         | $F_3C - N - O$<br>$H_3C - O - CH_3$                                                  | +0.28±0.06   | [S3]      |
| Pro analogues | Ash             | H <sub>3</sub> C O CH <sub>3</sub>                                                   | +0.19±0.03   | [S4]      |
| Pro analogues | cF₂Ash          |                                                                                      | +0.18±0.03   | [S4]      |

| group         | amino acid code   | structure                                          | log <i>P</i> | reference |
|---------------|-------------------|----------------------------------------------------|--------------|-----------|
| Pro analogues | <i>t</i> F₂Ash    | F<br>N<br>H <sub>3</sub> C<br>O<br>CH <sub>3</sub> | +0.03±0.02   | [S4]      |
| Pro analogues | 2Мер              | H <sub>3</sub> C O CH <sub>3</sub>                 | -0.06±0.06   | [S3]      |
| Pro analogues | ЗМер              | H <sub>3</sub> C O CH <sub>3</sub>                 | -0.04±0.05   | [S3]      |
| Pro analogues | Мер               |                                                    | -0.06±0.02   | [S3]      |
| Pro analogues | 5Мер              |                                                    | -0.14±0.07   | [S3]      |
| Pro analogues | Cys[ΨPro]         |                                                    | -0.31±0.04   | -         |
| Pro analogues | Dfp               |                                                    | -0.29±0.04   | -         |
| Pro analogues | (Me) <i>r</i> Prc | $H_3CO_2C'$                                        | -0.43±0.03   | [S2]      |
| Pro analogues | Dhp               | H <sub>3</sub> C O CH <sub>3</sub>                 | -0.47±0.02   | -         |
| Pro analogues | Flp               | H <sub>3</sub> C O CH <sub>3</sub>                 | -0.66±0.03   | [S3,S4]   |
| Pro analogues | (Me) <i>m</i> Pdc | $H_3CO_2C - N - O - O - CH_3$                      | -0.74±0.05   | [S2]      |
| Pro analogues | flp               |                                                    | -0.84±0.05   | [S3,S4]   |
| Pro analogues | (Ac)Amp           |                                                    | −1.23±0.08   | -         |

| group         | amino acid code | structure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | log <i>P</i> | reference |
|---------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------|
| Pro analogues | Нур             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | −1.24±0.08   | [S3]      |
| Pro analogues | hyp             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | −1.43±0.06   | [S3]      |
| Lys analogues | (Boc)Lys        | $H_{3}C$ $H$ | +1.15±0.03   | -         |
| Lys analogues | Sac             | H <sub>3</sub> C H <sub>1</sub> CO <sub>2</sub> CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +0.61±0.03   | -         |
| Lys analogues | (Pro)Lys        | HN<br>H3C<br>H3C<br>H<br>H3C<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | +0.17±0.02   | -         |
| Lys analogues | (Ac)Lys         | $HN$ $CH_3$<br>$H_3C$ $N$ $CO_2CH_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.89±0.03   | -         |
| miscellaneous | (Me)Glu         | H <sub>3</sub> C <sup>O</sup> CH <sub>3</sub><br>H <sub>3</sub> C <sup>O</sup> CH <sub>3</sub><br>H <sub>2</sub> CO <sub>2</sub> CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.51±0.04   | -         |
| miscellaneous | (Me)Asp         | $H_3C$ $H_1C$ $H_2C$ $H_1C$ $H_2C$ $H_1C$ $H_2C$ $H_1C$ $H_2C$ $H_2C$ $H_3C$ $H_1C$ $H_2C$ $H_2C$ $H_3C$ $H_1C$ $H_2C$ $H_2C$ $H_3C$ $H_1C$ $H_2C$    | -0.72±0.03   | -         |
| miscellaneous | Citr            | H <sub>3</sub> C NH <sup>2</sup><br>NH<br>CO <sub>2</sub> CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | −1.55±0.07   | -         |
| miscellaneous | Sar             | 0<br>H <sub>3</sub> C № CO <sub>2</sub> CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.86±0.03   | [S1]      |

|                 | at weather a                            |                    |
|-----------------|-----------------------------------------|--------------------|
| amino acid code | structure                               | experimental logD7 |
| Ser             |                                         | +3.50±0.13         |
| Amp             | H <sub>3</sub> N<br>Fmoc<br>F           | +2.16±0.06         |
| Arg             | Fmoc NH2<br>H2N NH2<br>Fmoc NH<br>H O F | +1.56±0.04         |
| Lys             | Fmoc                                    | +1.54±0.06         |
| Glu             |                                         | +1.28±0.12         |
| Asp             | Fmoc N C F                              | +0.92±0.06         |

**Table S2** Summarized experimental  $log D_7$  data for compounds 2.

| amino acid<br>code     | structure                                                                                 | log <i>D</i> 6 | logD7      | log <i>D</i> 8 | log <i>D</i> 9 |
|------------------------|-------------------------------------------------------------------------------------------|----------------|------------|----------------|----------------|
| Tyr                    | H <sub>3</sub> C N CO <sub>2</sub> CH <sub>3</sub>                                        | -              | +0.43±0.08 | +0.29±0.03     | +0.32±0.03     |
| Cys                    | H <sub>3</sub> C H <sub>H</sub> CO <sub>2</sub> CH <sub>3</sub>                           | -              | -0.10±0.11 | -0.24±0.06     | -0.58±0.06     |
| His                    |                                                                                           | -1.33±0.05     | -0.98±0.04 | -0.97±0.06     | -              |
| 3,5-dil-Tyr            | H <sub>3</sub> C <sup>H</sup> H <sup>CO</sup> <sub>2</sub> CH <sub>3</sub>                | +2.18±0.05     | +1.95±0.05 | +0.85±0.04     | 0.00±0.04      |
| 3-I-Tyr                | H <sub>3</sub> C H <sub>H</sub> CO <sub>2</sub> CH <sub>3</sub>                           | -              | +1.58±0.04 | +1.29±0.02     | +0.79±0.03     |
| 3-NO <sub>2</sub> -Tyr |                                                                                           | +0.77±0.03     | +0.56±0.02 | -0.30±0.02     | −1.03±0.02     |
| 3-F-Tyr                | H <sub>3</sub> C <sup>H</sup> N <sup>F</sup> CO <sub>2</sub> CH <sub>3</sub>              | -              | +0.58±0.06 | +0.35±0.04     | -0.02±0.03     |
| Dopa                   | H <sub>3</sub> C H <sub>1</sub> CO <sub>2</sub> CH <sub>3</sub>                           | -              | -0.11±0.02 | -0.19±0.04     | -2.10±0.12     |
| 2,3,5,6-<br>tetraF-Tyr | H <sub>3</sub> C <sup>H</sup> N <sup>F</sup> <sub>H</sub> CO <sub>2</sub> CH <sub>3</sub> | -              | -0.06±0.02 | -0.74±0.08     | −2.68±0.04     |

 Table S3 Summarized experimental logD data for compounds 1.

| chemical structure | substituent       | logP       | logD7      | reference |
|--------------------|-------------------|------------|------------|-----------|
|                    | -                 | +2.20±0.04 | -          | [S5]      |
| F<br>N<br>H        | 4-F               | +2.58±0.13 | -          | [S5]      |
| F<br>N<br>H        | 5-F               | +2.56±0.07 | -          | [S5]      |
| F                  | 6-F               | +2.61±0.06 | -          | [S5]      |
| F NH               | 7-F               | +2.66±0.05 | -          | [S5]      |
| OH<br>N<br>H       | 4-OH              | +1.19±0.03 | -          | -         |
| HO                 | 5-OH              | +1.24±0.02 | -          | -         |
| HO                 | 6-OH              | +1.34±0.03 | -          | -         |
| OH<br>OH           | 7-OH              | +1.68±0.04 | -          | -         |
| NH <sub>2</sub>    | 4-NH <sub>2</sub> | +0.71±0.01 | +0.82±0.02 | -         |
| H <sub>2</sub> N   | 5-NH <sub>2</sub> | +0.63±0.03 | +0.67±0.03 | -         |
| H <sub>2</sub> N H | 6-NH <sub>2</sub> | +0.86±0.03 | +0.92±0.02 | -         |
| NH <sub>2</sub>    | 7-MH <sub>2</sub> | +1.34±0.06 | +1.41±0.04 | -         |
| Br                 | 5-Br              | +3.40±0.20 | -          | -         |
| H <sub>3</sub> C   | 5-CH₃             | +2.71±0.09 | -          | -         |
| N                  | 6-CN              | +2.47±0.07 | -          | -         |
| F <sub>3</sub> C   | 5-CF₃             | +3.65±0.03 | -          | -         |

**Table S4** Summarized experimental  $\log P / \log D_7$  data for substituted indoles.

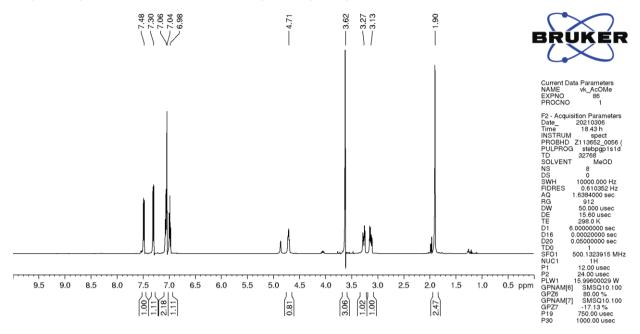
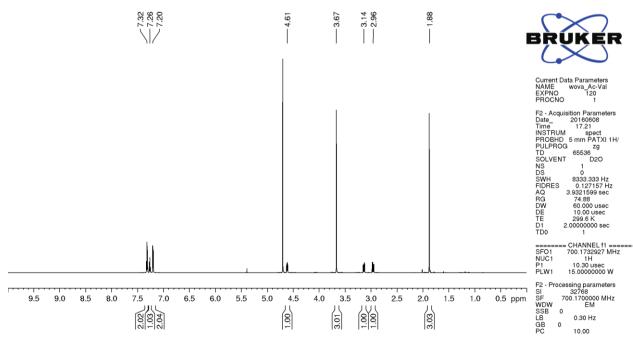

| [Fe <sup>2+</sup> ]  | log <i>D</i> <sub>Fe</sub> |
|----------------------|----------------------------|
| 5 mM                 | -0.16±0.07                 |
| 10 14                | 0.40.0.40                  |
| 10 mM                | -0.12±0.10                 |
| 20 mM (1 equivalent) | −0.13±0.06                 |
| 30 mM                | -0.12±0.08                 |
|                      |                            |

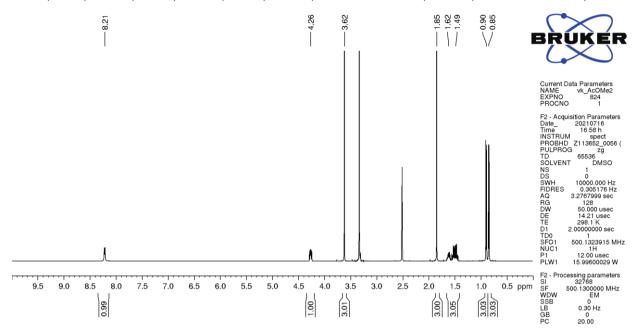
 Table S5 Distribution of Dopa derivative 1 in the presence of iron

NMR spectra of model compounds 1


Ac-Trp-OCH<sub>3</sub> in methanol-d<sub>4</sub>:

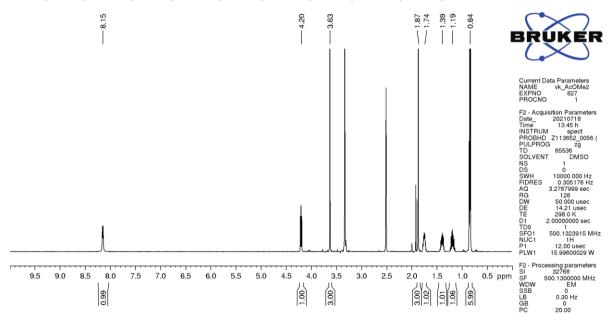
<sup>1</sup>H NMR (500 MHz): 7.48 (d, J = 8.2 Hz, 1H), 7.30 (d, J = 8.2 Hz, 1H), 7.06 (t, J = 7.9 Hz, 1H), 7.04 (s, 1H), 6.98 (t, J = 7.8 Hz, 1H), 4.71 (m, 1H), 3.62 (s, 3H), 3.27 (dd, J = 14.5 and 5.4 Hz, 1H), 3.13 (dd, J = 14.6 and 7.6 Hz, 1H), 1.90 (s, 3H).




Ac-Phe-OCH<sub>3</sub> in deuterium oxide:

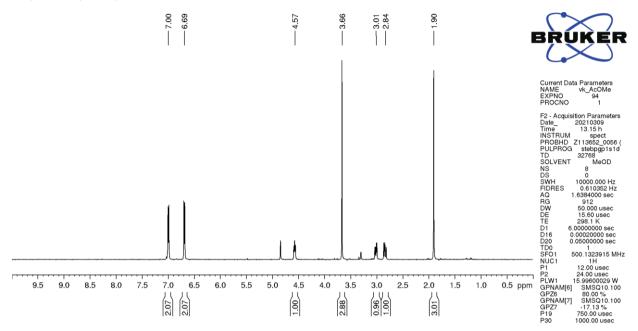
<sup>1</sup>H NMR (700 MHz): 7.32 (m, 2H), 7.26 (m, 1H), 7.20 (m, 2H), 4.61 (dd, *J* = 8.7 and 5.9 Hz, 1H), 3.67 (s, 3H), 3.14 (dd, *J* = 14.0 and 5.8 Hz, 1H), 2.96 (dd, *J* = 14.0, 8.9 Hz, 1H), 1.88 (s, 3H).




Ac-Leu-OCH<sub>3</sub> in DMSO-d<sub>6</sub>:

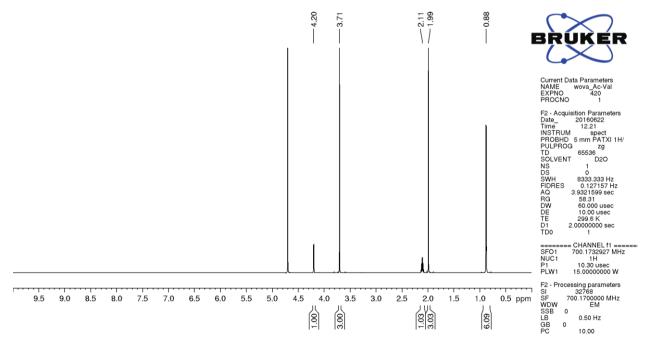
<sup>1</sup>H NMR (500 MHz): 8.21 (d, *J* = 7.9 Hz, 1H), 4.26 (dt, *J* = 7.8 and 5.0 Hz, 1H), 3.62 (s, 3H), 1.85 (s, 3H), 1.62 (m, 1H), 1.49 (m, 1H), 0.90 (d, *J* = 6.7 Hz, 3H), 0.84 (d, *J* = 6.6 Hz, 3H).




Ac-Ile-OCH<sub>3</sub> in DMSO-d<sub>6</sub>:

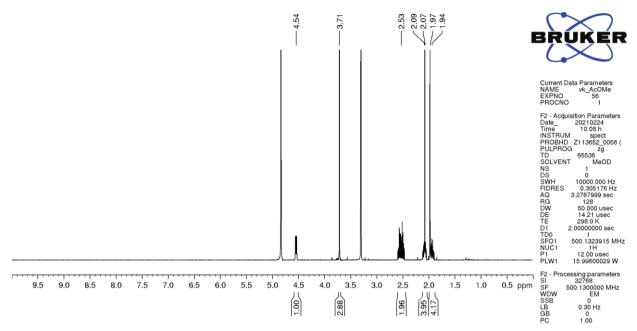
<sup>1</sup>H NMR (500 MHz): 8.15 (d, *J* = 8.0 Hz, 1H), 4.20 (dd, *J* = 7.8 and 6.8 Hz, 1H), 3.63 (s, 3H), 1.87 (s, 3H), 1.74 (m, 1H), 1.39 (m, 1H), 1.19 (m, 1H), 0.84 (m, 6H).




Ac-Tyr-OCH<sub>3</sub> in methanol-d<sub>4</sub>:

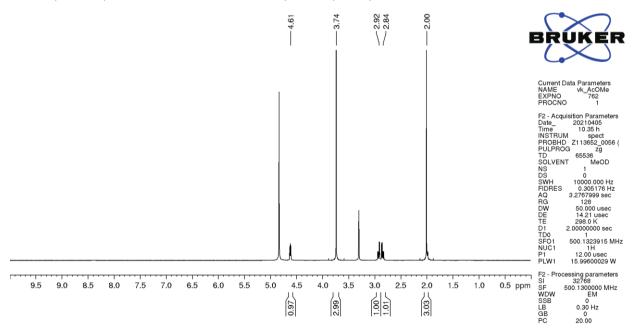
<sup>1</sup>H NMR (500 MHz): 7.00 (d, J = 8.2 Hz, 2H), 6.69 (d, J = 8.2 Hz, 2H), 4.57 (dd, J = 8.0 and 6.6. Hz, 1H), 3.66 (s, 3H), 3.02 (dd, J = 14.0 and 6.4 Hz, 1H), 2.84 (dd, J = 14.0 and 8.7 Hz, 1H), 1.91 (s, 3H).




Ac-Val-OCH<sub>3</sub> in deuterium oxide:

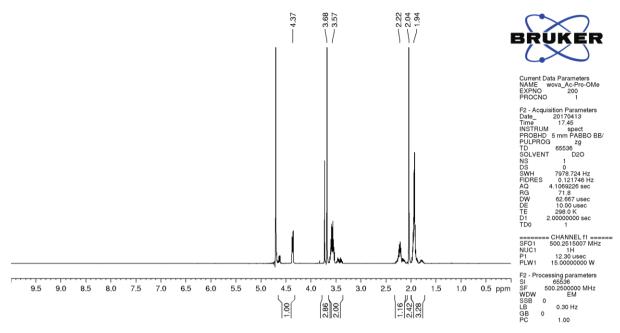
<sup>1</sup>H NMR (700 MHz): 4.20 (d, *J* = 6.0 Hz, 1H), 3.71 (s, 3H), 2.11 (m, 1H), 1.99 (s, 3H), 0.88 (m, 6H).




Ac-Met-OCH<sub>3</sub> in methanol-d<sub>4</sub>:

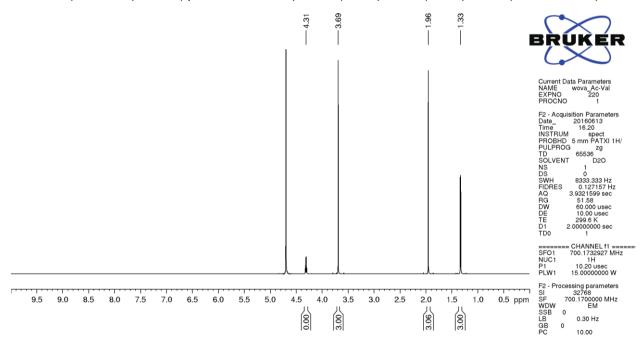
<sup>1</sup>H NMR (500 MHz): 4.54 (dd, *J* = 9.0 and 4.8 Hz, 1H), 3.71 (s, 3H), 2.53 (m, 2H), 2.09 (m, 1H), 2.07 (s, 3H), 1.97 (s, 3H), 1.94 (m, 1H).




Ac-Cys-OCH<sub>3</sub> in methanol-d<sub>4</sub>:

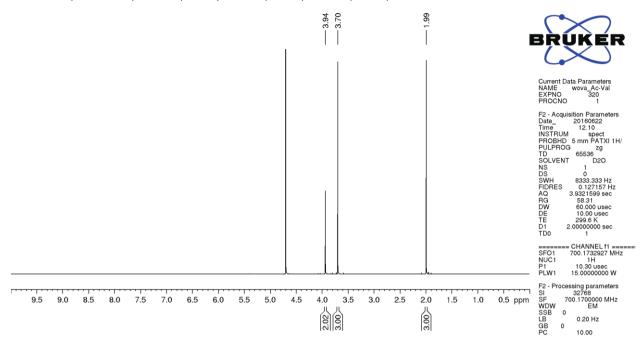
<sup>1</sup>H NMR (500 MHz): 4.61 (dd, *J* = 6.7 and 5.0 Hz, 1H), 3.74 (s, 3H), 2.92 (dd, *J* = 13.9 and 4.8 Hz, 1H), 2.84 (dd, *J* = 14.0 and 6.9 Hz, 1H), 2.00 (s, 3H).




Ac-Pro-OCH<sub>3</sub> in deuterium oxide, major rotamer:

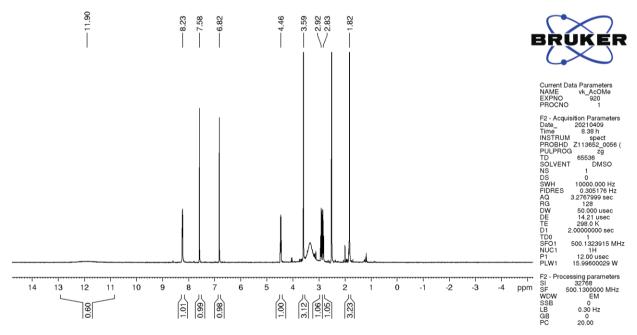
<sup>1</sup>H NMR (500 MHz): 4.37 (dd, *J* = 8.4 and 4.4 Hz, 1H), 3.68 (s, 3H), 3.57 (m, 2H), 2.22 (m, 1H), 2.04 (s, 3H), 1.94 (m, 3H).




Ac-Ala-OCH<sub>3</sub> in deuterium oxide:

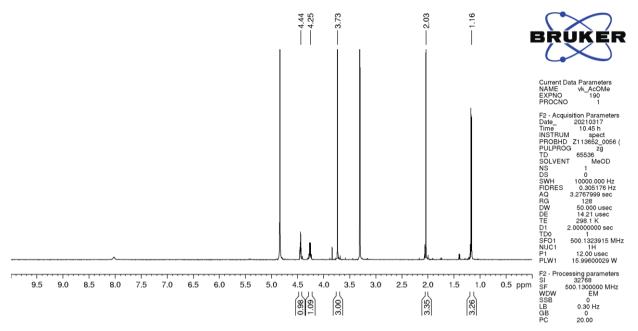
<sup>1</sup>H NMR (700 MHz): 4.31 (q, *J* = 7.3 Hz, 1H), 3.69 (s, 3H), 1.96 (s, 3H), 1.33 (d, *J* = 7.3 Hz).




Ac-Gly-OCH<sub>3</sub> in deuterium oxide:

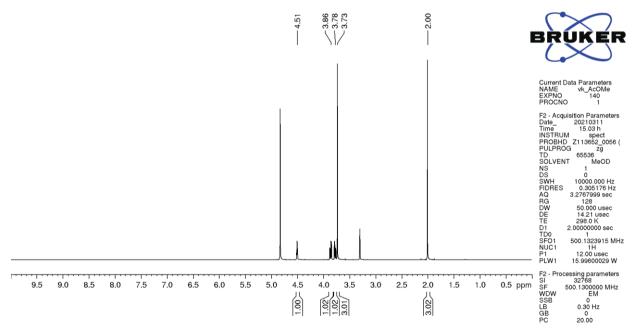
<sup>1</sup>H NMR (700 MHz): 3.94 (s, 2H), 3.70 (s, 3H), 1.99 (s, 3H).




#### Ac-His-OCH<sub>3</sub> in DMSO-d<sub>6</sub>:

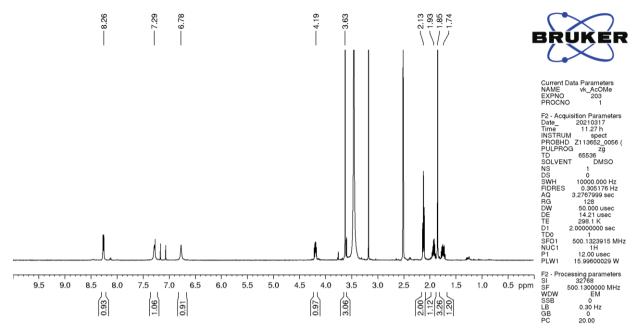
<sup>1</sup>H NMR (500 MHz): 11.9 (broad s, 1H), 8.24 (d, J = 7.4 Hz, 1H), 7.58 (s, 1H), 6.82 (s, 1H), 4.46 (m, 1H), 3.59 (s, 3H), 2.92 (dd, J = 14.6 and 5.7 Hz, 1H), 2.83 (dd, J = 14.5 and 8.3 Hz, 1H), 1.82 (s, 3H).




Ac-Thr-OCH<sub>3</sub> in methanol-d<sub>4</sub>:

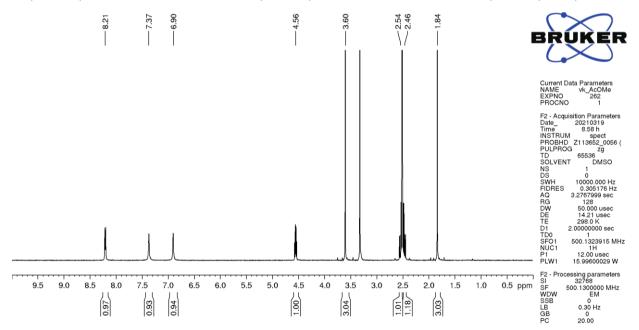
<sup>1</sup>H NMR (500 MHz): 4.44 (m, 1H), 4.25 (m, 1H), 3.73 (s, 3H), 2.03 (s, 3H), 1.16 (d, 6.5 Hz).




Ac-Ser-OCH<sub>3</sub> in methanol-d<sub>4</sub>:

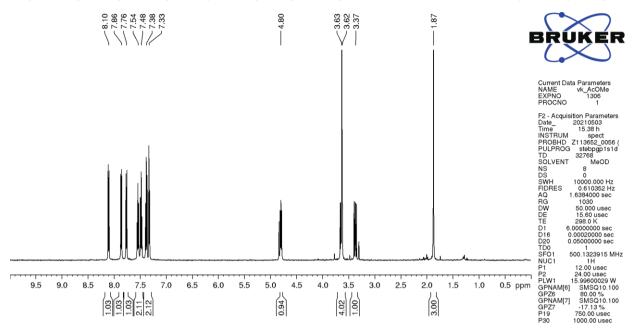
<sup>1</sup>H NMR (500 MHz): 4.51 (t, *J* = 4.6 Hz, 1H), 3.86 (dd, *J* = 11.3 and 5.0 Hz, 1H), 3.78 (dd, *J* = 11.3, 4.3 Hz, 1H), 3.73 (s, 3H), 2.00 (s, 3H).




Ac-GIn-OCH<sub>3</sub> in DMSO-d<sub>6</sub>:

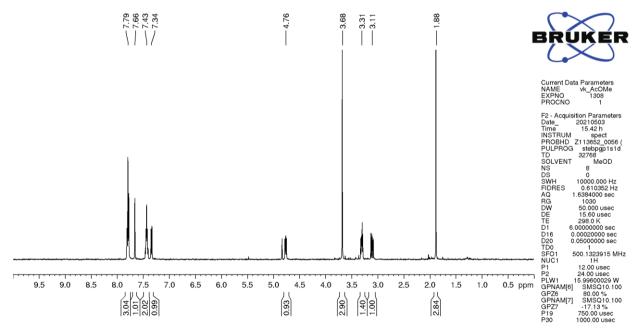
<sup>1</sup>H NMR (500 MHz): 8.26 (d, *J* = 7.4 Hz, 1H), 7.29 (broad s, 1H), 6.78 (broad s, 1H), 4.19 (m,1H), 3.63 (s, 3H), 2.13 (t, *J* = 7.7 Hz, 2H), 1.93 (m, 1H), 1.85 (s, 3H), 1.20 (m, 1H).




#### Ac-Asn-OCH<sub>3</sub> in DMSO-d<sub>6</sub>:

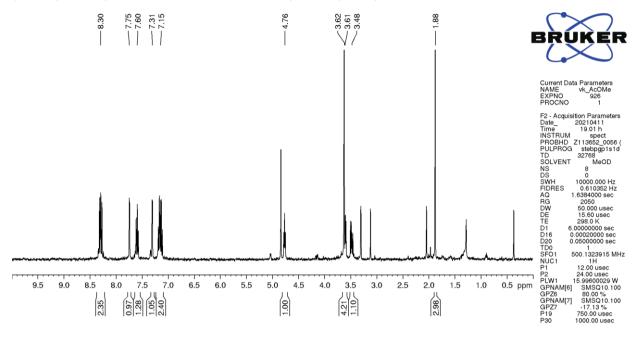
<sup>1</sup>H NMR (500 MHz): 8.21 (d, *J* = 7.8 Hz, 1H), 7.37 (s, 1H), 6.90 (s, 1H), 456 (m, 1H), 3.60 (s, 3H), 2.54 (dd, *J* = 15.7 and 5.8 Hz, 1H), 2.46 (dd, *J* = 15.6 and 7.1 Hz, 1H), 1.84 (s, 3H).




Ac- $\alpha$ -Nal-OCH<sub>3</sub> in methanol-d<sub>4</sub>:

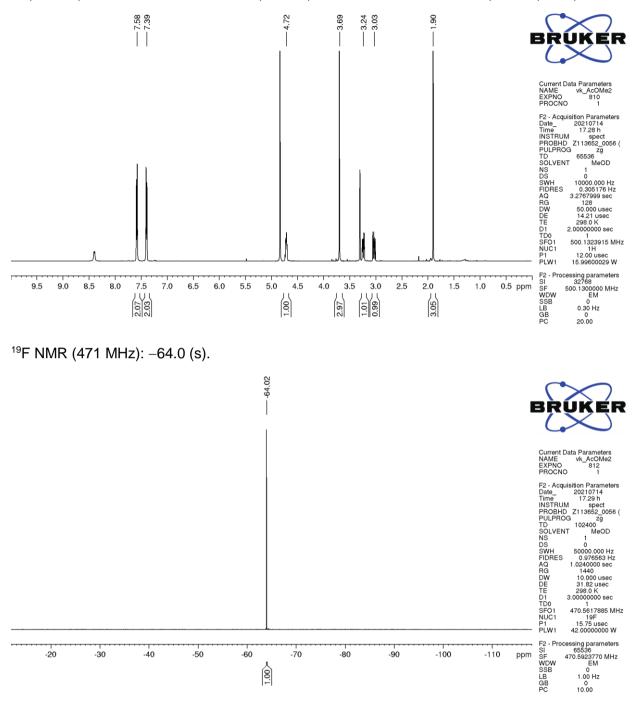
<sup>1</sup>H NMR (500 MHz): 8.10 (d, J = 8.6 Hz0, 1H), 7.86 (d, J = 8.3 Hz, 1H), 7.76 (d, J = 8.3 Hz), 7.54 (t, J = 8.1 Hz, 1H), 7.48 (t, J = 7.7 Hz, 1H), 7.38 (t, J = 8.0 Hz, 1H), 7.33 (d, J = 6.9 Hz, 1H), 4.80 (m, 1H), 3.63 (m, 1H), 3.62 (s, 3H), 3.37 (dd, J = 14.4 and 8.6 Hz, 1H), 1.87 (s, 3H).




Ac- $\beta$ -Nal-OCH<sub>3</sub> in methanol-d<sub>4</sub>:

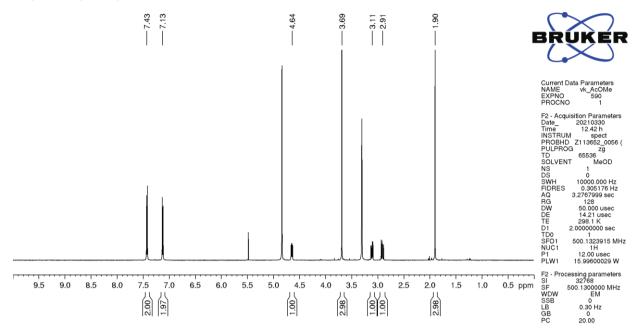
<sup>1</sup>H NMR (500 MHz): 7.79 (m, 3H), 7.66 (s, 1H), 7.43 (m, 2H), 7.34 (dd, J = 8.5 and 1.2 Hz, 1H), 4.76 (dd, J = 9.0 and 6.0 Hz, 1H), 3.68 (s, 3H), 3.30 (dd, J = 13.8 and 6.0 Hz, 1H), 3.11 (dd, J = 13.9 and 9.1 Hz, 1H), 1.88 (s, 3H).




Ac-Azu-OCH<sub>3</sub> in methanol-d<sub>4</sub>:

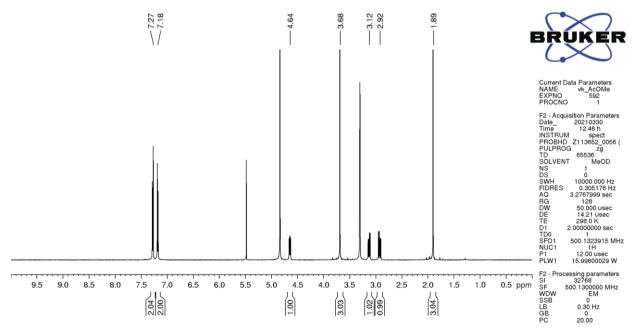
<sup>1</sup>H NMR (500 MHz): 8.30 (dd, J = 13.5 and 10.4 Hz, 2H), 7.75 (d, J = 3.5 Hz, 1H), 7.60 (t, J = 10.0 Hz, 1H), 7.31 (d, J = 3.9 Hz, 1H), 7.15 (m, 2H), 4.76 (t, J = 7.2 Hz, 1H), 3.62 (s, 3H), 3.61 (m, 1H), 3.48 (dd, J = 14.3 and 7.7. Hz, 1H), 1.88 (s, 3H).




Ac-4-CF<sub>3</sub>-Phe-OCH<sub>3</sub> in methanol-d<sub>4</sub>:

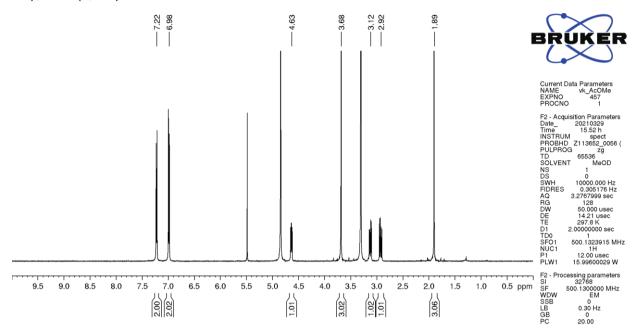
<sup>1</sup>H NMR (500 MHz): 7.58 (d, *J* = 7.8 Hz, 2H), 7.39 (d, *J* = 7.8 Hz, 2H), 4.72 (m, 1H), 3.69 (s, 3H), 3.24 (dd, *J* = 14.0 and 5.6 Hz, 1H), 3.03 (dd, *J* = 13.0 and 8.9 Hz, 1H), 1.90 (s, 3H).




Ac-4-Br-Phe-OCH<sub>3</sub> in methanol-d<sub>4</sub>:

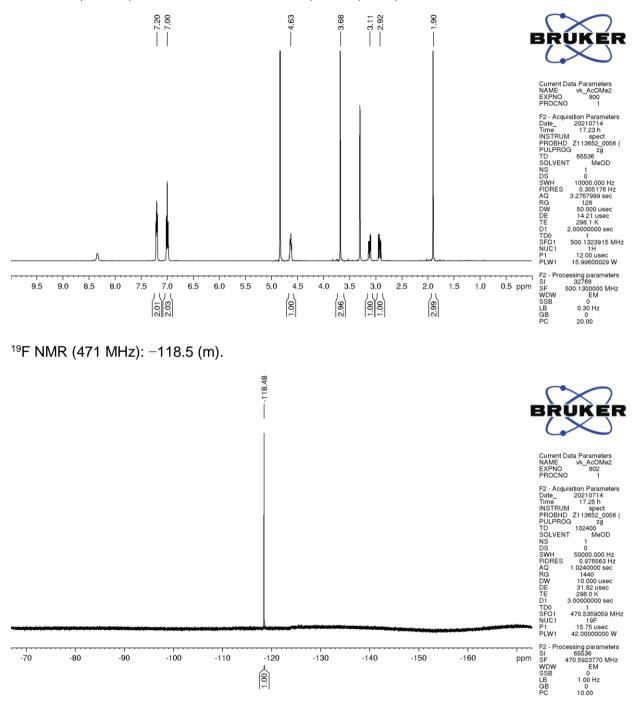
<sup>1</sup>H NMR (500 MHz): 7.43 (d, J = 8.4 Hz, 2H), 7.13 (d, J = 8.4 Hz, 2H), 4.64 (dd, J = 9.0 and 5.7 Hz, 1H), 3.69 (s, 3H), 3.11 (dd, J = 14.0 and 5.7 Hz, 1H), 2.91 (dd, J = 14.0 and 8.9 Hz, 1H), 1.90 (s, 3H).




Ac-4-CI-Phe-OCH<sub>3</sub> in methanol-d<sub>4</sub>:

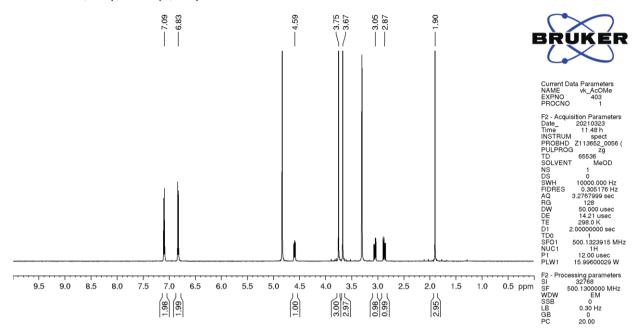
<sup>1</sup>H NMR (500 MHz): 7.27 (d, J = 8.5 Hz, 2H), 7.18 (d, J = 8.5 Hz, 2H), 4.64 (dd, J = 9.0 and 5.8 Hz, 1H), 3.68 (s, 3H), 3.12 (dd, J = 14.0 and 5.8 Hz, 1H), 2.92 (dd, J = 14.0 and 9.0 Hz, 1H), 1.89 (s, 3H).




Ac-4-N<sub>3</sub>-Phe-OCH<sub>3</sub> in methanol-d<sub>4</sub>:

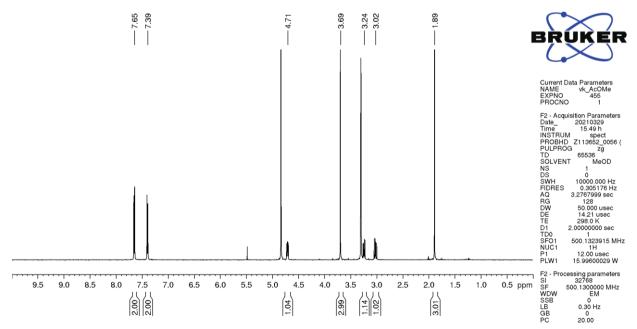
<sup>1</sup>H NMR (500 MHz): 7.22 (d, J = 8.5 Hz, 2H), 6.98 (d, J = 8.5 Hz, 2H), 4.63 (dd, J = 9.0 and 5.7 Hz, 1H), 3.68 (s, 3H), 3.12 (dd, J = 13.9 and 5.7 Hz, 1H), 2.92 (dd, J = 14.0 and 8.9 Hz, 1H), 1.89 (s, 3H).




Ac-4F-Phe-OCH<sub>3</sub> in methanol-d<sub>4</sub>:

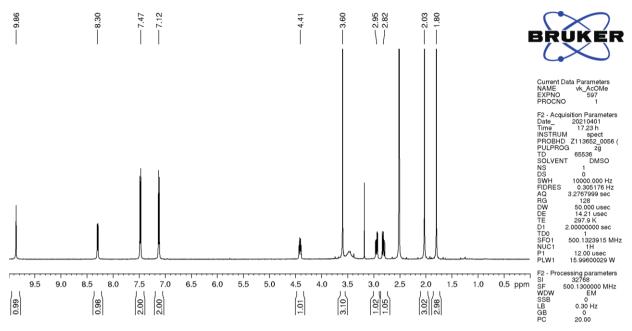
<sup>1</sup>H NMR (500 MHz): 7.20 (m, 2H), 7.00 (m, 2H), 4.63 (m, 1H), 3.68 (s, 3H), 3.11 (dd, *J* = 14.0, 5.7 Hz, 1H), 2.92 (dd, *J* = 14.0 and 8.9 Hz, 1H), 1.90 (s, 3H).




Ac-(Me)Tyr-OCH<sub>3</sub> in methanol-d<sub>4</sub>:

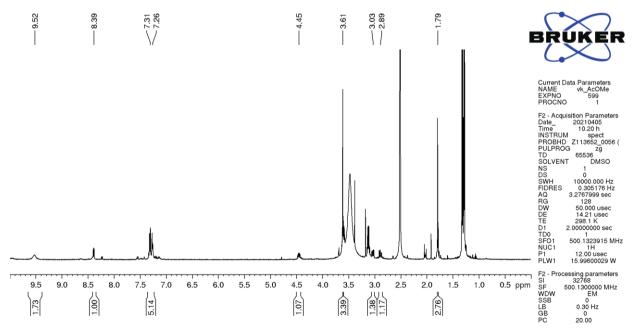
<sup>1</sup>H NMR (500 MHz): 7.09 (d, J = 8.7 Hz, 2H), 6.83 (d, J = 8.8 Hz, 2H), 4.59 (dd, J = 8.7 and 5.9 Hz, 1H), 3.75 (s, 3H), 3.67 (s, 3H), 3.05 (dd, J = 14.0 and 5.9 Hz, 1H), 2.87 (dd, J = 13.9 and 8.8 Hz, 1H), 1.90 (s, 3H).




Ac-4-CN-Phe-OCH<sub>3</sub> in methanol-d<sub>4</sub>:

<sup>1</sup>H NMR (500 MHz): 7.65 (d, J = 8.2 Hz, 2H), 7.39 (d, J = 8.3 Hz, 2H), 4.71 (dd, J = 9.1 and 5.6 Hz, 1H), 3.69 (s, 3H), 3.24 (dd, J = 13.8 and 5.6 Hz, 1H), 3.02 (dd, J = 13.9 and 9.2 Hz, 1H), 1.89 (s, 3H).

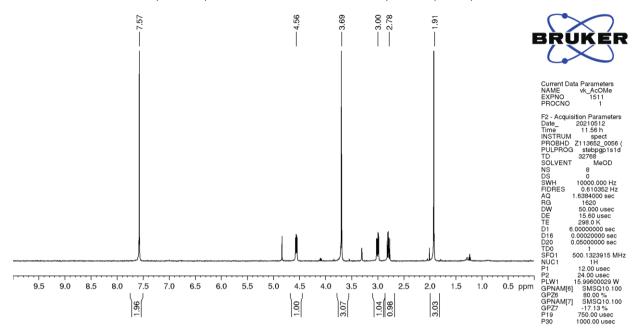



Ac-4-AcNH-Phe-OCH<sub>3</sub> in DMSO-d<sub>6</sub>:

<sup>1</sup>H NMR (500 MHz): 9.86 (s, 1H), 8.30 (d, J = 7.7 Hz, 1H), 7.47 (d, J = 8.5 Hz, 2H), 7.12 (d, J = 8.5 Hz, 2H), 4.41 (m, 1H), 3.60 (s, 3H), 2.95 (dd, J = 13.7 and 5.6 Hz, 1H), 2.82 (dd, J = 13.8 and 9.1 Hz, 1H), 2.03 (s, 3H), 1.80 (s, 3H).

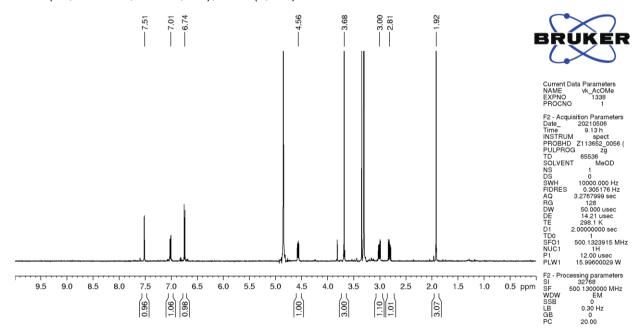


Ac-4-NH<sub>2</sub>-Phe-OCH<sub>3</sub> in DMSO-d<sub>6</sub>:


<sup>1</sup>H NMR (500 MHz): 9.52 (broad s, 2H), 8.39 (d, *J* = 7.9 Hz, 1H), 7.31 (d, *J* = 8.5 Hz, 2H), 7.26 (d, *J* = 8.5 Hz, 2H), 4.45 (m, 1H), 3.61 (s, 3H), 3.03 (dd, *J* = 13.8 and 5.5 Hz, 1H), 2.89 (dd, *J* = 13.8 and 9.3 Hz, 1H), 1.79 (s, 3H).

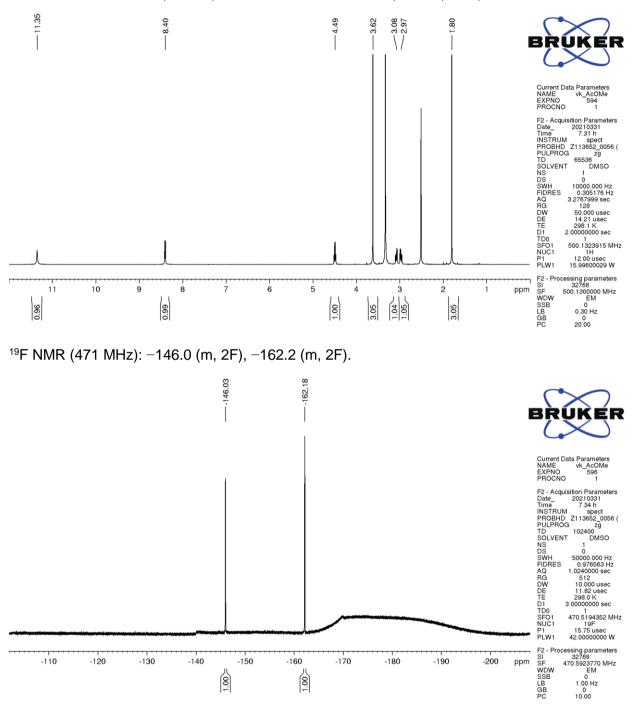


n.b.: the spectrum demonstrates presence of diisopropylethylamine.


Ac-3,5-dil-Tyr-OCH<sub>3</sub> in methanol-d<sub>4</sub>:

<sup>1</sup>H NMR (500 MHz): 7.57 (s, 2H), 4.56 (dd, *J* = 8.9 and 5.7 Hz, 1H), 3.69 (s, 3H), 3.00 (dd, *J* = 14.0 and 5.6 Hz, 1H), 2.79 (dd, *J* = 14.0 and 8.9 Hz, 1H), 1.92 (s, 3H).




#### Ac-3-I-Tyr-OCH<sub>3</sub> in methanol-d<sub>4</sub>:

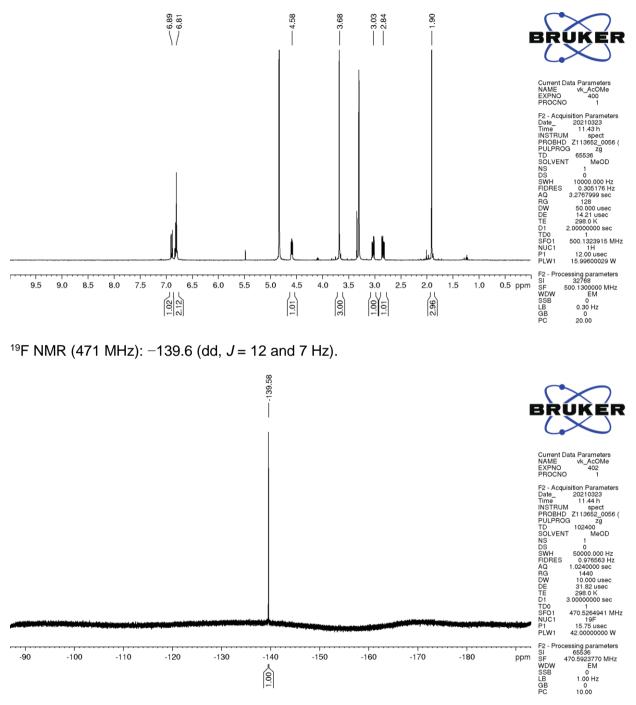
<sup>1</sup>H NMR (500 MHz): 7.51 (d, 2.2 Hz, 1H), 7.01 (dd, J = 8.3 and 2.2. Hz, 1H), 6.74 (d, J = 8.3 Hz, 1H), 4.56 (dd, J = 8.9 and 5.9 Hz, 1H), 3.68 (s, 3H), 3.00 (dd, J = 13.7 and 5.8 Hz, 1H), 2.81 (dd, J = 13.9, 8.9 Hz, 1H), 1.92 (s, 3H).



Ac-2,3,5,6-tetraF-Tyr-OCH<sub>3</sub> in DMSO-d<sub>6</sub>:

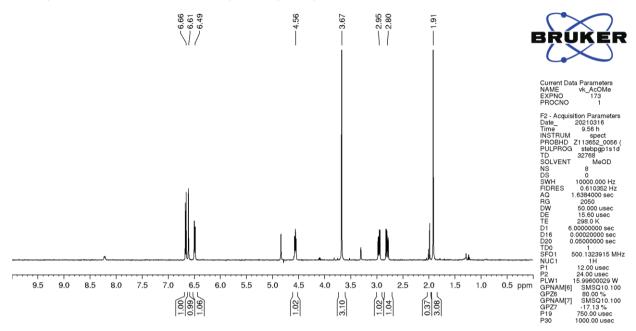
<sup>1</sup>H NMR (500 MHz): 11.3 (s, 1H), 8.40 (d, *J* = 8.1 Hz, 1H), 4.49 (m, 1H), 3.62 (s, 3H), 3.08 (dd, *J* = 14.1 and 6.5 Hz, 1H), 2.97 (dd, *J* = 14.1 and 7.9 Hz, 1H), 1.80 (s, 3H).




Ac-3-NO<sub>2</sub>-Tyr-OCH<sub>3</sub> in methanol-d<sub>4</sub>:

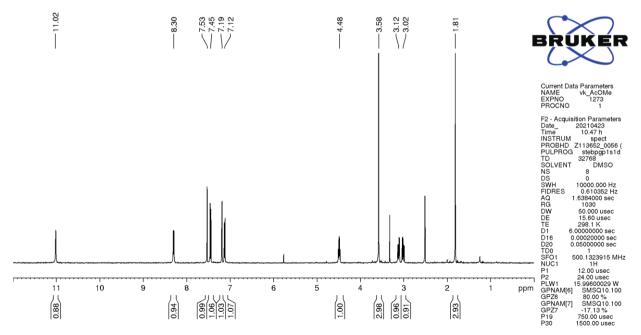
<sup>1</sup>H NMR (500 MHz): 7.92 (d, J = 2.2 Hz, 1H), 7.47 (dd, J = 8.6 and 2.2. Hz, 1H), 7.08 (d, J = 8.6 Hz, 1H), 4.66 (dd, J = 9.0 and 5.6 Hz, 1H), 3.71 (s, 3H), 3.16 (dd, J = 14.1 and 5.5. Hz, 1H), 2.95 (dd, J = 14.1 and 9.1 Hz, 1H), 1.91 (s, 3H).




Ac-3-F-Tyr-OCH<sub>3</sub> in methanol-d<sub>4</sub>:

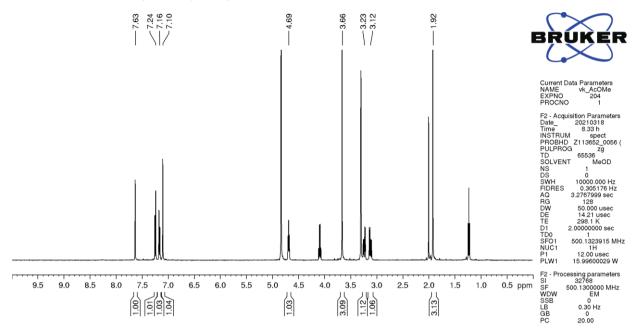
<sup>1</sup>H NMR (500 MHz): 6.89 (m, 1H), 6.81 (m, 2H), 4.58 (dd, *J* = 8.8 and 5.8 Hz, 1H), 3.68 (s, 3H), 3.03 (dd, *J* = 14.0 and 5.7 Hz, 1H), 2.84 (dd, *J* = 14.0 and 8.8. Hz, 1H), 1.90 (s, 3H).




Ac-Dopa-OCH<sub>3</sub> in methanol-d<sub>4</sub>:

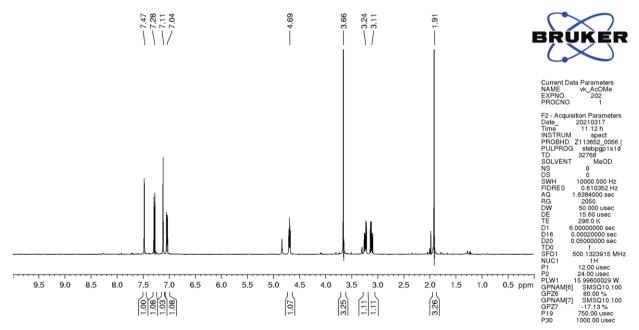
<sup>1</sup>H NMR (500 MHz): 6.66 (d, J = 8.0 Hz, 1H), 6.61 (d, J = 1.7 Hz, 1H), 6.49 (dd, J = 8.0 and 1.7 Hz, 1H), 4.56 (dd, J = 8.6 and 6.2 Hz, 1H), 3.67 (s, 3H), 2.95 (dd, J = 14.0 and 6.2 Hz, 1H), 2.80 (dd, J = 14.0 and 8.4 Hz, 1H), 1.91 (s, 3H).




Ac-6-Br-Trp-OCH<sub>3</sub> in DMSO-d<sub>6</sub>:

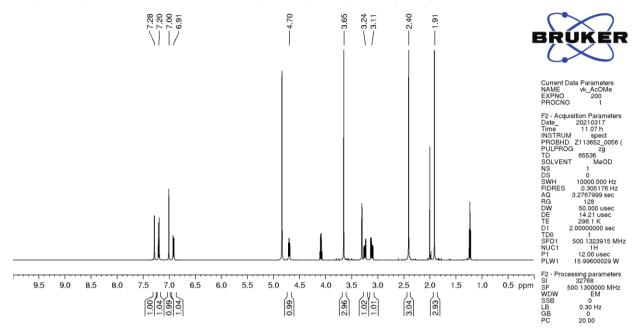
<sup>1</sup>H NMR (500 MHz): 11.02 (s, 1H), 8.30 (d, J = 7.6 Hz, 1H), 7.53 (d, J = 1.6 Hz, 1H), 7.45 (d, J = 8.6 Hz, 1H), 7.19 (d, J = 2.1 Hz, 1H), 7.12 (dd, J = 8.6 and 1.7 Hz, 1H), 4.48 (m, 1H), 3.57 (s, 3H), 3.12 (dd, J = 14.7 and 5.9 Hz, 1H), 3.02 (dd, J = 14.6 and 8.6 Hz, 1H), 1.81 (s, 3H).




Ac-5-Br-Trp-OCH<sub>3</sub> in methanol-d<sub>4</sub>:

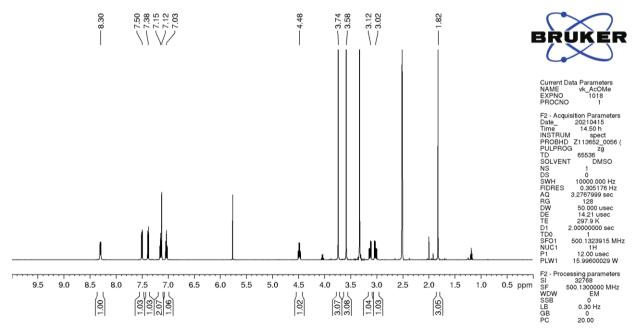
<sup>1</sup>H NMR (500 MHz): 7.63 (s, 1H), 7.24 (d, J = 8.9 Hz, 1H), 7.16 (d, J = 8.7 Hz, 1H), 7.10 (s, 1H), 4.69 (t, J = 6.7 Hz, 1H), 3.66 (s, 3H), 3.23 (dd, J = 14.7 and 6.1 Hz, 1H), 3.12 (dd, J = 14.7 and 7.5 Hz, 1H), 1.92 (s, 3H).




Ac-5-CI-Trp-OCH<sub>3</sub> in methanol-d<sub>4</sub>:

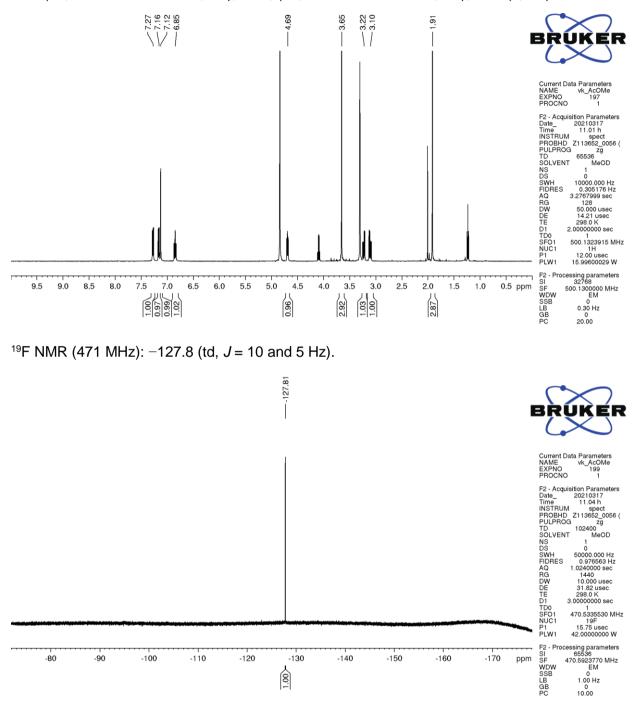
<sup>1</sup>H NMR (500 MHz): 7.47 (d, J = 2.0 Hz, 1H), 7.28 (d, J = 8.7 Hz, 1H), 7.11 (s, 1H), 7.04 (dd, J = 8.6 and 2.0 Hz, 1H), 4.69 (dd, J = 7.7 and 5.8 Hz, 1H), 3.65 (s, 3H), 3.23 (dd, J = 14.7 and 5.9 Hz, 1H), 3.11 (dd, J = 14.7 and 7.8 Hz, 1H), 1.91 (s, 3H).




Ac-5-CH<sub>3</sub>-Trp-OCH<sub>3</sub> in methanol-d<sub>4</sub>:

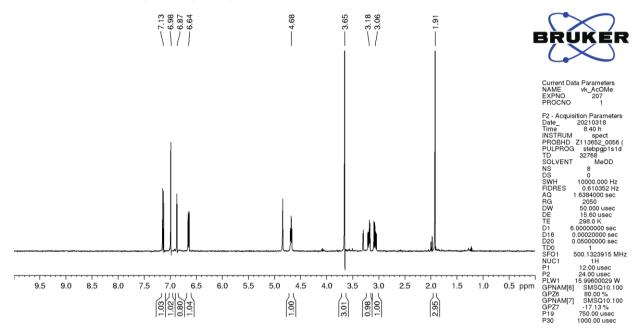
<sup>1</sup>H NMR (500 MHz): 7.28 (s, 1H), 7.20 (d, J = 8.5 Hz, 1H), 7.00 (s, 1H), 6.91 (dd, J = 8.4 and 1.5 Hz), 4.70 (dd, J = 7.6 and 5.8 Hz, 1H), 3.65 (s, 3H), 3.24 (ddd, J = 14.7, 5.9 and 0.7 Hz, 1H), 3.11 (dd, J = 14.7 and 7.8 Hz, 1H), 2.40 (s, 3H), 1.91 (s, 3H).




Ac-1-CH<sub>3</sub>-Trp-OCH<sub>3</sub> in DMSO-d<sub>6</sub>:

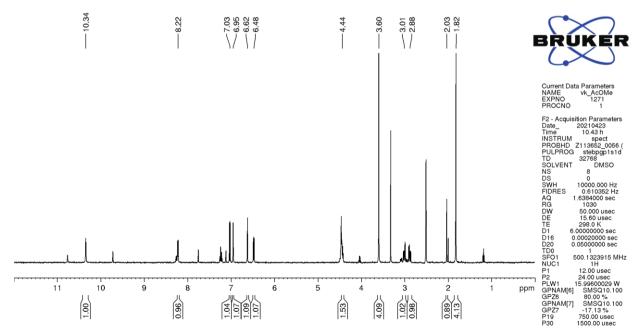
<sup>1</sup>H NMR (500 MHz): 8.30 (d, J = 7.6 Hz, 1H), 7.50 (d, J = 8.0 Hz, 1H), 7.39 (d, J = 8.2 Hz, 1H), 7.15 (m, 1H), 7.12 (s, 1H), 7.03 (m, 1H), 4.47 (m, 1H), 3.74 (s, 3H), 3.58 (s. 3H), 3.12 (dd, J = 14.7 and 6.0 Hz, 1H), 3.02 (dd, J = 14.6 and 8.2 Hz, 1H), 1.82 (s, 3H).




Ac-5-F-Trp-OCH<sub>3</sub> in methanol-d<sub>4</sub>:

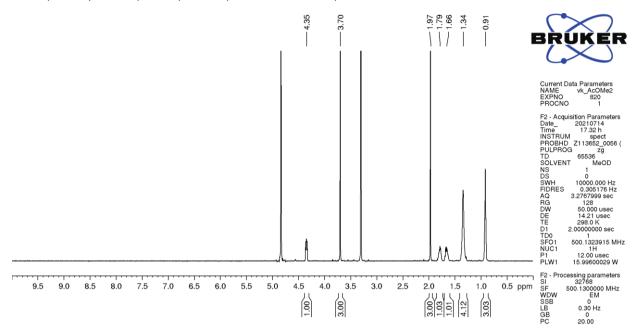
<sup>1</sup>H NMR (500 MHz): 7.27 (dd, J = 8.8 and 4.5 Hz, 1H), 7.16 (dd, J = 10.0 and 2.6 Hz, 1H), 7.12 (s, 1H), 6.85 (td, J = 9.2 and 2.5 Hz, 1H), 4.69 (dd, J = 7.7. and 5.8 Hz, 1H), 3.65 (s, 3H), 3.22 (dd, J = 14.7 and 5.9 Hz, 1H), 3.10, (dd, J = 14.7 and 7.8 Hz, 1H), 1.91 (s, 3H).




Ac-5-OH-Trp-OCH<sub>3</sub> in methanol-d<sub>4</sub>:

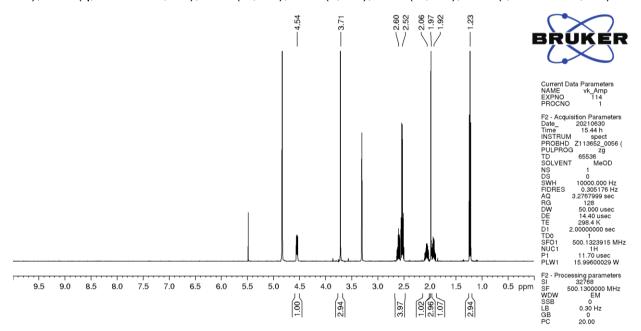
<sup>1</sup>H NMR (500 MHz): 7.14 (d, J = 8.9 Hz, 1H), 6.99 (s, 1H), 6.87 (s, 1H), 6.64 (d, J = 8.6 Hz, 1H), 4.68 (t, J = 6.6 Hz, 1H), 3.65 (s, 3H), 3.19 (dd, J = 14.7 and 5.9 Hz, 1H), 3.07 (dd, J = 14.5 and 7.7 Hz, 1H), 1.92 (s, 3H).




Ac-5-NH<sub>2</sub>-Trp-OCH<sub>3</sub> (with Ac-5-AcNH-Trp-OCH<sub>3</sub>) in DMSO-d<sub>6</sub>:

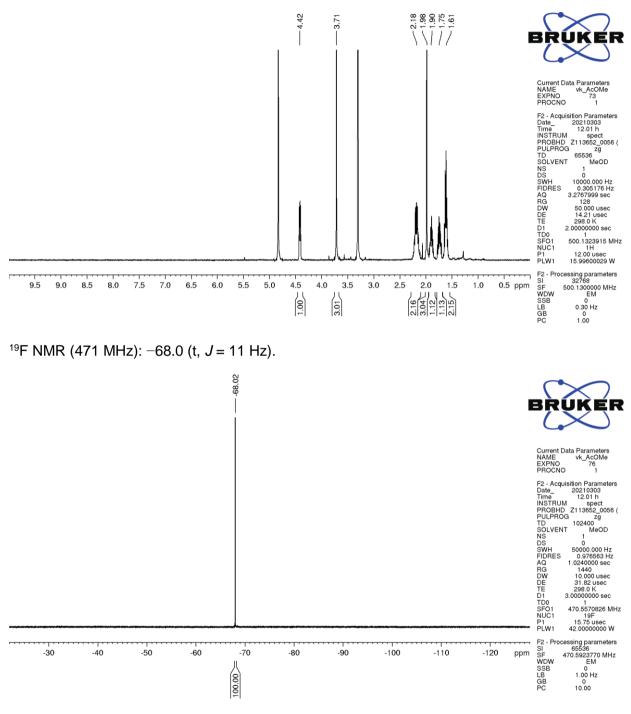
<sup>1</sup>H NMR (500 MHz): 10.34 (s, 1H), 8.22 (d, J = 7.7 Hz, 1H), 7.03 (d, J = 8.6 Hz, 1H), 6.95 (d, J = 2.2 Hz, 1H), 6.62 (d, J = 1.5 Hz, 1H), 6.48 (dd, J = 8.6 and 2.0 Hz, 1H), 4.44 (m, 1H), 3.60 (s, 3H), 3.01 (dd, J = 14.6 and 5.8 Hz, 1H), 2.88 (dd, J = 14.6 and 8.8 Hz, 1H), 1.82 (s, 3H).




Ac-NIe-OCH<sub>3</sub> in methanol-d<sub>4</sub>:

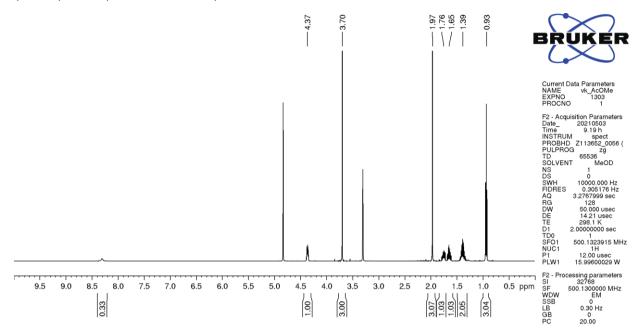
<sup>1</sup>H NMR (500 MHz): 4.35 (dd, *J* = 8.5 and 5.4 Hz, 1H), 3.70 (s, 3H), 1.97 (s, 3H), 1.79 (m, 1H), 1.66 (m, 1H), 1.34 (m, 4H), 0.91 (t, *J* = 5.8 Hz, 3H).




Ac-Eth-OCH<sub>3</sub> in methanol-d<sub>4</sub>:

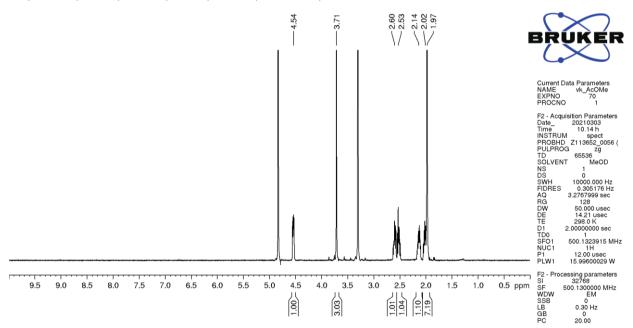
<sup>1</sup>H NMR (500 MHz): 4.54 (dd, *J* = 9.0 and 4.9 Hz, 1H), 3.71 (s, 3H), 2.60 (m, 1H), 2.53 (m, 1H), 2.52 (q, *J* = 7.4 Hz, 2H), 2.06 (m, 1H), 1.97 (s, 3H), 1.92 (m, 1H), 1.23 (t, *J* = 7.4 Hz, 3H).




Ac-Tfnle-OCH<sub>3</sub> in methanol-d<sub>4</sub>:

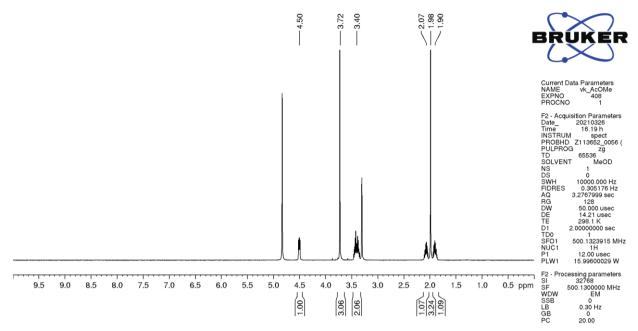
<sup>1</sup>H NMR (500 MHz): 4.42 (dd, *J* = 8.9 and 5.1 Hz, 1H), 3.71 (s, 3H), 2.18 (m, 2H), 1.98 (s, 3H), 1.90 (m, 1H), 1.75 (m, 1H), 1.61 (m, 2H).




Ac-Nva-OCH<sub>3</sub> in methanol-d<sub>4</sub>:

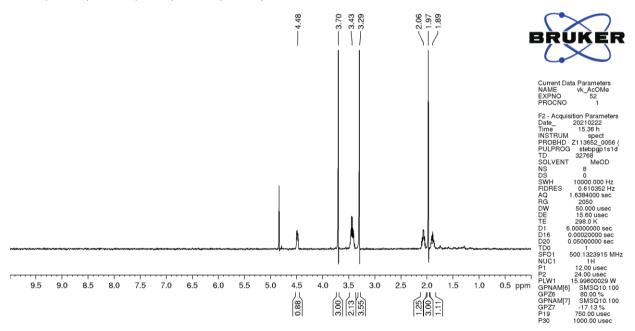
<sup>1</sup>H NMR (500 MHz): 4.37 (m, 1H), 3.70 (s, 3H), 1.97 (s, 3H), 1.76 (m, 1H), 1.64 (m, 1H), 1.39 (m, 2H), 0.93 (t, *J* = 7.4 Hz, 3H).




Ac-Sem-OCH<sub>3</sub> in methanol-d<sub>4</sub>:

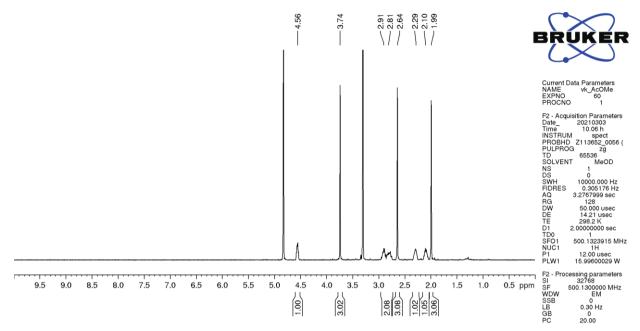
<sup>1</sup>H NMR (500 MHz): 4.54 (dd, *J* = 9.0 and 4.9 Hz, 1H), 3.71 (s, 3H), 2.60 (m, 1H), 2.53 (m, 1H), 2.14 (m, 1H), 2.02 (m, 1H), 1.97 (two s, 6H).




Ac-Aha-OCH<sub>3</sub> in methanol-d<sub>4</sub>:

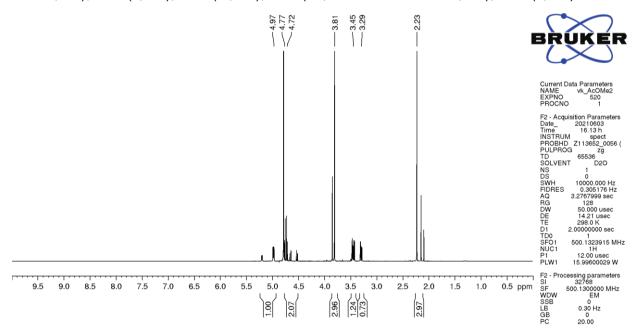
<sup>1</sup>H NMR (500 MHz): 4.50 (dd, *J* = 8.8 and 5.2 Hz, 1H), 3.72 (s, 3H), 3.40 (m, 2H), 2.07 (m, 1H), 1.98 (s, 3H), 1.90 (m, 1H).




Ac-Mox-OCH<sub>3</sub> in methanol-d<sub>4</sub>:

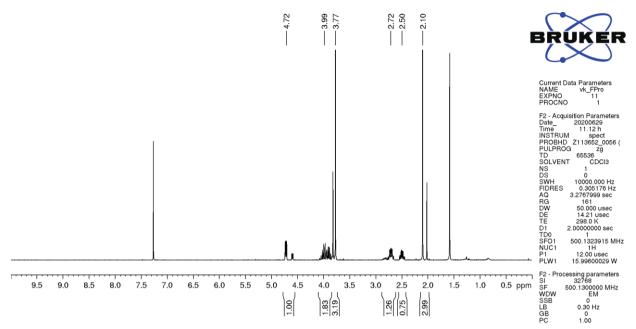
<sup>1</sup>H NMR (500 MHz): 4.48 (dd, *J* = 8.6 and 5.6 Hz, 1H), 3.70 (s, 3H), 3.42 (m, 2H), 3.29 (s, 3H), 2.06 (m, 1H), 1.97 (s, 3H), 1.89 (m, 1H).



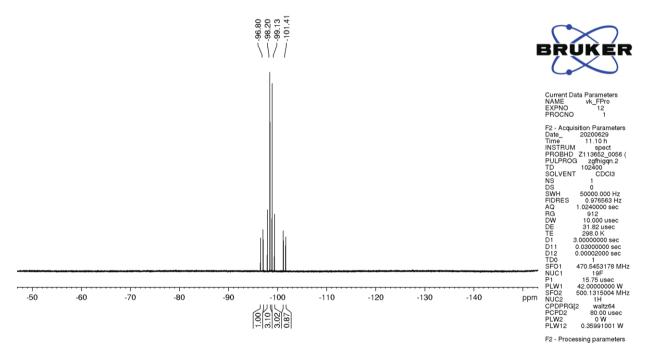

Ac-MetO-OCH<sub>3</sub> in methanol-d<sub>4</sub>:

<sup>1</sup>H NMR (500 MHz): 4.56 (m, 1H), 3.74 (s, 3H), 2.91 (m, 1H), 2.81 (m, 1H), 2.64 (s, 3H), 2.29 (m, 1H), 2.10 (m, 1H), 1.99 (s, 3H).



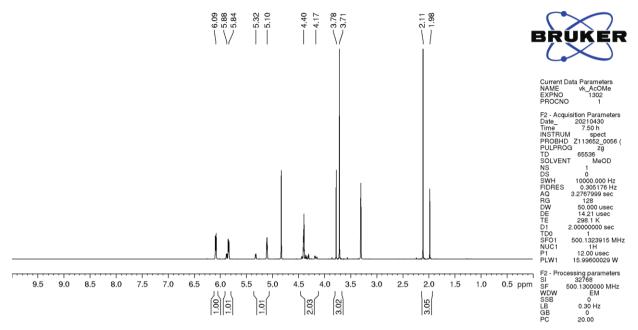

Ac-Cys[ψPro]-OCH<sub>3</sub> in deuterium oxide, major rotamer:

<sup>1</sup>H NMR (500 MHz): 4.97 (dd, *J* = 7.2 and 3.5 Hz, 1H), 4.76 (d, *J* = 9.2 Hz, 1H), 4.72 (d, *J* = 9.0 Hz, 1H), 3.81 (s, 3H), 3.45 (m, 1H), 3.29 (dd, *J* = 12.4 and 3.5 Hz, 1H), 2.23 (s, 3H).



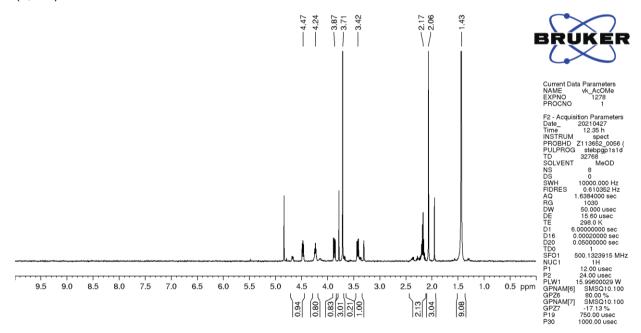

Ac-Dfp-OCH<sub>3</sub> in deuterochloroform:

<sup>1</sup>H NMR (500 MHz): 4.72 (dd, *J* = 9.3, 5.3, 1H), 3.99 (m, 2H), 3.77 (s, 3H), 2.72 (m, 1H), 2.50 (m, 1H), 2.10 (s, 3H).



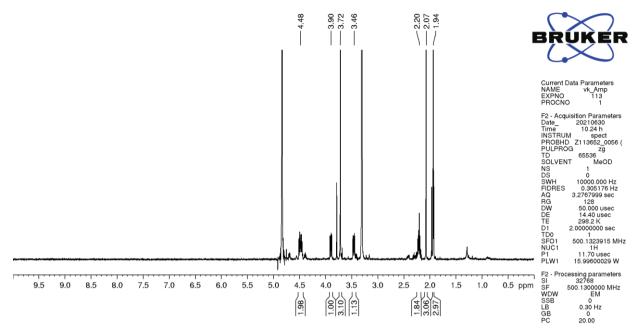

<sup>19</sup>F{<sup>1</sup>H} NMR (471 MHz): -98.8 (minor, d, J = 236 Hz, 1F), -98.2 (major, d, J = 235 Hz, 1F), -99.1 (major, d, J = 234 Hz, 1F), -101.4 (minor, d, J = 236 Hz, 1F).




Ac-Dhp-OCH<sub>3</sub> in methanol-d<sub>4</sub>, major rotamer:

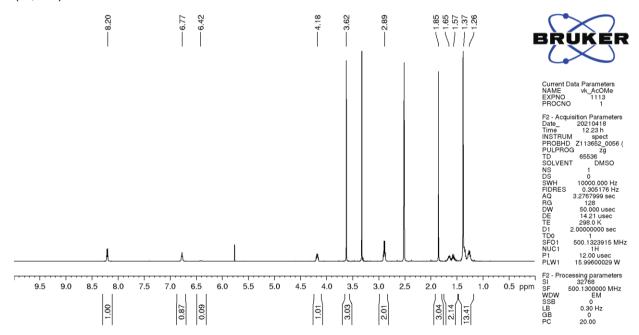
<sup>1</sup>H NMR (500 MHz): 6.09 (m, 1H), 5.84 (m, 1H), 5.10 (m, 1H), 4.40 (m, 2H), 3.71 (s, 3H), 2.11 (s, 3H).




Ac-(Boc)Amp-OCH<sub>3</sub> in methanol-d<sub>4</sub>, major rotamer:

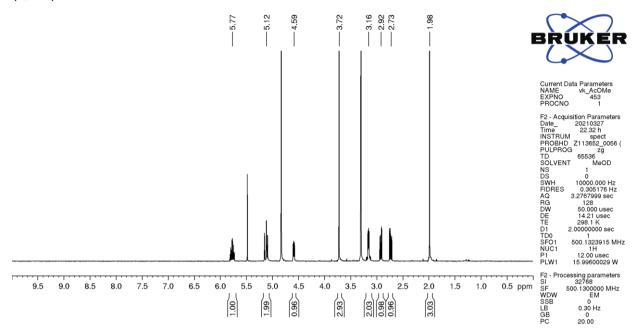
<sup>1</sup>H NMR (500 MHz): 4.47 (dd, *J* = 8.4 and 6.0 Hz, 1H), 4.23 (m, 1H), 3.86 (dd, *J* = 10.6 and 6.5 Hz, 1H), 3.71 (s, 3H), 3.42 (dd, *J* = 10.4 and 5.4 Hz, 1H), 2.17 (m, 2H), 2.06 (s, 3H), 1.44 (s, 9H).




Ac-(Ac)Amp-OCH<sub>3</sub> in methanol-d<sub>4</sub>, major rotamer:

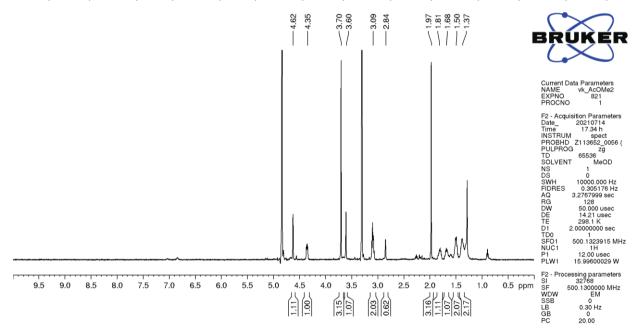
<sup>1</sup>H NMR (500 MHz): 4.48 (m, 2H), 3.90 (dd, *J* = 10.7 and 6.4 Hz, 1H), 3.72 (s, 3H), 3.46 (dd, *J* = 10.6 and 4.8 Hz, 1H), 2.20 (m, 2H), 2.07 (s, 3H), 1.94 (s, 3H).




Ac-(Boc)Lys-OCH<sub>3</sub> in DMSO-d<sub>6</sub>:

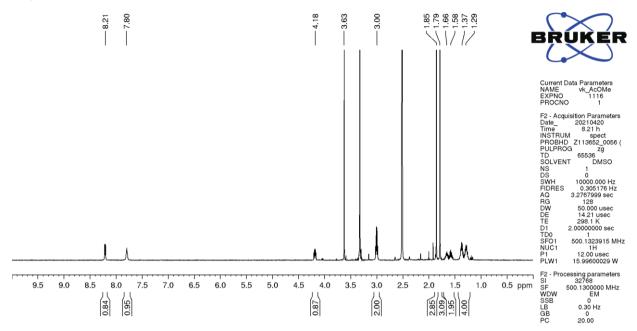
<sup>1</sup>H NMR (500 MHz): 8.20 (d, *J* = 7.4 Hz, 1H), 6.77 (t, *J* = 5.4 Hz, 1H), 4.18 (m, 1H), 3.62 (s, 3H), 2.89 (q, *J* = 6.5 Hz, 2H), 1.85 (s, 3H), 1.65 (m, 1H), 1.57 (m, 1H), 1.37 (s, 9H), 1.38-1.23 (m, 4H).




Ac-Sac-OCH<sub>3</sub> in methanol-d<sub>4</sub>:

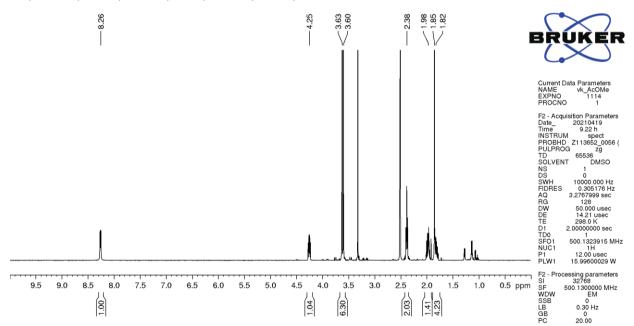
<sup>1</sup>H NMR (500 MHz): 5.77 (m, 1H), 5.12 (m, 2H), 4.59 (dd, J = 8.2 and 5.4 Hz, 1H), 3.72 (s, 3H), 3.16 (m, 2H), 2.92 (dd, J = 13.8 and 5.3 Hz, 1H), 2.73 (dd, J = 13.9 and 8.2 Hz, 1H), 1.98 (s, 3H).




Ac-(Pro)Lys-OCH<sub>3</sub> in methanol-d<sub>4</sub>:

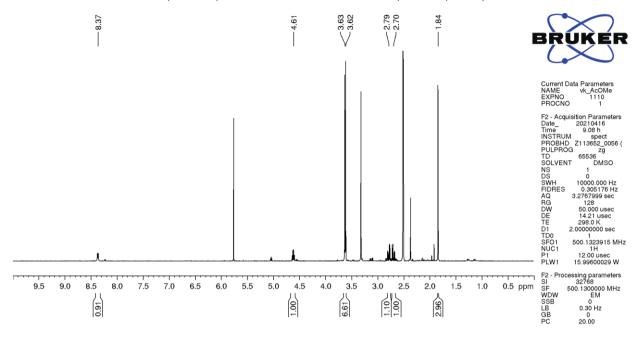
<sup>1</sup>H NMR (500 MHz): 4.62 (s, 1H), 4.35 (dd, *J* = 8.5 and 5.4 Hz, 1H), 3.70 (s, 3H), 3.60 (s, 1H), 3.09 (m, 2H), 2.84 (s, 1H), 1.97 (s, 3H), 1.81 (m, 1H), 1.68 (m, 1H), 1.50 (m, 2H), 1.37 (m, 2H).




Ac-(Ac)Lys-OCH<sub>3</sub> in DMSO-d<sub>6</sub>:

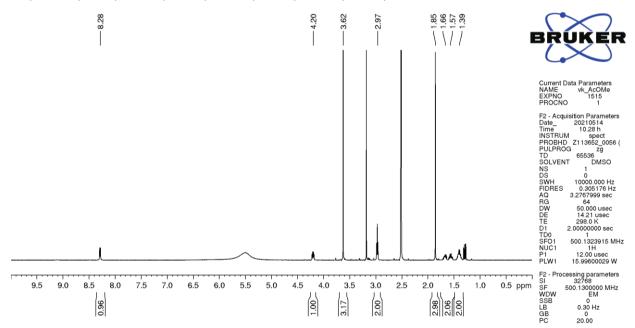
<sup>1</sup>H NMR (500 MHz): 8.21 (d, *J* = 7.4 Hz, 1H), 7.80 (m, 1H), 4.18 (m, 1H), 3.63 (s, 3H), 3.00 (q, *J* = 6.5 Hz, 2H), 1.85 (s, 3H), 1.79 (s, 3H), 1.66 (m, 1H), 1.58 (m, 1H), 1.37 (m, 2H), 1.29 (m, 2H).




Ac-(Me)Glu-OCH<sub>3</sub> in DMSO-d<sub>6</sub>:

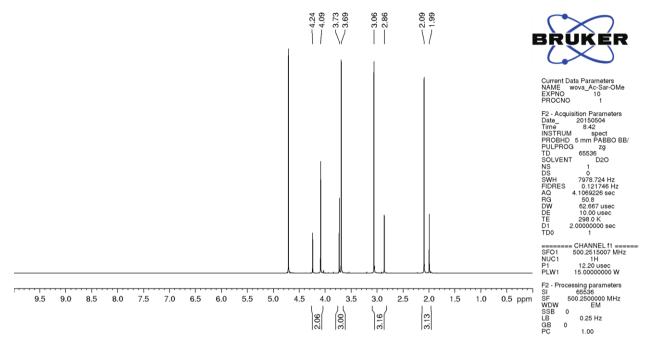
<sup>1</sup>H NMR (500 MHz): 8.26 (d, *J* = 7.6 Hz, 1H), 4.25 (m, 1H), 3.63 (s, 3H), 3.60 (s, 3H), 2.38 (m, 2H), 1.98 (m, 1H), 1.85 (s, 3H), 1.82 (m, 1H).




Ac-(Me)Asp-OCH<sub>3</sub> in DMSO-d<sub>6</sub>:

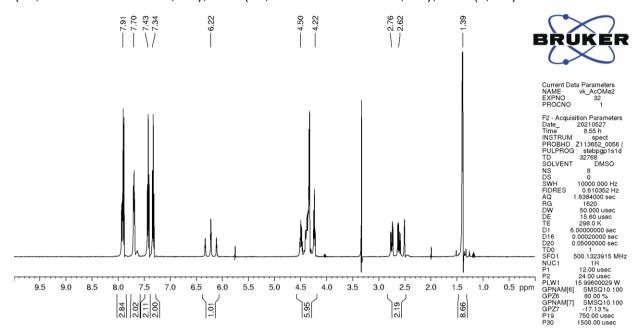
<sup>1</sup>H NMR (500 MHz): 8.37 (d, *J* = 8.4 Hz, 1H), 4.61 (m, 1H), 3.63 (s, 3H), 3.62 (s, 3H), 2.79 (dd, *J* = 16.4 and 6.1 Hz, 1H), 2.70 (dd, *J* = 16.4 and 7.2 Hz, 1H), 1.84 (s, 3H).



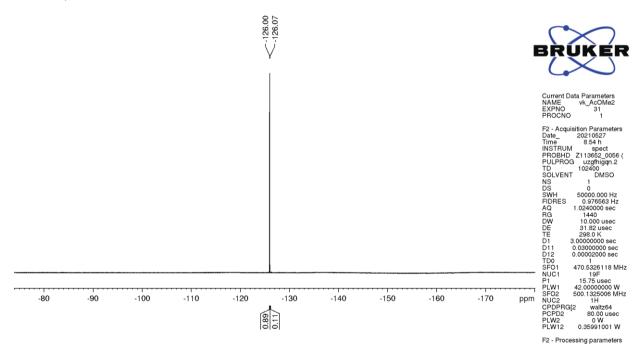

#### Ac-Citr-OCH<sub>3</sub> in DMSO-d<sub>6</sub>:

<sup>1</sup>H NMR (500 MHz): 8.28 (d, *J* = 7.4 Hz, 1H), 4.20 (m, 1H), 3.62 (s, 3H), 3.00 (t, *J* = 6.9 Hz, 2H), 1.85 (s, 3H), 1.66 (m, 1H), 1.57 (m, 1H), 1.39 (m, 2H).



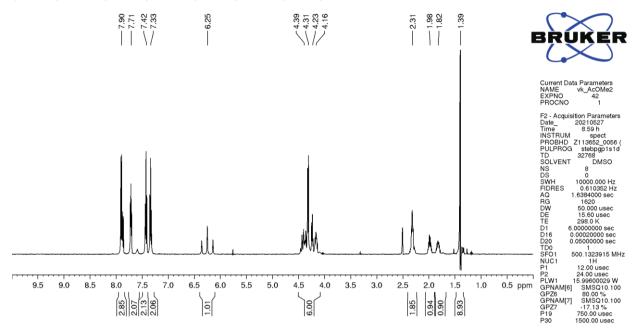

Ac-Sar-OCH<sub>3</sub> in deuterium oxide:

<sup>1</sup>H NMR (500 MHz): major rotamer, 4.08 (s, 2H), 3.69 (s, 3H), 3.06 (s, 3H), 2.09 (s, 3H); minor rotamer, 4.24 (s, 2H), 3.73 (s, 3H), 2.86 (s, 3H), 1.99 (s, 3H).

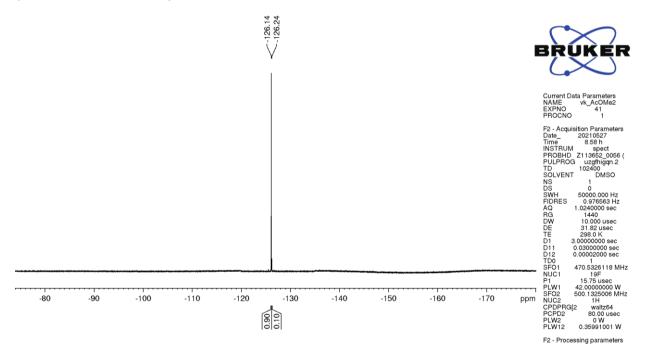



#### NMR spectra for difluoroethyl esters Fmoc-(<sup>t</sup>Bu)Asp-OCH<sub>2</sub>CHF<sub>2</sub> in DMSO-d<sub>6</sub>:

<sup>1</sup>H NMR (500 MHz): 7.92 (d, J = 9.1 Hz, 1H), 7.89 (d, J = 7.9 Hz, 2H), 7.69 (m, 2H), 7.42 (t, J = 7.6 Hz, 2H), 7.32 (t, J = 7.5 Hz, 2H), 6.22 (tm,  $J_{HF} = 54$  Hz, 1H), 4.51-4.21 (m, 6H), 2.75 (dd, J = 16.3 and 5.8 Hz, 1H), 2.60 (dd, J = 16.4 and 8.8 Hz, 1H), 1.39 (s, 9H).

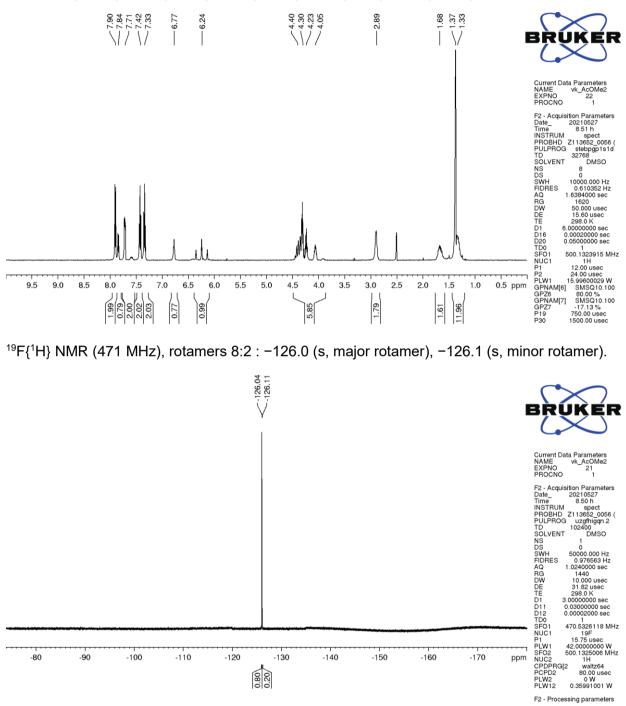



<sup>19</sup>F{<sup>1</sup>H} NMR (471 MHz), rotamers 9:1: -126.0 (s, major rotamer), -126.1 (broad s, minor rotamer).



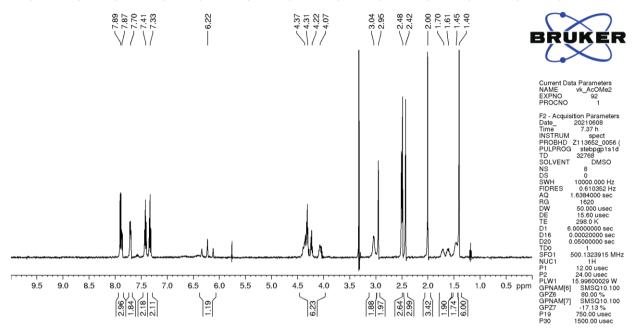

Fmoc-(<sup>t</sup>Bu)Glu-OCH<sub>2</sub>CHF<sub>2</sub> in DMSO-d<sub>6</sub>:

<sup>1</sup>H NMR (500 MHz): 7.90 (d, J = 7.8 Hz, 2H), 7.86 (d, J = 7.9 Hz, 1H), 7.71 (m, 2H), 7.42 (t, J = 7.6 Hz, 2H), 7.33 (t, J = 7.7 Hz, 2H), 6.25 (tm,  $J_{HF}$  = 54 Hz, 1H), 4.46-4.13 (m, 6H), 2.32 (m, 2H), 1.98 (m, 1H), 1.82 (m, 1H), 1.39 (s, 9H).

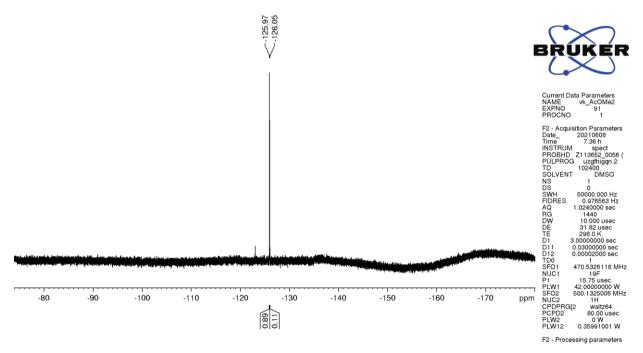



<sup>19</sup>F{<sup>1</sup>H} NMR (471 MHz), rotamers 9:1 : -126.1 (two d,  $J_{FF} = 289$  Hz, major rotamer), -126.2 (broad s, minor rotamer).



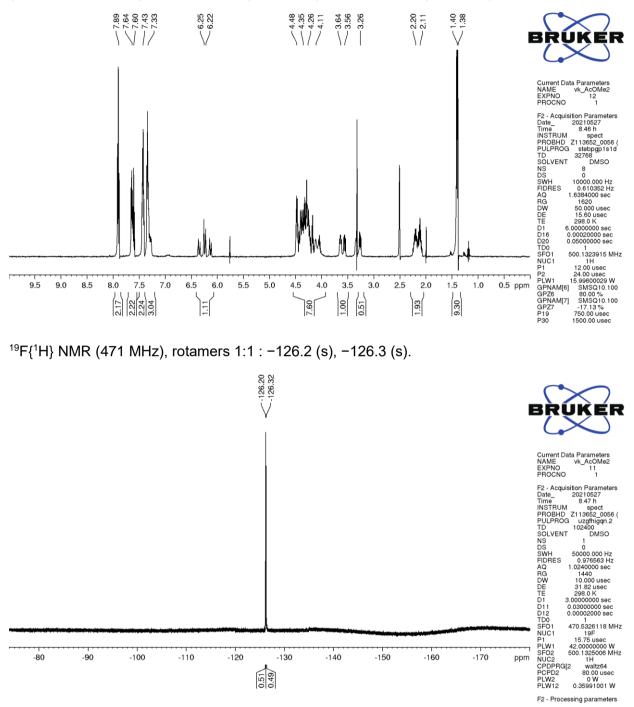

Fmoc-(Boc)Lys-OCH<sub>2</sub>CHF<sub>2</sub> in DMSO-d<sub>6</sub>:

<sup>1</sup>H NMR (500 MHz): 7.90 (d, J = 7.9 Hz, 2H), 7.84 (d, J = 7.9 Hz, 1H), 7.71 (m, 2H), 7.42 (t, J = 7.5 Hz, 2H), 7.33 (t, J = 7.5 Hz, 2H), 6.77 (t, J = 5.2 Hz, 1H), 6.24 (tm,  $J_{HF} = 54$  Hz, 1H), 4.44-4.03 (m, 6H), 2.89 (m, 2H), 1.68 (m, 2H), 1.37 (s, 9H), 1.33 (m, 2H).



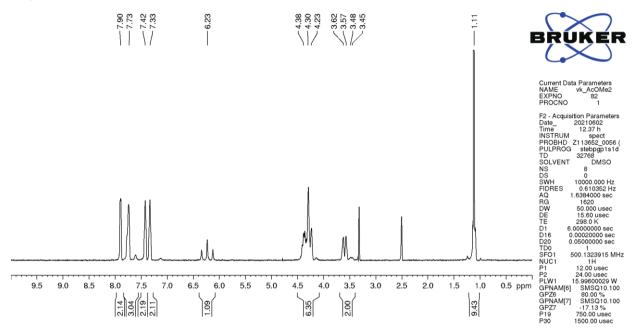

Fmoc-(Pbf)Arg-OCH<sub>2</sub>CHF<sub>2</sub> in DMSO-d<sub>6</sub>:

<sup>1</sup>H NMR (500 MHz): 7.90 (d, J = 7.8 Hz, 2H), 7.87 (d, J = 7.9 Hz, 1H), 7.71 (dd, J = 7.5 and 4.5 Hz, 2H), 7.42 (t, J = 7.5 Hz, 2H), 7.33 (t, J = 7.5 Hz, 2H), 7.0-6.3 (broad, 3H), 6.23 (tt,  $J_{HF} = 54$  Hz,  $J_{HH} = 3.0$  Hz, 1H), 4.40-4.04 (multiplets, 6H), 3.04 (m, 2H), 2.95 (m, 2H), 2.49 (s, 3H), 2.43 (s, 3H), 2.00 (s, 3H), 1.71 (m, 1H), 1.61 (m, 1H), 1.46 (m, 2H), 1.40 (m, 6H).

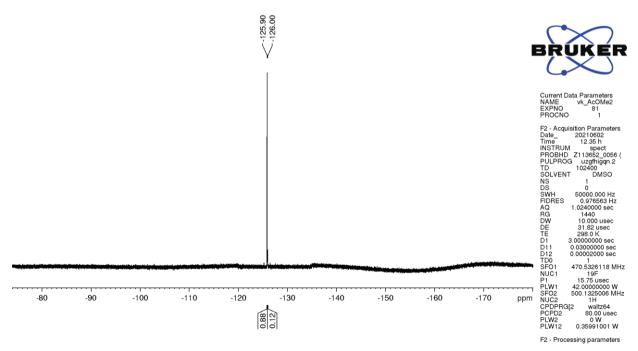



<sup>19</sup>F{<sup>1</sup>H} NMR (471 MHz), rotamers 9:1 : -126.0 (s, major rotamer), -126.1 (broad s, minor rotamer).



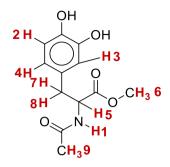

Fmoc-(Boc)Amp-OCH<sub>2</sub>CHF<sub>2</sub> in DMSO-d<sub>6</sub>:

<sup>1</sup>H NMR (500 MHz), two rotamers 1:1: 7.89 (m, 2H), 7.66-7.58 (m, 2H), 7.43 (m, 2H), 7.33 (m, 2H), 6.25 and 6.22 (two tm,  $J_{HF}$  = 54 Hz, 1H), 4.40-4.03 (m, 7.5H), 3.64, 3.56, and 3.25 (three m, 0.5H each), 2.20 and 2.11 (two m, 2H), 1.40 and 1.38 (two s, 9H).




Fmoc-(<sup>t</sup>Bu)Ser-OCH<sub>2</sub>CHF<sub>2</sub> in DMSO-d<sub>6</sub>:

<sup>1</sup>H NMR (500 MHz), major rotamer: 7.90 (d, J = 7.6 Hz, 2H), 7.77 (d, J = 7.8 Hz, 1H), 7.74 (m, 2H), 7.43 (t, J = 7.4 Hz, 2H), 7.33 (t, J = 7.4 Hz, 2H), 6.24 (tm,  $J_{HF} = 54$  Hz, 1H), 4.44-4.21 (m, 6H), 3.63 (dd, J = 9.2 and 6.2 Hz, 1H), 3.57 (dd, J = 9.0 znd 4.9 Hz, 1H), 1.12 (s, 9H).

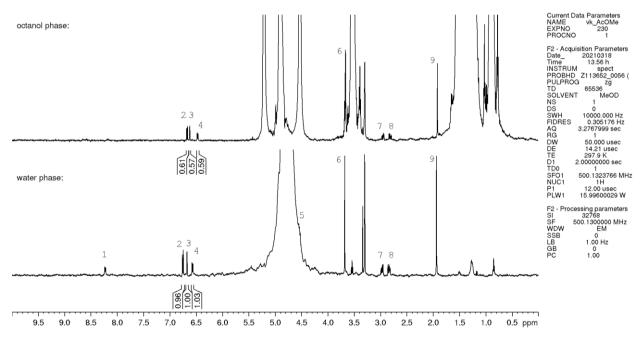



<sup>19</sup>F{<sup>1</sup>H} NMR (471 MHz), rotamers 9:1 : -125.9 (two d,  $J_{FF} = 290$  Hz, major rotamer), -126.0 (broad s, minor rotamer).



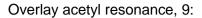
#### An example of spectra analysis

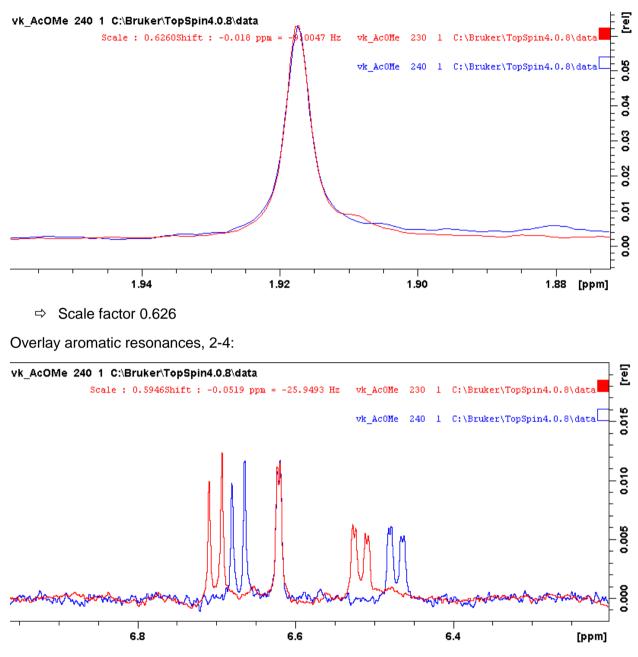
The example is given for the Dopa derivative Ac-Dopa-OCH<sub>3</sub> partitioning,  $\log P = -0.21 \pm 0.02$ . Deuterated solvent – methanol-d<sub>4</sub>. Three samples with 5-7 mg of the substance used in each. Acquisition parameters are shown on the spectra.




Single-scan spectra:

Both spectra were baseline-corrected over the entire range using a 5-degree polynomial. An additional baseline correction was applied between 7.2-6.2 ppm.

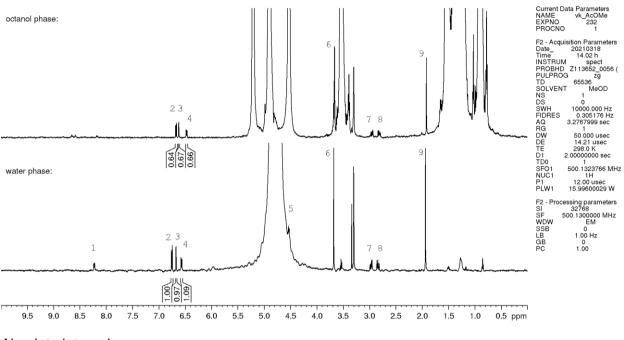

Partitioning sample 1:


Full spectrum and integration:



#### Absolute integrals:

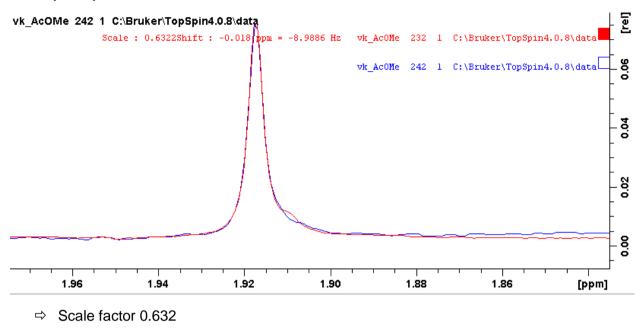
| resonance | absolute integral, water | absolute integral, octan-1-ol | Р     |
|-----------|--------------------------|-------------------------------|-------|
| 2         | 5703                     | 3378                          | 0.592 |
| 3         | 5913                     | 3483                          | 0.589 |
| 4         | 6102                     | 3611                          | 0.592 |



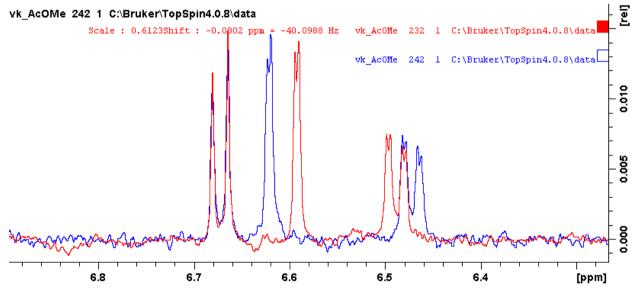



⇒ Scale factor 0.595

# Partitioning sample 2:


#### Full spectrum and integration:

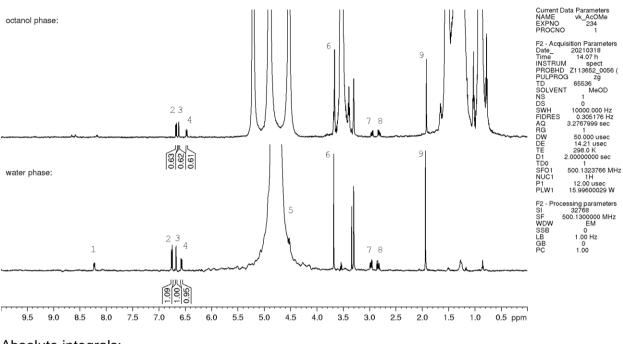



#### Absolute integrals:

| resonance | absolute integral, water | absolute integral, octan-1-ol | Р     |
|-----------|--------------------------|-------------------------------|-------|
| 2         | 6264                     | 4135                          | 0.660 |
| 3         | 6455                     | 4263                          | 0.660 |
| 4         | 7005                     | 4323                          | 0.617 |

Overlay acetyl resonance, 9:

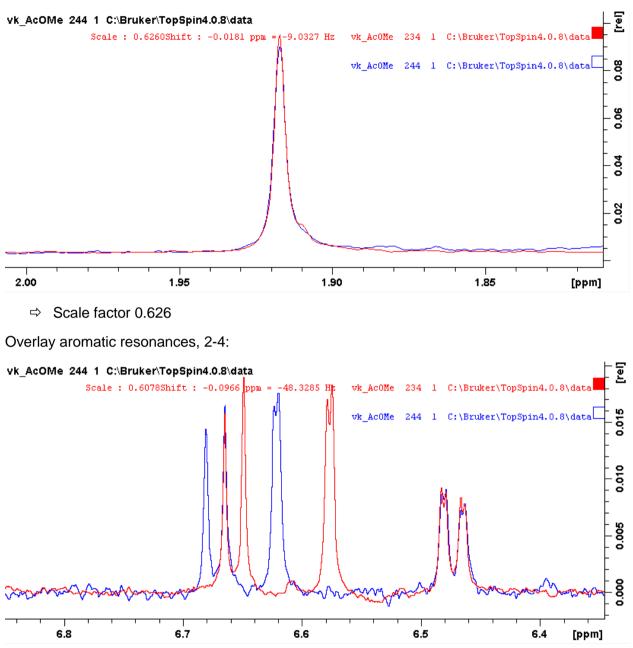



Overlay aromatic resonances, 2-4:



⇒ Scale factor 0.612

# Partitioning sample 3:


# Full spectrum and integration:

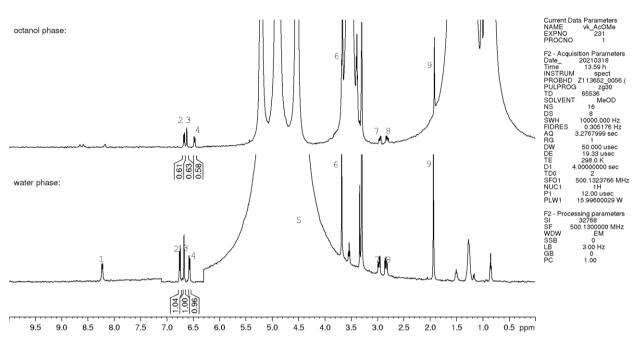


#### Absolute integrals:

| resonance | absolute integral, water | absolute integral, octan-1-ol | Р     |
|-----------|--------------------------|-------------------------------|-------|
| 2         | 7900                     | 5070                          | 0.642 |
| 3         | 8290                     | 5164                          | 0.623 |
| 4         | 9038                     | 5261                          | 0.582 |

Overlay acetyl resonance, 9:

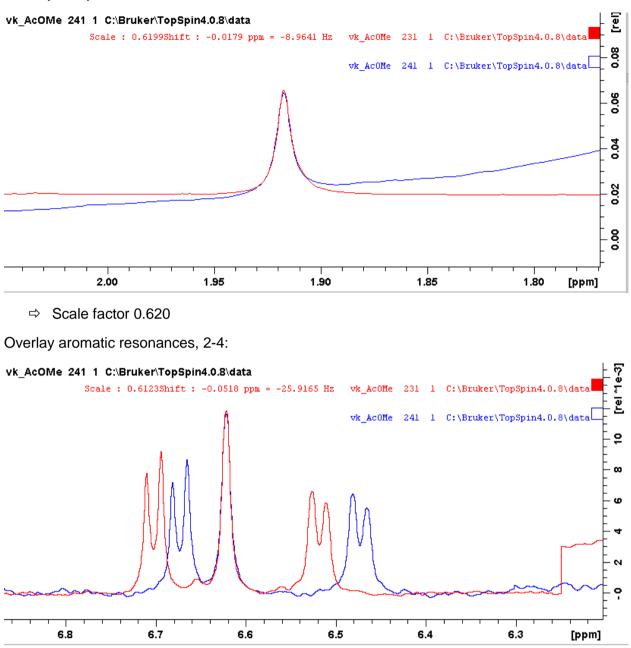



⇒ Scale factor 0.608

16-scan spectra:

Both spectra were baseline-corrected over the entire range using a 5-degree polynomial. An additional baseline correction was applied between 7.1-6.3 ppm.

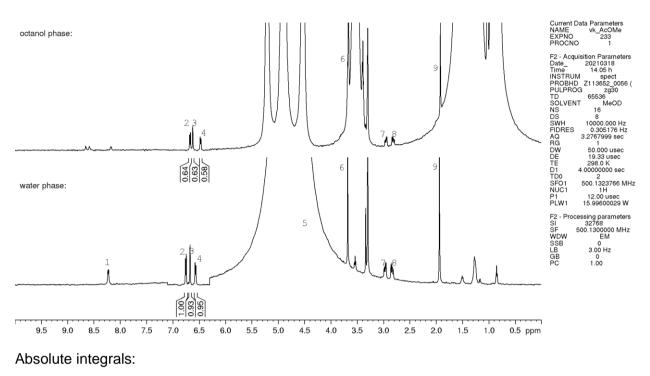
Partitioning sample 1:


Full spectrum and integration:

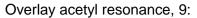


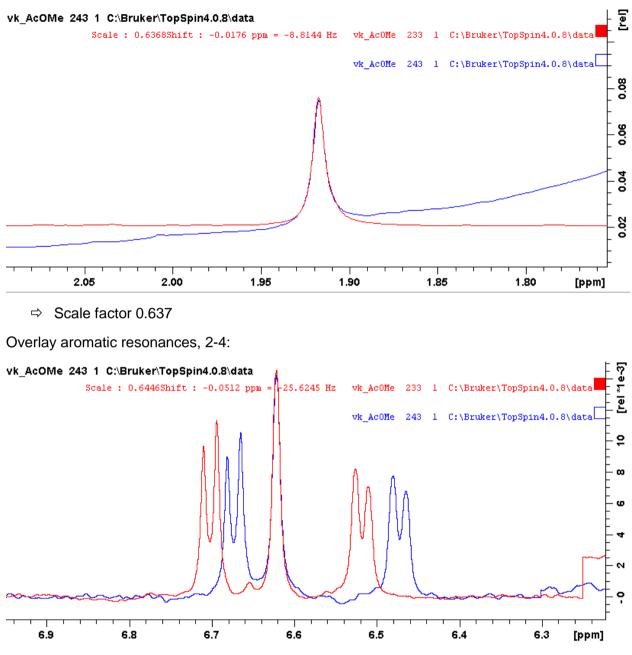
#### Absolute integrals:

| resonance | absolute integral, water | absolute integral, octan-1-ol | Р     |
|-----------|--------------------------|-------------------------------|-------|
| 2         | 42082                    | 26738                         | 0.635 |
| 3         | 43906                    | 27978                         | 0.637 |
| 4         | 45566                    | 28760                         | 0.631 |


Overlay acetyl resonance, 9:



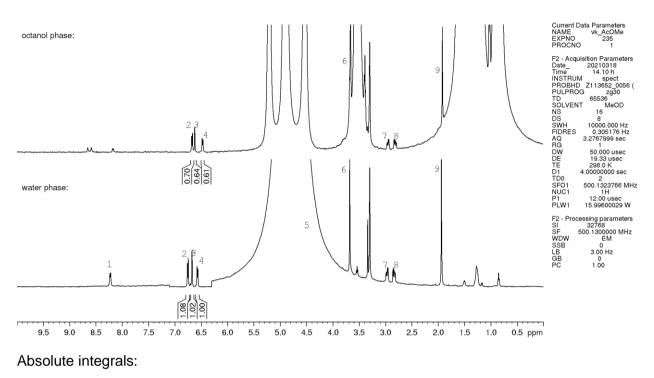

⇒ Scale factor 0.612


# Partitioning sample 2:

# Full spectrum and integration:

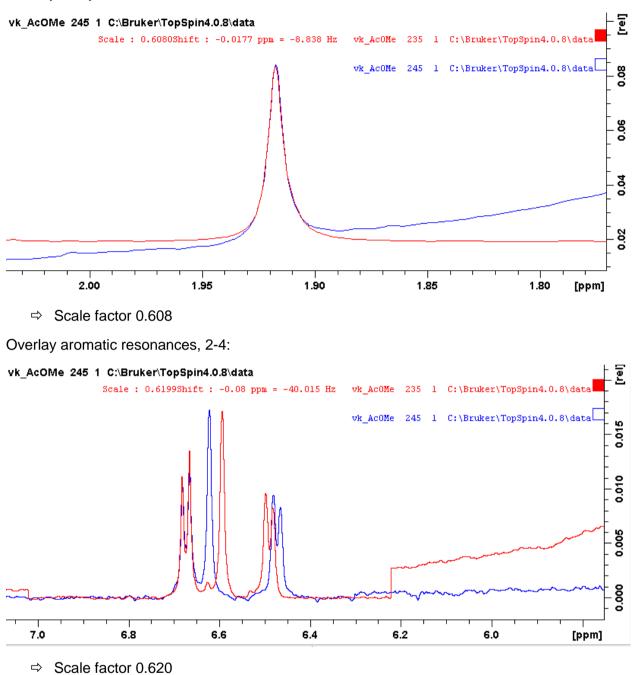


| resonance | absolute integral, water | absolute integral, octan-1-ol | Р     |
|-----------|--------------------------|-------------------------------|-------|
| 2         | 50661                    | 31289                         | 0.618 |
| 3         | 51415                    | 34202                         | 0.665 |
| 4         | 54377                    | 34530                         | 0.635 |






⇒ Scale factor 0.645


# Partitioning sample 3:

# Full spectrum and integration:



| resonance | absolute integral, water | absolute integral, octan-1-ol | Р     |
|-----------|--------------------------|-------------------------------|-------|
| 2         | 64412                    | 39336                         | 0.611 |
| 3         | 65664                    | 41080                         | 0.626 |
| 4         | 69579                    | 44838                         | 0.644 |

Overlay acetyl resonance, 9:



Final average  $P = 0.623 \pm 0.021$ , or if expressed in logarithmic scale log  $P = -0.21 \pm 0.02$ 

# References

S1 V. Kubyshkin and N. Budisa, *J. Pept. Sci.*, 2018, **24**, e3076.

https://doi.org/10.1002/psc.3076

S2 V. Kubyshkin and N. Budisa, *Org. Biomol. Chem.*, 2017, **15**, 6764-6772.

https://doi.org/10.1039/C7OB01421J

S3 V. Kubyshkin, S. Pridma and N. Budisa, *New J. Chem.*, 2018, **42**, 13461-13470.

https://doi.org/10.1039/C8NJ02631A

S4 V. Kubyshkin, *Beilstein J. Org. Chem.*, 2020, **16**, 1837-1852.

https://doi.org/10.3762/bjoc.16.151

S5 F. Agostini, L. Sinn, D. Petras, C. J. Shipp, V. Kubyshkin, A. A. Berger, P. C. Dorrestein, J. Rappsilber, N. Budisa and B. Koksch, *ACS Cent. Sci.*, 2021, **7**, 81-92.

https://doi.org/10.1021/acscentsci.0c00679